JXU

JOHANNES KEPLER
UNIVERSITY LINZ

Author
Georg Kofler, BSc
k12006277

Submission
Institute of
Networks and Security

Thesis Supervisor
Univ.-Prof. DI Dr.

Reproducible builds of 7=,
E2EE-messengers for i S 5
Android using Nix

hermetic builds

Master’s Thesis

to confer the academic degree of
Diplom-Ingenieur
in the Master’s Program

Computer Science

JOHANNES KEPLER
UNIVERSITY LINZ
Altenberger Straf3e 69
4040 Linz, Austria

jku.at

https://jku.at/

Abstract

This thesis explores the implementation of verifiable, Reproducible Builds for End-to-
End encrypted (E2EE) messaging applications for Android. The topic is part of the
research field of Reproducible Builds, which aims to increase trust in software and to
improve the security of Software Supply Chains. Reproducible builds aim to enhance
trust in software by allowing users to verify that the binary of the software has been
created from the exact source code and dependencies specified in the build process.
The thesis focuses on providing a reproducible build process for two open-source E2EE
messaging applications: Signal and Wire. The motivation to ensure reproducibility—and
thereby the integrity—of E2EE messaging applications stems from their central role as
essential tools for modern digital privacy. These applications provide confidentiality for
private and sensitive communications, and their compromise could undermine encryption
mechanisms, potentially leaking sensitive data to third parties. Ensuring the integrity of
E2EE apps is not only critical for individual privacy but also for upholding broader
principles of freedom, security, and trust in the digital age.

Due to time constraints, only a small subset of the available E2EE messaging apps could
be selected for this work. Signal Android and Wire Android were chosen as two of the
most popular E2EE messaging applications. However, the intention is to extend the set
of reproducibly built applications to include many more in the future. The applications
are built in a hermetically isolated build environment, which is configured using a Nix
expression. The implementation consists of a CI/CD pipeline, which is called at regular
intervals and checks for new versions of the Android applications. If a new version of
one of the applications has been released, the pipeline will update the Nix scripts and
verify the reproducibility of the new version of the application by building the derivation,
which fetches the new source code, retrieves the dependencies, and builds the APK. The
resulting APK is compared to the vendor-published APK using the tool Diffoscope to
identify any differences. The self-built APK, its hash value, and a build attestation are
published as pipeline artifacts of the GitLab instance and logged in a transparency log to
allow further external verification of the supply chain. This work contributes to improving
the security and integrity of software supply chains, particularly for E2EE applications,
by ensuring that no unauthorized modifications occur during the build process.

Contents

Abstract i
List of Acronyms vii
1 Introduction 1
1.1 Objectives and Approach 1
1.2 Outline e 2
2 Background 3
2.1 Android Package 3
2.1.1 Other formats in the Android ecosystem 3

2.2 End-to-end encryption Lo o 4
2.3 Open-Source Software (OSS) 4
2.3.1 Limitations of OSS 4
2.3.2 Relevance for my thesis L. 4
233 F-Droid)
2.3.4 AndroZooOpen 5

2.4 Hash Functions 5
2.4.1 Limitations of Hash Functions 5
2.4.2 Relevance for my thesiso L. 6

2.5 Signatures 6
2.5.1 Relevance for my thesis 6

2.6 Version Control Systems L 6
2.6.1 Relevance for my thesis 7

2.7 Android build tools 7
2.8 Vulnerabilities and Threats 7
2.9 Software Supply Chains 9
2.9.1 Introduction to Software Supply Chains 9
2.9.2 Supply Chain Attacks 9
2.9.3 Examples of Supply Chain Attacks 10
2.9.4 Supply Chain Integrity L. 11

2.10 Supply-Chain Levels for Software Artifacts (SLSA) 12
2.10.1 Introduction of the SLSA standard 12
2.10.2 Relevance for my thesis 14

2.11 Reproducible Builds oo 15
2.11.1 Introduction of the concept of Reproducible Builds 15
2.11.2 History of Reproducible Builds 16
2.11.3 Practical Aspects of Reproducible Builds 17
2.11.4 Reproducible build environments 19

2.12 Hermetic builds 20
2.13 Bootstrappable Builds o oo oo 20
2.14 Build Attestations o 21
2.15 Reproducible Builds using Nix 22
2.15.1 The Nix deployment system 22
2.15.2 Nix expression language 23
2.15.3 Building a component00 23
2.15.4 Nixstore 24
2.15.5 The Nix Packages collection 26
2.15.6 The standard environmento 26

Contents iv

2.15.7 Nix Flakes. 26
2.15.8 Relevance for the thesis 26

2.16 Verifiable Logs 27
2.16.1 Merkle tree 27
2.16.2 Rootnode L 27
2.16.3 Consistency proof Lo L 27
2.16.4 Inclusion proof 27
2.16.5 Availability and synchronization 28
2.16.6 Split-view attacks 28
2.16.7 “Bad” entries in a verifiablelogo 28
2.16.8 Relevance for the thesis 28

3 Related work 29
3.1 Projects and tools to improve Supply Chain Integrity 29
3.1.1 Gradle dependency verification L. 29
3.1.2 Gitlan 29
313 Guix . . .o 30
3.1.4 in-toto Framework 31

3.1.5 Extending Cloud Build Systems to Eliminate Transitive Trust . . . 31
3.1.6 Tools that are tailored to improve Android Supply Chain Integrity 32

3.1.7 apksigcopier 32
3.1.8 reproducible-apk-tools oo 32

3.2 Reproducible Builds on F-Droid 32
4 Threat model 34
4.1 Detailed introduction of the fictional people 34
4.1.1 Acommon user e 34
4.1.2 An investigative journalist L. 35

4.2 Definition of the threat model 36
4.2.1 Source threats 37
4.22 Build threats Lo 38
4.2.3 Dependency threats 0L 38
4.2.4 Availability threats o oL 38
4.2.5 Distribution threats 0L 39
4.2.6 Verification threats 0L 39

4.3 Threats in scopeo 39
5 Software Supply Chain of an Android application 40
5.1