Enhanced Privacy for
DNS Resolution

Master’s Thesis

to confer the academic degree of
Diplom-Ingenieur
in the Master’s Program

Computer Science

JOHANNES KEPLER
UNIVERSITY LINZ

Author
David Alois Raab, BSc

Submission
Institute of
Networks and Security

Thesis Supervisor
Assoz.-Prof. Mag. DI Dr.
Michael Sonntag

Assistant Thesis
Supervisor
DI Dr. Tobias Holler, BSc

November 2025

JOHANNES KEPLER
UNIVERSITY LINZ
Altenberger StraBe 69
4040 Linz, Austria
jku.at

https://jku.at/

Abstract

The Domain Name System (DNS) is one of the fundamental systems for Inter-
net communication. Its underlying protocol was originally developed and stan-
dardized without consideration of privacy or security and has undergone only
minor improvements since its introduction. This thesis examines DNS privacy
threats in general, and specifically those that arise when DNS requests exit the
Tor network.

An empirical evaluation of Tor exit relays was conducted to assess the extent
of these issues on the Tor network, revealing that a substantial number of exit
relays did not adhere to the Tor Project’s recommendations. More than 32%
of DNS requests were directed to only two organizations (Google: 20.8% and
Cloudflare: 11.3%) and only about 6 5% of all DNS traffic supported DNSSEC val -
idation.

To address the shortcomings of DNS, this thesis discusses and proposes
privacy- and security-enhancing measures to DNS resolution, including the
encryption and distribution of DNS requests and the use of the Tor network to
anonymize the original requester.

To validate these improvements, publicly available encrypted DNS resolvers
were assessed for mutual independence, applied security measures, censor-
ship behavior, and performance. A proof-of-concept implementation demon-
strates the feasibility of integrating the proposed measures.

This thesis aims to raise awareness of the privacy challenges inherent to DNS
resolution and presents measures that can be applied to the existing DNS in-
frastructure without requiring modifications to the DNS protocol itself.

Kurzfassung

Das Domain Name System (DNS) ist eines der grundlegenden Systeme fiir die
Kommunikation im Internet. Sein zugrunde liegendes Protokoll wurde ur-
spriinglich ohne Beriicksichtigung von Datenschutz und Sicherheit entwickelt
und standardisiert und hat seit seiner Einfiihrung nur geringfiigige Verbesse-
rungen erfahren. Diese Arbeit untersucht Datenschutzbedrohungen des DNS
im Allgemeinen und insbesondere solche, die auftreten, wenn DNS-Anfragen
das Tor-Netzwerk verlassen.

Eine empirische Untersuchung der Tor-Exit-Relays wurde durchgefiihrt, um
das Ausmaf dieser Probleme im Tor-Netzwerk zu bewerten. Dabei zeigte sich,
dass eine erhebliche Anzahl von Exit-Relays den Empfehlungen des Tor-
Projekts nicht folgt. Mehr als 32% aller DNS-Anfragen wurden an lediglich
zwei Organisationen geleitet (Google: 20,8% und Cloudflare: 11,3%) und nur
etwa 65% des gesamten DNS-Datenverkehrs unterstiitzten die Validierung
mittels DNSSEC.

Zur Behebung der Schwachstellen des DNS diskutiert und schldgt diese Ar-
beit Mafinahmen zur Verbesserung der Privatsphdre und Sicherheit bei der
DNS-Auflésung vor, darunter die Verschliisselung und Verteilung von DNS-
Anfragen sowie die Nutzung des Tor-Netzwerks zur Anonymisierung des
urspriinglichen Anfragenden.

Zur Validierung dieser Verbesserungen wurden offentlich verfiigbare ver-
schliisselte DNS-Resolver hinsichtlich ihrer gegenseitigen Unabhdngigkeit,
der angewandten Sicherheitsmafnahmen, ihres Zensurverhaltens und ihrer
Leistung untersucht. Eine Proof-of-Concept-Implementierung demonstriert
die Umsetzbarkeit der vorgeschlagenen MaSnahmen.

Diese Arbeit soll das Bewusstsein fiir die Datenschutzprobleme bei der
DNS-Auflosung scharfen und zeigt Mafnahmen auf, die auf die bestehen-
de DNS-Infrastruktur angewendet werden konnen, ohne Anderungen am
DNS-Protokoll selbst zu erfordern.

Contents

Abstract

Kurzfassung

List of Tables

List of Figures

1

3

Introduction
1.1 Problem Description and Motivation
1.2 ObjectivesandApproach

Background and Definitions

2.1 Secure Communication.

2.2 Trust e e e e e

2.3 ClientandUser it ie

2.4 The Domain Name System
2.4.1 Domain Name Space and Resource Records
2.4.2 NameServers i i i e e
2.4.3 Resolvers
2.4.4 Process of Resolving DNSRequests
2.4.5 Extension Mechanisms for DNS (EDNS(0))
2.4.6 EDNSClientSubnet(ECS)
2.4.7 DNS Security Improvements

2.5 TheTorProject.
2.5.1 Concept and Architectureof Tor
2.5.2 DNSResolutioninTor
2.5.3 Software and Applications

Threat Model

3.1 Scopeof ThreatModel

3.2 AttackSurfaceScenarios
3.2.1 Local Recursive DNSResolver
3.2.2 DNS Resolver of Internet Service Provider (ISP)
3.2.3 PublicDNSResolver uuiiiiio..

3.3 Potential Adversaries
3.3.1 Local NetworkOperator
3.3.2 Internet Service Provider (ISP)
3.3.3 Autonomous System (AS)Operator
3.3.4 Internet Exchange Point (IXP)Operator
3.3.5 Recursive DNS Resolver Operator
3.3.6 Authoritative Name Server Operator

3.4 Threats of the conventional Domain Name System
3.4.1 DNS Traffic Interception
3.4.2 Privacy and Information Exposure

vii

viii

Contents

3.4.3 Centralization
3.4.4 Manipulation of DNSResponses
3.4.5 DNSBlocking.
3.4.6 CachePoisoning
3.4.7 CacheSnooping

4 Evaluation of DNS on the Tor Network

4.1 ConsideredUseCases v v v v vt vt e e e
4.2 Tor’s Recommendations for Exit Relay Operators
4.3 Tor DNSEXposuret
4.31 ExitRelaylItself
4.3.2 DNSResolverintheSameAS
4.3.3 DNSResolverinaDifferentAS
4.3.4 ActualExposure
4.4, Tor-specificDNSThreats
4.4.1 Privacy Exposure of the Tor Network
4.4.2 Centralization
4.4.3 Tor-specific Blocking and Manipulation.
4.4.4 Attackson ExitRelayCache
4.4..5 Correlation Attacks
4.5 Evaluation of the Stateof DNSonTor
451 TestSetup. e e
4.5.2 TestsandResults

Proposed Improvements

5.1 EncryptingDNSRequests
5.1.1 Encrypted DNSProtocols
5.1.2 Threat AnalysisUpdate

5.2 Distributing Encrypted DNSRequests
5.2.1 Algorithm for Distribution
5.2.2 Threat AnalysisUpdate

5.3 Anonymizing the Original Sender of DNS Requests
5.3.1 Threat AnalysisUpdate

5.4 Evaluation of Encrypted Recursive DNS Resolvers
5.4.1 Requirements for Encrypted DNS Resolvers
5.4.2 Finding Public Encrypted DNS Resolvers
543 TestSetup. e
5.4.4 Tests and Results of Public Encrypted DNS Resolvers.
5.4.5 Summary of public encrypted DNS Resolver Tests
5.4.6 Independence of Encrypted DNS Resolvers

Implementation and Evaluation

6.1 Consolidated Improvements

6.2 UseCases
6.2.1 User-Operated Private DNSResolver
6.2.2 Network Operator-Provided Private DNS Resolver
6.2.3 Exit Relay Operator-Provided Private DNS Resolver

6.3 Proof-of-Concept (PoC) Implementation
6.31 DockerImages
6.3.2 Data Flow and RouteDNS Configuration
6.3.3 OperationalBehavior

Contents Vi

6.4 Evaluation. 81
6.4.1 Practical Evaluation 81
6.4.2 RemainingThreats 83
7 Conclusion and Outlook 84
7.01 FutureWork 84
7.0.2 RemainingChallenges 85
Bibliography 86
Appendix A Proof-of-Concept 94
A1 Dockerfiles 94
A.1.1 Dockerfile for torconnector 9/
A.1.2 Dockerfile for dnscryptResolver. 94
A.2 Lists for Domain Name Blocking and Local Host Entries 95
A.2.1 Domain NameBlocklist 95
A.2.2 Listof LocalHostEntries 95
A3 ConfigurationFiles 95
A.3.1 RouteDNS ConfigurationFile 95

A.3.2 Example Configuration File of DNSCrypt Resolver
dnscrypt_org 103
A.3.3 Stamps of selected DNSCrypt Resolver Configurations 104
A4 Startup Script. L 104

A.4.1 Bash Script containing Startup Commands for Launching
the Private DNSResolver 104

List of Tables

4.1 Number of tested exit relays and their test success 35
4.2 Query types received by number of exitrelays 37
4.3 Number of different IP addresses and corresponding number of
FEQUESES . . o v it e e e e e e e 37
4.4, Number of different ASes and corresponding number of requests . 38
4.5 AS information of exit relays and DNS resolvers, and the corre-
sponding number of laterequests 39
4.6 DNSresolver scenariosbyexitrelays 40
4.7 Top 7 DNSresolver ASesused by exitrelays 42
4.8 ECS information received on the authoritative name server 44
4.9 Number of mixed-case requests per domainlevel 45
£4.10 Test period and the corresponding DNSSEC test domain names . . 46
5.1 Certificate check error categories per encryption protocol 65
5.2 Certificate errors per encryption protocol 66
5.3 DNSSEC validation failing DNS resolvers per encryption protocol . 66
5.4 Domain name blocking DNS resolvers per blocking type and en-
cryptionprotocol L. 67
5.5 DNS resolvers sending ECS data per encryption protocol 68
5.6 DNS resolvers not applying QNAME minimization for all requests
per encryptionprotocol 69
5.7 Average DNSresolution time per DNS resolver category and tested
domains 70
5.8 Summary of DNSresolverrest 72
6.1 DNS resolution times of Private DNS Resolver and ISP DNS resolver 82

vii

List of Figures

2.1 Processof DNSresolution
2.2 Threehop Torcircuit

3.1 Scenario of local recursive DNSresolver
3.2 Scenario of ISP’sDNSresolver
3.3 Scenario of publicDNSresolver

4.1 Exitrelay doing DNS resolutionitself
4.2 Exitrelay using a DNS resolver inthesameAS
4.3 Exit relay using a DNS resolver in a differentAS
4.4, DefecTorattack[79] e
4.5 Server and network overview of testsetup
4.6 Testserverstructure
4.7 Number of tested exitrelaysperday
4.8 Number of received late DNS requests perday
4.9 Number and probability of used scenarios by exit relays
£4.10 ASes used by DNS resolvers of more than 20 exitrelays
411 Top7ASesof DNSresolvers
£4.12 Number and probability of exit relays applying QNAME minimiza-
tion
£4.13 Number and probability of exit relays sendin mixed-case query
NAIMES . . v vttt e e e e e e e e e e e e
4.14 Number and probability of exit relays validating DNSSEC
£4.15 Time in ps needed for resolving test domain names

5.1 Architecture of encrypted DNSresolution
5.2 Distributing DNS requests to multiple encrypted DNS resolvers . .
5.3 Anonymizing the original sender’s IP address of DNS requests by
sending them over the Tornetwork
5.4 Anonymizing the original sender’s IP address of DNS requests by
sending them over the Tornetwork
5.5 Test architecture for testing public encrypted DNS resolvers
5.6 Structureofatestserver
5.7 Performance of DNS requests for root name server domain names
5.8 Performance of DNS requests for *.prtest.ovh domain names
5.9 Schema of encrypted DNS infrastructure

6.1 ProcessflowofaDNSrequests
6.2 Architecture of a user operatedusecase
6.3 Architecture of network operatorusecase
6.4 Architecture of exit relay operatorusecase
6.5 Proof-of-concept system architecture

viii

Chapter1
Introduction

1.1 Problem Description and Motivation

The Domain Name System (DNS) is one of the most important systems for on-
line activities. Users rely on it when accessing websites, as well as for enabling
applications and servers to communicate with each other.

The DNS originated in the 1980s, when the concept of a distributed system
mapping domain names to their corresponding IP addresses was proposed and
later standardized. Like many protocols from that era, it was designed with-
out consideration for security or privacy. While secure successors have been
standardized for protocols such as HTTP or FTP, DNS has received only a few
enhancements, which still do not provide the level of privacy and security
achieved by HTTPS or FTPS. Furthermore, these enhancements are not manda-
tory, are often not under the user’s control, and only protect specific parts of
the DNS communication path rather than providing a holistic approach.

In recent years, encrypted DNS protocols have emerged, and applications such
as web browsers have started to implement them. However, overall adoption
remains low, and problems such as the centralization of DNS data among large
DNS resolver operators persist or have worsened.

DNS data is considered public, yet there is often no distinction made between
the DNS information itself and associated metadata. Metadata such as the
client’s source IP address, combined with other data in the DNS request, en-
ables adversaries to create user profiles. [1]

Because DNS traffic is easy to monitor and inexpensive to analyze, it is an at-
tractive target not only for cybercriminals with monetary motives but also for
surveillance agencies such as the National Security Agency (NSA) [2, 3].

Being such a crucial protocol affecting users’ privacy while receiving little at-
tention from them provides the primary motivation for this thesis.

Users often notice DNS only when it stops working, at which point they may
switch from their ISP’s DNS resolver to a public DNS resolver, thereby further
contributing to DNS centralization [4].

These observations lead to the central question of this thesis: whether imple-
mentable measures or protocols already exist to enhance DNS privacy without
changing the existing DNS infrastructure.

1 Introduction 2

1.2 Objectives and Approach

The overarching goal of this thesis is to make DNS traffic more private and se-
cure and to determine whether this can be achieved by encrypting, distributing,
and anonymizing DNS requests.

A threat model is developed to define DNS privacy threats in general, as well
as specific threats related to DNS resolution performed by Tor exit relays. To
assess the current state of DNS on the Tor network, a practical analysis is con-
ducted to test the DNS behavior of Tor exit relays.

The proposed improvements aim to enhance privacy by preventing adversaries
from creating user profiles based on DNS data and by reducing the potential for
correlation attacks on Tor, such as the DefecTor attack [88]. Additionally, users
should be less exposed to censorship that relies on domain name blocking.

The proposed measures are applicable to the existing DNS infrastructure, us-
ing standardized and established protocols, such as encrypted DNS, without
requiring changes to the DNS itself.

To evaluate the potential for improving decentralization through distributing
DNS requests across multiple DNS resolvers, publicly available encrypted DNS
resolvers are analyzed with respect to mutual independence, censorship, per-
formance, and security measures such as DNSSEC and QNAME minimization.
Furthermore, the feasibility of routing DNS requests through the Tor network
to these DNS resolvers is examined.

Finally, a theoretical architecture incorporating the proposed improvements is
presented, along with a proof-of-concept implementation.

Chapter?2

Background and Definitions

2.1 Secure Communication

The CIA triad describes the fundamental elements of security controls in
information systems. CIA refers to Confidentiality, Integrity, and Availability.
These terms have been complemented over time by non-repudiation and trust,
among others [5].

m Confidentiality

Confidentiality means that information is protected by preventing the
unauthorized disclosure of information. When confidentiality is com-
promised, this means that there has been an unauthorized disclosure
of information. [6]

B Integrity

Integrity means that information is protected by keeping it intact.
When the integrity of information is compromised, this means that the
information has been modified without authorization from its original
form. [6]

m Availability

Degree to which a system or component is operational and accessible
when required for use. [7]

2.2 Trust

The Cambridge dictionary defines the verb trust as

to believe that someone is good and honest and will not harm you, or that
something is safe and reliable. [8]

In this thesis, some entities need to be trusted as they can see and, in some
cases, manipulate unencrypted information. To reduce the amount of trust
needed, the focus is on encrypting information where and when possible, and
providing as little unencrypted information as possible to a single entity.

2 Background and Definitions 4

2.3 Client and User

In this work, a client is seen as the technical representation of a user. While a
user can have personal behavior, a client has technical properties, e.g., an IP
address.

2.4 The Domain Name System

The Domain Name System (DNS) maps domain names to IP addresses. IP ad-
dresses are needed when a client wants to access a resource on the Internet. Do-
main names are more memorable than IP addresses for humans, which makes
them indispensable for web browsing. Additionally, they can contain brand
names or describe the content of the resource. Domain names can serve as per-
sistent identifiers for resources that change their IP addresses.

Transport Layer Security (TLS) provides a secure communication channel by
ensuring confidentiality through encryption of data, authentication by veri-
fying the server’s identity (and optionally the client’s identity), and integrity
through protection against data modification. Each TLS connection begins with
a handshake between the client and the server. In this handshake domain
names are included as part of the Server Name Indication (SNI) extension. The
server uses the SNI value to determine the correct TLS certificate, which is nec-
essary when multiple domain names are hosted on the same server, e.g. mul-
tiple websites using HT'TPS on a single IP address. [9, 10]

Before the DNS was in place, hosts on the Internet were listed in a global ta-
ble, maintained by the Network Information Center (NIC). The size of the table
and the high frequency of updates became unmanageable and the idea of a dis-
tributed database for domain names was introduced in 1983 in RFC 882 [11]. The
first implementation of the current DNS was specified in 1987 in RFC 1034 [12]
and RFC 1035 [13]. Since then, the DNS has been complemented, updated and
extended several times.

The Domain Name System can be divided into three major components [12]:
® The Domain Name Space and Resource Records
® Name Servers

® Resolvers

2.4.1 Domain Name Space and Resource Records

The domain name space is a tree-structured name space. Its nodes and leaves
hold a set of data in the form of resource records. The data can be extracted by
query operations. It supports both UDP and TCP on port 53 for communication.
(12]

[14] describes a domain name as an ordered list of one or more labels. Labels
are separated by a dot and are ordered by the distance from the root, which is
also a dot. In the common display format, the dot representing the root is not
shown. The first label after the root is called the Top-Level Domain (TLD). Each

2 Background and Definitions 5

domain containing an additional label is called a subdomain. A zone combines
the information for the domain names it is responsible for.

Resource Records
A resource record is the set of information for a node, which is identified by a
domain name.
The following fields are specified for a resource record: [12, 13]
® Name: The domain name of the node.
m Type: Defines the record type of this resource record.

® (lass: Identifies the protocol family. In this work class is always IN, which
stands for Internet System.

m TTL: The time to live defines the maximum time in seconds a record can be
cached until it needs to be queried again.

®m RDLENGTH: Specifies the length of the RDATA field in octets.

B RDATA: Actual information of the record, having a variable length defined
in RDLENGTH.

Record types and their information are: [12, 13, 15, 16]
m A:IPv/ address
B AAAA:IPv6 address
®m NS: Domain name of the authoritative name server.
B CNAME: An alias pointing to a domain name.
® PTR: Domain name pointer, used for reverse lookups.
B TXT: Text strings that contain any information.

®m DNSKEY: Public DNSSEC key and information about the type and the algo-
rithm of the key.

B RRSIG: Resource record signature, record set signature of an DNSSEC entry.

m DS: Delegation signer, refers to a DNSKEY.

2.4.2 Name Servers

Name servers are servers holding information about one or more zones for
which they are authoritative and respond to requests for their zones without
querying other name servers. They are logically organized by a reverse tree
structure and respond with referrals to the corresponding name servers for
their child zones. [12, 13]

The IP addresses of 13 root name servers are defined and known by recursive
resolvers. More than 1500 servers globally use DNS anycast for the 13 root name
server identifiers®.

thttps://www.icann.org/en/rssac/fag#number-of-root-servers

2 Background and Definitions 6

2.4.3 Resolvers

Resolvers are programs that either resolve DNS requests directly or forward
them to another resolver, returning the responses to their clients. They can im-
plement a cache where already resolved domain names are stored for the max-
imum TTL. A cache therefore can increase the performance of the DNS resolu-
tion and reduce the number of queries. [12, 13]

Resolvers can be categorized according to their functionality: [17, 18]

m Stub Resolver: A stub resolver is implemented at the client and does not per-
form recursive resolution by itself. It answers requests from its cache or
forwards them to a recursive or forwarding resolver.

® Forwarding Resolver: A forwarding resolver receives requests and answers
them from the cache or passes them on to another resolver. They often
stand between stub and recursive resolvers.

B Recursive Resolver: A recursive resolver does the actual resolving by sending
requests to the corresponding name servers.

2.4.4 Process of Resolving DNS Requests

The following example describes the process for resolving the domain name
www.tordns.ovh.

The client sends a DNS request for the domain name www.tordns.ovh from the
stub resolver of its operating system to a forwarding resolver (1) or directly
to a recursive resolver (2). There might be no forwarding resolver, one for-
warding resolver or multiple forwarding resolvers. The recursive resolver re-
solves the domain name by its labels starting at the root. If QNAME minimiza-
tion is applied, the recursive resolver only sends a request for .ovh, otherwise
for www.tordns.ovh (3). The root name server responds with a referral to the
name server of .ovh (4). The recursive resolver continues with a request for
tordns.ovh (or www.tordns.ovh if QNAME minimization is not applied) to the
name server responsible for the zone .ovh (5). The name server responds with a
referral to the name server of tordns.ovh (6). This continues until the last label
isreached. Finally, the recursive resolver sends a request for www.tordns.ovh to
the name server responsible for the zone tordns.ovh (7) and gets the IP address
for www.tordns.ovh, or an error if the domain does not exist (8). The recursive
resolver sends a response back to the client (9, 10). Figure 2.1 illustrates this
process.

Each resolver can cache responses and check the cache before forwarding re-
quests. If a domain name is cached, the resolver can answer the request imme-
diately without further lookups.

2.4.5 Extension Mechanisms for DNS (EDNS(0))

The extension mechanisms for DNS (EDNS(0), EDNSo0, or EDNS) are used to
extend the original limit of 512 byte for DNS using UDP. If a response does not
fit into the UDP limit, the UDP response states that the answer is truncated

2 Background and Definitions 7

Resolver System Name Server System
: 1 2 [ons] 3
O | —- @ > o
| ” Jaf>
e = 10 9 = 4 =
Client Stub Mone, cne, or multiple Recursive root Mame Server
Resolver forwarding DNS Resolvers DNS g

Resolver,

lIEE

Authoritative TLD Name
Server for Zone .ovh

lIRE

Authoritative Name Server
for Zone tordns_ovh

Figure 2.1: Process of DNS resolution

which causes a retry over TCP. E.g. IPv6 and DNSSEC may require larger re-
sponse sizes. EDNS allows the negotiation of larger message response sizes and
recommends not exceeding a maximum payload size of 4096 bytes although
networks may be capable of larger sizes. Apart from the extended message size,
EDNS adapts to a more diverse use of DNS and makes it more scalable through
adding control information by using the EDNS Option Codes (OPT). [19]

2.4.6 EDNS Client Subnet (ECS)

ECS is an EDNS option which allows resolvers to include information about the
client’s network, i.e. the IP address of the network and the subnet, in the DNS
request. By identifying the client’s network, an authoritative name server can
respond with the closest IP address of the requested resource if there is more
than one available. Although ECS information is meant to be used by interme-
diate resolvers, it can already be added by the client and forwarded by resolvers.
However, the location of clients sending DNS requests might be different from
the location of the recursive resolver. For privacy protection it is highly encour-
aged to use a subnet bit length not more specific than 24 for IPv4 and a subnet
bit length not more specific than 56 for IPv6. ECS is optional and should be dis-
abled by default. [17]

2.4.7 DNS Security Improvements

When the DNS was originally designed, aspects such as confidentiality, in-
tegrity, and authentication were not considered. Over time, the DNS received
some non-mandatory security improvements.

2 Background and Definitions 8

Domain Name System Security Extensions (DNSSEC)

DNSSEC was designed to provide origin authentication and integrity of data
in responses from name servers. Additionally, it allows the authentication of
non-existence of a query name through next secure records (NSEC). However,
it was never the goal of DNSSEC to provide confidentiality, or authentication
of the requester. It requires EDNS as responses contain DNSSEC information
larger than 512 bytes, and new resource types are introduced. (16, 20]

To validate a DNSSEC signed domain name each name server must provide a
delegation signer (DS) record for the child zone, beginning at the root. A re-
solver queries the DS record of the parent zone to prove the validity of the
DNSKEY of the child zone, and uses the DNSKEY and the RRSIG of the child zone
to validate if the domain name is signed correctly. DNSSEC validation is done
by recursive resolvers as each label of the domain name needs to be validated.
Therefore, DNSSEC provides protection only to the path between a recursive
resolver and an authoritative name server. [16, 20]

Next Secure Record 3 (NSEC3)

[21] introduced hashed authenticated denial of existence using NSEC3 instead
of NSEC. This prevents zone walking, where all domain names of a zone are re-
vealed. However, NSEC3 is vulnerable to offline enumeration of zone contents.
To prevent this, a draft of its successor NSEC5 defines the use of verifiable ran-
dom functions for authenticated denial of existence [22, 23].

DNS Query Name Minimization (QNAME Minimization)

QNAME Minimization reduces the information contained in queries sent by re-
cursive DNS resolvers to authoritative name servers. It enhances the privacy of
DNS by applying the principle of Data Minimization. It reduces the exposed in-
formation but does not provide confidentiality. Each name server receives the
minimum information needed to answer the query. E.g. the root name server
receives a query only for the TLD instead of the complete domain. The TLD
name server receives only one more label of the domain name, and so on. Ad-
ditionally, the query type can be obfuscated by using any type except for the
final domain name, e.g. using type A in the query to the root name server when
the final domain name asks for the MX type. Non-cached domain names con-
taining a high number of labels would cause a high number of queries and lead
to a performance decrease when applying QNAME minimization. Also, multi-
ple labels can be in the same zone and be answered by the same authoritative
name server. Mechanisms must be implemented to limit the number of queries
per resolution. Therefore, the standard suggests limiting the number of queries
where only one additional label is added to the domain name, and limiting the
overall number of queries for resolving one request. [24]

Use of Bit 0x20 in DNS Labels

Bit 0x20 is determined by the case of the letters a-z and A-Z in the query name,
i.e. 1 for lowercase letters and 0 for uppercase letters. Randomizing the case

2 Background and Definitions 9

of the query name in the request and verifying the exact same case in the re-
sponse gives additional protection against cache poisoning as randomizing the
16-bit transaction ID is not enough to prevent attacks on cache poisoning. The
number of bits is the number of the letters in the query name. [13] defines that
the sent information must be identical to the data returned in the response’s
question section. In practice the question section in the request is copied to the
response, also retaining the case of the domain name. The draft [25] suggests
making it mandatory that the domain name in the request is copied exactly to
the response. [26]

In this thesis, the term Case Randomization is used to refer to this security mea-
sure.

Encrypted DNS

The use of encryption protocols can add confidentiality, integrity, and authen-
tication to the DNS for the communication between a client and a recursive DNS
resolver. The implementation of the DNS encryption protocols is performed at
the application level and the authority of choosing the DNS resolver also shifts
from the operating system to the application. DNS traffic between recursive
DNS resolvers and authoritative name servers remains unencrypted.

® DNS over HTTPS (DoH): DoH hides DNS traffic by tunneling it within HTTPS
traffic where one query requires one HTTPS request. HTTPS uses Trans-
port Layer Security (TLS), which provides integrity and confidentiality. A
client connects to the URI of a recursive DNS resolver via port 443. A TLS
certificate must be provided by the server and is used to authenticate the
DoH server. Both GET and POST requests must be supported by a DoH
server. Servers can provide both DoH and conventional HTTPS data mak-
ing it harder to detect DoH. To resolve the IP address of the DNS resolver’s
domain name an initial bootstrap DNS request to another DNS resolver is
needed, or IP-based URIs and certificates are used. [27]

m DNS over TLS (DoT): The client establishes a TLS session to connect to a
recursive DNS resolver. By default, port 853 is used, but a different port
can be agreed on between client and server. A client should not wait for
a response to send another request to minimize latency. The order of re-
sponses might differ from the order of requests sent to the server. The fields
QNAME, QCLASS, and QTYPE in a question section of a response must be
checked by the client to match the data in the request. There are two pri-
vacy profiles. In the opportunistic privacy profile, no authentication of the
server is required. In the out-of-band key-pinned privacy profile the client
authenticates the server by validating a set of subject public key info (SPKI)
fingerprints. The SPKI pins are provided by the server to the client through
an out-of-band channel in advance. In the latter privacy profile strong pri-
vacy can be guaranteed. [28]

®m DNSCrypt: A DNS resolver offering DNSCrypt publishes an identifier called
stamp. DNSCrypt clients use these stamps which contain all parameters for
the connection. The client receives a public set of signed certificates from
the DNS resolver and must validate them. UDP and TCP can be used by de-
fault on port 443. Various encryption algorithms are supported. The DNS

2 Background and Definitions 10

resolver sends a set of its supported algorithms, and the client can choose
the algorithm for the communication. [29]

2.5 The Tor Project

The Tor Project is a non-profit organization which develops, maintains, and
organizes Tor. The Tor network is a low-latency, circuit based, anonymization
network, which relies on nodes that are run by volunteers providing resources,
especially bandwidth. Software and guidance to run nodes and allow clients to
connect to the network is provided and maintained by the Tor Project. The goal
of Tor is to provide an open network that defends privacy and protects against
tracking, surveillance, and censorship. [30]

The source code of the Tor Project is managed through the Tor GitLab reposi-
tory [31].

2.5.1 Concept and Architecture of Tor

The concept is based on layered encryption, hence the name The Onion Router.
Each layer employs a distinct encryption key, adding an additional encryption
to the transmitted data. The Tor network consists of numerous Tor nodes, also
referred to as relays, each serving specific functions within the network. In
general, relays are publicly listed nodes that forward traffic and form the back-
bone of Tor’s anonymizing structure.

® Entry Guard: An entry guard, also referred to as a guard relay or entry node,
serves as the entry point for Tor clients connecting to the Tor network and
represents the first hop in a Tor circuit. Traffic between clients and entry
guards is encrypted. An entry guard knows the IP address of the client and
the middle node of an established circuit. [30, 32]

B Bridge Relay: A bridge relay or bridge is an alternative to an entry guard and
enables a client to connect to the Tor network. In contrast to publicly known
entry guards, bridges are not listed in the public Tor directory and therefore
are harder to identify and block for ISPs and governments. [32]

®m Middle Node: A middle node, or middle relay, is a type of node that forwards
traffic between relays and is neither used for entering nor exiting the Tor
network. [32]

® Exit Relay: The exit relay is the representative for the Tor client. Traffic
leaves the Tor network at the exit relay, and the destination, e.g. a website,
sees the IP address of that exit relay. An exit relay sees the client’s traffic
but does not know its identity, i.e., its IP address. [32]

Atypical Tor circuit for connecting a client to the Internet and routing its traffic
over the Tor network includes an entry guard, one middle node, and an exit
relay. Figure 2.2 [33] illustrates a typical three hop circuit.

2 Background and Definitions 11

) SN
N LY
%
v G O
L\ /
XL N

Onion Encryption:\,

- ey,
O Guard™ f;’ A
O—wMIiEd)Ejnle | f"”) \
i. B)
O—wTls) - Ci Fd 2
\] 2

TCP/TLS Connection |

Figure 2.2: Three hop Tor circuit

2.5.2 DNS Resolution in Tor

Exit relays connect to resources on the Internet as representatives on behalf of
clients using the Tor network. Consequently, they are also responsible for the
DNS resolution of the requested resources. When using applications like Tor
Browser or systems like TAILS and WHONIX, DNS requests are sent to Tor by
their default configuration. Custom applications can use Tor’s DNS resolution
by sending the requests to a port, configured to listen to UDP DNS requests in
the Tor software running on the client. It is deactivated by default and can be
enabled with the option DNSPort in the configuration file. DNS requests sent
to the exit relay use the Tor circuit and its encryption. Only DNS record types
A, AAAA, and PTR are resolved?. Other records such as SRV or MX cannot be
resolved by sending requests for these records to the Tor exit relay. However,
the requests can be sent as TCP DNS requests to a specific DNS resolver over the
Tor network. [34, 35]

Tor does not use DNS caching on the client side by default since Tor ver-
sion 0.2.4.7-alpha3 and DNS client-side caching was deprecated in Tor version
0.2.9.2-alpha%. An exit relay uses a common cache for all DNS requests received
across its active circuits. It adjusts the TTL value in DNS responses by truncat-
ing it to five minutes if the original TTL is less than 5 minutes, or to 60 minutes
if the original TTL is greater than 5 minutes. Additionally, an exit relay ran-
domizes the truncated TTL to a value between (TTL — 4 minutes) and (TTL +
4 minutes) to mitigate the risk of attacks on the cache’. If a domain name of a
request is not cached on the exit relay, the exit relay needs to resolve it on the
Internet.

Exit relay operators can operate their own DNS resolver or select any DNS re-
solver available to the exit relay. However, there are recommendations by Tor
to choose an appropriate DNS resolver. This is further discussed in section 4.2.

2https://gitlab.torproject.org/tpo/core/tor/-/blob/release-0.4.8/doc/man/tor.1.txt line 1209-
1216

3https://gitlab.torproject.org/tpo/core/tor/-/blob/tor-0.2.4.7-alpha/ChangeLog line 51-68

4https://gitlab.torproject.org/tpo/core/tor/-/blob/tor-0.2.9.2-alpha/ChangeLog line 74-79

5Confidential: = TROVE-2021-009: Improved DNS cache oracle, 08.09.2022,
https://gitlab.torproject.org/tpo/core/tor/-/issues/40674

2 Background and Definitions 12

Exit relays apply case randomization for DNS requests sent to DNS resolvers by
default®.

2.5.3 Software and Applications

Two main implementations enable clients and servers to connect to the Tor
network.

The first implementation, simply called Tor, also referred to as Tor network,
Core Tor, or little-t tor, is written in the C programming language. It is free
and open source, licensed under the 3-clause BSD license? [36]. Depending on
the configuration defined in the torrcfile, it can operate as any type of Tor node
or function as a local proxy to the Tor network [36].

The second implementation, named Arti, is a complete rewrite of the C Tor
codebase in the Rust programming language. Arti is designed as an embed-
dable library for integration into other applications and emphasizes a modular
and reusable architecture. At the time of writing, Arti was ready for testing but
not yet recommended for production use. It is intended to replace the C-based
implementation in the future. [37]

The following applications and systems integrate Tor software to enable other
software to connect to the Tor network.

® Tor Browser: The Tor Browser is a modified browser that allows easy ac-
cess to the Tor network for browsing the web, also for novice users. It uses
the Tor software for connecting to the Tor network and is based on Firefox
ESR (Extended Support Release) [36], preconfigured with a secure browser
configuration that should not be altered by users. Website visits are isolated
from each other to prevent third-party trackers and ads from following a
user. On closing the application, it deletes the browser history as well as
cookies. It protects users from network surveillance, as observers can only
detect a connection to the Tor network, but not specific websites visited.
From the perspective of web servers, all Tor Browser users appear identi-
cal, preventing browser fingerprinting and device identification. [38, 39]

m Mobile Applications [40]:

® Orbot: Orbot is a VPN application that integrates the Tor software to
route the traffic of other apps, such as email clients or messaging apps,
through the Tor network on Android and iOS. Due to memory restric-
tions on Apple devices, the iOS version may be less reliable. Orbot is
maintained by The Guardian Project. [41]

® Tor Browser for Android: Tor Browser for Android is the mobile version of
the Tor Browser and provides privacy protections for Android users. It
uses an app-integrated version of Orbot to connect to the Tor network.

[42]

® Onion Browser for i0S: For i0S, the Tor Project recommends the Onion
Browser app, which is open source. Due to Apple’s platform restrictions,

Shttps://gitlab.torproject.org/tpo/core/tor/-/blob/release-0.4.8/doc/man/tor.1.txt line 2655-
2661
Thttps://gitlab.torproject.org/tpo/core/tor/- /[raw/HEAD/LICENSE

2 Background and Definitions 13

all browsers on iOS are required to use the WebKit browser engine. Con-
sequently, the Onion Browser cannot offer the same level of privacy pro-
tection as the Tor Browser for Android. [42, 43, 44]

B Systems

® TAILS: TAILS is a free and open-source live operating system that can
be started by booting from USB stick. It has already installed a selec-
tion of applications and uses the Tor network for all connections to the
Internet. Every start of the operating system results in a clean state, ev-
ery shutdown clears all traces from the operating system, e.g. visited
websites, opened files history, or connected Wi-Fi networks. Data can
be explicitly stored encrypted on a persistent storage to stay on the USB
stick between system reboots. [45]

® Whonix: Whonix is an operating system consisting of two virtual
machines, the Whonix-Workstation and the Whonix-Gateway. The
Whonix-Gateway is a gateway to the Tor network and allows only
connections to the Tor network. The Whonix-Workstation runs user
applications in an isolated network using the Whonix-Gateway as the
only network connection to the outside. The operating system is free
and open source, with focus on hardened security and privacy. [46]

Chapter 3

Threat Model

This threat model defines the attack surface, identifies potential adversaries,
and discusses the resulting threats, whose motivations may include financial
gain, surveillance, or censorship. The DNS represents an attractive target due to
itslack of inherent security mechanisms and its critical role in accessing essen-
tial Internet services, especially because services are moving toward the cloud
[2]. A survey [47] conducted among 1,000 organizations around the world in
early 2023 found that 90% of them had already experienced one or more DNS-
based attacks. The report lists as the most immediate consequences business
downtime, loss of productivity, inability to access important data or applica-
tions, and regulatory fines. Long-term impacts include damaged brand repu-
tation, loss of customers, decreased market share, and theft of sensitive data.

3.1 Scope of Threat Model

The scope of this threat model encompasses the use of DNS starting from the
client’s device, which issues conventional, unencrypted DNS requests, to the
recursive DNS resolver, which processes these DNS requests by querying the
appropriate authoritative name servers.

The model does not include malware present on the client’s device. It is as-
sumed that the local network is secured such that only the network opera-
tors can observe client traffic, while clients cannot access each other’s traffic.
Furthermore, it is assumed that there is no malware present on servers of the
DNS resolver or the name server system. Nonetheless, operators may act mali-
ciously and use DNS resolvers or name servers to their advantage, e.g., extract-
ing information or manipulating DNS traffic. DNS resolvers may or may not
implement existing security enhancements, including DNSSEC, QNAME min-
imization, or case randomization. Each DNS request issued by a client is con-
sidered valid. Therefore, attacks such as phishing, e.g., when a user mistakenly
requests a rogue domain resembling a legitimate one, as well as the authentic-
ity of domain ownership or the content of the retrieved resource, are outside
the scope of this model.

The focus is on ensuring that a client receives the correct IP address for the
requested domain name. Web traffic itself, which may follow network paths
different from those of DNS traffic, is not covered in this threat model.

14

3 Threat Model 15

3.2 Attack Surface Scenarios

The attack surface of the DNS is defined by the path of DNS traffic between the
client and the authoritative name servers. It can be examined from two main
perspectives. One is the exposure of the client’s IP address. This enables an ob-
server to correlate queried domain names with a specific client. The other per-
spective is the application of DNS security enhancements, which is primarily
controlled by the DNS resolver.

The communication path between the client and the recursive DNS resolver is
not protected by security enhancements, and as there is typically no cache be-
fore the recursive DNS resolver, every DNS request of the client passes this sec-
tion of the path [48]. Consequently, the location of the recursive DNS resolver
and the trustworthiness of its operator are critical factors. In transit, DNS re-
quests may pass through multiple Autonomous Systems (ASes) and Internet
Exchange Points (IXPs), increasing their exposure.

Three scenarios are distinguished based on the DNS resolver’s location:
B Alocal recursive DNS resolver
m A DNS resolver provided by the Internet Service Provider

® A public DNS resolver located in a different autonomous system than the
client

3.2.1 Local Recursive DNS Resolver

In this scenario, the client’s stub resolver sends DNS requests to a recur-
sive DNS resolver within the local network, typically operated by the network
provider. Multiple clients on this network may share this DNS resolver. The IP
address of the local DNS resolver is visible along the entire path to the author-
itative name servers, and all DNS requests can be correlated with clients using
that DNS resolver. The segment between the client and the DNS resolver, as
well as the DNS resolver itself, are under the control of the local network op-
erator, who may choose to implement security enhancements such as QNAME
minimization, DNSSEC validation, and case randomization. The operator may
also employ caching or apply DNS-based filtering for connected clients. In this
scenario, the local network’s recursive DNS resolver effectively represents the
client from the outside perspective. This scenario is illustrated in Figure 3.1.

3.2.2 DNS Resolver of Internet Service Provider (ISP)

In this scenario, the client’s stub resolver sends DNS requests to a recursive
DNS resolver operated by the ISP. This is the most common setup for residen-
tial users, as the DNS resolver is typically configured automatically via DHCP
[4, 48, 49]. ISPs often operate DNS resolvers within the same network as they
assign their clients to, minimizing the path length between clients and the DNS
resolver [48]. The implementation of a DNS cache or other DNS security en-
hancements depends on the ISP. DNS requests processed by the ISP’s recursive
DNS resolver are aggregated with those of potentially many other clients and

3 Threat Model 16

.\\\ —

Client Stub Local
Resolver | recursive
Resolver

Local T "Autonomous System ’ I.."’ e
Network Internet Service / or . ,,.---Autonomous Ay
T Intenae: Excha:‘lgel Point System \
= (o) Lt '
i 88—
== — A —
P

root |

Name Server /,-"

.\\\‘ .'/.-

=
==l | /
Client Stub _~ Autenomous _~Autonomous
Resolver / System 4 System
vl Y
| TLD || Authoritative]
unencrypted DNS request inside local network "-.\ Name Server /,-" "-.\ Name Server /,-"
AN} — AN} —
—>» unencrypted DNS request containing IP address of client
pN S AN

Figure 3.1: Scenario of local recursive DNS resolver

no longer contain individual client IP addresses in the DNS request on the path
beyond the recursive DNS resolver. Hence these requests can no longer be cor-
related to a particular client. The degree of indistinguishability depends on how
many clients share the ISP’s DNS resolver. This scenario is illustrated in Fig-
ure 3.2.

3.2.3 Public DNS Resolver

In this scenario, the client’s stub resolver sends DNS requests to a public recur-
sive DNS resolver located in a different AS from the client. Such DNS resolvers
are often provided by large organizations, such as Google' or Cloudflare?, offer-
ing DNS resolution as a service. The client’s IP address is exposed across a po-
tentially long path between the client and the public DNS resolver. Large public
DNS resolvers process DNS requests from vast numbers of clients, leading to
significant centralization of DNS traffic. Within these systems, DNS requests
from numerous clients are aggregated, and the DNS resolver operator typically
employs a cache and determines which security enhancements are applied.

Public DNS resolvers may also perform DNS-based filtering, either required by
law3 or provided as a service, such as blocking ads. Some providers, such as
Control D4, offer multiple DNS resolvers with different filtering policies. Al-
though residential clients typically use the ISP’s DNS resolver, they may switch
to public DNS resolvers if the DNS resolver of the ISP experiences an outage
and retain the public DNSresolver configuration afterward [4]. ISPs themselves
may also distribute public DNS resolvers to clients via DHCP configuration. This
scenario is illustrated in Figure 3.3.

thttps://developers.google.com/speed/public-dns
2https://developers.cloudflare.com/1.1.1.1/
3https://developers.google.com/speed/public-dns/blocking
4https://controld.com/free-dns

3 Threat Model 17

N— TN
i T * Autonomous System ' N ™
Local Internet Service / or /~ Autonomous
Network Provider { Internet Exchange Point I/ System
{0, 1 or multiple) [|

i
(-8

-

Client Stub ISP

Resolver recursive \ Name Server
{ Resolver N,
AN
..\\\.. -
Local VN
Network |) \

" Autonomous ! T Autonomous
f System f System |
Client Stub) {
Resolver N J — \

| TLD | | Authoritative

unencrypted DNS request inside local network "'\\ Name Server "'\ Name Server

——3 unencrypted DNS request containing IP address of client '-\\ '-\\

~——» unencrypted DNS request not containing IP address of client

Figure 3.2: Scenario of ISP’s DNS resolver

3.3 Potential Adversaries

Potential adversaries are entities capable of monitoring or manipulating DNS
traffic, regardless of whether they actually do so, and irrespective of their in-
tentions, legal status, or obligations. In some cases, such entities may be legally
required to monitor DNS traffic and to share collected data with third parties,
such as governmental or judicial authorities.

3.3.1 Local Network Operator

The local network operator has visibility into network traffic of connected
clients, including connection information such as protocols and destination IP
addresses. It knows the internal IP addresses of all clients and may monitor, re-
strict, or manipulate network traffic, particularly unencrypted DNS traffic, for
security purposes. The operator may also apply DNS-based filtering and inform
users about the applied filtering policies.

3.3.2 Internet Service Provider (ISP)

Internet Service Providers (ISPs) connect end users and businesses to the
public Internet. They compete with each other on price, performance, and
reliability, but they also must cooperate with each other to provide global
connectivity to all other attachments on the Internet. [50]

ISPs typically provide DNS resolvers to their customers, automatically config-
ured via DHCP [4, 51]. The applied DNS security enhancements and the imple-
mentation of a cache are under their control. ISPs might be required by national

3 Threat Model 18

T

T rd ™,
{ N / N
) _— Autonomous System \ P ™
Local Internet Service # or \ Vd Autonomous
Network Provider f Internet Exchange Point | f System |
: | (0, 1 or multiple) \
o 7 | f
Client Stub \ \ Public J
Resolver h 5 v . _ recursive ~
v - — Vs
=i / \\I.Qesol\.rer //
.//-
_ \\ " Autonomous System
Local Internet Service /~ Autonomous / or
Network Provider I.-’r System | / Internet Exchange Point
| | \ (0, 1 or multiple)

Client Stub [root

\
Resolver \ Name Server]
) I~
\\ J
NS
- I . _"\ | \ T,
\ /

/"J Autonomous -~ Autonomous
unencrypted DNS request / System System \
inside local network [

ted DNS t l' = :
p unencryple reques -m) {
containing |P address of client) g r. N
3 unencrypted DNS request not | TLD | Authoritafive
containing IP address of client \ Name Server \ MName Server /

N, o —~ 4 "\\.. P = S

N / k '
N g N e

Figure 3.3: Scenario of public DNS resolver

laws to block access to specific domain names, particularly in cases involving
copyright infringements in Europe [52].

As an entry point for a client’s Internet access, the ISP can observe unencrypted
DNS traffic and associate DNS requests with individual client IP addresses.
Consequently, the ISP must be trusted to a certain degree, as it can monitor,
filter, or manipulate DNS requests, regardless of the configured DNS resolver.

3.3.3 Autonomous System (AS) Operator

An Autonomous System specifies a network, mostly an organization that
can own or announce network addresses to the Internet. [53]

An AS connects directly to one or more other ASes via Internet Exchange Points
[54]. Traffic can originate, terminate, or transit within an AS, depending on
the network location of services and clients. The AS operator can potentially
monitor or manipulate any traffic within its infrastructure.

3.3.4 Internet Exchange Point (IXP) Operator

An Internet Exchange Point provides a shared interconnection infrastructure
that enables multiple ASes to exchange traffic. Without IXPs, interconnections

3 Threat Model 19

would require dedicated, pairwise links between ASes [54]. They typically oper-
ate on network layer 2 and may offer additional services such as traffic statistics
and looking glasses [55]. Consequently, IXP operators are capable of monitor-
ing or manipulating all traffic passing through their infrastructure.

3.3.5 Recursive DNS Resolver Operator

Operators of recursive DNS resolvers can view both the client IP address and the
contents of DNS requests. They receive all DNS requests as there is typically no
cache before them [49].

Recursive DNS resolvers can be operated by ISPs, public service providers, local
network operators, or even individual users on their own devices. DNS resolver
operators can therefore gain deep insights into client DNS behavior and may
monitor, block, or manipulate DNS traffic.

3.3.6 Authoritative Name Server Operator

An authoritative name server is authoritative (i.e. responsible) for one or more
DNS zones and manages the corresponding resource records. The amount of
information exposed to an authoritative name server depends on whether the
recursive DNS resolver applies QNAME minimization. Without minimization,
each queried authoritative name server can see full domain names, which can
be reduced to the relevant domain name portion when QNAME minimization is
applied.

Authoritative name server operators can observe which recursive DNS re-
solvers query their zones and may keep log files containing these DNS requests.
When EDNS client subnet is used, DNS requests may also contain partial client
IP address information.

3.4 Threats of the conventional Domain Name System

3.4.1 DNS Traffic Interception

Unencrypted DNS traffic can be identified by filtering for UDP port 53 and TCP
port 53. Such traffic exposes sensitive information, including the requested do-
main names and potentially the IP address of the original sender. As defined in
section 3.3, multiple adversaries are capable of intercepting and inspecting DNS
traffic.

Intercepting and inspecting DNS traffic is often the basis for attacks, but it can
also serve benign purposes and may be necessary to provide security in net-
works, especially for network operators. According to [56], pervasive moni-
toring is defined as a

widespread (and often covert) surveillance through intrusive gathering
of protocol artefacts, including application content, or protocol metadata
such as headers.

3 Threat Model 20

The authors classify pervasive monitoring as an attack, but also acknowledge
certain beneficial actions that would fit into their definition such as network
management functions and anti-spam mechanisms. Similarly, [57] proposes
payload analysis to detect DNS tunneling based on features of the payload, such
as the size of requests and responses, the entropy of hostnames, and the use of
uncommon record types. This approach requires monitoring of DNS requests
and responses, as well as other associated indicators. [58] further presents a
machine learning algorithm applied on live traffic for detecting DNS tunneling.

However, ASes and especially IXPs present single points for traffic analysis
[59]. [60] inspected 148,478 residential and cellular IP addresses across 3,047
ASes and discovered that 259 ASes exhibited DNS interception behavior, par-
ticularly for DNS traffic from and to public DNS resolvers. [61] lists countries
known to collect metadata or mandate ISP participation in surveillance activi-
ties. The study also observes countries taking efforts to prevent Internet traffic
from being routed through specific surveillance states, particularly when both
the source and destination of a DNS request are located within the same coun-
try.

3.4.2 Privacy and Information Exposure

In general, DNS data is considered public, as the idea was originally to dis-
tribute DNS data and make it available to everyone. However, DNS transaction
data, which includes the client IP address, the queried domain name, and the
timestamps of the DNS request and DNS response, may reveal sensitive infor-
mation. This particularly applies when the transaction data contains the IP ad-
dress of the original client, i.e. DNS data captured before any external DNS re-
solver. When combined with time information, sequences of DNS transaction
data can show DNS patterns of individual users. Notably, confidentiality was
never a design goal of the DNS [49].

Monitoring DNS traffic can disclose which websites or services a client ac-
cesses. Aggregating DNS data over time enables the reconstruction of a com-
prehensive user profile of web activities and habits. When ECS is used, clients
can be associated with a subnet of IP addresses, even if the IP address of the
original sender is no longer the IP address of the client from the perspective of
an observer beyond a recursive or forwarding DNS resolver [62].

Results of tests conducted in section 5.4.4 show that among the two major pub-
lic DNS resolvers, Google employs ECS while Cloudflare does not. Depending on
the subnet size and the number of simultaneous clients within that subnet, it
may still be possible to reidentify clients or estimate their geographical loca-
tion.

[49] differentiates between primary and secondary requests. Primary requests
are DNS requests for the domain name a user intentionally wants to visit. Sec-
ondary requests are automatically triggered by primary requests without di-
rect involvement of the user to retrieve additional resources, such as embedded
content on a website. The combination of a primary request and its secondary
requests can be unique to a particular website.

Even if users cannot be personally identified by name, DNS data can be used to
construct behavioral profiles that enable reidentification. Such profiles can re-
veal commercial habits, sexual or political orientations, health conditions, and

3 Threat Model 21

the geographic location at a given time, and can provide insights into busi-
nesses, strategic relationships, and future plans of organizations. Commer-
cial organizations and advertising agencies exploiting this information create
a market for buying and selling data of ordinary citizens [2]. ISPs can include
the costs of operating a DNS resolver in the costs of their overall service and
may not explicitly disclose them to their customers.

Reasons for providing public recursive DNS resolvers might be to promote
other services, or altruistic by using other paid services to cover the costs be-
cause of beliefs in preserving privacy. Major operators, however, may get their
revenue from selling DNS data to third parties [63].

Even passive observation of DNS data can disclose OS information and enhance
finding vulnerable systems, services, or devices for subsequent exploitation [3,
64]. The use of specific software can be identified when application names ap-
pear within the requested domain names [49].

[65] analyzed DNS data from a large campus network (Xi’an Jiaotong Univer-
sity, China) using a system named DNSMiner, which identifies behavioral fin-
gerprints based on the domain name, the inter-domain relationship, and tem-
poral behavior. Regular activities such as booting a system, starting applica-
tions, and visiting specific websites generate sequences of DNS requests that
are characteristic for a user. From two weeks of data collected from clients
with static IP addresses, DNSMiner successfully reidentified 69.63% of users
by their DNS activities in a new DNS data stream with an accuracy of 98.74%
and a false positive rate of 1.26%.

As [65] created behavioral fingerprints of clients with static IP addresses, [66]
demonstrated that users can be identified even when their IP addresses change.
Using unsupervised learning techniques over a 56-day period, during which
users’ IP addresses changed daily, the authors successfully linked all sessions
of the 19% highly active users and nearly all sessions of 73% of users.

The original client’s IP address is among the most revealing pieces of DNS in-
formation. Due to the structure of DNS, it remains visible up to the first external
DNS resolver. DNS data can be correlated with other information sources, such
as web traffic, where the same IP address is very likely used.

3.4.3 Centralization

Centralization consolidates the privacy exposure of numerous clients under the
control of a single potential adversary. Large public recursive DNS resolvers,
their ISPs, and the ASes in which they are hosted represent key points of cen-
tralization.

For most customers, configuring an alternative recursive DNS resolver is too
complex, leading them to rely on the default DNS resolver provided by their ISP.
While many ISPs operate their own recursive DNS resolvers, some forward all
DNS queries to one or more public recursive DNS resolvers, or even configure
such resolvers directly for their customers. A study found that this practice is
employed by 36.2% of small consumer ISPs and 4.0% of large consumer ISPs.
(67]

Blocking of DNS requests for specific domain names can also prompt users to
switch to public recursive DNS resolver [51].

3 Threat Model 22

DNS data can be combined with information from other sources. For example,
Alphabet Inc., which operates the Google public DNS resolver in addition to nu-
merous other services, such as a search engine, mail platform, web browser,
and cloud infrastructure, has access to multiple, potentially interrelated data
streams. Although these services appear to operate independently, the aggre-
gation and correlation of data across them can provide competitive advantages
in the market [51, 68].

Trust in single instances is a key component as they gain insights into data and
pose technical, economic, and political risks. Centralization on public DNS re-
solvers introduces a single point of failure where all clients across several ISPs
can be affected [51].

A large public recursive DNS resolver experienced an outage on July 14, 2025.
Cloudflare’s DNS service, also known as 1.1.1.1., experienced a downtime of 62
minutes due to an internal configuration error, impacting the majority of its
users. The DNS over HTTPS service of Cloudflare remained operational, as the
domain cloudflare-dns.com, used for connecting to the DoH service, resided
on a separate set of IP addresses [69].

Conversely, public DNS resolvers can offer faster response times than DNS re-
solvers provided by the ISP, even though DNS traffic typically traverses more
ASes [70]. Another benefit of centralized DNS resolvers is the faster adoption
of security enhancements, such as QNAME minimization [71].

3.4.4 Manipulation of DNS Responses

Unencrypted DNS traffic can be easily intercepted and manipulated by adver-
saries along the communication path, as the original DNS design provides nei-
ther integrity protection nor authentication. The likelihood of DNS requests
being manipulated depends on the domain name, the transport protocol, and
the query type. QNAME minimization and DNSSEC validation provide coun-
termeasures. However, DNSSEC validation is performed only by recursive re-
solvers, and protection is limited to domains that are properly DNSSEC signed.
[72]reports, that only 1% of .com, .net, and .org domains were properly DNSSEC
signed in 2017.

[73] notes that the detection of DNS manipulation might result in a high false-
positive rate when relying on consistency-based heuristics. Their study iden-
tified 55 ASes across 26 countries where DNS manipulation was performed at
the ISP-level.

3.4.5 DNS Blocking

DNS blocking is a form of DNS manipulation intended to prevent access to spe-
cific online information or services by interfering with the DNS resolution pro-
cess. This can involve denying the existence of a valid domain name or forging
falsified responses.

DNS blocking is typically implemented at the recursive DNS resolver, though
any adversary positioned along the DNS path can perform it. While DNS block-
ing is simple to deploy, it can also be circumvented with minimal effort, for
instance by switching to an alternative DNS resolver. [74]

3 Threat Model 23

DNS blocking can be detected in several ways. When DNSSEC validation is ap-
plied, the domain name resolution fails, indicating that the received DNS re-
sponse is invalid. On the application layer, users may encounter a warning
about an invalid TLS certificate while browsing the web. However, users often
fail to associate these warnings with DNS manipulation and may be tempted
to proceed or even become accustomed to disable security controls. The Mo-
tivation for blocking DNS can be censorship, protecting clients from accessing
malicious domain names, controlling access to content within an organization,
or legal or political reasons. DNS blocking is often controversial, particularly
when implemented without user consent, leaving users unaware of the reason
for awebsite being inaccessible. Moreover, blocking a domain name at the sec-
ond level can result in result in overblocking when domain names of legitimate
resources are subdomains of the blocked domain name. [74]

DNS blocking can also be based on the source IP of the client sending the DNS
request. This approach is used when globally operating recursive DNS resolvers
are legally required to block specific domain names only within certain juris-
dictions or countries. Google, for instance, explicitly states the jurisdictions
in which it must comply with such blocking requirements. In affected cases,
Google’s public DNS resolver responds with RCODE REFUSED, and optionally
includes an extended DNS error code 16 (Censored)5.

Some public DNS resolvers offer blocking domain names associated with mali-
cious or fraudulent resources. [75] identified 17,601 DNS servers offering pro-
tective DNS (PDNS) services across 1,473 ASes in 117 countries, representing
9.1% of all probed DNS servers. Despite performing additional filtering steps,
these services introduced negligible latency for users. PDNS offers an easy and
fast way without requiring changes to the DNS protocol. Users can typically se-
lect blocking categories, such as adult, malicious, spam, or phishing, though
they cannot modify the applied blocklists, which may be public or proprietary.

According to the ICANN DAAR monthly report published in September 2024
[76], more than 2.4 million domains were classified as security threats, con-
sisting of 2.8% malicious domains, 24.1% phishing domains, 1.6% Botnet C&C
domains, and 71.5% spam domains.

3.4.6 Cache Poisoning

Cache poisoning occurs when a DNS resolver’s cache stores a manipulated DNS
response. The information in the cache is used for all clients, independent of
which client triggered the original DNS request, and remains in the cache for
the time defined in the TTL value. For a successful attack the domain name
must not already be present in the cache, and the attacker must be able to pre-
dict or guess certain parameters of the legitimate DNS response. Countermea-
sures are DNSSEC validation and case randomization. [2, 77]

3.4.7 Cache Snooping

For an attacker, it can be beneficial to know whether a domain name was re-
cently requested from a given DNS resolver. Cache snooping reveals whether

Shttps://developers.google.com/speed/public-dns/blocking

3 Threat Model 24

and, in some cases, when a domain name was requested, which in turn can
facilitate correlation attacks. To check whether a domain name is present in
the cache, an attacker can send two requests. The first request is for the tar-
get domain name, followed immediately by the second request, which queries
a domain name that is already cached. If the response for the second request
is received before the first request, it indicates that the domain name was very
likely not cached and authoritative name servers had to be queried [2, 78].

Chapter 4

Evaluation of DNS on the Tor Network

While chapter 3 examined DNS in general, this chapter evaluates and discusses
the impact of DNS weaknesses and the resulting threats in the context of DNS
resolution performed by Tor exit relays.

4.1 Considered Use Cases

The evaluation adopts the perspective of an exit relay handling DNS requests,
i.e., receiving DNS requests from the Tor network, resolving them on the public
Internet, and returning the corresponding DNS responses to the requesting Tor
clients.

Exit relays are responsible for DNS resolution on their Tor circuits. Various ap-
plications and systems utilize the Tor network and depend on exit relays to
translate domain names into corresponding IP addresses. All DNS requests re-
ceived by exit relays are considered valid.

Applications that send TCP DNS requests over Tor directly to DNS resolvers
chosen by the client are excluded from this evaluation, as in such cases the exit
relay does not perform the DNS resolution. Likewise, non-DNS traffic, such as
web traffic, is outside the scope of this analysis. Access to Onion services, which
do not rely on conventional DNS, is also excluded.

4.2 Tor’'s Recommendations for Exit Relay Operators

Although anyone is welcome to operate a Tor exit relay, doing so requires tech-
nical and legal considerations. ISPs or hosting providers may prohibit the op-
eration of Tor exit relays within their networks.

The Tor Project provides information for operating Tor nodes?, as well as an
explicit guide for exit relay operators?.

The latter emphasizes the importance of DNS in ensuring performance and re-
liability and includes the following recommendations regarding DNS on exit
relays:

®m To avoid centralization, none of the big DNS resolvers, e.g., Google or
Cloudflare, should be used, neither as primary nor as fallback DNS resolver.

thttps://community.torproject.org/relay/setup/
2https://community.torproject.org/relay/setup/exit/

25

4 Evaluation of DNS on the Tor Network 26

® Run a local, caching, DNSSEC-validating resolver as the primary resolver.
Forwarding resolvers should not be used. If a secondary resolver is desired,
a resolver provided by the service provider within the same Autonomous
System as the exit relay can be chosen. The secondary resolver should only
be used as a fallback resolver.

®m To limit the exposure of DNS queries at the autonomous system level, no
more than two resolvers should be configured.

®m The resolver should not use outbound IP addresses used by any Tor nodes.
These IP addresses are publicly known and may be blocked.

® Monitoring and optimizing the DNS resolution timeout rate is recom-
mended for operators running exit relays with a bandwidth >100 Mbit/s.

® The chosen DNS resolver software should support DNSSEC validation and
QNAME minimization.

In summary, Tor recommends operating a local, caching DNS resolver that
supports DNSSEC validation and QNAME minimization and, ideally, monitors
and optimizes the query timeout error rate.

4.3 Tor DNS Exposure

The exposure of DNS traffic between Tor exit relays and their corresponding
DNS resolvers depends primarily on the network location of the DNS resolver,
i.e.its IP address and the associated AS. For this evaluation, exit relays are cat-
egorized into three scenarios based on the DNS resolver’s location:

m Exit relay itself: The exit relay operator runs a recursive DNS resolver on the
same host as the exit relay, and the DNS resolver uses the exit relay’s out-
bound IP address.

m DNS resolver in same AS: The DNS resolver is operated within the same AS as
the exit relay but uses a different IP address than the exit relay’s outbound
IP address.

m DNS resolver in external AS: The exit relay sends DNS requests to a DNS re-
solver located in a different AS.

Akey consideration in all three scenarios is whether an observer can classify the
source IP address in a DNS request or the destination IP address in a DNS re-
sponse as belonging to a Tor exit relay. Other relevant factors include the trust-
worthiness of the DNS resolver operator and the use of DNS security enhance-
ments. Potential adversaries are the same as identified in section 3.3, with the
addition of a rogue exit relay.

4.3.1 Exit Relay Itself

In this scenario, the exit relay operator runs a recursive DNS resolver on the
same host, and the exit relay uses this resolver for DNS requests received on
its connected circuits. Because exit relay IP addresses are publicly known, all
DNS traffic sent or received can be classified as Tor DNS traffic. Anyone capable

4 Evaluation of DNS on the Tor Network 27

: ISP of Exit Rela: .
Local Autonomous System v Autonomous System
o

Tor Network
Network

Internet Exchange Point

r
ISP of Client Internet Exchange Point (0, 1 or multiple)

e 88 "t .gel f3 B

Tor Entry Tor Middle
Guard Node Tor Exit Relay
running DNS
Resolver on

Tor User same Host

encrypted communication to Tor network

— unencrypted DNS request containing IP address of exit relay

VRN 7N
= encrypted communication between Tor relays / N / N\
~~ Autonomous ~~ Autonomous

.
Autonomous System / System

System

3 ‘—é
i I — \ = |
‘ root I TLD || Authoritative |
\ Name Server / \ Name Server ’;‘ \ Name Server /

N\ N

— ~ ~ ~

Figure 4.1: Exit relay doing DNS resolution itself

of monitoring the traffic path, from the exit relay to the authoritative name
servers, can link this traffic to the specific exit relay.

Since authoritative name servers are likely located in different ASes, DNS traf-
fic may traverse multiple ASes and IXPs. QNAME minimization can reduce the
exposure of full domain names to some authoritative name servers but can-
not prevent disclosure on the path to the final authoritative name server. The
exit relay operator controls QNAME minimization, caching, and DNSSEC vali-
dation. Because the exit relay performs the recursive resolution, integrity can
be provided for DNSSEC-signed domain names. Figure 4.1 illustrates this sce-
nario.

4.3.2 DNS Resolver in the Same AS

In this scenario, the DNS resolver is located in the same AS as the exit relay but
uses a different IP address. It may be operated by the exit relay operator as rec-
ommended by Tor, by the ISP of the exit relay, or by a public DNS resolver within
the same AS. In all cases, the operator controls the DNS security enhancements
applied and knows the IP address of the exit relay.

DNS traffic between the exit relay and the DNS resolver remains within a single
AS. The exposure of DNS traffic from the DNS resolver to authoritative name
servers depends on whether DNS requests can be associated with the Tor net-
work, e.g., when Tor node operators maintain their own AS, or if the DNS re-
solver is shared with non-Tor clients, e.g. using the ISP’s DNS resolver. Fig-
ure 4.2 illustrates this scenario.

4.3.3 DNS Resolver in a Different AS

In this scenario, a DNS resolver located in a different AS than the exit relay is
used. Consequently, DNS traffic between the exit relay and the resolver routes
to another AS or even traverses one or more intermediary ASes. Along this path,

4 Evaluation of DNS on the Tor Network 28

Local Autonomous System AUIOan?)L:S System

Network iy &r
ISP of Client Internet Exchange Point (FE)

e 08 " .ge—f—— -

Tor Network ISP of Exit Relay
Internet Exchange Point
{0, 1 or multiple)

Tor Entry Tor Middle Tor

| Guard Node Exit Relay L1
\ resolver

Tor User

encrypted communication to Tor network

——3 encrypted communication between Tor relays — —
N N
——3 unencrypted DNS request containing IP address of exit relay / _—. N\ —

—> pted DNS request not cont; IP address of exit relay “Autonomous ~ Autonomous |

System |/ System

<—é IL\ <—é

\ root /| LD | | Autnoritative |
\ Name Server \ Name Server /] \ Name Server /
~ . N —~ A ~

/" Autonomous |
System

AN d A
~— . ,, pN

Figure 4.2: Exit relay using a DNS resolver in the same AS

the domain names and the IP address of the Tor exit relay are exposed. Addi-
tionally, some degree of trust in the DNS resolver operator is required, as the
application of DNS security enhancements is under its control.

At the DNS resolver side, DNS requests from exit relays may be mixed with
those from non-Tor clients, and the exit relay’s IP address is no longer con-
tained in the DNS traffic between the external DNS resolver and authoritative
name servers. Figure 4.3 illustrates this scenario.

4.3.4 Actual Exposure

The actual DNS exposure for a Tor user depends on the selected exit relay, which
determines the DNS resolver used. Each exit relay is assigned a probability of
being chosen by the circuit creation algorithm based on various factors such as
relay flags and bandwidth weights3.

Although not recommended by Tor, test results in section 4.5.2 show that some
exit relays send DNS requests to multiple DNS resolvers to resolve a single DNS
request.

4.4 Tor-specific DNS Threats

Based on DNS traffic that can be classified as Tor DNS traffic, or even attributed
to a specific exit relay, the following threats arise specifically for the Tor net-
work.

4.4.1 Privacy Exposure of the Tor Network

Tor’s primary goal is to protect user privacy. By observing DNS traffic of one
or many exit relays conclusions about the interests of Tor users can be drawn.
DNS traffic may also be used to facilitate attacks, such as deanonymization.

3https://metrics.torproject.org/onionoo.html#details_ relay_ exit_probability

4 Evaluation of DNS on the Tor Network 29

Of) 1SP of Autonomous System
Aut Systs
Local utonomous System o Network g ou

Network or
ISP of Client Internet Exchange Point (0, 1 or multiple) |

F;‘ e % 0, 1 or multiple) . %Eé‘—ﬁg E ﬂa { =

Tor Entry Tor Middle Tor (-
| Guard Node Exit Relay | PublicDNS
Resolver

/ Autonomous |
| Internet Exchange Point -‘ System

\ \ /-
Tor User . § N

A N\ Autonomous System
/ Autonomous

or
System Internet Exchange Point

(0, 1 or multiple)
&-

encrypted communication to Tor network

“
—> encrypted communication between Tor relays 7 = 8 N
(= |

—> unencrypted DNS request containing IP address of exit relay \ root —
/ N
—— unencrypted DNS request not containing IP address of exit relay j‘ame Server / \
. / ~Autonomous

- / System

TN

~~Autonomous
System

(LD |
\ Nemesemer /
N ~

\. /
— =
=

| Authoritative |
\ Nameserver
N ~

N

Figure 4.3: Exit relay using a DNS resolver in a different AS

Accessing resources over the Tor network without ensuring that the corre-
sponding DNS requests are also routed through the Tor network exposes re-
quested resources. This is particularly relevant for the .onion pseudo-top-level
domain, which is accessible only inside the Tor network.

4.4.2 Centralization

Exit relays determine the DNS resolver used for all clients on the connected
circuits. Therefore, exit relays that are more likely to be chosen by the circuit
creation algorithm have a higher impact on centralization on DNS resolvers,
assuming similar per-user DNS request rates. Centralization increases when
multiple frequently chosen exit relays select the same DNS resolver. In addi-
tion to the DNS resolver operator, the DNS resolver’s ISP and its AS operators
can observe DNS traffic.

4.4.3 Tor-specific Blocking and Manipulation

DNS requests coming from the Tor network can be blocked or modified by any
actor able to observe and intercept traffic between an exit relay and its DNS re-
solver, and by the DNS resolver operator itself. Blocking or manipulation may
be applied to all Tor-related DNS requests for all domain names or only to spe-
cific domain names, resulting in censorship for Tor users.

4.4.4 Attacks on Exit Relay Cache

Exit relays typically operate a caching stub DNS resolver. [78] demonstrates a
timeless timing attack* where sending a single TLS record can indicate whether

4Confidential: TROVE-2021-009: Improved DNS cache oracle, 08.09.2022,
https://gitlab.torproject.org/tpo/core/tor/-/issues/40674

4 Evaluation of DNS on the Tor Network 30

a domain name is currently cached on the exit relay. By repeating this attack,
the time when the domain name was inserted into the cache can be determined.
The timeless timing attack provides insights into the requested resources of
an exit relay and facilitates perfectly reliable timing attacks. Their proposed
short-term solution of implementing a clipping and randomization of the TTL
value of a cached domain name to a random number between 60 and 540 sec-
onds for an original TTL value lower than 300 seconds, and to a random num-
ber between 3,360 and 3,840 seconds for an original TTL value greater than or
equal to 300 seconds was implemented in Tor version 0.4.5.155.

However, testing exit relays for this thesis revealed that the TTL value actually
applied is disclosed to Tor clients. The TTL value returned in DNS responses
for the corresponding domain name shows the randomized start value for the
duration of the cached entry. When the entry expires and is stored again into
the cache, the TTL value is clipped and randomized again. Therefore, the TTL
value changes with probability of 0.9979, i.e., the probability of not randomly
selecting the same value again. By monitoring TTL value changes for a spe-
cific domain name, a client can still infer cache presence and age. The attack is
available to any Tor client connected to the same exit relay. The issue was re-
ported to the Tor Project, approved, and permission to disclose it in this thesis
was granted.

Exit relays also apply case randomization of domain names by their default
configuration to reduce the probability of successful spoofing attacks, which
would affect all Tor clients of a compromised exit relay.

4.4.5 Correlation Attacks

Tor’s low latency exposes it to correlation attacks that link and correlate traffic
entering and exiting the network. [79] finds that DNS traffic provides an addi-
tional attack surface because it often goes through a different path of ASes as
the corresponding TCP connections. The authors describe DefecTor, an attack
where observing DNS requests and responses of an exit relay enhances existing
correlation and website fingerprinting attacks on Tor users. Relevant adver-
saries include the client’s ISP, intelligence agencies, or malicious entry guards
on the ingress side; and actors monitoring the path between the exit relay and
the DNS resolver, and the DNS resolver itself on the egress side. Figure 4.4 il-
lustrates the DefecTor attack.

4.5 Evaluation of the State of DNS on Tor

4.5.1 Test Setup

The test setup consists of three main components:

B Evaluation Server: This server receives information needed for testing, as-
signs specific test cases to the test servers, hosts a database for storing test
results, and processes log files.

5Changelog of Tor version 0.4.5.15, 16.12.2022, https://gitlab.torproject.org/tpo/core/tor/-
/blob/tor-0.4.5.15/ChangeLog lines 1, 26-28

4 Evaluation of DNS on the Tor Network 31

S ST
C'f\\ r NS regiisere .DNS server

» Guard Exit 4’5"
25l S+
User The Tor network Web server

Figure 4.4: DefecTor attack [79]

®m Two Test Servers: These servers are responsible for issuing DNS requests to
exit relays.

®m Two Authoritative Name Servers: These servers are authoritative for the do-
mains tordns.ovh and dnssec-check.ovh, which are used throughout the
testing procedures.

All servers are virtual servers rented from a hosting provider and configured
with dedicated IPv4 addresses. They operate within the AS of Hetzner Online
GmbH, AS number 24940, AS name Hetzner Online GmbH. Figure 4.5 illustrates
an overview of the test setup.

Evaluation Server

The evaluation server retrieves the information required for testing exit re-
lays on a daily basis from the Tor API®, including each relay’s fingerprint, IP
address, and probability of being selected by the circuit creation algorithm. It
stores this data for all testable exit relays into the database. An exit relay is con-
sidered testable if the running flag is true, the exit IP address is not empty, the
fingerprint has alength of 40 characters, and the exit probability is greater than
0. This subset defines the exit relays to be tested for the day. The evaluation
server then assigns the testable exit relays randomly to the two test servers.

Once per day, the evaluation server also downloads files containing AS infor-
mation such as AS numbers and the associated IP address ranges and AS names
using pyasn’.

At the end of each day, the evaluation server receives the log files from the au-
thoritative name servers, identifies all test-related DNS requests, and inserts
the corresponding entries into the database.

Test Servers

Both test servers are identical in terms of operating system, hardware re-
sources, and running software. They are hosted in the same data center and

6https://metrics.torproject.org/onionoo.html
7https://github.com/hadiasghari/pyasn

4 Evaluation of DNS on the Tor Network 32

Hetzner AS Hetzner AS

Evaluation Server

3 F
l
r K

Database

\ ——
“ e Name Server ™

a) 3
vl E

Authoritative Name Server

N /:‘

Name Server 7.\\.
ISP of Exit Relay

. o, [
—— | DNS [Tl L / A
. resolver - e E

" Authoritative Name Server
7 for Domains
anssec-check ovh and
invalidkey.dnssec-
check.ovh

Tor \I
Relay

Hetzner AS

Test Server, —_—

Tor Network Public DNS Res: e
-

ISP of Exit Relay

e

L’ E2 3 E3 / : |
Tor Entry Tor Middie > 8 = E
Guard e e
. / S OVHTLD
i Name Server
[Test Server
_a
’ =~
I~
AN
R o
]
Tor Exit Relay =

running DNS Root

Resolver on Name Server
same Host

«— Unencrypied DNS Traffic containing Exit Relay IF

«---» Unencrypted DNS Traffic not containing Exit Relay IP
Requests and Data sent by us

«—> Data sent between Tor Nodes

Figure 4.5: Server and network overview of test setup

operate within the same AS. However, it cannot be guaranteed that network
bandwidth and server performance remain identical at all times.

Each day, every test server schedules its tests according to the exit relays as-
signed to it. For each test run, the server starts a container and provides it with
the necessary parameters, including information about the designated exit re-
lay and test configuration. Within the container, a test script connects to the
specified exit relay and verifies that the connection has been successfully es-
tablished. The script then executes a series of tests by sending DNS requests
to the exit relay for various test purposes. After issuing the DNS requests, the
connection to the exit relay is checked again to ensure that it remained active.
The test output generated within the container is stored on the test server out-
side the container. Once the container completes its execution, the test server
processes the output and stores the results into the database. If a test fails and
sufficient time remains in the daily schedule, it is rescheduled to run again at
the end of the current test schedule. Figure 4.6 provides an overview of the test
server architecture.

Authoritative Name Server

Both authoritative name servers are identical in terms of operating system,
hardware resources, and running software. Logging is enabled and each DNS
request received is recorded in a log file. Each authoritative name server is re-
sponsible for a domain.

4 Evaluation of DNS on the Tor Network 33

Test Server \
Generation \

Dalabase l / Dacker Engine

Evaluation Server

Tor Network

Crontab Docker Container

Tor 4
Test Script in e
l [Docker Container| DI Proxy !
Port 53 Tor Eniry Tor Middle Tor Exit

Test Script on Guard Node Relay
Test Runner |

!

Tor \ {
Test Scriptin oneF
i Docker Container| Toxy £
Processing Test i =) =N 58

Results
Guard Node Relay

Tor En;r}‘ Tor Middie TorExit

Guard, Node — Relay

Docker Container

N —

Figure 4.6: Test server structure

The first server is authoritative for the domain tordns.ovh. The domain is not
DNSSEC-signed and includes the wildcard record *.tordns.ovh to respond to
queries for all subdomains. The TTL value is set to the maximum allowed du-
ration of 604,800 seconds, i.e. 7 days.

The second server is authoritative for the domain name dnssec-check.ovh.
The domain zone includes wildcard records for *.dnssec-check.ovh and
* invalidkey.dnssec-check.ovh, where the former is correctly DNSSEC-signed
and the latter is intentionally signed with an invalid key. The TTL value is set
to the maximum allowed duration of 604,800 seconds, i.e. 7 days.

At the end of each day, the log files containing all received DNS requests are
transmitted to the evaluation server for processing and analysis.

General Assumptions, Conditions, and Limitations of Tests

As shown in Figure 4.5, tests are conducted from outside the Tor network. No
Tor nodes were operated as part of this evaluation.

Information about available exit relays is obtained by the Tor API, which is
queried once a day. Consequently, any changes occurring during the day, such
as the appearance of new exit relays, the removal of existing exit relays, or
changes of exit relay IP address, are not reflected in the tests the same day.

Each DNS request sent to the authoritative name server includes both a test ID
and an exit relay ID. The test ID uniquely identifies a single test run. Multiple
test runs can occur per exit relay and day if a previous test attempt fails, result-
ing in distinct test IDs. The exit relay ID identifies a specific exit relay on a given
day. Each tested exit relay is assigned such an internal ID daily, allowing both
successful and failed tests to be associated with the corresponding exit relay for
that day. Exit relays can also be identified across multiple days by their unique
Tor exit relay fingerprint, which is not included in the domain name but can be
linked through the database.

4 Evaluation of DNS on the Tor Network 34

The default Tor circuit creation algorithm was used for establishing connec-
tions to exit relays, with only the target exit relay explicitly defined. Perfor-
mance therefore depends not only on the exit relay itself but also on the entry
guard and the middle node chosen for the circuit. Since no data about prior Tor
connections is retained, entry guards do not persist for new connections.

A test was considered successful when the Tor circuit was established success-
fully, aDNS response is received, and the container is connected to the specified
exit relay at the beginning and the end of the test.

The exit probability provided by the Tor API represents an approximation of the
probability that a specific exit relay will be chosen. Some results are presented
as absolute numbers, while others are weighted by this exit probability. For
probability-weighted results, it is assumed that the number of DNS requests
an exit relay receives is proportional to its exit probability.

4.5.2 Tests and Results

Tests were conducted during the period from July 3, 2024, to February 28, 2025.
Due to a failure of the evaluation server on August 22, 2024, data collected be-
tween August 15, 2024, and August 24, 2024, was lost. In the result charts, this
period is indicated with a dark gray background.

Apart from the general overview of successful and failed tests, all analyses con-
sidered only successful tests.

Test: Sending DNS Requests to Exit Relays

Specifically drafted DNS test requests were sent to each available exit relay dur-
ing the test period to allow analysis of the corresponding DNS requests received
by the authoritative name server.

Test Period: July 3, 2024 - August 14, 2024, and August 25, 2024 — February 28,
2025

Test Description: For each exit relay, three DNS requests were sent
querying a subdomain of the controlled domain tordns.ovh in the form
of [subdomain2].[subdomaini].tordns.ovh, where [subdomaini] and
[subdomain2] contained the test ID and the internal exit relay ID, and therefore
were unique per exit relay and per test. This prevented caching and enabled
identifying the tested exit relay. For issuing the DNS requests the dig® com-
mand was employed. The exit relay performed the DNS resolution, and the
command output returned the corresponding DNS response. All DNS requests
received by the authoritative name server were logged, enabling the identifi-
cation of exit relays and the IP addresses of the DNS resolvers that queried the
specific domain names.

Assumptions and Limitations: For every test, three unique DNS requests were
sent to increase the likelihood of detecting all DNS resolvers involved. A test
was considered successful even if not all three DNS requests were resolved.

8https://manpages.ubuntu.com/manpages/jammy/mani/dig.1.html

4 Evaluation of DNS on the Tor Network 35

Only DNS resolvers querying the authoritative name server could be detected.
However, there may have been one or multiple forwarding DNS resolvers be-
tween the exit relay and the DNS resolver which could not be detected by this
test.

Result: Tested Exit Relays

This section provides an overview of the number of exit relays tested during the
test period, along with the number of successful and failed tests.

Analysis Period: July 3, 2024 - August 14, 2024, and August 25, 2024 — February
28,2025

Results: During the test period, 4,074 exit relays were tested. Of these, 3,975
exit relays achieved at least one successful test, while 99 exit relays never com-
pleted a successful test. Table 4.1 lists the minimum, median, and maximum
number of exit relays tested per day, as well as their success rates.

Figure 4.7 illustrates the numbers of tested exit relays and their success rates,
showing a slight upward trend in both the number of available and successfully
tested exit relays toward the end of the test period.

Result: Received Requests at the Authoritative Name Server

The logged DNS requests received at the authoritative name server were as-
signed to the corresponding test DNS requests. DNS requests that could not be
assigned to a test were not further processed. The number, timing, and other
characteristics of the recorded data were then analyzed.

Analysis Period: The period for sending test requests was from July 3, 2024, to
August 14, 2024 and from August 25, 2024, to February 28, 2025. To include
requests received with delays - minutes, days, or even weeks after sending the
test DNS request, especially those sent near the end of the test period - DNS re-
quests received on the name server were registered with a three-week exten-
sion. The authoritative name servers continued operating during the evalua-
tion server outage, and all requests received in this period were also registered.
This resulted in an analysis period from July 3, 2024, to March 21, 2025.

Table 4.1: Number of tested exit relays and their test success

All Tests Successful Tests Failed Tests
Minimum number
of exit relays 2,090 2,082 0]
per day
Median number of
exit relays per 2,236 2,227 7

day

Maximum number
of exit relays 2,471 2,465 126
per day

4 Evaluation of DNS on the Tor Network 36

| | If
I | | [\

| \ | | o

|
I\ A Al | ‘H A |
AN A AN AN WA SN -

\J “‘/\/\V\«,,,\,N ‘\,\\ﬁ/\ “N\/\/ J“\‘u‘/\\/\ /) "M A NS ,N“ “\ /‘ ‘\\M/\‘M
Figure 4.7: Number of tested exit relays per day

Query Types: The name server received requests for various query types. Ta-
ble 4.2 shows the query types and the number of exit relays that requested them.

Number of DNS Requests received per Test DNS Request: Multiple DNS requests
could be received on the authoritative name server for a single test DNS request
sent to an exit relay. Depending on the DNS resolver and its configuration, DNS
requests for different query types, QNAME minimization, and DNSSEC valida-
tion could result in multiple DNS requests.

Identifiable received DNS requests were assigned to the corresponding test DNS
request. This included query names under the domain tordns.ovh that did not
contain the test ID but were closely related in time and originated from the
same IP address or AS. For measuring the number of received DNS requests, ev-
ery identifiable and assignable DNS request from a successful test was counted.

Received DNS requests were grouped per test DNS request, per AS of the re-
questing DNS resolver, and per IP address of the DNS resolver.

Table 4.3 and Table 4.4 show the number of DNS requests received at the name
server resulting from one test DNS request.

Time of received Requests: The time difference between sending a test DNS re-
quest and receiving it on the name server was measured. The applied timeout of
the dig command was five seconds. Therefore, for immediate DNS resolution,
no DNS requests were expected after six seconds — five seconds for the timeout
plus one second for network delay and command completion. This is reflected
by a notable drop in the number of requests after six seconds. Consequently,
DNS requests received later than six seconds are defined as late requests in this
thesis.

The latest DNS request was received on March 21, 2025, for a test DNS request
sent on July 09, 2024. The corresponding DNS resolver was still querying the
authoritative name server for that test domain after 255 days. As the analysis
ended on March 21, 2025, it is likely that the authoritative name server contin-
ued receiving DNS requests for that test domain even after this date.

Figure 4.8 shows the number of DNS resolvers with different IP addresses

4 Evaluation of DNS on the Tor Network 37

Table 4.2: Query types received by number of exit relays

Query Type Number of Exit Relays
A 3,975
AAAA 3,049
DNSKEY 1,278
NS 680
MX 536
SOA 121
DS 88
TXT 33
CNAME 26
PTR 20
DNAME A
HTTPS 4
SRV 2
SvCB 2

sending late DNS requests to the authoritative name server per day. On Septem-
ber 10, 2024, an unusually high number of 15,933 late DNS requests were re-
ceived.

Table 4.5 lists the exit relay ASes and the corresponding DNS resolver ASes
sending late requests on September 10, 2024.

Some DNS requests received from DNS resolvers in the Google AS included
ECS data. The corresponding ASes of the ECS network addresses belong to
Google, Inc. (AS GOOGLE-CLOUD-PLATFORM, US), and to Censys, Inc. (ASes
CENSYS-ARIN-o01, CENSYS-ARIN-02, and CENSYS-ARIN-03). Censys is a U.S.-
based company that aims to make the Internet safer and offers its services pri-
marily to practitioners and researchers®. They may have monitored the original

%https://censys.com/about-censys

Table 4.3: Number of different IP addresses and corresponding number of re-
quests

Number of IP Addresses Number of received DNS Requests

1,213,310
301,018
11,138
3,624
405
104
43

NNV W N e

234 1

4 Evaluation of DNS on the Tor Network 38

Table 4.4: Number of different ASes and corresponding number of requests

Number of ASes Number of received DNS Requests
1 1,413,747

2 114,627

3 5,696

4 349

5 12

17 1

Figure 4.8: Number of received late DNS requests per day

DNSrequests and included them in its Internet scanning activities, or exit relay
operators may have intentionally used their services.

Result: DNS Resolver Scenarios

This analysis categorized the exit relays into the three scenarios defined in sec-
tion 4.3, based on the IP addresses of the DNS resolvers.

Assumptions and Limitations: For the scenario DNS resolver in the same AS, it
could not be determined who operated the DNS resolver. It may have been op-
erated by the exit relay operator itself, the ISP, or another third party within
the same AS as the exit relay.

The analysis considered all three test DNS requests per tested exit relay per day,
including late requests.

Results: Figure 4.9 shows the number and probability of exit relays using DNS
resolvers across the defined scenarios.

The numbers of exit relays and their probabilities correlated to a high extent.

A single exit relay could use multiple resolvers from different scenarios, even
for a single test DNS request.

4 Evaluation of DNS on the Tor Network 39

Table 4.5: AS information of exit relays and DNS resolvers, and the correspond-
ing number of late requests

Exit Relay AS Resolver AS Number of Late Requests
AS 210558, 1337- AS 15169, GOOGLE, US 4,543
;ERVICES-GMBH-NETWORK, AS 13335, 3163
CLOUDFLARENET, US !
AS 15169, GOOGLE, US 2,709

AS 53667, PONYNET, US

AS 13335,

CLOUDFLARENET, US 2299

DNs Resolver Scenario

—~ N A ——— I AN LA

7 ~ T\ —

Figure 4.9: Number and probability of used scenarios by exit relays

Between 40% and 50% of exit relays used a DNS resolver located within the
same AS, followed by 30% to 40% using a DNS resolver in a different AS. Ap-
proximately 15% of exit relays operated a DNS resolver using the exit relay’s IP
address. Table 4.6 shows the number of exit relays that always used the same
scenario throughout the test period, as well as the number of exit relays that
had used a given scenario at least once.

Out of 3,975 tested exit relays, 2,914 consistently used the same DNS resolver
scenario, while 1,061 exit relays used more than one DNS resolver scenario dur-
ing the test period.

A noticeable change in the use of the scenarios occurred between August 6,
2024, and August 30, 2024, as indicated by the vertical lines in Figure 4.9.
During this period, 259 of 273 exit relays from AS 1101 switched from using a
DNS resolver located within the same AS to a DNS resolver in AS 12876 (left
black vertical line). On August 30, 2024, they switched back to a DNS resolver
within their AS (right black vertical line). This behavior may indicate the use
of a backup DNS resolver during an outage or scheduled maintenance of their
primary DNS resolver. 14 exit relays from AS 1101 that performed DNS resolu-
tion using a DNS resolver with the same IP address as the exit relay were not
affected.

4 Evaluation of DNS on the Tor Network

Table 4.6: DNS resolver scenarios by exit relays

Number of Number of
Itself Same AS Different AS fﬁ;; Il{:lt?:z :Z:Itl I:Slgzss
Scenario Scenario

1 0 0 426 1,013

0 1 0 797 1,285

0] 0 1 1,666 2,185

1 1 0 3 69

0 1 1 3 210

1 0 1 19 483

1 1 1 0 13

Result: ASes of Resolvers

DNS requests received on the name server were categorized according to the
ASes of the DNS resolvers.

Limitations: Not all DNS requests coming from an AS that operates a public DNS
resolver necessarily came from that specific DNS resolver. For example, in the
Cloudflare AS, independent DNS resolvers may be operated by other entities.

Results: During the analysis period, DNS requests were received from 383 dif-
ferent ASes on the authoritative name server. Figure 4.11 shows the seven most
frequently used ASes, ranked by the number of exit relays that used a DNS re-
solver within each AS. Because a single exit relay could use multiple DNS re-
solvers across different ASes for a single test DNS request, it could be counted
in multiple AS categories. The high rank of AS Online SAS can primarily be at-
tributed to the temporary switch of exit relays from AS IP-EEND BV in August
2024.

Figure 4.10 presents ASes that hosted DNS resolvers used by more than 20 exit
relays.

Table 4.7 lists the Top 7 ASes along with the probability of using an exit relay
with a DNS resolver in that AS, and the number of exit relays within the defined
scenarios.

DNS resolvers in the Google AS were used by 1,867 of the 3,975 exit relays,
meaning that 46.97% of exit relays generated at least one DNS request received
on the authoritative name server from a DNS resolver within the Google AS. The
Cloudflare AS was involved for 1,295 of the 3,975 exit relays, corresponding to
32.58%.

Neither Google nor Cloudflare permit the operation of Tor exit relays within
their ASes. Nevertheless, as shown in table 10, one exit relay successfully op-
erated within the Google AS, completing a single successful test July 23, 2024.

The probability was calculated by accumulating the success probabilities of all
exit relays per test and dividing the total by the number of test days. It reflects
the likelihood that a random DNS request sent to an exit relay during the test

4 Evaluation of DNS on the Tor Network 41

Most used DNS Resolver AS

m# of Exit Relays in AS
mm Average Probability of AS in %

Relays used Resolver in AS

Average Probability of using Resolver in AS in %

Figure 4.10: ASes used by DNS resolvers of more than 20 exit relays

Exit Relays' DNS Resolver Top AS

N
// “\ /‘\
| N \ [V WY /\/\\\'ﬂ\ W}\‘ /\\M/ et
1\ R e il
L= | | LN s A S S
.y ¢ O e s S ey e
—t——— | I
| — —
M =
Lo /N \‘ /\Wq e 0z, as25
N (N e AN SRR~y
e | P et S S SR
: | b r‘\w'w\ } » Y/%’ A \
< | Y ! \'V | | IV AN AN
/ \‘ - \f(f/“r \J’ ‘\\) VT \ A
H || | | X } l‘
NS \/r M
L L

Figure 4.11: Top 7 ASes of DNS resolvers

period was resolved by a DNS resolver within the corresponding AS. Since a sin-
gle test DNS request could trigger multiple DNS requests from different ASes,
the sum of probabilities across all ASes may exceed one.

Result: QNAME Minimization

This analysis evaluated whether, and to what extent, the DNS resolvers used by
exit relays applied QNAME minimization.

Analysis Period: July 3, 2024 - August 14, 2024, and August 25, 2024 — February
28,2025

Analysis Description: The test DNS requests followed the pattern
[subdomain2].[subdomaini].tordns.ovh, where both [subdomaini] and
[subdomain2] were unique per exit relay and test. This ensured that a do-

4 Evaluation of DNS on the Tor Network 42

Table 4.7: Top 7 DNS resolver ASes used by exit relays

Resolver AS

Number of Exit Relays
Average Probability
Exit Relays resolving itself
Exit Relays Resolver in same AS
Exit Relays Resolver in different AS

AS 15169, GOOGLE,
Us

AS 13335, CLOUD-
FLARENET, US

AS 1101, IP-EEND-
AS IP-EEND BV, NL

AS 29670, IN-
BERLIN-AS Individ-
ual Network Berlin
e.V., DE

AS 210558,

SERVICES-1337-

GMBH 1337- 369 6.43% 369 17 7
SERVICES-GMBH-

NETWORK, DE

AS 12876, Online
SAS, FR

AS 53667, PONYNET,
us

1,867 20.81% 0o 1 1,866

1,295 11.27% 0 0 1,295

274 17.41% 14 260 0

214 9.46% 0o 0o 214

270 1.02% 3 5 265

207 £4.70% 110 100 3

main name containing one of these subdomains was identifiable and not
cached.

It was analyzed whether a DNS request for [subdomaini].tordns.ovh of any
query type was received on the authoritative name server before the DNS re-
quest for [subdomain2].[subdomaini].tordns.ovh of query type A, within a
close time interval and coming from the same AS. This approach accounts for
DNS resolver operators that distribute outgoing DNS requests across multiple
servers using different IP addresses within the same AS.

Assumptions and Limitations: QNAME minimization allows reducing the number
of DNSrequests required to resolve a single domain name by limiting how many
iterations occur, with each iteration appending only one additional subdo-
main level. Acommonly recommended limit is four, meaning that for the first
four domain levels, each subdomain should be queried sequentially, e.g. ovh,
tordns.ovh, subdomaini.tordns.ovh, and subdomain2.subdomaini.tordns.ovh
[24]. This configuration fully covers the structure of the test domain names
used in this analysis. Therefore, DNS resolvers applying QNAME minimization
according to the recommendation should generate requests for each of these
domain levels. It was assumed that DNS resolvers applied no stricter limit than
this recommendation.

Results: A large portion of exit relays, corresponding to approximately 80%
of the total exit relay selection probability, used DNS resolvers that applied
QNAME minimization. Figure 4.12 illustrates these results.

Result: EDNS Client Subnet (ECS) Information

This analysis evaluated the presence and characteristics of EDNS Client Sub-
net information observed in DNS requests received by the authoritative name

4 Evaluation of DNS on the Tor Network 43

Figure 4.12: Number and probability of exit relays applying QNAME minimiza-
tion

server, revealing which DNS resolvers included ECS data.
Analysis Period: July 3, 2024 — March 21, 2025

Assumptions and Limitations: A Client may omit ECS information, intentionally
include ECS information, or request that the DNS resolver not forward it. Ul-
timately, the DNS resolver decides whether and how to include ECS informa-
tion. If multiple DNS resolvers are involved in the resolution path, each can add,
modify, or remove ECS information. The last DNS resolver in the chain deter-
mines the ECS information that reaches the authoritative name server. Conse-
quently, it cannot be determined whether the client or any intermediate DNS
resolver altered the ECS information.

Results: From a total of 6,161,463 DNS requests received by the name server,
814,421 DNS requests (13.22%) contained ECS information. Table 4.8 lists the
ECS subnet value observed, along with the number of requests, the number of
exit relays associated with these requests, and the number of distinct ASes from
which they originated.

Of the 383 ASes that sent DNS requests, 358 never included ECS information, 23
occasionally included ECS data, and two consistently included it.

Google’s public recursive DNS resolver, by default, includes ECS information
from its clients. All DNS requests coming from the Google AS that contained ECS
data could be attributed to Google’s public DNS resolver, based on information
containing IP addresses used by Google to query authoritative name servers'®.

In contrast, Cloudflare’s public recursive DNS resolver never includes ECS in-
formation. The DNS requests coming from the Cloudflare AS that included ECS
information were therefore likely sent by other DNS resolvers operated within
the Cloudflare AS but not by Cloudflare itself. However, this could not be ver-
ified as Cloudflare does not publish the IP addresses of its DNS resolvers used
to query authoritative name servers.

0https://developers.google.com/speed/public-dns/faq
Uhttps://developers.cloudflare.com/1.1.1.1/faq/

4 Evaluation of DNS on the Tor Network 44

Table 4.8: ECS information received on the authoritative name server

ECS Information Number of Exit Relays Number OfAl;l:IsS Resolver
ECS subnet length @ 7 6

ECS subnet length 24 1,778 23

ECS subnet length 32 1 1

ECS subnet length 48 2

ECS subnet length 56 197

Having DNS requests

with ECS information 1,815 25

included

Having DNS requests
without ECS informa- 3,281 381
tion included

All DNS requests with an ECS subnet length of zero had the ECS network ad-
dress set to 0.0.0.0. An ECS subnet length of zero explicitly indicates that no
ECS information should be included in the DNS request. [17]

From July 3, 2024, to September 25, 2024, ECS data with a subnet length of
32 was received from one exit relay. This exit relay consistently used a single
DNS resolver, which was not observed again after this period. The ECS data in-
cluded the exit relay’s full IPv4 address, thereby exposing the specific exit re-
lay responsible for the DNS request to any observer along the path beyond the
recursive DNS resolver and to the authoritative name server. Sending an ECS
subnet length more specific than 24 for IPv4 addresses, i.e. greater than 24, is
not permitted. [17]

Furthermore, DNS requests from 1,104 exit relays included an ECS subnet
length of 24 and the corresponding network address of the exit relay.

When the ECS information in a DNS request includes the exit relay’s /24 net-
work address, it may reveal that the request originated from a Tor exit relay,
particularly when multiple exit relays operate within that same subnet.

Result: Case Randomization

This test evaluated whether the recursive DNS resolvers querying the author-
itative name server applied case randomization to domain names, a technique
that enhances protection against cache poisoning.

Analysis Period: July 3, 2024 - August 14, 2024, and August 25, 2024 — February
28,2025

Analysis Description: The test DNS requests consisted exclusively of lowercase
letters. On the authoritative name server, the received DNS requests were an-
alyzed to determine whether the query names contained mixed-case letters,
indicating the use of case randomization.

Assumptions and Limitations: Query names composed entirely of uppercase let-
ters were assumed to be fully capitalized by chance and were therefore counted

4 Evaluation of DNS on the Tor Network 45

Table 4.9: Number of mixed-case requests per domain level

Domain Percentage Case Randomized
tordns.ovh 12.86%
ns1.tordns.ovh, ns2.tordns.ovh 55.03%
subdomaini.tordns.ovh 92.46%
subdomain2. subdomainl. tordns.ovh 98.98%

Exit Relays using DNS Resolver applying Case Randomization

WW

Figure 4.13: Number and probability of exit relays sendin mixed-case query
names

asrandomized queries. Query names containing only lowercase letters were not
counted as randomized, which could lead to false negatives.

Exit relays apply case randomization by default before sending DNS to their
configured DNS resolver. DNS resolvers themselves may also apply case ran-
domization to query names. It could not be determined whether an observed
case randomization originated from the exit relay or the DNS resolver. There-
fore, when case randomization was detected, it was assumed to have been ap-
plied either by the exit relay alone or by both the exit relay and the DNS resolver.

On July 25, 2023, Google announced that Google’s Public DNS resolver had en-
abled case randomization by default!2.

Results: The proportion of DNS requests containing mixed-case query names
varied depending on the queried domain. DNS requests for the domain name
tordns.ovh and for the name servers themselves exhibited substantially lower
rates of randomized cases.

Figure 4.13 shows the number of exit relays and their combined prob-
ability of using a DNS resolver that sent DNS requests with mixed-
case domain names. Only DNS requests for subdomaini.tordns.ovh and
subdomain2.subdomaini.tordns.ovh were considered in this graph.

2https://groups.google.com/g/public-dns-discuss/c/KxIDPOydA5M

4 Evaluation of DNS on the Tor Network 46

Table 4.10: Test period and the corresponding DNSSEC test domain names

Test Period Test Domains

sigfail.verteiltesysteme.net,

2024-07-03 - 2024-07-11
www. rhybar.cz

sigfail.verteiltesysteme.net,
2024-07-12 - 2024-08-14 www. rhybar.cz,
*.invalidkey.dnssec-check.ovh

sigfail.verteiltesysteme.net,
2024-08-25 - 2024-11-04 www. rhybar.cz,
*.invalidkey.dnssec-check.ovh

sigfail.verteiltesysteme.net,

2024-11-05 - 2025-01-03
www. rhybar.cz

sigfail.verteiltesysteme.net,
2025-01-04 - 2025-02-28 www. rhybar.cz,
*.invalidkey.dnssec-check.ovh

Test and Result: DNSSEC Support

This test evaluated how many exit relays correctly validated DNSSEC.

Test period: July 3, 2024 - August 14, 2024, and August 25, 2024 — February 28,
2025

Test description: DNS requests were sent to domains with invalid DNSSEC sig-
natures. If a DNS resolver returned an IP address for these domains, it was con-
cluded that DNSSEC validation was not performed, as the response should have
failed. To verify the availability of the DNS resolvers and authoritative name
servers, additional DNS requests were sent to correctly signed domain names.

The following domains were used in the test:

® [ntentionally invalidly signed domain names sigfail.verteiltesysteme.net?3,
www.rhybar.cz!4, and [subdomain].invalidkey.dnssec-check.ovh

m Correctly signed domain names sigok.verteiltesysteme.net and
[subdomain].dnssec-check.ovh

If a DNS resolver successfully resolved a domain name with an invalid DNSSEC
signature, it was classified as not performing DNSSEC validation. If none of the
correctly signed domain names were resolved, the test result was considered
invalid.

Assumptions and Limitations: The authoritative name server for
dnssec-check.ovh was not available during the entire test period, which
resulted in a different use of test domain names for some periods, listed in
Table 4.10.

Exit relays can use multiple DNS resolvers to resolve a single DNS request. Con-
sequently, it was not possible to determine which specific DNS resolver per-
formed the resolution, and exit relays might exhibit different results over time
when using multiple DNS resolvers.

Bhttps://wander.science/projects/dns/dnssec-resolver-test/
4https://www.internetsociety.org/resources/deploy360/2013/dnssec-test-sites/

4 Evaluation of DNS on the Tor Network 47

Figure 4.14: Number and probability of exit relays validating DNSSEC

Results: Figure 4.14 shows that the majority of exit relays, representing approx-
imately 65% of the total exit relay probability, correctly validated DNSSEC.

Test and Result: Exit Relays Using Cache

This test determined whether exit relays used their own DNS cache.
Test Period: September 20, 2024 — February 28, 2025

Test Description: Two DNS requests for a domain name unique to each test and
exit relay were sent within a few minutes of each other. The first DNS request
was not cached at the exit relay. When an exit relay stores a DNS request in its
cache, it clips the original TTL value to a fixed value and randomizes this TTL
value within a fixed range. Therefore, if the TTL value in the DNS response of
the second DNS request for the same domain name matches the TTL value in
the first DNS response, the domain name was considered cached with a prob-
ability of 0.9979. This is due an issue of the DNS resolution by Tor exit relays,
see section 4.4.4.

The test domain name followed the pattern [subdomain].tordns.ovh where
[subdomain] was unique per test and exit relay.

Assumptions and Limitations: This test exploits a security issue and was applied
exclusively to domain names under the control of the author’s authoritative
name server.

Only successful tests for which DNS responses were received for both DNS re-
quests were evaluated.

Since the authoritative domain’s TTL value was set to the maximum value of
604,800 seconds, a cached domain name on the exit relay was expected to have
a TTL value between 3,360 and 3,840 seconds.

A domain name was considered cached when both DNS responses had the same
TTL value within this expected range.

Results: All successful tests showed identical TTL values in both DNS responses,
indicating that all successfully tested exit relays used a DNS cache.

4 Evaluation of DNS on the Tor Network 48

Test and Result: Performance of DNS Resolution

This test measured the time required to resolve various test DNS domain names
through the Tor network.

Test Period: July 3, 2024 - August 14, 2024, and August 25, 2024 — February 28,
2025

Test Description: The following test DNS requests were sent, and their response
times were measured:

® [subdomain2].[subdomaini].tordns.ovh Each test DNS request sent for the
test in section 4.5.2 was unique throughout the test period and therefore
neither cached at the exit relay nor at any recursive DNS resolver. Three DNS
requests for unique domain names were sent per test and exit relay, and the
average value of the response times was calculated.

® a.gtld-servers.net This domain name, belonging to the authoritative name
servers for the .com domain, was likely uncached at the exit relay but cached
at the recursive DNS resolver. Two DNS requests for this domain name were
sent per exit relay and test. After the first request, a cache hit at the exit
relay’s cache was expected for the second request.

B *_cache-test.tordns.ovh The two test DNS requests sent for the test con-
ducted and described in section 4.5.2 were unique per exit relay and test.
The first DNS request was expected to be neither cached at the exit relay nor
at any recursive DNS resolver, while the second was expected to be served
from the exit relay’s cache. Tests for this domain were conducted from 20
September 2024 until the end of the test period on 28 February 2025.

Assumptions and Limitations: The response time was measured in microseconds
using the Linux dig command.

The measured time reflects not only the performance of the exit relay but also
that of the Tor network, specifically the entry guard and middle node, and the
test servers. As the default Tor circuit was used for connecting to exit relays,
the large number of tests is assumed to provide statistically representative av-
erage values for successfully resolved DNS requests. Failed DNS requests were
excluded from the analysis.

Results: Figure 4.15 presents the average time required to resolve cached and
uncached domain names.

Aligned variations in response times among different test domain names in-
dicate the performance of the Tor network and the test servers. Occasional
outliers of specific test domain names, e.g. the spike on August 12, 2025 for
*.tordns.ovh (459,918 us), are likely attributable to temporary fluctuations
in the performance of the authoritative name server. A gradual trend toward
shorter DNS resolution times was observed during the second half of the test
period.

As expected, domain names cached at the exit relay, such as a.gtld-servers.net
and *__cache-test.tordns.ovh, were resolved the fastest, as no further DNS re-
solving outside the exit relay was required. There was no observable perfor-
mance difference between these two domain names.

Two distinct patterns were observed among the domain names that were not
cached at the exit relay. The domain name a.gtld-servers.net was likely cached

4 Evaluation of DNS on the Tor Network 49

ik \\/\[‘AWF‘\/V\\/\/\\]

“M’W\fv Al
NN
b v V’VN\AVN\ VWV \\/ J/v ﬁ V\JI\L"JV\J\/\/\ ‘/A/\

rrrrrrr

Figure 4.15: Time in ps needed for resolving test domain names

at the recursive DNS resolvers used by exit relays, meaning no additional re-
cursive resolution was required. In contrast, the difference in resolution time
between *.tordns.ovh and *__cache-test.tordns.ovh is likely attributable to the
number of subdomain levels. Recursive DNS resolvers that apply QNAME min-
imization must perform one additional iterative DNS request to the authori-
tative name server for the deeper subdomain structure of *.tordns.ovh, which
explains the longer resolution time.

Conclusion of Results

Not all exit relay operators follow the Tor Project’s recommendations for DNS
resolution. The probability that an exit relay uses a DNS resolver located within
the same AS is between 40% and 50%. Not all DNS resolvers validate DNSSEC
(probability approximately 65%) or apply QNAME minimization (probability
approximately 80%).

For some exit relays, the ECS information contained the network address of the
exit relay with a subnet length of 24, resulting in potential exposure beyond the
recursive DNS resolver. Exit relays should explicitly request that recursive DNS
resolvers omit ECS information, and this behavior should be tested regularly. If
aresolver continues to include ECS information despite such requests, a differ-
ent DNS resolver should be selected. In one observed case, an exit relay’s full IP
address was exposed in the ECS information, constituting a clear privacy risk
and a violation of the ECS standard.

Chapter 5

Proposed Improvements

This chapter discusses and proposes improvements to the DNS, based on the
threats found in chapter 3 and chapter 4, and reevaluates remaining or poten-
tially newly introduced drawbacks or threats.

The necessity of a more secure DNS resolution mechanism for the Tor network
is also addressed in a design proposal [80]. The proposal suggests shifting the
responsibility for DNS resolution from the exit relay to the client, thereby keep-
ing DNS requests confidential from exit relays and ensuring the application of
DNSSEC. Users should no longer have to trust the exit relay to choose DNS re-
solvers.

The improvements proposed in this chapter aim to provide methods for a
privacy- and security-enhanced DNS resolution that benefit Internet users in
general as well as clients on the Tor network. When users apply these measures
themselves, they no longer depend on exit relays for DNS resolution when us-
ing the Tor network. Conversely, exit relays implementing these measures can
improve privacy and security for Tor clients who still rely on them for DNS res-
olution.

To enhance the privacy and security of DNS resolution, whether performed by
Tor exit relays or by clients themselves, the following goals are defined:

m Use existing systems and protocols: Improvements should integrate into
the existing DNS infrastructure. Available security enhancements such as
DNSSEC, QNAME minimization, and encrypted DNS should be applied.

® Enhance confidentiality and privacy: Wherever feasible, information should
be encrypted, and each actor should only have access to the plaintext infor-
mation necessary to perform its function.

® Provide integrity and authentication: The integrity of information should be
ensured, and communicating partners should be authenticated.

® Prevent censorship: Only the user should decide which domain names to
block. DNS resolvers must not block any domain names.

B Provide availability: DNS resolution should not depend on the availability of
a single recursive DNS resolver.

m Mitigate data analysis: The use of DNS data for creating user or behavioral
profiles, which can enable reidentification of users even without direct IP
address correlation, should be prevented. Furthermore, DNS data should
not be usable for correlation attacks, such as the DefecTor attack on the Tor
network [79].

50

5 Proposed Improvements 51

Local Aulonomgl:s System /" Autonomous -‘.‘ Autonom?)\:s System

Network f System
e ISP of Client Internet Exchange Point (&

’—q e (0, 1 or multiple) % : :
P — 3 8 i = t

} = \
Encrypting y | Encrypting recursive |
Stub DNS __ \ DNSResover / °
Resolver A ~

Internet Exchange Point
{0, 1 or multiple)

)

User N

/ TN
/" Autonomous |
System

/~ Autonomous

encrypted DNS fraffic to public recursive DNS resolver 4 "_Autonomous \
System

— ur pted DNS requests containing IP address of the DNS resolver [System

| root | 1 TLD | | Authoritative |
\ NamesServer / |\ Name Server / \ MNameSerer /
A A ~ A g e,

Figure 5.1: Architecture of encrypted DNS resolution

B Provide anonymization: In this thesis, anonymity is defined as preventing
disclosure of the IP address of the original sender of DNS requests to any
entity on the DNS resolution path beyond the client’s trusted network. This
includes forwarding and recursive DNS resolvers as well as authoritative
name servers. None of these entities should be able to identify the origi-
nator of a DNS request.

m Users should choose DNS resolvers: Minimum privacy requirements for DNS
resolvers should be defined, and a list of DNS resolvers meeting these re-
quirements should be provided to users so they can decide which DNS re-
solvers to use.

5.1 Encrypting DNS Requests

In recent years, various encrypted DNS protocols have emerged. These proto-
cols provide encryption of DNS traffic between the client and the DNS resolver,
as well as authentication of the DNS resolver itself. To use these protocols, the
client must send DNS requests through software that supports the chosen pro-
tocol. Such functionality can be integrated into applications, e.g. Firefox?, or
implemented by the operating system as a stub resolver. Correspondingly, DNS
resolvers must support these protocols. Except for an experimental implemen-
tation of DoT at the root server b.root-servers.net?, root, TLD, and authorita-
tive name servers do not support encryption. Recursive DNS resolvers only use
conventional, unencrypted DNS when querying name servers. [27, 28, 29]

Figure 5.1illustrates the architecture of DNS when using encrypted DNS proto-
cols.

An adversary located on the path between the client and the recursive DNS re-
solver can no longer monitor or manipulate DNS requests once encryption is
applied. This potentially mitigates domain name blocking. In [81], the authors
tested the circumvention of blocked domains by switching from conventional
DNS to encrypted DNS. Using vantage points in different countries, they de-
tected DNS traffic manipulation in five countries. Switching to encrypted DNS

thttps://support.mozilla.org/en-US/kb/firefox-dns-over-https
2https://b.root-servers.org/research/tls.html

5 Proposed Improvements 52

enabled access to censored domains with varying success rates depending on
the country, e.g.,100% in Portugal, 50% in Denmark, and 37% in China. Chang-
ing from one encrypted DNS resolver to another did not significantly affect
these results. However, some encrypted DNS resolvers have been blocked in
certain countries, e.g. Google’s public recursive DoH resolver was inaccessible
in China.

In [82], researchers examined the accessibility of 1,600 domains and encrypted
DNS resolvers (DoT and DoH) over a six-month period from more than 20,000
vantage points in various countries around the globe, including countries clas-
sified as “not free” by Freedom House3. Their 315,000 measurements showed
that encrypted DNS enabled unblocking between 55% and 95% of censored do-
mains depending on the country.

5.1.1 Encrypted DNS Protocols

In [83], the authors studied encrypted DNS resolvers and identified over 150
DoT and 17 DoH providers, generally offering satisfactory service quality suit-
able for large-scale, real-world usage. Their findings indicate that DoT and
DoH are the leading encrypted DNS protocols, extensively supported by large
public DNS resolvers, followed by DNSCrypt, which they classify as partially
supported.

Similarly, [84] measured the adoption of encrypted DNS protocols in three
large organizations and found DoH and DoT were the predominant protocols
for encrypted DNS.

An online search for encrypted DNS resolvers conducted in this thesis (see sec-
tion 5.4.2) revealed a substantial number of publicly available DoH, DoT, and
DNSCrypt resolvers.

Based on these findings, DNS over HTTPS, DNS over TLS, and DNSCrypt were
selected for encrypting DNS requests.

5.1.2 Threat Analysis Update

While encrypted DNS enhances the security of DNS resolution, certain threats
persist. Moreover, its use may be perceived as problematic by intelligence
agencies and police forces [2].

Blocking Encrypted DNS

The presence of encrypted DNS traffic could be blocked by ISPs or AS operators.

[84] found four times as many DoH resolvers that were hidden or not publicly
listed as those listed on the most comprehensive list of well-known DoH re-
solvers, leading the authors to conclude that blocking DoH traffic based solely
on well-known DoH resolver lists is not effective.

[82] detected blocking efforts against encrypted DNS in several countries, in-
cluding China, Russia, and Saudi Arabia, and observed a significant increase in

3https://freedomhouse.org/country/scores

5 Proposed Improvements 53

the blocking of DoT and DoH traffic in China in March 2021. Blocking encrypted
DNS resolver domain names at the AS level was found only for ordns.he.net in
China, blocked by the Great Firewall via DNS poisoning, and in one AS located in
Thailand, where two domain names belonging to Cloudflare’s encrypted DNS
resolvers were blocked.

Preventing the detection of encrypted DNS traffic or concealing DNS traffic al-
together is considered out of scope for this thesis.

Centralization of Data and Control

Directing all DNS requests to a single DNS resolver introduces a privacy risk
through data centralization, particularly when large organizations operate the
DNS resolvers. Encrypted DNS resolver operators observe both the client IP ad-
dresses and the requested domain names, creating a single point of surveil-
lance.

The DNS resolver also determines which DNS security enhancements are ap-
plied, such as DNSSEC validation or QNAME minimization, thereby affecting
all of its clients. Furthermore, DNS resolvers may block specific domain names
based on undisclosed blocklists or refuse to respond to certain clients, e.g., DNS
requests coming from the Tor network. A certain degree of trust in the DNS re-
solver is therefore required.

Reliance on a single DNS resolver and its infrastructure also introduces a sin-
gle point of failure. An outage such as the incident involving Cloudflare’s public
DNSresolver onJuly 14,2025, [69], would disrupt DNS resolution for all depen-
dent clients.

DNS Fingerprinting

The inclusion of EDNS client subnet information that contains a client’s cor-
responding network with subnets up to /24 by a DNS resolver can reveal a
client’s network address on the path between the recursive DNS resolver and
the authoritative name server. Observing such DNS traffic enables adversaries
to classify clients of a DNS resolver by network origin and to build DNS-based
profiles, especially in cases where few clients share the same network.

Even if DNS traffic is encrypted and the requested domain names are not vis-
ible to an attacker on the path between the client and the encrypted DNS re-
solver, fingerprinting techniques can still be applied to infer visited websites.
Using the first 50 DoH packets, [85] achieved an accuracy of 95% in identify-
ing website domain names in a closed-world scenario and an Fi-score of 93%
with 100,000 websites in an open-world scenario. [86] proposed a feature set
for fingerprinting attacks on encrypted DoH traffic, achieving comparable ac-
curacy to state-of-the-art website traffic fingerprinting while requiring 124
times less data volume.

DNSCrypt exposes certain metadata, such as the total number of DNS requests
and their inter-arrival times, enabling potential attacks that can disclose vis-
ited websites [2].

5 Proposed Improvements 54

5.2 Distributing Encrypted DNS Requests

Distributing a client’s DNS requests when accessing a single resource across
multiple encrypted DNS resolvers reduces the amount of information each DNS
resolver receives. To effectively distribute DNS data, the chosen DNS resolvers
must be operated by independent organizations. A single organization may
host multiple DNS resolvers under different domain names for different ge-
ographical locations or encryption protocols.

By ensuring that each DNS resolver receives only a fraction of the overall DNS
requests, the ability of an individual DNS resolver to create or reidentify user
profiles is significantly diminished. Also, fingerprinting encrypted DNS re-
quests on the path between the client and DNS resolvers becomes more dif-
ficult, as an attacker would need to observe and identify all a client’s DNS re-
quests sent to multiple DNS resolvers.

The number of independent DNS resolvers and the algorithm for distributing
DNS requests are critical factors. The minimum number of DNS resolvers re-
quired also depends on the number of DNS requests typically originating when
accessing a single resource, e.g. visiting a website. According to [87], 50% of
the Alexa Global Top 100,000 websites require at least 20 DNS requests to fully
load their landing pages. Further research is required to determine the mini-
mum number of DNS resolvers needed to effectively prevent DNS fingerprint-
ing and user profiling.

Encrypted DNS resolvers should meet specific criteria to ensure reliability and
security. Requirements for recursive encrypted DNS resolvers are defined, and
their evaluation is presented in section 5.4. Regular assessments of DNS re-
solvers should be conducted, and DNS resolvers that are no longer functional
or no longer meet the requirements, should be excluded. Any failing resolver
should be promptly deactivated to minimize resolution delays caused by time-
outs and avoid redundant transmissions of the same DNS request to multiple
DNS resolvers.

For large-scale networks such as company networks or exit relays, distributing
DNS requests can also reduce the load on individual DNS resolvers compared
to relying on a single external DNS resolver for all DNS requests. This can be
particularly beneficial for DNS resolver operators with limited resources.

However, distributing DNS requests across multiple DNS resolvers may in-
crease the overall time required to load a website, as some DNS resolvers might
respond more slowly. Using a larger number of DNS resolvers increases the
likelihood of encountering a slower one [88].

Figure 5.2 illustrates a client distributing DNS requests to multiple recursive
encrypted DNS resolvers.

5.2.1 Algorithm for Distribution

Several algorithms can be applied for distributing DNS requests among multi-
ple encrypted DNS resolvers. Relevant approaches are the following:

B Random: Each DNSrequest is sent to a randomly selected DNS resolver from
a set of available DNS resolvers. Over time, all DNS resolvers are expected
to be chosen equally often.

5 Proposed Improvements 55

Local __/Autonomous System ' B f Aut TITETE

Network i) System h
ISP of Client) Internet Exchange Point
e w % =
_-" Autonomoiis)
Encry pting System \/
Stub DNS ,) /
Resolver % —
User _-" Autonomoiis)
System ‘-.}.,.-
[ons) /
83 8
=
=
/ . Encrypting recursive
encrypted DNS traffic to public recursive DNS resolver ~___ -~ “___DNS Resolver ,—"
=3 unencrypted DMNS requests containing IP address of the DNS resolver \‘\-..____ -

Figure 5.2: Distributing DNS requests to multiple encrypted DNS resolvers

m Weighted Random: Similar to the random approach, but DNS resolvers are
assigned different selection probabilities. Some DNS resolvers will be cho-
sen more frequently than others based on their assigned weights.

B Round-robin: DNS requests are sent sequentially to DNS resolvers in a list
arranged in a random but fixed order, starting with the first DNS resolver
in the list. After a DNS request is sent to the last DNS resolver in the list,
the next DNS request is sent to the first DNS resolver in the list again. Over
time, each DNS resolver receives an equal number of DNS requests.

m Weighted Round-robin: Similar to the round-robin approach, but some DNS
resolvers appear multiple times in the list of available DNS resolvers. As a
result, these DNS resolvers are selected more frequently than others ac-
cording to their assigned weights, i.e. their number of appearances on the
list.

B Domain-name-based: The DNS resolver is selected based on the domain
name, e.g. a hash of the domain name. When grouping by domain names or
their hash values, the number of groups likely does not match the number
of available DNS resolvers. This results in an unequal distribution of DNS
requests and makes it difficult to predict the fraction of DNS requests that
each DNS resolver will receive.

Weight factors used to define DNS resolver selection probabilities can be de-
termined based on factors such as the DNS resolver’s available resources or its
performance metrics.

5.2.2 Threat Analysis Update

To avoid organizational centralization, it is essential to use independent DNS
resolvers. In [89], the authors discovered 23,960 public encrypted DNS re-
solvers, of which 64.83% operated as forwarding DNS resolvers, whereas
35.17% of these DNS resolvers used the same IP address for both offering DNS
resolution and querying authoritative name servers. The top ten DNS providers

5 Proposed Improvements 56

querying authoritative name servers served 75.24% of all public encrypted DNS
resolvers. These findings indicate a high degree of centralization and interde-
pendence among public DNS resolvers.

DNS fingerprinting on encrypted DNS data may still be feasible if an attacker
can observe all DNS requests, particularly when located close to the client, such
as the client’s ISP. Websites or software applications may also identify the DNS
resolvers used by a client by issuing numerous DNS requests for domain names
under their control.

When applying random or round-robin distribution algorithms, each DNS re-
solver receives most DNS requests for regularly requested domain names af-
ter a sufficiently long period, enabling them to create user profiles. To address
this issue, [88] proposed domain-specific sharding, in which a DNS resolver
receives all queries corresponding to the same second-level domain name. A
domain name map assigns these domains to specific DNS resolvers. Without
sharding, the authors were able to reidentify 88% of users in their tests. Imple-
menting a sharding value of two, i.e. distributing DNS requests across two DNS
resolvers, lowered reidentification to 79%, while a value of eight reduced it to
49%. They further proposed the adaptive insertion of DNS requests of popular
domain names based on the uniqueness of the user’s DNS stream, which fur-
ther significantly lowered the probability of user reidentification in their eval-
uations.

5.3 Anonymizing the Original Sender of DNS Requests

In this approach, the client no longer sends DNS requests directly to encrypted
DNS resolvers but instead transmits them through the Tor network. This pre-
vents DNS resolvers on the DNS communication path beyond the exit relay from
learning the client’s actual IP address, as they can see only the IP address of the
exit relay. All entities on the DNS communication path before the DNS requests
enter the Tor network must be trusted.

The Tor network provides anonymization for its clients by routing TCP traffic
through a series of Tor nodes. It also supports the resolution of conventional
DNS requests. Tor software running on the client can be configured to receive
DNS requests on UDP port 53 and forward them to the exit relay on an estab-
lished Tor circuit. However, these DNS requests are limited to the DNS record
types A, AAAA, and PTR. The exit relay determines which DNS resolver to use
and sees the DNS requests in plaintext. [30, 35]

Sending DNS requests to the exit relay without using the same Tor circuit for
web browsing may appear to be suspicious behavior. A client issuing numerous
DNS requests without opening subsequent connections to the corresponding
targets may be perceived as performing a DNS scan. To mitigate such behav-
ior, countermeasures, such as limiting DNS requests without subsequent data
traffic or introducing artificial delays, have been proposed. [90]

To implement the improvements proposed in the previous sections, encrypted
DNS requests are sent via TCP through the Tor network to the selected en-
crypted DNS resolvers. In this configuration, the client retains control over
which DNS resolvers are used, all DNS record types supported by the DNS re-
solver remain available, and the exit relay no longer has access to the content of

5 Proposed Improvements 57

. p TN

o] / Aulunomous System | ISP of Autonomous System _J Aulnnomous "-~.\
Network f Tor Network Exit Relay 4 or - System
ISP of Client Internet Exchange Point/ | Internet Exchange Point I |
0. 1 or multiple) (0, 1 or multiple)
%@ e P %EE‘*EEHEE e B ...—9
Tor Entry Tor Middle Tor] g vy Aulnnomous j.
“ 7 Encoyaing Guard Node Exit Relay ./ 5“‘3‘"
Stub DNS \ {
Resolver _A 7 % e
User) . g | o / Aulunomous
- | 4 Syslem /
<« Tor-encrypied traffic inside Tor network
encrypted DNS traffic in Tor-encrypted connection to the entry quard A % El—>®

encrypted DNS traffic to public recursive DNS resolver containing IP address of exit relay

Ennwutmg recursive /"

—3 unencrypted DNS requests containing IP address of the DNS resolver ~ DNS Resolver J —

Figure 5.3: Anonymizing the original sender’s IP address of DNS requests by
sending them over the Tor network

/ . / -
~ Autonomous System /" Autonomsus
or A

Local | & \
Network | Tor Network ISP of Syslem
ISP of Client Internet Exchange Point, Exit Relay I
(0,1 or multiple) >/
L e SO SQE-E3—E3 -8 7 9
or Entry Tor Middle Tor Autonomous N\,

“ Encymng e Guard Node Exit Relay 5V5|€‘“
Siub DNS -
Resolver / (|

Autonomous System
or

User S Aulc-nomc-us

Tor Enffy.

Guard
{0, 1 or multiple)

/ Aulonomous ‘\
System

1P of =)

'\ Internet Exchange Point Svslem

%

Exit Relay e
Tor = \
- Exit Relay Encrypling recursive
7 “__ DNS Resolver Vs

<« Tor-encrypted trafiic inside Tor network

encrypted DNS traffic in Tor-encrypted connection to the entry guard

encrypted DNS traffic to public recursive DNS resoliver containing IP address of exit relay
—— unencrypted DNS requests containing IP address of the DNS resolver

Figure 5.4: Anonymizing the original sender’s IP address of DNS requests by
sending them over the Tor network

the DNS traffic. Conventional DNS resolution provided by exit relays may still
be used for DoH bootstrap DNS requests.

In [86], the authors found that, in contrast to traffic analysis attacks on web
traffic, Tor’s encryption between the client and entry guard offers strong pro-
tection against traffic analysis attacks on encrypted DNS traffic, providing ef-
fective resistance to fingerprinting.

Since all clients using the same exit relay share the same exit IP address, a DNS
resolver receiving requests from that exit relay can only create a single aggre-
gated user profile representing all its clients.

Clients may apply this method to send DNS requests regardless of whether they
are using the Tor network for web browsing.

Figure 5.3 illustrates an overview of a client sending encrypted DNS requests
through the Tor network.

Clients may use multiple Tor circuits simultaneously and thus employ differ-
ent exit IP addresses to send encrypted DNS requests. Different sets of DNS re-
solvers can be used for each Tor circuit. Figure 5.4 illustrates a client using two
exit relays to send encrypted DNS requests to multiple DNS resolvers.

Exit relays may resolve conventional DNS requests received from their clients

5 Proposed Improvements 58

by forwarding them as encrypted DNS requests to encrypted DNS resolvers, or
by relaying encrypted DNS requests through one or more other exit relays.

Routing encrypted DNS requests from Tor exit relays to multiple DNS re-
solvers would complicate the DefecTor correlation attack [79], discussed in
section 4.4.5. Adversaries located on the network path between an exit relay
and a DNS resolver would no longer observe plaintext DNS traffic and would
be required to analyze multiple encrypted connections instead of a single un-
encrypted connection. Nevertheless, DNS resolvers and any participants in the
upstream resolution process, e.g. forwarding DNS resolvers or authoritative
name servers, remain potential adversaries, and fingerprinting of encrypted
DNS traffic may be feasible. Distributing encrypted DNS requests across mul-
tiple exit relays, either by clients or by exit relays themselves, could further
increase the difficulty of the attack.

5.3.1 Threat Analysis Update

DNS resolvers can observe the IP addresses of exit relays and may block DNS re-
quests coming from them. Since concealing the use of the Tor network is not an
objective of this thesis, the selected DNS resolvers must therefore accept DNS
requests coming from exit relays.

To mitigate the risk of correlation attacks at the AS level, DNS resolvers lo-
cated within the same AS as the client or the entry guard of a client’s Tor circuit
should be avoided.

Furthermore, a client’s stub DNS resolver must not send ECS information, as
doing so would reveal the client’s actual network address to DNS resolvers and
compromise anonymity.

5.4 Evaluation of Encrypted Recursive DNS Resolvers

5.4.1 Requirements for Encrypted DNS Resolvers

The following requirements are established for encrypted DNS resolvers:

m DNSSEC: DNS resolvers must validate DNSSEC for all domains that are
DNSSEC-signed.

B QNAME Minimization: QNAME minimization should be applied for the first
four labels of a domain name, as recommended in [24].

m ECS: DNSresolvers should not include any ECS information in DNS requests.
If ECS information is included, the client’s IP address must not fall within
the ECS network.

® No Blocking of Domain Names: DNS resolvers must not block or manipulate
DNS responses based on the requested domain name.

® Acceptance of DNS Requests from the Tor Network: DNS resolvers must re-
spond to DNS requests coming from the Tor network in the same manner
as to those coming from other networks.

5 Proposed Improvements 59

m Acceptable Performance: DNS resolvers should provide responses within an
acceptable timeframe. Since acceptable response time may vary depend-
ing on user expectations, no strict limit is defined. Instead, DNS resolvers
should be ranked according to their average response time for DNS requests.

® Low Error Rate: The proportion of DNS responses to valid domain names
that contain DNS response codes indicating an error due to resolver-side
issues should not exceed the average error rate observed among other DNS
resolvers.

B High Availability: The DNS resolver must maintain high availability and op-
erate without significant outages.

m Valid Certificates: DoH and DoT resolvers must use valid TLS certificates is-
sued by certificate authorities recognized by common operating systems.
DNSCrypt resolvers must provide valid operator-issued certificates.

® Independence of DNS Resolvers: DNS resolvers must not be operated by the
same organization.

The search for encrypted DNS resolvers, described in the following section,
revealed that many DNS resolvers do not provide a privacy statement. More-
over, privacy-related claims made by DNS resolver operators cannot be verified
through testing. Since the proposed improvements include anonymization of
the original sender of DNS requests, logging policies are not considered a re-
quirement for encrypted DNS resolvers in this thesis.

5.4.2 Finding Public Encrypted DNS Resolvers

A manual online search was conducted to find public encrypted DNS resolvers.
Collections of such encrypted DNS resolvers are listed on various websites4.
From all discovered DNS resolvers, 161 DoH, 40 DoT, and 133 DNSCrypt re-
solvers responded successfully to DNS requests during a plausibility test con-
ducted at the time of the search. These DNS resolvers were included in the test
set for further evaluation. Some DNS resolvers were found to be operated by
the same organizations but offered multiple encryption protocols or operated
from different geographical locations.

However, the selected set of DNS resolvers for testing may not be representa-
tive of all publicly available resolvers.

5.4.3 Test Setup

The test setup consists of three main components:

® Evaluation Server: This server receives information needed for testing, as-
signs specific test cases to the test servers, hosts a database for storing test
results, and processes log files.

m Two Test Servers: These servers are responsible for issuing DNS requests to
the encrypted DNS resolvers.

4https://dnscrypt.info/public-servers, https://dnsprivacy.org/public_ resolvers,
https://github.com/curl/curl/wiki/DNS-over-HTTPS

5 Proposed Improvements 60

Hetzner AS

Hetzner AS
—_— Name Server
(Evaluation Server

T
[’ El
—4
E.

ﬂ

" Authoritative Name Server

) for Zone priest.ovh
Database / e

Name Server

Hetzner AS

“

[Testserver | Public encrypted | P Authoritative Name Sarvar
DNS Resolver.” e for Zones dnssec-check.ovh
T (Gns) L \ andinvalidkey.dnssec-
DoH, DoT or DNSCrypt Request . checkovh 7
=
—
Test Runner ‘
TCP DNS — —
Reguest Ve S— R
8 — Tor Network ~ i
"
Tor ERTry > Tor Miadie Tor Exit = E
Guard (Node F{/ﬂ\ay) OVHTLD
h _ - Name Server
«—> Data sent between Tor Nodes Encrypted DNS request with source P address of fest server
Encrypted DNS traffic in Tor-encrypted connection to the entry guard Encrypted DNS request with source IP address of exit relay
---% Unencrypted DNS request containing IP address of the DNS resolver Data for test evaluation root

Name Server

Figure 5.5: Test architecture for testing public encrypted DNS resolvers

m Two Authoritative Name Servers: These servers are authoritative for the do-
mains prtest.ovh and dnssec-check.ovh, which are used throughout the
testing procedures.

All servers are virtual servers rented from a hosting provider and configured
with dedicated IPv4 addresses. They operate within the AS of Hetzner Online
GmbH, AS number 24940, AS name Hetzner Online GmbH. Figure 5.5 illustrates
an overview of the test setup.

Domain Name Set

The domain name set used for testing comprises domain names classified into
the following categories:

® Popular domain names: Top one million domain names taken from The Ma-
jestic Million>.

m Likely blocked domain names: A set of 18,733 domain names from four cate-
gories of blocklists (Ads®, Malware?, Adult®, and Tracking?®). This list is in-
tended to identify DNS resolvers that perform blocking and is not exhaus-
tive. A domain name may appear in multiple blocklist categories and may
also be present in the popular domain list.

Shttps://majestic.com/reports/majestic-million, downloaded on 12.06.2024
6https://blocklistproject.github.io/Lists/alt-version/ads-nltxt, downloaded on 10.06.2024

7https://blocklistproject.github.io/Lists/alt-version/malware-nl.txt, downloaded on
08.01.2024

8https://blocklistproject.github.io/Lists/alt-version/porn-nl.txt, downloaded on 08.01.2024

9https://blocklistproject.github.io/Lists/alt-version/tracking-nl.txt, downloaded on

08.01.202/4

5 Proposed Improvements 61

B Domain names for specific testing purposes:

® DNSSEC failing domain names: The domain names *.invalidkey.dnssec-check.ovh,
www.rhybar.cz, and sigfail.verteiltesysteme.net are deliberately incor-
rectly DNSSEC-signed. A DNSSEC validating DNS resolver must not
resolve these domain names.

® Domain under control: The domain prtest.ovh is authorita-
tive on the operated name server. Domain names in the form
[subdomain2].[subdomaini1].prtest.ovh are used to gather informa-
tion about DNS resolvers that query the authoritative name server.
[subdomaini] and [subdomain2] are unique per test and per DNS
resolver and include a test ID. This prevents caching and enables iden-
tifying the DNS resolver being tested.

® Rootname servers: The 13 root name server hostnames (a.root-servers.net
through m.root-servers.net) are included as they are very likely to be
cached by recursive DNS resolvers and are not expected to be blocked.

The combined set of popular and likely blocked domain names contains
1,009,251 unique domain names. Not every domain name in this set was
used for testing. Domain names in the category of specific testing purposes
were queried multiple times per DNS resolver and per day.

Evaluation Server

The evaluation server compiles a daily list of domain names to be tested. Each
day, it randomly selects 2,500 domain names from the combined set of popular
and likely blocked domain names, appends the domain names used for specific
testing purposes, and distributes the resulting list to the test servers.

During the test period, every DNS resolver was tested each day using the com-
plete daily domain list. However, the order of domain names was independently
randomized for each resolver. Each DNS resolver was tested by one test server
per day, with the assignment of DNS resolvers to test servers changing daily
based on random allocation by the evaluation server.

The evaluation server also hosts a database used for storing test results and
gets the log files from the authoritative name servers at the end of every day
for further processing. These log files contain every DNS request that the au-
thoritative name servers received. The evaluation server identifies all requests
associated with the tests in the log files and inserts them into the database.

Authoritative Name Server

Both authoritative name servers are identical in terms of operating system,
hardware resources, and running software. Logging is enabled and each DNS
request received is recorded in a log file. Each authoritative name server is re-
sponsible for a domain.

The first server is authoritative for the domain prtest.ovh. The domain is not
DNSSEC-signed and includes the wildcard record *.prtest.ovh to respond to

5 Proposed Improvements 62

queries for all subdomains. The TTL value is set to the maximum allowed du-
ration of 604,800 seconds, i.e. 7 days.

The second server is authoritative for the domain name dnssec-check.ovh. Its
configuration and function are described in section 4.5.1.

At the end of each day, the log files containing all received DNS requests are
transmitted to the evaluation server for processing and analysis.

Test Server

Both test servers are identical in terms of operating system, hardware re-
sources, and running software. They are hosted in the same data center and
operate within the same AS. However, it cannot be guaranteed that network
bandwidth and server performance remain identical at all times.

Each test server initiates the daily testing procedure by randomizing the order
of the domain name list assigned for that day. For every assigned DNS resolver,
the server starts two stub DNS resolvers: one for sending DNS requests directly
and another for sending them through the Tor network. The test server then is-
sues DNS requests for all test domain names via both stub DNS resolvers. Stub
DNS resolvers for DoH, DoT'°, DNSCrypt*, and DNS TCP are implemented
within containers. These containers listen on port 53 for conventional DNS re-
quests, translate them into encrypted DNS requests, and forward them to the
corresponding encrypted DNS resolver. DoH stub resolvers use Google’s public
DNS resolver for bootstrapping.

A dedicated container provides the Tor connection. It listens on port 53 to send
DNS requests directly to exit relays and on an additional designated port to
route TCP traffic through the Tor network to specified destinations. The Tor
connection uses the default circuit creation algorithm.

The Tor container is restarted daily without retaining any history of previous
Tor connections, thereby ensuring that entry guards do not persist across mul-
tiple days.

To manage server and network load, no more than 20 DNS resolvers are tested
in parallel on each test server.

Figure 5.6 illustrates the structure of a test server.

The validity of public TLS certificates for DoH and DoT resolvers is verified sev-
eral times per day, using the certificate authorities trusted by the Ubuntu op-
erating system. Certificates provided by operators of DNSCrypt resolvers are
validated by the stub DNS resolver software itself.

The test script employs the dig!> command to send DNS requests. The command
returns both the resolved IP addresses and the resolution time, measured in
microseconds. This data is stored in the database on the evaluation server. If
the resolution of a domain name fails, the test retries the DNS request up to
four times.

10RouteDNS, https://github.com/folbricht/routedns
"dnscrypt-proxy, https://github.com/DNSCrypt/dnscrypt-proxy
2https://manpages.ubuntu.com/manpages/jammy/mani1/dig.1.html

Crontzn g Crontab
Generation

5 Proposed Improvements 63

Test Server \
Evaluation Server |

v v v v v v

Test Script Test Script Test Script Test Script Test Script Test Script
DeH DoT DNSCrypt DNS TCP Tor DNS DNS ISP

I I | |
¥ h 4 h 4 ¥

Port 53 Port 53 Port 53 Port 53
upP upp upp upp

Container
Tor Connector

Container

Stub DNS Stub DNS Stub DNS Stub DNS Tor
Resolver Resolver Resolver Resolver
DoH DoT DNSCrypt DNS TCP DNS Proxy [
Port 53
I I I I
I I I Tor Port ||
\ TCF Traffic

Container
Container
Container

Docker Engine

%

4
[ors)
L]
=

| DNS Resolver ISP

NS

lIEEy

A
[£r5)
=

DoH Resolver DoT Resolver DNSCrypt Resolver DNS Resolver
Google, Cloudfiare Tor Network
h

Tor Exit
=\ Relay

lIEE

Tor Entry

= Guard

=

A h

Tor Middle {
Node \

Figure 5.6: Structure of a test server

5.4.4 Tests and Results of Public Encrypted DNS Resolvers

Public encrypted DNS resolvers were tested over the period from November 24,
2024, to December 23, 2024.

All results reflect the observed behavior of the DNS resolvers during the speci-
fied testing period. AS-number data was obtained using the pyasn®3 library and
updated on a daily basis.

DNS resolvers may resend DNS requests even after a query has been success-
fully answered and a response sent to the client - sometimes days or weeks after
the original request was issued. This behavior was identified during the evalu-
ation of DNS resolvers used by Tor exit relays, see section 4.5.2. Authoritative
DNS resolvers may therefore receive such delayed DNS requests. To account
for this extended exposure surface, all DNS requests received by the author-
itative name server from the tested DNS resolvers were included up to January
31, 2025.

Each DNS resolver was queried both directly and via the Tor network for every
test. The results were analyzed separately. However, if a test failed for either
method, the entire test was considered failed.

Because no reference data was available to define acceptable thresholds for test
completion, availability, and error rates, a Gaussian Mixture Model (GMM) was
applied to identify statistical boundaries. This separation divided the measured
data into two clusters: one representing acceptable values and another repre-
senting potentially problematic behavior.

Bhttps://github.com/hadiasghari/pyasn

5 Proposed Improvements 64

Tested DNS Resolvers

In addition to the encrypted DNS resolvers found in section 5.4.2, the following
DNS resolvers were included in the tests as reference:

®m The DNS resolver of the ISP hosting the test servers.
® Google’s public DNS resolver, tested both directly and via the Tor network.

m Cloudflare’s public DNS resolver, tested both directly and via the Tor net-
work.

®m Tor’s conventional DNS resolver, i.e. resolution performed by exit relays.

The 334 encrypted DNS resolvers are referred to as DNS resolver candidates,
while the four DNS resolvers listed above serve as reference DNS resolvers.

Test Completion

The total number of DNS test requests sent per DNS resolver during the test pe-
riod was 154,830. However, not all DNS resolver candidates completed all tests,
as some exhibited slow response times or a high number of DNS request time-
outs. This resulted in planned DNS requests not being sent, as opposed to issues
with availability, where DNS requests were sent but no responses were received.

The test completion rate was used to assess the validity of the results obtained
in the subsequent analysis. By applying a Gaussian Mixture Model (GMM), the
threshold for acceptable completion was determined to be 99.25%. DNS re-
solvers that completed fewer than 99.25% of all test DNS requests were con-
sidered below the test requirement.

All reference DNS resolvers successfully completed all DNS test requests.

Among the DNS resolver candidates, nine DoH resolvers, nine DNSCrypt re-
solvers, and one DoT resolver failed to reach the completion threshold.

No significant differences in completion rates were observed between DNS re-
quests sent directly and those sent via the Tor network.

Availability

The availability was assessed by comparing the number of DNS responses re-
ceived to the number of DNS test requests sent. Using a GMM applied to the
timeout rates of all DNS resolver candidates, the threshold for the acceptable
rate of timed-out DNS requests was determined to be 0.43%.

DNS resolver candidates with a timeout rate exceeding this value were clas-
sified as not meeting the availability requirement. This applied to eleven DoH
resolvers, ten DNSCrypt resolvers, and four DoT resolvers.

Three DNS resolvers exhibited notably more timeouts when DNS requests were
sent via the Tor network.

5 Proposed Improvements 65

Error Rate

The error rate was assessed based on the proportion of DNS responses return-
ing the codes SERVFAIL or REFUSED, excluding DNSSEC test requests.

DNS resolvers exhibiting more than 6.21% SERVFAIL responses or 6.55% RE-
FUSED responses were classified as not meeting the requirement for alow error
rate. These thresholds were determined using a GMM applied to the data of the
corresponding response code rates of all DNS resolver candidates.

35 DoH resolvers and two DoT resolvers showed a higher error rate than these
limits. No significant differences were observed between DNS requests sent di-
rectly and DNS requests sent via the Tor network.

Valid TLS Certificates

The TLS certificates of DoH and DoT resolver candidates were verified ten times
per day. Certificates were accepted if they were issued by certificate authorities
trusted by the Ubuntu Linux operating system and if the connection used TLS
version 1.2 or 1.3.

The configuration of DNSCrypt resolvers included a public key which is used by
the stub DNSCrypt resolver software to verify the certificate presented by the
DNSCrypt resolver. Certificates of DNSCrypt resolver candidates that success-
fully returned DNS responses were considered valid.

Two categories of errors were observed: connection errors and certificate er-
rors. These occurred for 45 DoH and four DoT resolver candidates, see Table 5.1.

The different certificate errors for each encryption protocol are listed in Ta-
ble 5.2.

[83] found 25% of DoT resolvers they tested to present invalid TLS certificates.
The high number of invalid TLS certificates compared to the results in this
evaluation is probably due to the selection process of DNS resolver candidates.
In that study, DoT resolvers were discovered by an Internet scan for open DoT
ports.

DNSSEC

A DNS resolver was considered to validate DNSSEC correctly if none of the
three incorrectly DNSSEC-signed domain names was resolved and if the re-

Table 5.1: Certificate check error categories per encryption protocol

DNS Resolver Type Error Number of DNS Resolvers
DoH Certificate error 6
DoT Certificate error 6

Certificate check con-
DoH . 39
nection error

Certificate check con-
Dot . 3
nection error

5 Proposed Improvements 66

Table 5.2: Certificate errors per encryption protocol

Certificate Validation Er-

DNS Resolver Type ror Number of DNS Resolvers
DoH Certificate expired 3
DoH Hostname mismatch
Certificate self-
DoH . 1
signed
DoT Certificate reading 1
error

sponse code was SERVFAIL, which is the expected response code for domain
names with invalid DNSSEC signatures [91]. If a domain name was resolved and
an IP address was returned, the DNS resolver was classified as not validating
DNSSEC.

During the test period, 28 DNS resolver candidates did not send a sufficient
number of DNSSEC test requests. Two DNS resolver candidates never validated
DNSSEC, and one DoH resolver resolved a single DNSSEC test request. These
results are summarized in Table 5.3.

No significant differences were observed between DNSSEC requests sent di-
rectly and those sent via the Tor network.

Blocking Domain Names

In this test, domain name blocking is defined as a DNS resolver returning an in-
correct or no IP address for valid domain names. To identify such behavior, the
domain names from the blocklists described in section 5.4.3 were used. It was
expected that a blocking DNS resolver blocks at least a subset of these domain

Table 5.3: DNSSEC validation failing DNS resolvers per encryption protocol

DNS Resolver Type Error Number of DNS Resolvers
No DNSSEC statement

DoH . 20
possible
No DNSSEC statement

DoT . 1
possible
No DNSSEC statement

DNSCrypt possible 7
DNSSEC validated be-

DoH tween 90% and less than 1
100%

DoH DNSSEC validated less 1
than 90%
DNSSEC validated less

DoT 1

than 90%

5 Proposed Improvements 67

names. However, it is possible that a DNS resolver resolved all domain names
used in this test but would have blocked other domain names.

DNS resolvers were analyzed for the following blocking behaviors:

® Returning non-globally routable IP addresses: Four DoH resolvers were found
to block domain names by returning the IP addresses 0.0.0.0 or 127.0.0.1.

® Returning false IP addresses: Two DoH resolvers returned the IP address
146.112.61.108 for several likely blocked domain names, which is known to
be used for DNS blocking4.

m Returning the response code NOERROR with an empty answer section: No DNS
resolvers were found to block domain names using this approach.

B Returning the response code NXDOMAIN: One DoH resolver was found to block
domain names by returning the NXDOMAIN response code.

In total, blocking domain names was detected on seven DoH resolver candi-
dates, as listed in Table 5.4. No significant differences in blocking behavior
were observed between DNS requests sent directly and those sent via the Tor
network.

ECS Information

In this test, DNS requests received by the authoritative name server of the do-
main prtest.ovh were analyzed for included ECS network information and were
grouped into three categories.

The first category contained DNS requests that did not include ECS data. The
network 0.0.0.0/0 and other non-globally routable IP address ranges were also
counted as having no ECS data.

The second category contained DNS requests that included the network address
corresponding to the client’s IP address. The client in this case was either the
test server for DNS requests sent directly or the exit relay for DNS requests sent
via the Tor network.

The third category contained all DNS requests that included ECS information
that did not correspond to the client’s IP address.

14https://docs.umbrella.com/umbrella-user-guide/docs/block-page-ip-addresses

Table 5.4: Domain name blocking DNS resolvers per blocking type and encryp-

tion protocol
DNS Resolver Type Blocking Type Number of DNS Resolvers
DoH Wrong IP address re- 5
solved
Non globally routable
DoH IP address resolved b
DoH Response code NXDOMAIN 1

returned

5 Proposed Improvements 68

Table 5.5: DNS resolvers sending ECS data per encryption protocol

DNS Resolver Type ECS Information Number of DNS Resolvers

Dot No ECS statement possi- 20
ble

DoT No ECS statement possi- 1
ble

DNSCrypt No ECS statement possi- 7
ble
Client IP in ECS net-

DoH 7
work
Client IP in ECS net-

DoT 1
work

DNSCrypt Client IP in ECS net- o
work
ECS information not di-

DoH rectly assignable to 15
sender
ECS information not di-

DoT rectly assignable to 4
sender
ECS information not di-

DNSCrypt rectly assignable to 1

sender

No statement could be made for DNS resolvers that did not send a sufficient
number of DNS requests to the authoritative name server.

Table 5.5 presents the number of DNS resolver candidates including ECS infor-
mation, grouped by category and encryption protocol.

No different behavior in including ECS data was observed between DNS re-
quests sent directly and those sent via the Tor network.

Among the reference DNS resolvers, Google’s public DNS resolver consistently
included the client’s network information in the ECS data. Tor’s conventional
DNS resolution did occasionally include ECS data, which is expected due to us-
ing different exit relays and hence different DNS resolvers. The ISP’s DNS re-
solver and Cloudflare’s public DNS resolver did not send any ECS data.

No invalid ECS data, such as a subnet mask greater than /24 for IPv4 networks,
observed in the evaluation of the Tor network in section 4.5.2, was detected.

QNAME Minimization

This test evaluated whether the DNS resolvers applied QNAME minimiza-
tion at the subdomain level. The test used domain names following the
pattern [subdomain2].[subdomaini].prtest.ovh, where [subdomaini] and
[subdomain2] were unique for each DNS resolver and test DNS request and
included a test ID. This ensured that caching could not occur and allowed
unambiguous identification of the tested DNS resolver.

5 Proposed Improvements 69

A DNS resolver was considered to apply QNAME minimization if it queries the
authoritative name server for [subdomain1].prtest.ovh of any query type before
querying the full domain name for query type A within a short time interval and
using an IP address belonging to the same AS.

DNS resolver candidates that did not apply QNAME minimization for each DNS
request sent to the authoritative name server are listed in Table 5.6.

No significant differences in QNAME minimization behavior were observed be-
tween DNS requests sent directly and those sent via the Tor network.

In this test, Google’s public DNS resolver was found not to apply QNAME
minimization. According to [92], Google’s public DNS resolver was also clas-
sified as not applying QNAME minimization when tested using the queries
“a.b.gnamemin-test.nlnetlabs.nl TXT” and “a.b.gnamemintest.net TXT”,
but was classified as applying QNAME minimization for the domain name
‘“a.b.gnamemin-test.internet.nl TXT”. Google explained to NLnet Labs, the
operator of the domain nlnetlabs.nl, that its public DNS resolver applies
QNAME minimization only at the root and TLD levels, and that an exception
has been added for the test domain “a.b.gnamemin-test.internet.nl TXT”.

Performance

The performance of DNS resolvers in this thesis is defined as the time required
toresolve a DNS request, based on the output of the dig command. DNS requests

Table 5.6: DNS resolvers not applying QNAME minimization for all requests per

encryption protocol

DNS Resolver Type QNAME Minimization Number of DNS Resolvers

DoH Ng QMIN statement pos- 20
sible

DoT Ng QMIN statement pos- 1
sible
No QMIN statement pos-

DNSCrypt sible 7

DoH QMIN not applied 1

DoT QMIN not applied 1
QMIN rarely applied (>

DoH 0% and < 25%) !
QMIN sometimes applied

DoH (>= 25% and < 90%) /
QMIN sometimes applied

DoT (>= 25% and < 90%) !
QMIN mostly applied (>=

DoH 90% and < 100%) 15
QMIN mostly applied (>=

boT 90% and < 100%) 5

. o
DNSCrypt QMIN mostly applied (23

90% and < 100%)

5 Proposed Improvements 70

Table 5.7: Average DNS resolution time per DNS resolver category and tested

domains
DNS Resolver Average Time needed for DNS Resolution in Milliseconds
ISP DNS 2 29 65
Google DNS 12 19 55
Ggogle DNS TCP 145 170 233
via Tor
Cloudflare DNS 7 7 82
Cloudflare DNS 152 137 242
TCP via Tor
for e Lo g
DoH 139 185 300
DoH via Tor 280 354 516
DoT 67 117 155
DoT via Tor 210 274 345
DNSCrypt 129 177 316
DNSCrypt via Tor 460 531 707

that resulted in timeouts were excluded in this test.

DNS requests sent through the Tor network are influenced by the performance
of the underlying Tor circuit. All tests used the same circuit, and it is assumed
that, over the entire test period, variations in circuit performance affected all
DNS resolvers equally on average.

Further research is required to determine the maximum tolerable DNS resolu-
tion time from a user perspective. In this thesis, no fixed time limit is defined.
Instead, DNS resolver candidates were ranked according to their average re-
sponse time, which may serve as a selection criterion when only a single DNS
resolver from a group of suitable candidates can be chosen to ensure DNS re-
solver independence.

The performance comparison includes three categories of domain names. Do-
main names under *.prtest.ovh are unique per test and therefore not cached.
Domain names among the top 1,000 of the Majestic Million dataset are ex-
pected to be cached to a high extent and to have their corresponding authorita-
tive name servers located at various geographical locations. The domain names
of the root name servers are assumed to be cached by all DNS resolvers.

Table 5.7 presents the average resolution times grouped by domain category,
DNS resolver type, and whether the DNS request was sent directly or via the
Tor network.

Figure 7 and figure 8 compare the performance between different DNS encryp-
tion protocols for the root name server domain and the *.prtest.ovh domain.

5 Proposed Improvements 71

Performance of encrypted DNS Requests for root Name Server Domain Names

1200
1000

800

I T =

DoH DoH Tor DoT DoT Tor DNSCrypt DNSCrypt Tor

Average time needed for DNS resolution in milliseconds
[=)]
o
3

Figure 5.7: Performance of DNS requests for root name server domain names

1750 Performance of encrypted DNS Requests for *.prtest.ovh

[
%]
=3
=]

1250

1000

~
a
=)

v
1=}
S

[
D —_—
— —— L

DoH DoH Tor DoT DoT Tor DNSCrypt DNSCrypt Tor

Average time needed for DNS resolution in milliseconds
N
&
o

Figure 5.8: Performance of DNS requests for *.prtest.ovh domain names

As expected, encryption protocols and the Tor network introduce additional la-
tency to the resolution process. Among the tested DNS resolvers, DoT resolvers
exhibited the fastest average response times, followed by DoH resolvers, while
DNSCrypt resolvers were the slowest.

5.4.5 Summary of public encrypted DNS Resolver Tests

Sending requests through the Tor network had no significant impact on the do-
main name blocking or the error rate. Higher response times were experienced
which was to be expected.

The only significant difference observed between DNS requests sent directly
and those sent via the Tor network was in performance. DNS resolvers that
showed the following results were considered to satisfy the defined require-
ments:

5 Proposed Improvements 72

Achieved a test completion rate in a range of acceptable values.
Demonstrated availability in a range of acceptable values.

Exhibited an error rate in a range of acceptable values.

Consistently presented a valid certificate.
Validated DNSSEC for more than 90% of test requests.

B Did not block domain names.
® Did not include ECS information related to the client.
® Applied QNAME minimization for more than 90% of the test requests.

Based on these criteria, 81 of 161 DoH resolvers, 30 of 40 DoT resolvers, and 123
of 133 DNSCrypt resolvers met the requirements. However, 108 of the compliant
DNSCrypt resolvers were operated by only two organizations, which explains
the high overall compliance among DNSCrypt resolvers.

Among the reference DNS resolvers, the ISP’s and Cloudflare’s DNS resolver
met the defined criteria, whereas Google’s public DNS resolver and Tor’s con-
ventional DNS resolution did not. The results are summarized in Table 5.8.

5.4.6 Independence of Encrypted DNS Resolvers

This section presents the evaluation of independence for DNS resolver candi-
dates that met the requirements.

In [89], the encrypted DNS infrastructure is conceptually divided into two cat-
egories: ingress servers, which act as publicly accessible encrypted DNS re-
solvers serving as an interface to the client, and egress servers, which perform

Table 5.8: Summary of DNS resolver rest

DNS Resolvers complying with Criteria

Number of DNS Percentage of DNS Different
DNS Resolver Type Resolvers Resolvers Organizations
DNS 2 50.00% 2
DoH 81 50.31% 35
DoT 30 75.00% 20
DNSCrypt 123 92.48% 13
All 236 69.82% 54

DNS Resolvers not complying with Criteria

Number of DNS Percentage of DNS Different
DNS Resolver Type Resolvers Resolvers Organizations
DNS 2 50.00% 2
DoH 80 49.69% 50
DoT 10 25.00% 9
DNSCrypt 10 7.52%
All 102 30.18% 57*

* AL1 DNS resolvers used by exit relays are counted as one organization

5 Proposed Improvements 73

DNS resolution by querying the authoritative name servers. This concept was
also used here to provide a separation of servers involved in the DNS resolution
process. Accordingly, independence was assessed on both the ingress and the
egress side, as well as for their interconnections.

Figure 5.9 illustrates the structure of an encrypted DNS infrastructure. DNS re-
solver candidates (RCs) on the left represent the ingress side and use DNS re-
solvers on the right to perform DNS resolution toward the authoritative name
servers. Between the ingress and the egress side, one or more forwarding DNS
resolvers may exist, which could not be evaluated by the conducted tests. On
each side, DNS resolvers were grouped into sets, with each set containing DNS
resolvers found to belong to the same organization or provider.

On the ingress side, the organization was determined primarily by the domain
name in the certificate. Additionally, DNS resolvers that shared an IP address
within the same /24 subnet were assigned to the same organization. Using
these classification criteria, 234 DNS resolver candidates were grouped into 52
independent ingress sets.

On the egress side, all identifiable test DNS requests received by the author-
itative name server of prtest.ovh were analyzed. Each learned IP address was
associated with its corresponding AS number and the DNS resolver candidate
that initiated this DNS request. To identify relationships between egress DNS
resolvers, their IP addresses were merged into egress sets as follows:

All egress-side IP addresses used by an ingress-side DNS resolver are merged
with those used by other ingress-side DNS resolvers whenever they share at
least one common IP address used by egress-side DNS resolvers. This merg-
ing process is applied recursively, so that any overlap in IP addresses links the
involved egress-side DNS resolvers into a single egress set. However, IP ad-
dresses belonging to different ASnumbers are kept in separate egress sets, even
if they are used by the same ingress-side DNS resolver. As a result, a single
ingress-side DNS resolver may be associated with multiple egress sets corre-
sponding to different ASes. Conversely, distinct egress sets may contain IP ad-
dresses from the same AS, provided that these IP addresses are not shared by
any single ingress-side DNS resolver.

Overall, 2,703 IP addresses from 157 different ASes were grouped into 232
egress sets.

A single DNS resolver candidate may use multiple egress sets (e.g. RC; in Fig-
ure 5.9), and conversely, one egress set may be shared by multiple DNS resolver
candidates (e.g. ES; in Figure 5.9).

The number of independent DNS resolvers is constrained by the total number
of ingress sets. Furthermore, only one DNS resolver can be selected from each
ingress set. To determine this DNS resolver, all DNS resolvers within an ingress
set are prioritized according to the number of corresponding egress sets they
use. DNS resolvers using fewer egress sets are given a higher priority, as this
minimizes exposure on the egress side and preserves more egress sets for other
ingress sets. If multiple DNS resolvers have the same lowest number of egress
sets, the average DNS resolution time remains as the deciding criterion, with
the fastest DNS resolver being selected.

The ingress set and all egress sets associated with the highest-priority DNS re-
solver are then excluded from selection for lower-priority DNS resolver candi-

5 Proposed Improvements 74

dates. This ensures that only the fastest DNS resolver per ingress set is selected
and that each egress set is used by only one DNS resolver.

Following this procedure, 48 of the 52 ingress sets could be assigned to egress
sets without reuse. The remaining four ingress sets could not be used due to
conflicting egress sets.

In total, 48 DNS resolvers from distinct ingress sets were mapped to 70 egress
sets.

5 Proposed Improvements

Ingress Side

r/ -H\\
f

Ingress Set 1S,

F—

-.. DoH
Resolver RC,

@_/

... DoT
| Resolver RC>
. /
yr

Ingress Setls,

=

-.. DoH
| ResolverRC; |
S g

r/ -\\
| Ingress SetS;

Cloudflare DoH
Resolver RC,

P=

Cloudflare DoT
Resolver RCs

\
\

- _/
r/ -\\
{

Ingress Set S,

.. DoT
\ Resolver RCg J
. _

ATy
[Ingress SetlS; |

75

N -

~

... DNSCrypt

| Resolver RC; |
o /

o

; \ Egress Side
/ \
-|l .\\I — —
\ 4 Egress SetES; N
f \ N
| "-/ -2{‘ F ...
—] -"\ -
""“‘=-___“__-_-__1-1' @ ® ...
| F,__'_"““‘-:u@ P ...
J \ [
e e -
/ . *—bf‘ ® .
| — \ ’
— I'I— g i
| | — -
= LR
TS J
g Y
5 Egress SetES,
N B R
| "
| @ TP ...
| ’
|) ,'-_'_""‘ﬂ@ ™ ...
| DNS requests sent directly to DNS |
| resolvers on the egress side [b /
\ or [> >
forwarded via other \'-. / Egress SetES; \
\ DNS resolvers)
:\ .III #"if\/‘ IP 162.158.101.46
— T
ﬁl Lﬂ____ﬂ@ TP 172.70.245.204
| IE:::”\/‘ IP 108.162.240.64
L —] :
— II:HE!‘:‘ 1P 141.100.75.99
— — -
b-—:ﬂ\/‘ P 172.71.117.112
T %
_"'““'hl@ P ...
| BB J
| _ _
| |
\ | / Egress SetES, N
| f i
I / ';L‘ ...
‘ /_.
N\ ~ B
s D
{ Egress SetES;
@ -
.
) —_—
\\ /, ‘—-‘)-@ IF
AN

\\

Figure 5.9: Schema of encrypted DNS infrastructure

Chapter 6

Implementation and Evaluation

6.1 Consolidated Improvements

This section consolidates the proposed improvements discussed in chapter 5.
Clients send DNS requests to an application running on their device or on a
server within a local network. The application listens for conventional unen-
crypted DNS requests and supports DNS blocking based on a domain name list
specified by the operator. Additionally, DNS entries for hostnames available
only within the local network can be defined in a hosts file and answered di-
rectly without further processing.

Query names for the Special-Use Top-Level Domain .onion should be blocked
by the application, as onion services do not use the global DNS. Such requests
must instead be handled by Tor software and routed within the Tor network.

(93]

The operator may enable caching for all received DNS requests. DNS requests
that are neither blocked nor answered from local entries or the cache are trans-
lated into encrypted DNS requests. Based on the distribution algorithm and the
list of available encrypted DNS resolvers, an encrypted DNS resolver is selected.
The DNS request is then transmitted through one of several available Tor cir-
cuits to the selected DNS resolver. If a bootstrap DNS request is required, it is
sent conventionally to an exit relay for resolution.

Tor circuits should ideally be established at application startup and kept open to
avoid the circuit-creation overhead for each DNS request. The application de-
termines the IP addresses and ASes of the client, the entry guard, and the con-
figured DNS resolvers, and DNS resolvers located in the same AS as the client
or the entry guard are excluded from selection.

For each DNS request, the public certificate of the selected encrypted DNS re-
solver is validated. Failing encrypted DNS resolvers are detected and temporar-
ily excluded. DNS resolvers that fail repeatedly are permanently removed from
selection.

Figure 6.1 illustrates the process of a DNS request entering as a conventional,
unencrypted DNS request and leaving as encrypted DNS request directed to one
of multiple encrypted DNS resolvers.

Clients configure their operating system or applications to send DNS requests
to this application. Unencrypted DNS traffic remains within the user’s operat-
ing system or a trusted local network, and no additional software is required on
the client side.

76

6 Implementation and Evaluation 77

Encrypted

Conventional

DNS Request DNS DNS Request DNS Request
Leen o ONS on Manipulation “NSt_CE“FE Conversion and (Jﬁégmjﬁn\;

P (optional) (optional) Distribution o ‘

n

hosts
File

DNS Resolver|
Configuration

L/
@_o
5
238 [
EE
L=~/

Figure 6.1: Process flow of a DNS requests

The operator of the application is responsible for selecting suitable encrypted
DNS resolvers and maintaining the list of encrypted DNS resolvers. In the fol-
lowing, this application combining the proposed improvements is referred to
as the Private DNS Resolver.

6.2 Use Cases

The following use cases are defined based on who operates the Private DNS Re-
solver:

m User: The user runs the Private DNS Resolver locally on their device and con-
figures the operating system or applications to use it for DNS resolution.

m Network operator: A network operator hosts the Private DNS Resolver on a
server within alocal network and uses it to provide DNS resolution to clients
on that network.

m Exit relay operator: An exit relay operator runs the Private DNS Resolver and
uses it to resolve conventional DNS requests received from Tor clients on
its connected circuits.

6.2.1 User-Operated Private DNS Resolver

The Private DNS Resolver is operated by the user on their device. DNS requests
originating on their operating system are directed to this application. The user
defines the list of encrypted DNS resolvers, blocked domain names, and local
host entries, and defines the decision on enabling DNS caching.

DNS requests leaving the client’s device are encrypted both by the encrypted
DNS protocol and Tor’s circuit-level encryption. Exit relays can observe which
encrypted DNS resolvers are contacted but cannot assess the content of the DNS
requests.

If the user accesses the web over Tor, DNS requests for this web traffic can be
sent to the Private DNS Resolver. These DNS requests use a separate Tor circuit
and likely a different exit relay than the web traffic. All query types supported by
the selected encrypted DNS resolvers are supported. Proper configuration is re-
quired to ensure that these DNS requests are routed exclusively through the Tor
network. Leaking DNS requests in that scenario would enable deanonymization
of the client.

Figure 6.2 illustrates the architecture of a client running the Private DNS Re-
solver on their device.

6 Implementation and Evaluation 78
p . - DNS
Client Device ’ ') / N °
- ~~ Autonomous System R e Tor Network DoH
Virtual Machine y or | or Ne | Resolver
or Application Internet Exchange Point [
ISP (0, 1 or multiple} / /
(omE) A\ \ [ons
@ » © Tor Middle o
= > Node i
= | |Tor Entry Tor Exit —
03 Stub Private \ A Guard Relay DoT
Resolver DNS Resolver 4 / Resolver
~—) AN A 4 DHS
Encrypted Domain DNSCrypt
a DNIS Name n:fts ——3 Conventional unencrypted DNS requests Resolver
esolver : ile
List Blocklist Tor circuit encrypted DoH/DoT/DNSCrypt requests
Encrypted DNS requests
<«—» Encrypted traffic between Tor nodes
Figure 6.2: Architecture of a user operated use case
_ _ - =
/ _ . =
Autonomous System P Tor Network DoH
) / or | Resolver
Client Device Local Network Internet Exchange Point | | |
VISP (0, 1 or multiple) /\ /
£ ¥ \ [T
1 Tor Middle
& pyEg o B3 =
|Tor Entry Tor Exit
Guard Relay DoT
<N / Resolver
NS
/~ ™\ =
) DNSCrypt
>
| | | — — Conventional unencrypted DNS requests Resolver
Encrypted Domain Private DNS Tor circuit encrypted DoH/DoT/DNSCrypt requests
hosts DNS Name Resolver Encrypted DNS requests
File Resolver _
List Blocklist Server <> Encrypted traffic between Tor nodes
\ /

. ,f

Figure 6.3: Architecture of network operator use case

6.2.2 Network Operator-Provided Private DNS Resolver

The Private DNS Resolver is hosted on a server within a local network by the net-
work operator. Clients on this network may be configured, either manually or
via DHCP, to direct their DNS requests to this server.

The network operator defines the list of encrypted DNS resolvers, blocked do-
main names, and local host entries, and determines whether DNS caching is
enabled. DNS traffic may be logged, and information about blocked domain
names or domain categories can be made available to clients through policy
statements. DNS requests that require external DNS resolution are distributed
through the Tor network to encrypted DNS resolvers.

The local network and its operator must be trusted, as DNS traffic within the
network is transmitted unencrypted. Clients outside the local network may
connect via a virtual private network to access the Private DNS Resolver.

Clients must not send DNS requests to a Private DNS Resolver provided by their
network operator when accessing the web over Tor, as the network operator
could observe these DNS requests, and DNS traffic cannot be assumed to be
routed through the Tor network.

Figure 6.3 illustrates the architecture of a network operator providing the Pri-
vate DNS Resolver.

6 Implementation and Evaluation 79

DNS

—

4 — =
Autonomous System P F ~ DoH
or / Exit Relay Resolver
Client Device Internet Exchange Point Tor Network Server
ISP {0, 1 or multiple}

E [ons) BHS
@E3 B3B3 o
y = —=
TorEntry Tor Middle Tor Exit = —
Guard Mode Relay Private DNS DoT
/ Resolver Resolver

Tor
Browser

DNS
Tor circuit encrypted DNS requests ®

——p Conventional unencrypted DNS requests —
Encrypited DNS requesis DNSCrypt

«—» Encrypied traffic between Tor nodes Resolver

Figure 6.4: Architecture of exit relay operator use case

6.2.3 Exit Relay Operator-Provided Private DNS Resolver

The exit relay operator runs the Private DNS Resolver using the exit relay’s IP
address and employs it for external DNS resolution.

DNSrequests from Tor clients that are sent conventionally over a Tor circuit for
DNS resolution by the exit relay are encrypted by the Tor circuit encryption up
to the exit relay. There, they are received as unencrypted DNS requests, and the
Tor’s default DNS resolution process is applied, which includes DNS caching
and case randomization by default. The exit relay limits query types to A, AAAA,
and PTR, can observe the DNS requests of Tor clients, and may determine which
encrypted DNS resolvers are used.

DNSrequests that cannot be answered from the exit relay’s cache are forwarded
to the Private DNS Resolver for external DNS resolution. In this use case, the Pri-
vate DNS Resolver does apply caching and forwards DNS requests directly to en-
crypted DNS resolvers, as the original sender’s IP address is no longer present
in these DNS requests.

Figure 6.4 illustrates the architecture of an exit relay providing the Private DNS
Resolver.

6.3 Proof-of-Concept (PoC) Implementation

The proof-of-concept implementation of the Private DNS Resolver runs on an
Ubuntu 24.04 server inside a virtual machine. Docker is used to containerize
components and to place them on an internal, non-exposed network.

6.3.1 Docker Images

The following Docker images are used:

m folbricht/routedns': Runs RouteDNS v0.1.118, which forms the core of the
PoC. It supports domain name blocking, local host entries, DNS caching,
translation of conventional DNS into DoH and DoT, and DNS request dis-
tribution.

thttps://hub.docker.com/r/folbricht/routedns

6 Implementation and Evaluation 80

torconnector: Built from Dockerfile Listing A.1. Runs Tor v0.4.8.19. It estab-
lishes Tor circuits and forwards TCP streams and UDP DNS requests to exit
relays via dedicated ports.

dnscrypt: Built from Dockerfile Listing A.2. Runs dnscrypt-proxy? v2.1.14.
RouteDNS does not natively support DNSCrypt, so a separate container is
started per DNSCrypt resolver. Each container is configured with the re-
solver’s stamp and the torconnector’s IP address so that DNSCrypt traffic is
also routed through the Tor network.

6.3.2 Data Flow and RouteDNS Configuration

Conventional DNS requests that must be handled by the Private DNS Resolver are
forwarded to the VM and then to RouteDNS, which listens on UDP and TCP port
53. The configuration file Listing A.5 specifies:

Listening ports: UDP and TCP port 53.

Domain name blocking: Listing A.3 contains domain names to block and is
loaded at startup, and reloaded every 86,400 seconds (i.e. 24 hours).

Local host entries: Listing A.4 contains local host entries and is loaded at
startup, and reloaded every 86,400 seconds (i.e. 24 hours).

DNS cache: Cache capacity: 4,096 entries. TTL values greater than 86,400
seconds are truncated to 86,400 seconds (i.e. 24 hours).

Distribution algorithm: Random selection among available DNS resolvers.

DoH and DoT resolvers: The configuration of DoH and DoT resolvers is in-
cluded directly in the RouteDNS configuration file. DoH resolvers use the
torconnector as bootstrap DNS resolver. For DoT resolvers the expected TLS
server name is specified for certificate validation.

DNSCrypt resolvers: Each DNSCrypt resolver is defined as a DNS resolver in
RouteDNS and mapped to its dedicated dnscrypt container. RouteDNS sends a
conventional DNS request to that container, which converts it to DNSCrypt
and forwards it through torconnector. An example configuration and the
stamps of the selected DNSCrypt resolvers is presented in Listing A.6 and
Listing A.7.

6.3.3 Operational Behavior

RouteDNS receives incoming DNS requests, applies domain name blocking,
serves local host entries, consults the cache, and forwards the DNS request on
cache misses:

as DoH/DoT request via torconnector directly to the selected encrypted DNS
resolver, or

as a conventional DNS requests to the corresponding dnscrypt container,
which sends them as DNSCrypt requests via torconnector.

2https://github.com/DNSCrypt/dnscrypt-proxy

6 Implementation and Evaluation 81

Virtual Machine o)

i [—]

P Docker Engine ons
upp

Distributor and

Resolver
DNS
Stub DoH / DoT

Resolver
List Resolver

Domain
Name
Blocklist v

[oRE)
=

/ Tor Network \ DoH
Resalver

8 g

Node \
Tor Entry Tor Exit
|, Guard Relay DaT
N /s Resolver

—

Tor Connector
Container

RouteDNS Container

Tor Connector
DNS Proxy
Port 53
Tor Port
TCP Traffic

Port 53
 — ubP

(Brs)

=

=
DNSCrypt
Resalver

j ——3 Conventional unencrypted DNS requesis
/ Tor circuit encrypted boatstrap DNS requests

Container

hosts Stub DNSCrypt
File Resolver

K\

Figure 6.5: Proof-of-concept system architecture

DNSCrypt-Proxy

Tor circuit encrypted DoH/DoT/DNSCrypt requests
Conventional unencrypted bootstrap DNS requests

Encrypted DNS requesis
«—» Encrypted traffic between Tor nodes

Bootstrap DNS requests required to establish connections to DoH resolvers are
sent as conventional DNS requests directly to the torconnector.

Figure 6.5 illustrates the architecture: a conventional DNS request enters the
system, is processed by the Private DNS Resolver, and leaves as an encrypted
DNS request toward one of multiple encrypted DNS resolvers.

The containers are started in the following order to ensure proper initialization
and connectivity (see Listing A.8):

1. torconnector
2. DNSCrypt resolvers
3. RouteDNS

6.4 Evaluation

6.4.1 Practical Evaluation

The PoC implementation of the Private DNS Resolver was started, and DNS re-
quests for various test purposes were issued using the dig3 command directed
to the application.

Resolution Times and Errors

A total of 10,000 DNS requests for test domain names in the form
pdr[number].prtest.ovh and isp[number].prtest.ovh were sent to the Pri-
vate DNS Resolver and to the ISP’s DNS resolver of the test server, respectively.
The variable [number] ranges from 0 to 9,999, ensuring that each domain
name was unique and preventing caching by the application and external DNS

3https://manpages.ubuntu.com/manpages/jammy/mani/dig.1.html

6 Implementation and Evaluation 82

Table 6.1: DNS resolution times of Private DNS Resolver and ISP DNS resolver

Response Code Number of DNS Average DNS
P Requests Resolution Time
ISP DNS resolver NOERROR 10,000 25.74.ms
NOERROR : 21.70 ms
Private DNS 9,995 321.7
Resolver SERVFAIL 3 1231.33 ms
REFUSED 2 398.00 ms

resolvers. As expected, the Private DNS Resolver introduced a measurable delay.
Of the 10,000 DNS requests, three returned the response code SERVFAIL, and
two returned REFUSED, corresponding to an overall error rate of 0.05%. The
results are presented in Table 6.1.

DNSSEC Validation

To evaluate DNSSEC validation, 1,000 DNS requests were sent for test do-
main names in the form of pdr[number].invalidkey.dnssec-check.ovh and
isp[number].invalidkey.dnssec-check.ovh to the Private DNS Resolver and to
the ISP’s DNS resolver, respectively. The domain was incorrectly DNSSEC-
signed, and DNS resolution was therefore expected to fail for DNSSEC-
validating DNS resolvers. The variable [number] ranged from 0 to 999, again
ensuring uniqueness and preventing caching. Both DNS resolvers returned the
expected response code SERVFAIL for all 1,000 test DNS requests, indicating
proper DNSSEC validation for invalidly signed domains.

DNS Cache

Multiple DNS requests were issued for the domain name cachetest.prdns.ovh.
The first DNS request required approximately 300 ms, while subsequent DNS
requests for the same domain name were answered instantly, returning iden-
tical IP addresses and a resolution time of 0 ms. This confirms the effective use
of a DNS cache by the Private DNS Resolver.

Domain Name Blocking

DNS requests for domain names included in the configured blocklist were not
resolved to IP addresses. Instead, the application returned a DNS response with
the response code NXDOMAIN, confirming correct blocking functionality.

Local Host Entries

DNS requests for domain names listed in the local hosts file were resolved ac-
cording to their defined IP addresses, verifying the proper functioning of cus-
tom host mappings.

6 Implementation and Evaluation 83

6.4.2 Remaining Threats

Blocking of encrypted DNS traffic: Encrypted DNS traffic may be detected and
intentionally blocked by intermediary entities, such as network or AS op-
erators.

ECS information included in DNS requests: The network address of the client
or server running the Private DNS Resolver must never be included as ECS
network information in outgoing DNS requests. While this can be controlled
locally by the Private DNS Resolver, external DNS resolvers might still ap-
pend ECS data, potentially exposing the network address of the exit relay.

Detection of selected DNS resolvers: External entities may be able to identify
the encrypted DNS resolvers used by the Private DNS Resolver. For instance,
websites could request numerous embedded resources under a controlled
domain and observe which DNS resolvers query their name server. The set
of selected DNS resolvers should not be published, although it cannot be
considered secret.

Information embedded in domain names: Applications or websites may sys-
tematically encode identifying information within subdomains of a con-
trolled domain. This enables the correlation of DNS resolvers, IP addresses
used to access resources, and user-supplied data. Applications may further
access system information, such as the operating system or the client’s ex-
ternal IP address prior to the application of anonymization measures, such
as routing traffic through the Tor network.

Leaking DNS requests: The Private DNS Resolver must be configured cor-
rectly, and its operation should be verified through testing to ensure that
no DNS requests intended to be routed through the Private DNS Resolver
are transmitted otherwise.

Cache snooping: Clients of the Private DNS Resolver, as well as external enti-
ties such as websites, may infer the presence of domain names in the cache
by observing DNS response timing behavior. Introducing randomized de-
lays for cache hits based on measured DNS resolution times may mitigate
cache snooping. This requires further investigation.

Chapter 7

Conclusion and Outlook

The Domain Name System possesses inherent weaknesses that affect both pri-
vacy and security. The evaluation of DNS behavior on the Tor network revealed
that a considerable number of exit relay operators do not fully adhere to the Tor
Project’s recommendations. Compliance with these recommendations would
already mitigate DNS threats through existing DNS security enhancements.

The proposed improvements in this thesis apply available protocols for en-
crypted DNS to provide confidentiality and integrity for specific segments of
the DNS resolution path. To address the issue of centralization introduced by
these protocols, a different approach was presented: sharding DNS requests
across multiple DNS resolvers. While this increases the number of parties in-
volved in DNS resolution, it prevents any single entity from obtaining suffi-
cient information to compromise user privacy. The analysis further identified
apromising number of independent encrypted DNS resolvers that meet the de-
fined criteria for privacy, security, and stability.

However, some challenges persist, and future work is proposed to further im-
prove DNS privacy and security.

7.0.1 Future Work

While this thesis assessed the compliance and independence of all encrypted
DNS resolvers identified through an online search, the total number of suitable
DNS resolvers may still be insufficient. Future research should determine the
minimum number of encrypted DNS resolvers required to effectively prevent
DNS fingerprinting and user reidentification.

Egress sets may be reused and shared among multiple DNS resolvers belonging
to independent ingress sets, allowing for the inclusion of a greater number of
encrypted DNS resolvers. Further investigation is needed to evaluate whether
the reuse of egress sets compromises independence and weakens privacy.

The current algorithm for selecting independent DNS resolvers prioritizes
those with the smallest number of occupied egress sets. An improved selec-
tion algorithm might identify combinations that use a higher number of DNS
resolvers while maintaining independence.

A user study should determine the maximum tolerable DNS resolution time
from a user perspective across common use cases, and how this limit relates
to response times of individual DNS resolvers. The results could serve as a ba-
sis for defining performance criteria for compliant DNS resolvers.

84

7 Conclusion and Outlook 85

The DNS cache remains vulnerable to cache snooping attacks from adversaries
on the local network, as well as remote adversaries capable of provoking DNS
requests, such as websites loading embedded content. Possible mitigations,
such as introducing randomized delays for cached domain names, should be
further investigated and evaluated for implementation.

DNS traffic within local networks may be further protected. When a network
operator deploys the Private DNS Resolver on a local server, clients could use
encrypted DNS to transmit their DNS requests to it. This would require a stub
DNS resolver on client devices and support for receiving encrypted DNS by the
Private DNS Resolver.

Since the number and characteristics of encrypted DNS resolvers might change
over time, maintaining an up-to-date list of compliant DNS resolvers requires
continuous reevaluation. DNS resolvers that no longer meet privacy or security
requirements should be removed, while newly identified DNS resolvers should
be added. Each time the list is updated, DNS resolver independence should be
reassessed, and the subset of DNS resolvers selected for active use should be
reevaluated accordingly.

7.0.2 Remaining Challenges
Authoritative Name Servers

DNS requests from recursive DNS resolvers to root, top-level, and authorita-
tive name servers remain unencrypted, as these servers currently do not sup-
port encrypted DNS protocols. Although QNAME minimization reduces the ex-
posure of full domain names to some extent, it does not eliminate it entirely.
DNSSEC provides integrity and authenticity for signed domain names, yet its
adoption remains limited [72].

Unencrypted SNI in the TLS Handshake

While the measures proposed in this thesis enhance the privacy and security of
DNS, domain names may still be exposed to intermediate entities during TLS-
encrypted communications between the client and the resource. When estab-
lishing a TLS session, the client transmits the domain name in plaintext within
the Server Name Indication (SNI) field of the TLS handshake. This issue is ex-
pected to be mitigated by the upcoming Encrypted Client Hello (ECH) exten-
sion, which encrypts the initial message exchanged during the TLS handshake,
called ClientHello. However, as ECH is still in draft status, it may not be adopted
widely - or at all. [10, 94, 95]

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

(12]

(13]

Stéphane Bortzmeyer. 2015. DNS Privacy Considerations. RFC 7626. (Au-
gust 2015). DOI: 10.17487/RFC7626. https://www.rfc-editor.org/info/rf
c7626.

Giovanni Schmid. 2021. Thirty years of DNS insecurity: Current issues
and perspectives. IEEE Communications Surveys & Tutorials, 23, 4, 2429—
2459.

Christian Grothoff, Matthias Wachs, Monika Ermert, and Jacob Appel-
baum. 2017. NSA’s MORECOWBELL: knell for DNS. Unpublished technical
report.

Wouter B De Vries, Roland van Rijswijk-Deij, Pieter-Tjerk De Boer, and
Aiko Pras. 2019. Passive observations of a large DNS service: 2.5 years in
the life of Google. IEEE transactions on network and service management,
17,1,190-200.

Spyridon Samonas and David Coss. 2014. The CIA strikes back: Redefin-
ing confidentiality, integrity and availability in security. Journal of Infor-
mation System Security, 10, 3.

Lee Kim. 2022. Cybersecurity: Ensuring confidentiality, integrity, and
availability of information. In Nursing Informatics: A Health Informatics,
Interprofessional and Global Perspective. Springer, pp. 391—410.

ISO ISO. 2015. IEC/IEEE International Standard-Systems and software
engineering—System life cycle processes. ISO/IEC/IEEE 15288 First edition
2015-05-15, Technical report. DOI: 10.1109/IEEESTD.2017.8016712.

Cambridge University Press. 2025. Trust. Definition entry. Cambridge
Dictionary. Retrieved 11/12/2025 from https://dictionary.cambridge.o
rg/dictionary/english/trust.

Donald E. Eastlake 3rd. 2011. Transport Layer Security (TLS) Extensions:
Extension Definitions. RFC 6066. (January 2011). DOI: 10.17487/RFC606
6. https://www.rfc-editor.org/info/rfc6066.

Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version
1.3. RFC 8446. (August 2018). DOI: 10.17487/RFC8446. https://www.rfc-
editor.org/info/rfc8446.

1983. Domain names: Concepts and facilities. RFC 882. (November 1983).
DOI: 10.17487/RFC0882. https://www.rfc-editor.org/info/rfc882.

1987. Domain names - concepts and facilities. RFC 1034. (November
1987). DOI: 10.17487/RFC1034. https://www.rfc - editor.org/info/rfci
034.

1987. Domain names - implementation and specification. RFC 1035.
(November 1987). DOI: 10.17487 /RFC1035. https://www.rfc - editor.o
rg/info/rfc1035.

86

https://doi.org/10.17487/RFC7626
https://www.rfc-editor.org/info/rfc7626
https://www.rfc-editor.org/info/rfc7626
https://doi.org/10.1109/IEEESTD.2017.8016712
https://dictionary.cambridge.org/dictionary/english/trust
https://dictionary.cambridge.org/dictionary/english/trust
https://doi.org/10.17487/RFC6066
https://doi.org/10.17487/RFC6066
https://www.rfc-editor.org/info/rfc6066
https://doi.org/10.17487/RFC8446
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://doi.org/10.17487/RFC0882
https://www.rfc-editor.org/info/rfc882
https://doi.org/10.17487/RFC1034
https://www.rfc-editor.org/info/rfc1034
https://www.rfc-editor.org/info/rfc1034
https://doi.org/10.17487/RFC1035
https://www.rfc-editor.org/info/rfc1035
https://www.rfc-editor.org/info/rfc1035

Bibliography 87

(14]

(15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

(25]

Paul E. Hoffman and Kazunori Fujiwara. 2024. DNS Terminology. RFC
9499. (March 2024). DOI: 10.17487/RFC9499. https://www.rfc-editor.o
rg/info/rfc9499.

Vladimir Ksinant, Christian Huitema, Dr. Susan Thomson, and Mohsen
Souissi. 2003. DNS Extensions to Support IP Version 6. RFC 3596. (Octo-
ber 2003). DOI: 10.17487/RFC3596. https://www.rfc-editor.org/info/rfc
3596.

Scott Rose, Matt Larson, Dan Massey, Rob Austein, and Roy Arends.
2005. Resource Records for the DNS Security Extensions. RFC 4034.
(March 2005). DOI: 10.17487 / RFC4034. https: //www.rfc - editor.org
/info/rfc/034.

Carlo Contavalli, Wilmer van der Gaast, David C Lawrence, and Warren
Kumari. 2016. Client Subnet in DNS Queries. RFC 7871. (May 2016). DOI:
10.17487/RFC7871. https://www.rfc-editor.org/info/rfc7871.

Paul E. Hoffman, Andrew Sullivan, and Kazunori Fujiwara. 2019. DNS
Terminology. RFC 8499. (January 2019). DOI: 10.17487 /RFC8499. http
s://www.rfc-editor.org/info/rfc8499.

Joao Luis Silva Damas, Michael Graff, and Paul A. Vixie. 2013. Extension
Mechanisms for DNS (EDNS(0)). RFC 6891. (April 2013). DOI: 10.17487/R
FC6891. https://www.rfc-editor.org/info/rfc6891.

Scott Rose, Matt Larson, Dan Massey, Rob Austein, and Roy Arends.
2005. DNS Security Introduction and Requirements. RFC 4033. (March
2005). DOI: 10.17487/RFC4033. https://www.rfc-editor.org/info/rfc403
3.

Roy Arends, Geoffrey Sisson, David Blacka, and Ben Laurie. 2008. DNS
Security (DNSSEC) Hashed Authenticated Denial of Existence. RFC 5155.
(March 2008). DOI: 10.17487/RFC5155. https://www.rfc-editor.org/info
/rfc5155.

Jacob Schlyter. 2004. DNS Security (DNSSEC) NextSECure (NSEC) RDATA
Format. RFC 3845. (August 2004). DOI: 10.17487/RFC3845. https://www
.rfc-editor.org/info/rfc3845.

Jan Vcelak, Sharon Goldberg, Dimitrios Papadopoulos, Shumon Huque,
and David C Lawrence. 2018. NSEC5, DNSSEC Authenticated Denial of
Existence. Internet-Draft draft-vcelak-nsec5-08. Work in Progress. In-
ternet Engineering Task Force, (December 2018). 35 pages. https://data
tracker.ietf.org/doc/draft-vcelak-nsec5/08/.

Stéphane Bortzmeyer, Ralph Dolmans, and Paul E. Hoffman. 2021. DNS
Query Name Minimisation to Improve Privacy. RFC 9156. (November
2021). DOI: 10.17487/RFC9156. https://www.rfc - editor.org/info/rfc
9156.

Paul A. Vixie and David Dagon. 2008. Use of Bit 0x20 in DNS Labels
to Improve Transaction Identity. Internet-Draft draft-vixie-dnsext-
dnsox20-00. Work in Progress. Internet Engineering Task Force, (March
2008). 8 pages. https://datatracker.ietf.org/doc/draft-vixie- dnsext-dn
$0x20/00/.

https://doi.org/10.17487/RFC9499
https://www.rfc-editor.org/info/rfc9499
https://www.rfc-editor.org/info/rfc9499
https://doi.org/10.17487/RFC3596
https://www.rfc-editor.org/info/rfc3596
https://www.rfc-editor.org/info/rfc3596
https://doi.org/10.17487/RFC4034
https://www.rfc-editor.org/info/rfc4034
https://www.rfc-editor.org/info/rfc4034
https://doi.org/10.17487/RFC7871
https://www.rfc-editor.org/info/rfc7871
https://doi.org/10.17487/RFC8499
https://www.rfc-editor.org/info/rfc8499
https://www.rfc-editor.org/info/rfc8499
https://doi.org/10.17487/RFC6891
https://doi.org/10.17487/RFC6891
https://www.rfc-editor.org/info/rfc6891
https://doi.org/10.17487/RFC4033
https://www.rfc-editor.org/info/rfc4033
https://www.rfc-editor.org/info/rfc4033
https://doi.org/10.17487/RFC5155
https://www.rfc-editor.org/info/rfc5155
https://www.rfc-editor.org/info/rfc5155
https://doi.org/10.17487/RFC3845
https://www.rfc-editor.org/info/rfc3845
https://www.rfc-editor.org/info/rfc3845
https://datatracker.ietf.org/doc/draft-vcelak-nsec5/08/
https://datatracker.ietf.org/doc/draft-vcelak-nsec5/08/
https://doi.org/10.17487/RFC9156
https://www.rfc-editor.org/info/rfc9156
https://www.rfc-editor.org/info/rfc9156
https://datatracker.ietf.org/doc/draft-vixie-dnsext-dns0x20/00/
https://datatracker.ietf.org/doc/draft-vixie-dnsext-dns0x20/00/

Bibliography 88

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

David Dagon, Manos Antonakakis, Paul Vixie, Tatuya Jinmei, and Wenke
Lee. 2008. Increased DNS forgery resistance through 0x20-bit encod-
ing: security via leet queries. In Proceedings of the 15th ACM conference on
Computer and communications security, pp. 211—222.

Paul E. Hoffman and Patrick McManus. 2018. DNS Queries over HTTPS
(DoH). RFC 8484. (October 2018). DOI: 10.17487/RFC8484. https://www
.rfc-editor.org/info/rfc8484.

ZiHu, Liang Zhu, John Heidemann, Allison Mankin, Duane Wessels, and
Paul E. Hoffman. 2016. Specification for DNS over Transport Layer Secu-
rity (TLS). RFC 7858. (May 2016). DOI: 10.17487/RFC7858. https://www
.rfc-editor.org/info/rfc7858.

DNSCrypt Project. 2025. DNSCrypt Protocol Specification. Technical
documentation. DNSCrypt Project. Retrieved 11/12/2025 from https://dn
scrypt.info/protocol/.

Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The
Second-Generation Onion Router. Design Paper. Originally presented at
the 13th USENIX Security Symposium (2004). The Tor Project, (August
2004). Retrieved 11/12/2025 from https://svn-archive.torproject.org/sv
n/projects/design-paper/tor-design.pdf.

The Tor Project. 2025. Tor — Core Repository. GitLab source code repos-
itory. The Tor Project. Retrieved 11/12/2025 from https://gitlab.torproje
ct.org/tpo/core/tor.

The Tor Project. 2025. Types of Relays. Community documentation page.
The Tor Project. Retrieved 11/12/2025 from https://community.torproje
ct.org/relay/types-of-relays/.

Kyle Hogan, Sacha Servan-Schreiber, Zachary Newman, Ben Weintraub,
Cristina Nita-Rotaru, and Srinivas Devadas. 2022. Shortor: Improving
tor network latency via multi-hop overlay routing. In 2022 IEEE Sym-
posium on Security and Privacy (SP). IEEE, pp. 1933—-1952.

Whonix Project. 2025. Alternative DNS Resolver. Whonix documentation
page. Whonix Project. Retrieved 11/12/2025 from https://www.whonix.o
rg/wiki/Alternative_ DNS_ Resolver.

The Tor Project. 2025. tor(1) — The Second-Generation Onion Router.
Manual page. The Tor Project. Retrieved 11/12/2025 from https://man
pages.org/tor.

The Tor Project. 2025. Glossary. Support documentation page. The Tor
Project. Retrieved 11/12/2025 from https://support.torproject.org/gloss
ary/.

The Tor Project. 2025. Arti — A complete rewrite of the C Tor codebase
in Rust. Project overview. The Tor Project. Retrieved 11/12/2025 from htt
ps://tpo.pages.torproject.net/core/arti/.

The Tor Project. 2025. The Tor Project — Privacy & Freedom Online. Of-
ficial project website. The Tor Project. Retrieved 11/12/2025 from https:
//www.torproject.orgy/.

The Tor Project. 2025. About — Tor Browser Manual. Tor Browser Man-
ual documentation page. The Tor Project. Retrieved 11/12/2025 from htt
ps://tb-manual.torproject.org/about/.

https://doi.org/10.17487/RFC8484
https://www.rfc-editor.org/info/rfc8484
https://www.rfc-editor.org/info/rfc8484
https://doi.org/10.17487/RFC7858
https://www.rfc-editor.org/info/rfc7858
https://www.rfc-editor.org/info/rfc7858
https://dnscrypt.info/protocol/
https://dnscrypt.info/protocol/
https://svn-archive.torproject.org/svn/projects/design-paper/tor-design.pdf
https://svn-archive.torproject.org/svn/projects/design-paper/tor-design.pdf
https://gitlab.torproject.org/tpo/core/tor
https://gitlab.torproject.org/tpo/core/tor
https://community.torproject.org/relay/types-of-relays/
https://community.torproject.org/relay/types-of-relays/
https://www.whonix.org/wiki/Alternative_DNS_Resolver
https://www.whonix.org/wiki/Alternative_DNS_Resolver
https://manpages.org/tor
https://manpages.org/tor
https://support.torproject.org/glossary/
https://support.torproject.org/glossary/
https://tpo.pages.torproject.net/core/arti/
https://tpo.pages.torproject.net/core/arti/
https://www.torproject.org/
https://www.torproject.org/
https://tb-manual.torproject.org/about/
https://tb-manual.torproject.org/about/

Bibliography 89

(40]

[41]

[42]

[43]

(44]

[45]

(46]

(47]

(48]

(49]

[50]

(51]

[52]

(53]

The Tor Project. 2025. Tor Browser — ,Installation* (de) — Getting
started. Support documentation — German language version. The Tor
Project. Retrieved 11/11/2025 from https://support.torproject.org/tor
-browser/getting-started/installing/.

Guardian Project. 2025. FAQs — Orbot. Frequently asked questions page.
Guardian Project. Retrieved 11/12/2025 from https://orbot.app/en/fags/.

The Tor Project. 2025. Mobile Tor — Tor Browser Manual. Tor Browser
Manual documentation page. The Tor Project. Retrieved 11/12/2025 from
https://tb-manual.torproject.org/mobile-tor/.

Onion Browser. 2025. Onion Browser — Super fast, super secure access
to popular sites. Official product website. Retrieved 11/12/2025 from htt
ps://onionbrowser.com/.

mtigas. 2016. Tor at the Heart: Onion Browser (and more iOS Tor). Blog
post. The Tor Project. (December 2016). Retrieved 11/12/2025 from https
://blog.torproject.org/tor-heart-onion-browser-and-more-ios-tor/.

Tails Project. 2025. About — Tails OS. Official information page. Tails
Project. Retrieved 11/12/2025 from https://tails.net/about/index.en.h
tml.

Whonix Project. 2025. Whonix - Overview. Project overview page.
Whonix Project. Retrieved 11/12/2025 from https : // www.whonix. or
g/wiki/About.

Romain Fouchereau and IDC Research. 2023. 2023 Global DNS Threat Re-
port: Augmenting Cyber Threat Intelligence. Technical report. InfoBrief
sponsored by EfficientIP, IDC #£UR150930923. International Data Cor-
poration (IDC), (August 2023). Retrieved 11/12/2025 from https://efficie
ntip.com/wp-content/uploads/2023/09/IDC-2023-DNS-Threat-Repo
rt.pdf.

JHC Van Heugten. 2018. Privacy analysis of DNS resolver solutions. Mas-
ter of System Network Engineering University of Amsterdam, 1—17.

Tim Wicinski. 2021. DNS Privacy Considerations. RFC 9076. (July 2021).
DOI: 10.17487/RFC9076. https://www.rfc-editor.org/info/rfc9076.

William B Norton. 2001. Internet service providers and peering. In Pro-
ceedings of NANOG. Volume 19, pp. 1-17.

Roxana Radu and Michael Hausding. 2020. Consolidation in the DNS re-
solver market—how much, how fast, how dangerous? Journal of Cyber
Policy, 5,1, 46—64.

Despoina Farmaki. 2021. The effectiveness of blocking injunctions
against ISPs in respect of online copyright infringement in Europe: a
comparative analysis from the UK, Greece and the Nordic countries.
Stockholm Intellectual Property Law Review, 2, 6—17.

Oliver Borchert, Kyehwan Lee, Kotikalapudi Sriram, Douglas Mont-
gomery, Patrick Gleichmann, and Mehmet Adalier. 2021. BGP Secure
Routing Extension (BGP-SRx): Reference Implementation and Test
Tools for Emerging BGP Security Standards. NIST Technical Note TN
2060 TN 2060. Final version, published September 15 2021. National
Institute of Standards and Technology, (September 2021). Retrieved
11/12/2025 from https://nvlpubs.nist.gov/nistpubs/TechnicalNotes/NIS
T.TN.2060.pdf.

https://support.torproject.org/tor-browser/getting-started/installing/
https://support.torproject.org/tor-browser/getting-started/installing/
https://orbot.app/en/faqs/
https://tb-manual.torproject.org/mobile-tor/
https://onionbrowser.com/
https://onionbrowser.com/
https://blog.torproject.org/tor-heart-onion-browser-and-more-ios-tor/
https://blog.torproject.org/tor-heart-onion-browser-and-more-ios-tor/
https://tails.net/about/index.en.html
https://tails.net/about/index.en.html
https://www.whonix.org/wiki/About
https://www.whonix.org/wiki/About
https://efficientip.com/wp-content/uploads/2023/09/IDC-2023-DNS-Threat-Report.pdf
https://efficientip.com/wp-content/uploads/2023/09/IDC-2023-DNS-Threat-Report.pdf
https://efficientip.com/wp-content/uploads/2023/09/IDC-2023-DNS-Threat-Report.pdf
https://doi.org/10.17487/RFC9076
https://www.rfc-editor.org/info/rfc9076
https://nvlpubs.nist.gov/nistpubs/TechnicalNotes/NIST.TN.2060.pdf
https://nvlpubs.nist.gov/nistpubs/TechnicalNotes/NIST.TN.2060.pdf

Bibliography 90

[54]

(55]

(56]

(57]

(58]

(59]

[60]

[61]

[62]

[63]

(64]

(65]

[66]

[(67]
[68]

Kuai Xu, Zhenhai Duan, Zhi-Li Zhang, and Jaideep Chandrashekar. 2004.
On properties of internet exchange points and their impact on as topol-
ogy and relationship. In International Conference on Research in Network-
ing. Springer, pp. 284—295.

Roque Gagliano. 2010. IPv6 Deployment in Internet Exchange Points
(IXPs). RFC 5963. (August 2010). DOI: 10.17487/RFC5963. https://ww
w.rfc-editor.org/info/rfc5963.

Stephen Farrell and Hannes Tschofenig. 2014. Pervasive Monitoring Is
an Attack. RFC 7258. (May 2014). DOI: 10.17487/RFC7258. https://www
.rfc-editor.org/info/rfc7258.

Mahmoud Sammour, Burairah Hussin, Mohd Fairuz Iskandar Othman,
Mohamed Doheir, Basel AlShaikhdeeb, and Mohammed Saad Talib. 2018.
DNS tunneling: A review on features. International Journal of Engineering
& Technology, 7, 3.20, 1-5.

Jawad Ahmed, Hassan Habibi Gharakheili, Qasim Raza, Craig Russell,
and Vijay Sivaraman. 2019. Monitoring enterprise DNS queries for de-
tecting data exfiltration from internal hosts. IEEE Transactions on Net-
work and Service Management, 17,1, 265—279.

Steven] Murdoch and Piotr Zielinski. 2007. Sampled traffic analysis by
internet-exchange-level adversaries. In International workshop on pri-
vacy enhancing technologies. Springer, pp. 167—183.

Baojun Liu, Chaoyi Lu, Haixin Duan, Ying Liu, Zhou Li, Shuang Hao, and
Min Yang. 2018. Who is answering my queries: Understanding and char-
acterizing interception of the {DNS} resolution path. In 27th USENIX Se-
curity Symposium (USENIX Security 18), pp. 1113—1128.

Anne Edmundson, Roya Ensafi, Nick Feamster, and Jennifer Rexford.
2016. Characterizing and avoiding routing detours through surveillance
states. arXiv preprint arXiv:1605.07685.

Zhiwei Yan and Jong-Hyouk Lee. 2020. The road to DNS privacy. Future
Generation Computer Systems, 112, 604 —611.

Geoff Huston. 2019. DNS resolver centrality. Blog post. APNIC Labs.
(September 2019). Retrieved 11/12/2025 from https://blog.apnic.net/201
9/09/23/dns-resolver-centrality.

Deliang Chang, Qianli Zhang, and Xing Li. 2015. Study on os fingerprint-
ing and nat/tethering based on dns log analysis. In IRTF & ISOC Workshop
on Research and Applications of Internet Measurements (RAIM), pp. 1—4.

Dae Wook Kim and Junjie Zhang. 2015. You are how you query: Deriving
behavioral fingerprints from DNS traffic. In International Conference on
Security and Privacy in Communication Systems. Springer, pp. 348—-366.

Matthias Kirchler, Dominik Herrmann, Jens Lindemann, and Marius
Kloft. 2016. Tracked without a trace: linking sessions of users by unsu-
pervised learning of patterns in their DNS traffic. In Proceedings of the
2016 ACM workshop on artificial intelligence and security, pp. 23—34.

Alain Durand. 2022. DNS Resolvers Used in the EU. Small, 2, 19.
Geoff Huston. 2021. Centrality and the Internet. Technical Note. Pub-

lished June 2021. The ISP Column, APNIC Labs, (June 2021). Retrieved

11/12/2025 from https://www.potaroo.net/ispcol/2021- 06/centrality.p
df.

https://doi.org/10.17487/RFC5963
https://www.rfc-editor.org/info/rfc5963
https://www.rfc-editor.org/info/rfc5963
https://doi.org/10.17487/RFC7258
https://www.rfc-editor.org/info/rfc7258
https://www.rfc-editor.org/info/rfc7258
https://blog.apnic.net/2019/09/23/dns-resolver-centrality
https://blog.apnic.net/2019/09/23/dns-resolver-centrality
https://www.potaroo.net/ispcol/2021-06/centrality.pdf
https://www.potaroo.net/ispcol/2021-06/centrality.pdf

Bibliography 91

(69]

(70]

[71]

[72]

(73]

(74]

[75]

[76]

[77]

(78]

[79]

Ash Pallarito and Joe Abley. 2025. Cloudflare 1.1.1.1 incident on July 14,
2025. Blog post. Cloudflare, Inc. (July 2025). Retrieved 11/12/2025 from
https://blog.cloudflare.com/cloudflare-1-1-1-1-incident-on-july-14-
2025/.

Trinh Viet Doan, Justus Fries, and Vaibhav Bajpai. 2021. Evaluating public
DNS services in the wake of increasing centralization of DNS. In 2021 IFIP
Networking Conference (IFIP Networking). IEEE, pp. 1—9.

Giovane CM Moura, Sebastian Castro, Wes Hardaker, Maarten Wullink,
and Cristian Hesselman. 2020. Clouding up the internet: How centralized
is dns traffic becoming? In Proceedings of the ACM Internet Measurement
Conference, pp. 42—49.

Taejoong Chung, Roland van Rijswijk-Deij, David Choffnes, Dave Levin,
Bruce M Maggs, Alan Mislove, and Christo Wilson. 2017. Understanding
the role of registrars in DNSSEC deployment. In Proceedings of the 2017
Internet Measurement Conference, pp. 369—383.

Elisa T'sai, Deepak Kumar, Ram Sundara Raman, Gavin Li, Yael Eiger, and
Roya Ensafi. 2023. Certainty: Detecting dns manipulation at scale using
tls certificates. arXiv preprint arXiv:2305.08189.

ICANN Security and Stability Advisory Committee (SSAC). 2025. DNS
Blocking Revisited: A Report from the ICANN Security and Stability Advi-
sory Committee (SAC127). SSAC Report No. 127 SAC127. Final report pub-
lished 16 May 2025. Internet Corporation for Assigned Names and Num-
bers (ICANN), (May 2025). Retrieved 11/12/2025 from https://itp.cdn.ica
nn.org/en/files/security-and- stability-advisory-committee-ssac-rep
orts/sac127-dns-blocking-revisited-16-05-2025-en.pdf.

Mingxuan Liu, Yiming Zhang, Xiang Li, Chaoyi Lu, Baojun Liu, Haixin
Duan, and Xiaofeng Zheng. 2024. Understanding the Implementation
and Security Implications of Protective DNS Services. In Proceedings of
the 31st Annual Network and Distributed System Security Symposium, NDSS.
Volume 24.

Internet Corporation for Assigned Names and Numbers (ICANN) Office
of the CTO Security, Stability and Resiliency Team. 2024. Domain Abuse
Activity Reporting (DAAR) Monthly Report: Data for September 2024.
Monthly Report. Internet Corporation for Assigned Names and Numbers
(ICANN), (September 2024). Retrieved 11/12/2025 from https://www.ica
nn.org/en/system/files/files/daar-monthly-report-30sep24-en.pdf.

Derek Atkins and Rob Austein. 2004. Threat Analysis of the Domain
Name System (DNS). RFC 3833. (August 2004). DOI: 10.17487/RFC3833.
https://www.rfc-editor.org/info/rfc3833.

Rasmus Dahlberg and Tobias Pulls. 2023. Timeless Timing Attacks and
Preload Defenses in Tor’s {DNS} Cache. In 32nd USENIX Security Sympo-
sium (USENIX Security 23), pp. 2635—2652.

Benjamin Greschbach, Tobias Pulls, Laura M Roberts, Philipp Winter,
and Nick Feamster. 2016. The effect of DNS on Tor’s anonymity. arXiv
preprint arXiv:1609.08187.

https://blog.cloudflare.com/cloudflare-1-1-1-1-incident-on-july-14-2025/
https://blog.cloudflare.com/cloudflare-1-1-1-1-incident-on-july-14-2025/
https://itp.cdn.icann.org/en/files/security-and-stability-advisory-committee-ssac-reports/sac127-dns-blocking-revisited-16-05-2025-en.pdf
https://itp.cdn.icann.org/en/files/security-and-stability-advisory-committee-ssac-reports/sac127-dns-blocking-revisited-16-05-2025-en.pdf
https://itp.cdn.icann.org/en/files/security-and-stability-advisory-committee-ssac-reports/sac127-dns-blocking-revisited-16-05-2025-en.pdf
https://www.icann.org/en/system/files/files/daar-monthly-report-30sep24-en.pdf
https://www.icann.org/en/system/files/files/daar-monthly-report-30sep24-en.pdf
https://doi.org/10.17487/RFC3833
https://www.rfc-editor.org/info/rfc3833

Bibliography 92

(80]

(81]

(82]

(83]

(84]

(85]

(86]

(87]

(88]

(89]

(90]

[91]

(92]

Christian Hofer. 2020. Proposal 317: Improve security aspects of DNS
name resolution. Technical report 317. Tor design proposal; status:
Needs-Revision. The Tor Project, (March 2020). Retrieved 11/12/2025
from https://spec.torproject.org/proposals/317 - secure - dns - name
-resolution.html.

Lin Jin, Shuai Hao, Haining Wang, and Chase Cotton. 2021. Understand-
ing the impact of encrypted DNS on internet censorship. In Proceedings
of the Web Conference 2021, pp. 484—495.

Nguyen Phong Hoang, Michalis Polychronakis, and Phillipa Gill. 2022.
Measuring the accessibility of domain name encryption and its impact
oninternet filtering. In International Conference on Passive and Active Net-
work Measurement. Springer, pp. 518—-536.

Chaoyi Lu, Baojun Liu, Zhou Li, Shuang Hao, Haixin Duan, Mingming
Zhang, Chunying Leng, Ying Liu, Zaifeng Zhang, and Jianping Wu. 2019.
An end-to-end, large-scale measurement of DNS-over-encryption:
How far have we come? In Proceedings of the Internet Measurement Con-
ference, pp. 22—35.

Sebastian Garcia, Karel Hynek, Dmtrii Vekshin, Tomas Cejka, and Armin
Wasicek. 2021. Large scale measurement on the adoption of encrypted
DNS. arXiv preprint arXiv:2107.04436.

Yong Shao, Kenneth Hernandez, Kia Yang, Eric Chan-Tin, and Mo-
hammed Abuhamad. 2023. Lightweight and Effective Website Finger-
printing over Encrypted DNS. In 2023 Silicon Valley Cybersecurity Confer-
ence (SVCC).

Sandra Siby, Marc Juarez, Claudia Diaz, Narseo Vallina-Rodriguez, and
Carmela Troncoso. 2019. Encrypted DNS—> privacy? A traffic analysis
perspective. arXiv preprint arXiv:1906.09682.

Timm Bottger, Felix Cuadrado, Gianni Antichi, Eder Ledo Fernandes,
Gareth Tyson, Ignacio Castro, and Steve Uhlig. 2019. An Empirical Study
of the Cost of DNS-over-HTTPS. In Proceedings of the Internet Measure-
ment Conference, pp. 15—21.

Rashna Kumar and Fabian E Bustamante. 2023. Reclaiming privacy and
performance over centralized DNS. arXiv preprint arXiv:2302.13274.

Baiyang Li, Yujia Zhu, Yong Ding, Yong Sun, Yuedong Zhang, Qingyun
Liu, and Li Guo. 2024. From Fingerprint to Footprint: Characterizing the
Dependencies in Encrypted DNS Infrastructures. In European Symposium
on Research in Computer Security. Springer, pp. 45—64.

Michael Sonntag. 2019. Malicious DNS Traffic in Tor: Analysis and Coun-
termeasures. In ICISSP, pp. 536—543.

Scott Rose, Matt Larson, Dan Massey, Rob Austein, and Roy Arends.
2005. Protocol Modifications for the DNS Security Extensions. RFC 4035.
(March 2005). DOI: 10.17487/RFC4035. https://www.rfc-editor.org/inf
o/rfc4035.

Jonathan Magnusson, Moritz Miiller, Anna Brunstrom, and Tobias Pulls.
2023. A second look at DNS QNAME minimization. In International Con-
ference on Passive and Active Network Measurement. Springer, pp. 496—
521.

https://spec.torproject.org/proposals/317-secure-dns-name-resolution.html
https://spec.torproject.org/proposals/317-secure-dns-name-resolution.html
https://doi.org/10.17487/RFC4035
https://www.rfc-editor.org/info/rfc4035
https://www.rfc-editor.org/info/rfc4035

Bibliography 93

[93] Jacob Appelbaum and Alec Muffett. 2015. The ”.onion” Special-Use Do-
main Name. RFC 7686. (October 2015). DOI: 10.17487 /RFC7686. https:
//www.rfc-editor.org/info/rfc7686.

[94] Yaron Sheffer, Peter Saint-Andre, and Thomas Fossati. 2022. Recom-
mendations for Secure Use of Transport Layer Security (TLS) and Data-
gram Transport Layer Security (DTLS). RFC 9325. (November 2022). DOI:
10.17487/RFC9325. https://www.rfc-editor.org/info/rfc9325.

[95] Eric Rescorla, Kazuho Oku, Nick Sullivan, and Christopher A. Wood.
2025. TLS Encrypted Client Hello. Internet-Draft draft-ietf-tls-esni-
25. Work in Progress. Internet Engineering Task Force, (June 2025).
53 pages. https://datatracker.ietf.org/doc/draft-ietf-tls-esni/25/.

https://doi.org/10.17487/RFC7686
https://www.rfc-editor.org/info/rfc7686
https://www.rfc-editor.org/info/rfc7686
https://doi.org/10.17487/RFC9325
https://www.rfc-editor.org/info/rfc9325
https://datatracker.ietf.org/doc/draft-ietf-tls-esni/25/

B S T N O

N

Appendix A
Proof-of-Concept

A.1 Dockerfiles

A.1.1 Dockerfile for torconnector

FROM ubuntu:24.04

RUN apt-get update
RUN apt-get install -y gnupg
RUN apt-get install -y curl

RUN echo "deb https://deb.torproject.org/torproject.org noble main" >>

o [etc/apt/sources.list.d/tor.list

RUN echo "deb-src https://deb.torproject.org/torproject.org noble main" >>
< /etc/apt/sources.list.d/tor.list

RUN curl

o https://deb.torproject.org/torproject.org/A3C4FOF979CAA22CDBA8F512EE8CBCIESBEDDD8Y. asc |
< gpg --import

RUN gpg --export A3C4FOF979CAA22CDBASF512EE8CBCIEB86DDDEY | apt-key add -

RUN apt-get update
RUN apt-get install -y tor deb.torproject.org-keyring

RUN echo "Log notice stdout" >> /etc/tor/torrc

RUN echo "SocksPort 0.0.0.0:9150" >> /etc/tor/torrc
RUN echo "DNSPort 0.0.0.0:53" >> /etc/tor/torrc
EXPOSE 9150

ENTRYPOINT ["tor", "-f", "/etc/tor/torrc"]

Listing A.1: torconnector Dockerfile

A.1.2 Dockerfile for dnscrypt Resolver

FROM ubuntu:24.04

RUN apt-get update
RUN apt-get install -y wget

94

- o a0 s~ W N -

a s w N =

©® —~w o o A W N =

Appendix A Proof-of-Concept

95

RUN wget https://github.com/DNSCrypt/dnscrypt-proxy/releases/download/2.1.14/dnscrypt-proxy

o -linux_x86_64-2.1.14.tar.gz
RUN tar -vxf dnscrypt-proxy-linux_x86_64-2.1.14.tar.gz

ENTRYPOINT ["bash", "-c", "cd linux-x86_64 && exec ./dnscrypt-proxy"]

Listing A.2: dnscrypt Dockerfile

A.2 Lists for Domain Name Blocking and Local Host
Entries

A.2.1 Domain Name Blocklist

domain-name-blocklist.txt
domain names that are blocked by the Private DNS Resolver

trackmeifyoucan.com
ads. com
adultstuff.com
dangeroussite.com

Listing A.3: Blocked domain names file

A.2.2 List of Local Host Entries

local-host-entries. txt
domain names of local host entries

192.168.10.11 nextcloud.lan
192.168.10.12 vaultwarden.lan

Listing A.4: Local host names file

A.3 Configuration Files

A.3.1 RouteDNS Configuration File

listening ports
[listeners.local-udp]

address = "0.0.0.0:53"
protocol = "udp"

resolver = "blocklist-domains"

[listeners.local-tcp]
address = "0.0.0.0:53"

45
4
47
43
49
50
51
52

Appendix A Proof-of-Concept 96

protocol = "tcp"
resolver = "blocklist-domains"

blocked domain names
[groups.blocklist-domains]

type = "blocklist-v2"
resolvers = ["localhosts"]
blocklist-format = "domain"

blocklist-refresh = 86400
blocklist-source = [
{format = "domain", source = "/etc/routedns/domain-name-blocklist.txt"},

]

local host entries
[groups.localhosts]
type = "blocklist-v2"
resolvers = ["cache_wrap"]
blocklist-refresh = 86400
blocklist-source = [
{format = "hosts", source = "/etc/routedns/local-host-entries.txt"},

]

DNS cache
[groups.cache_wrap]
type = "cache"

resolvers = ["randomize"]
backend = {type = "memory"}
size = 4096

min-ttl = 0

max-ttl = 86400

prefetch = false

distribution algorithm

[groups.randomize]

type = "random"

resolvers = ["serbica-cry", "cryptostorm_is_dus3-cry", "dnscrypt_org-cry",

« "scaleway-ams-cry", "dnscrypt_uk_vultr-cry", "dnscrypt_ca-cry", "saldns@2-conoha-cry",
o "pl-guardian-cry", "ksol_io-ns2-dnscrypt-cry", "fluffycat-fr-02-cry", "seby_io-doh",
o "dnscry_pt_nue@1-doh", "lacontrevoie_fr-doh", "a47_me-doh", "belnet_be-doh",

< "00dani_me-doh", "kernel-error_de-doh", "kescher_at-doh", "kooman-doh",

< "mnet-online_de-doh", "novg_net-doh", "sunet_se-doh", "waringer-atg_de-doh", "yarp-doh",
< "nextdns_io-doh", "applied_privacy_net-doh", "fdn_fr-doh", "hurricane_electric-doh",
o "mullvad_net-doh", "wikimedia-doh", "tiar_app_jp-doh", "njal_la-doh",

o "adguard_unfilterd_2-dot", "cloudflare-dot", "dns_sh_1-dot",

o "digitale_gesellschaft_2-dot", "uncensoreddns_org-dot", "getdnsapinet443-dot",

« "cisco_opendns_sandbox_1-dot", "dns-ga_de_3-dot", "controld-dot",

< "andrews_arnold_1-dot", "bortzmeyer_fr-dot", "digitalize_net-dot", "dnshome_de_2-dot",
o "cgnat_net-dot", "freifunk_munich_2-dot", "digitalcourage_de-dot"]

DoH resolver configurations
[resolvers.seby_io-doh]

address = "https://doh.seby.io/dns-query"
protocol = "doh"

query-timeout = 5

retry-delay = 300

bootstrap-addr = "172.18.0.2"

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7
72
73
74
75
76
7
78
79
80

82
83
84
85
86
87
88
89
9
91
9
93
9
%
%
97
%
9

100

101

102

103

104

105

106

107

108

109

Appendix A Proof-of-Concept

socks5-address = "172.18.0.2:9150"

[resolvers.dnscry_pt_nue@1-doh]

address = "https://nue@1.dnscry.pt/dns-query"
protocol = "doh"

query-timeout = 5

retry-delay = 300

bootstrap-addr = "172.18.0.2"

socks5-address = "172.18.0.2:9150"

[resolvers.lacontrevoie_fr-doh]

address = "https://doh.lacontrevoie.fr/dns-query"
protocol = "doh"

query-timeout = 5

retry-delay = 300

bootstrap-addr = "172.18.0.2"

socks5-address = "172.18.0.2:9150"

[resolvers.a47_me-doh]

address = "https://dns.a47.me/dns-query"
protocol = "doh"

query-timeout = 5

retry-delay = 300

bootstrap-addr = "172.18.0.2"
socks5-address = "172.18.0.2:9150"

[resolvers.belnet_be-doh]

address = "https://dns.belnet.be/dns-query"
protocol = "doh"

query-timeout = 5

retry-delay = 300

bootstrap-addr = "172.18.0.2"
socks5-address = "172.18.0.2:9150"

[resolvers.00dani_me-doh]

address = "https://ns.00dani.me/dns-query"
protocol = "doh"

query-timeout = 5

retry-delay = 300

bootstrap-addr = "172.18.0.2"
socks5-address = "172.18.0.2:9150"

[resolvers.kernel-error_de-doh]

address = "https://dns.kernel-error.de/dns-query"
protocol = "doh"

query-timeout = 5

retry-delay = 300

bootstrap-addr = "172.18.0.2"

socks5-address = "172.18.0.2:9150"

[resolvers.kescher_at-doh]

address = "https://dns.kescher.at/dns-query"
protocol = "doh"

query-timeout = 5

retry-delay = 300

bootstrap-addr = "172.18.0.2"

socks5-address = "172.18.0.2:9150"

97

110
N
12
13
114
115
116
17
18
19
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

Appendix A Proof-of-Concept

[resolvers.kooman-doh]

address = "https://doh.kooman.org/dns-query"
protocol = "doh"

query-timeout = 5

retry-delay = 300

bootstrap-addr = "172.18.0.2"

socks5-address = "172.18.0.2:9150"

[resolvers.mnet-online_de-doh]

address = "https://dns.mnet-online.de/dns-query"
protocol = "doh"

query-timeout = 5

retry-delay = 300

bootstrap-addr = "172.18.0.2"

socks5-address = "172.18.0.2:9150"

[resolvers.novg_net-doh]

address = "https://dns.novg.net/dns-query"
protocol = "doh"

query-timeout = 5

retry-delay = 300

bootstrap-addr = "172.18.0.2"
socks5-address = "172.18.0.2:9150"

[resolvers.sunet_se-doh]

address = "https://resolver.sunet.se/dns-query"
protocol = "doh"

query-timeout = 5

retry-delay = 300

bootstrap-addr = "172.18.0.2"

socks5-address = "172.18.0.2:9150"

[resolvers.waringer-atg_de-doh]

address = "https://abel.waringer-atg.de/dns-query"
protocol = "doh"

query-timeout = 5

retry-delay = 300

bootstrap-addr = "172.18.0.2"

socks5-address = "172.18.0.2:9150"

[resolvers.yarp-doh]

address = "https://yarp.lefolgoc.net/dns-query"
protocol = "doh"

query-timeout = 5

retry-delay = 300

bootstrap-addr = "172.18.0.2"

socks5-address = "172.18.0.2:9150"

[resolvers.nextdns_io-doh]

address = "https://anycast.dns.nextdns.io/dns-query"

protocol = "doh"

query-timeout = 5

retry-delay = 300

bootstrap-addr = "172.18.0.2"
socks5-address = "172.18.0.2:9150"

98

167
168
169
170
m
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
m
212
213
214
215
216
217
218
219
220
1
222
223

Appendix A Proof-of-Concept

[resolvers.applied_privacy_net-doh]

address = "https://doh.applied-privacy.net/query"
protocol = "doh"

query-timeout = 5

retry-delay = 300

bootstrap-addr = "172.18.0.2"

socks5-address = "172.18.0.2:9150"

[resolvers.fdn_fr-doh]

address = "https://ns0@.fdn.fr/dns-query"
protocol = "doh"

query-timeout = 5

retry-delay = 300

bootstrap-addr = "172.18.0.2"
socks5-address = "172.18.0.2:9150"

[resolvers.hurricane_electric-doh]

address = "https://ordns.he.net/dns-query"
protocol = "doh"

query-timeout = 5

retry-delay = 300

bootstrap-addr = "172.18.0.2"
socks5-address = "172.18.0.2:9150"

[resolvers.mullvad_net-doh]

address = "https://dns.mullvad.net/dns-query"
protocol = "doh"

query-timeout = 5

retry-delay = 300

bootstrap-addr = "172.18.0.2"

socks5-address = "172.18.0.2:9150"

[resolvers.wikimedia-doh]

address = "https://wikimedia-dns.org/dns-query"
protocol = "doh"

query-timeout = 5

retry-delay = 300

bootstrap-addr = "172.18.0.2"

socks5-address = "172.18.0.2:9150"

[resolvers.tiar_app_jp-doh]

address = "https://jp.tiar.app/dns-query"
protocol = "doh"

query-timeout = 5

retry-delay = 300

bootstrap-addr = "172.18.0.2"
socks5-address = "172.18.0.2:9150"

[resolvers.njal_la-doh]

address = "https://dns.njal.la/dns-query"
protocol = "doh"

query-timeout = 5

retry-delay = 300

bootstrap-addr = "172.18.0.2"
socks5-address = "172.18.0.2:9150"

DoT resolver configurations

99

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
72
K
274
275
276
277
278
279
280

Appendix A Proof-of-Concept

[resolvers.adguard_unfilterd_2-dot]
address = "94.140.14.140"

protocol = "dot"

query-timeout = 5

retry-delay = 300

server-name = "unfiltered.adguard-dns.com"
socks5-address = "172.18.0.2:9150"

[resolvers.cloudflare-dot]

address = "1.1.1.1"

protocol = "dot"

query-timeout = 5

retry-delay = 300

server-name = "Tdotl1dotldot1.cloudflare-dns.com"
socks5-address = "172.18.0.2:9150"

[resolvers.dns_sb_1-dot]

address = "185.222.222.222"
protocol = "dot"

query-timeout = 5

retry-delay = 300

server-name = "dot.sbh"
socks5-address = "172.18.0.2:9150"

[resolvers.digitale_gesellschaft_2-dot]
address = "185.95.218.43"

protocol = "dot"

query-timeout = 5

retry-delay = 300

server-name = "dns.digitale-gesellschaft.ch"
socks5-address = "172.18.0.2:9150"

[resolvers.uncensoreddns_org-dot]

address = "91.239.100.100"

protocol = "dot"

query-timeout = 5

retry-delay = 300

server-name = "anycast.uncensoreddns.org"
socks5-address = "172.18.0.2:9150"

[resolvers.getdnsapinet443-dot]
address = "185.49.141.37:443"
protocol = "dot"

query-timeout = 5

retry-delay = 300

server-name = "getdnsapi.net"
socks5-address = "172.18.0.2:9150"

[resolvers.cisco_opendns_sandbox_1-dot]
address = "208.67.222.2"

protocol = "dot"

query-timeout = 5

retry-delay = 300

server-name = "sandbox.opendns.com"
socks5-address = "172.18.0.2:9150"

[resolvers.dns-ga_de_3-dot]

100

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
3N
312
313
314
315
316
37
318
319
320
N
322
323
324
325
326
327
328
329
330
33
332
333
334
335
336
337

Appendix A Proof-of-Concept

address = "138.201.81.119"
protocol = "dot"

query-timeout = 5

retry-delay = 300

server-name = "dot.dns-ga.de"
socks5-address = "172.18.0.2:9150"

[resolvers.controld-dot]
address = "76.76.2.11"
protocol = "dot"
query-timeout = 5
retry-delay = 300

server-name = "p@.freedns.controld.com"

socks5-address = "172.18.0.2:9150"

[resolvers.andrews_arnold_1-dot]
address = "217.169.20.22"

protocol = "dot"

query-timeout = 5

retry-delay = 300

server-name = "dns.aa.net.uk"
socks5-address = "172.18.0.2:9150"

[resolvers.bortzmeyer_fr-dot]
address = "193.70.85.11"

protocol = "dot"

query-timeout = 5

retry-delay = 300

server-name = "dot.bortzmeyer.fr"
socks5-address = "172.18.0.2:9150"

[resolvers.digitalize_net-dot]
address = "94.130.135.203"

protocol = "dot"

query-timeout = 5

retry-delay = 300

server-name = "dns.digitalsize.net"
socks5-address = "172.18.0.2:9150"

[resolvers.dnshome_de_2-dot]
address = "45.86.125.59"

protocol = "dot"

query-timeout = 5

retry-delay = 300

server-name = "dns.dnshome.de"
socks5-address = "172.18.0.2:9150"

[resolvers.cgnat_net-dot]

address = "144.22.247.219"
protocol = "dot"

query-timeout = 5

retry-delay = 300

server-name = "ibuki.cgnat.net"
socks5-address = "172.18.0.2:9150"

[resolvers.freifunk_munich_2-dot]
address = "185.150.99.255"

101

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
3n
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

Appendix A Proof-of-Concept

protocol = "dot"

query-timeout = 5

retry-delay = 300

server-name = "dot.ffmuc.net"
socks5-address = "172.18.0.2:9150"

[resolvers.digitalcourage_de-dot]
address = "5.9.164.112"

protocol = "dot"

query-timeout = 5

retry-delay = 300

server-name = "dns3.digitalcourage.de"
socks5-address = "172.18.0.2:9150"

DNSCrypt resolver definitions
[resolvers.serbica-cry]

address = "cry-serbica:53"
protocol = "udp"

query-timeout = 5

retry-delay = 300

[resolvers.cryptostorm_is_dus3-cry]
address = "cry-cryptostorm-is-dus3:53"
protocol = "udp"

query-timeout = 5

retry-delay = 300

[resolvers.dnscrypt_org-cry]
address = "cry-dnscrypt-org:53"
protocol = "udp"

query-timeout = 5

retry-delay = 300

[resolvers.scaleway-ams-cry]
address = "cry-scaleway-ams:53"
protocol = "udp"

query-timeout = 5

retry-delay = 300

[resolvers.dnscrypt_uk_vultr-cry]
address = "cry-dnscrypt-uk-vultr:53"
protocol = "udp"

query-timeout = 5

retry-delay = 300

[resolvers.dnscrypt_ca-cry]
address = "cry-dnscrypt-ca:53"
protocol = "udp"

query-timeout = 5

retry-delay = 300

[resolvers.saldns@2-conoha-cry]
address = "cry-saldns@2-conoha:53"
protocol = "udp"

query-timeout = 5

retry-delay = 300

102

395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

Appendix A Proof-of-Concept

[resolvers.pl-guardian-cry]
address = "cry-pl-guardian:53"
protocol = "udp"

query-timeout = 5

retry-delay = 300

[resolvers.ksol_io-ns2-dnscrypt-cry]
address = "cry-ksol-io-ns2-dnscrypt:53"
protocol = "udp"

query-timeout = 5

retry-delay = 300

[resolvers.fluffycat-fr-02-cry]
address = "cry-fluffycat-fr-02:53"
protocol = "udp"

query-timeout = 5

retry-delay = 300

103

Listing A.5: RouteDNS configuration file

A.3.2 Example Configuration File of DNSCrypt Resolver
dnscrypt_org

IP address of torconnector: 172.18.0.2
TCP port of torconnector: 9150

listen_addresses = ["0.0.0.0:53"]
max_clients = 250

ipv4_servers = true
dnscrypt_servers = true

force_tcp = true

proxy = "socks5://172.18.0.2:9150"
timeout = 5000

keepalive = 30

cert_refresh_delay = 240
dnscrypt_ephemeral_keys = true
ignore_system_dns = true
netprobe_timeout = 60
netprobe_address = "172.18.0.2:53"
block_ipvé = false
block_unqualified = true
block_undelegated = true

cache = false

[static]

[static."dnscrypt_org"]

stamp = "sdns://AQCAAAAAAAAAD jIxMi40Ny4yMjguMTM2I0gBuE6mBr-wusDOQORbsV66ZLAvo8SgMadQY20HKDT |

< NHzIuZG5zY3J5cHQtY2VydC5mci5kbnNjenlwdC5veme"

Listing A.6: DNSCrypt resolver example configuration file

i
22
23

24
25
26

21
28
29

Appendix A Proof-of-Concept 104

A.3.3 Stamps of selected DNSCrypt Resolver Configurations

stamp of serbica
stamp = "sdns://AQCAAAAAAAAAEZEANS42N14xNDMuMTc40jUzNTMg - Y2MOmGOX 1ggAEKUIN-ITGEn_Kj3TIP1UKT
< X2wh307wXMi5kbnNjcnlwdC1jZXJOLnNIcmJpY2E"

stamp of cryptostorm_is_dus3
stamp = "sdns: //AQYAAAAAAAAAD 5L JE2My4yMIEUMT gx IDEZcq1 ZV L CQHUHLWMPhRvAUNUOTGy -mk8ZCWQW261 |
« aHjIuzZG5zY3J5cHQtY2VydC5jcnlwdG9zdGIybS5pcw”

stamp of dnscrypt_org
stamp = "sdns://AQCAAAAAAAAAD jIxMi40Ny4yMjguMTM2I0gBuE6mBr-wusDOQORbsV66ZLAvo8SaMa4QY20HKDT |
o NHzIuZG5zY3J5cHQtY2VydC5meib5kbnNjcnlwdC5veme"

stamp of scaleway-ams
stamp = "sdns://AQCAAAAAAAAADTUXLJETLJEyMi4yNTAg6Q3ZfapchHg iHKLF7QFoli0Ty1Vsz3RXs1RUbxUrwZA
o cMi5kbnNjcnlwdC13jZXJOLNNjYWx1d2F5LWFtcw"

stamp of dnscrypt_uk_vultr
stamp = "sdns://AQCAAAAAAAAAEZEWNCAyMzguMTg2L JESMjo@NDMg 7Uk9jOrXkGZPBjxHtSWaI2ktf JA2PISDZLW
o Re-WoHuUdMi5kbnNjcnlwdC1jZXJ0LnYuZG5zY3J5cHQudWs"

stamp of dnscrypt_ca
stamp = "sdns://AQCAAAAAAAAAEZEANSAXMTEUMTg4LjQ20]gONDMgC-thTwd-08e_JtBImgsvjAGIi10itE-LBNC,
o wjTflezQiMi5kbnNjcnlwdC1jZXJOLmRuc2NyeXBOLMNhLTEtaXB2NA"

stamp of saldns02-conoha
stamp = "sdns://AQCAAAAAAAAAFTEzMy4xMzAuMTE4LjEwMzo1MDQ@MyB7SI@q4_Ff81FRUijPtcAQ3Hde1nyGJ
< DUUNc3NUZdiIyLmRuc2NyeXBOLWN1cnQuc2FsZG5zMDIudHIwZXEub3Jn"

stamp of pl-guardian
stamp = "sdns://AQMAAAAAAAAAFDE30C4yMTYuMjAxL jEyODoyMDUOIHOhfLgepVPSNMSbwnnHT3tUmAUNHb8RGVT |
o mmWPGR6FpGzIuzZG5zY3J5cHQtY2VydC5kbnNjcnlwdC5whA"

stamp of ksol_io-ns2-dnscrypt
stamp = "sdns://AQCAAAAAAAAAD jESMy4yMDEUMTg4L jQ4IBERKdQIgLSjaCSK99e2f _WRTQzEqQ9__DeX1QFvxxhZ
o 66zIuZG5zY3J5cHQtY2VydC5uczIua3NvbC5pbw"

stamp of fluffycat-fr-02
stamp = "sdns://AQCAAAAAAAAAFDEYOS4XNTEUMjQzL jE@Mzo1MzUzICaU@eKbE tcmoE@L jHjvADPHNYZBX23wJ 40 |
o wxhVprIpFHzIuZG5zY3J5cHQtY2VydC5mbHVmZn1jYXQtZnItMDI"

Listing A.7: Stamps of selected DNSCrypt resolvers

A.4 Startup Script

A.4.1 Bash Script containing Startup Commands for Launching the
Private DNS Resolver

#1/bin/bash

Appendix A Proof-of-Concept 105

docker run --rm --name connector --network networktor --mount
< type=bind,source=/etc/localtime,target=/etc/localtime,readonly -d connector:latest

docker run --rm --name cry-serbica --network networktor --mount

o type=bind,source=/etc/localtime,target=/etc/localtime,readonly --mount

o type=bind,source=/home/privatednsresolver/config/dnscrypt/CRY_serbica/dnscrypt-proxy_t.
o toml,target=/1inux-x86_64/dnscrypt-proxy.toml,readonly -d dnscrypt:latest

docker run --rm --name cry-cryptostorm-is-dus3 --network networktor --mount

o type=bind,source=/etc/localtime,target=/etc/localtime,readonly --mount

- type=bind,source=/home/privatednsresolver/config/dnscrypt/CRY_serbica/dnscrypt-proxy_t.
o toml,target=/linux-x86_64/dnscrypt-proxy.toml,readonly -d dnscrypt:latest

docker run --rm --name cry-dnscrypt-org --network networktor --mount

< type=bind,source=/etc/localtime,target=/etc/localtime,readonly --mount

- type=bind,source=/home/privatednsresolver/config/dnscrypt/CRY_serbica/dnscrypt-proxy_t.
o toml,target=/linux-x86_64/dnscrypt-proxy.toml,readonly -d dnscrypt:latest

docker run --rm --name cry-scaleway-ams --network networktor --mount

< type=bind,source=/etc/localtime,target=/etc/localtime,readonly --mount

o type=bind, source=/home/privatednsresolver/config/dnscrypt/CRY_serbica/dnscrypt-proxy_t.
o toml,target=/linux-x86_64/dnscrypt-proxy.toml,readonly -d dnscrypt:latest

docker run --rm --name cry-dnscrypt-uk-vultr --network networktor --mount

o type=bind,source=/etc/localtime,target=/etc/localtime,readonly --mount

o type=bind, source=/home/privatednsresolver/config/dnscrypt/CRY_serbica/dnscrypt-proxy_t.
o toml,target=/linux-x86_64/dnscrypt-proxy.toml,readonly -d dnscrypt:latest

docker run --rm --name cry-dnscrypt-ca --network networktor --mount

o type=bind,source=/etc/localtime,target=/etc/localtime,readonly --mount

< type=bind, source=/home/privatednsresolver/config/dnscrypt/CRY_serbica/dnscrypt-proxy_t.
o toml,target=/linux-x86_64/dnscrypt-proxy.toml,readonly -d dnscrypt:latest

docker run --rm --name cry-saldns@2-conoha --network networktor --mount

o type=bind,source=/etc/localtime,target=/etc/localtime,readonly --mount

o type=bind,source=/home/privatednsresolver/config/dnscrypt/CRY_serbica/dnscrypt-proxy_t.
< toml,target=/1linux-x86_64/dnscrypt-proxy.toml,readonly -d dnscrypt:latest

docker run --rm --name cry-pl-guardian --network networktor --mount

o type=bind,source=/etc/localtime,target=/etc/localtime,readonly --mount

o type=bind,source=/home/privatednsresolver/config/dnscrypt/CRY_serbica/dnscrypt-proxy_t.
< toml,target=/1inux-x86_64/dnscrypt-proxy.toml,readonly -d dnscrypt:latest

docker run --rm --name cry-ksol-io-ns2-dnscrypt --network networktor --mount

o type=bind,source=/etc/localtime,target=/etc/localtime,readonly --mount

o type=bind,source=/home/privatednsresolver/config/dnscrypt/CRY_serbica/dnscrypt-proxy_t.
< toml,target=/1inux-x86_64/dnscrypt-proxy.toml,readonly -d dnscrypt:latest

docker run --rm --name cry-fluffycat-fr-02 --network networktor --mount

o type=bind,source=/etc/localtime,target=/etc/localtime,readonly --mount

- type=bind,source=/home/privatednsresolver/config/dnscrypt/CRY_serbica/dnscrypt-proxy_t.
< toml,target=/linux-x86_64/dnscrypt-proxy.toml,readonly -d dnscrypt:latest

docker run --rm --name routedns -p 5353:53/udp -p 5353:53/tcp --network networktor --mount
o type=bind,source=/etc/localtime,target=/etc/localtime,readonly --mount

- type=bind,source=/home/privatednsresolver/config/routedns/routedns.toml,target=/etc/rou
o tedns/config.toml,readonly --mount

< type=bind, source=/home/privatednsresolver/config/routedns/domain-name-blocklist.txt,tar
o get=/etc/routedns/domain-name-blocklist.txt,readonly --mount

o type=bind,source=/home/privatednsresolver/config/routedns/local-host-entries. txt,target
o =/etc/routedns/local-host-entries.txt,readonly -d folbricht/routedns:latest

o /etc/routedns/config. toml

Listing A.8: Startup script

	Abstract
	Kurzfassung
	Contents
	List of Tables
	List of Figures
	Introduction
	Problem Description and Motivation
	Objectives and Approach

	Background and Definitions
	Secure Communication
	Trust
	Client and User
	The Domain Name System
	Domain Name Space and Resource Records
	Name Servers
	Resolvers
	Process of Resolving DNS Requests
	Extension Mechanisms for DNS (EDNS(0))
	EDNS Client Subnet (ECS)
	DNS Security Improvements

	The Tor Project
	Concept and Architecture of Tor
	DNS Resolution in Tor
	Software and Applications

	Threat Model
	Scope of Threat Model
	Attack Surface Scenarios
	Local Recursive DNS Resolver
	DNS Resolver of Internet Service Provider (ISP)
	Public DNS Resolver

	Potential Adversaries
	Local Network Operator
	Internet Service Provider (ISP)
	Autonomous System (AS) Operator
	Internet Exchange Point (IXP) Operator
	Recursive DNS Resolver Operator
	Authoritative Name Server Operator

	Threats of the conventional Domain Name System
	DNS Traffic Interception
	Privacy and Information Exposure
	Centralization
	Manipulation of DNS Responses
	DNS Blocking
	Cache Poisoning
	Cache Snooping

	Evaluation of DNS on the Tor Network
	Considered Use Cases
	Tor's Recommendations for Exit Relay Operators
	Tor DNS Exposure
	Exit Relay Itself
	DNS Resolver in the Same AS
	DNS Resolver in a Different AS
	Actual Exposure

	Tor-specific DNS Threats
	Privacy Exposure of the Tor Network
	Centralization
	Tor-specific Blocking and Manipulation
	Attacks on Exit Relay Cache
	Correlation Attacks

	Evaluation of the State of DNS on Tor
	Test Setup
	Tests and Results

	Proposed Improvements
	Encrypting DNS Requests
	Encrypted DNS Protocols
	Threat Analysis Update

	Distributing Encrypted DNS Requests
	Algorithm for Distribution
	Threat Analysis Update

	Anonymizing the Original Sender of DNS Requests
	Threat Analysis Update

	Evaluation of Encrypted Recursive DNS Resolvers
	Requirements for Encrypted DNS Resolvers
	Finding Public Encrypted DNS Resolvers
	Test Setup
	Tests and Results of Public Encrypted DNS Resolvers
	Summary of public encrypted DNS Resolver Tests
	Independence of Encrypted DNS Resolvers

	Implementation and Evaluation
	Consolidated Improvements
	Use Cases
	User-Operated Private DNS Resolver
	Network Operator-Provided Private DNS Resolver
	Exit Relay Operator-Provided Private DNS Resolver

	Proof-of-Concept (PoC) Implementation
	Docker Images
	Data Flow and RouteDNS Configuration
	Operational Behavior

	Evaluation
	Practical Evaluation
	Remaining Threats

	Conclusion and Outlook
	Future Work
	Remaining Challenges

	Bibliography
	Proof-of-Concept
	Dockerfiles
	Dockerfile for torconnector
	Dockerfile for dnscrypt Resolver

	Lists for Domain Name Blocking and Local Host Entries
	Domain Name Blocklist
	List of Local Host Entries

	Configuration Files
	RouteDNS Configuration File
	Example Configuration File of DNSCrypt Resolver dnscrypt_org
	Stamps of selected DNSCrypt Resolver Configurations

	Startup Script
	Bash Script containing Startup Commands for Launching the Private DNS Resolver

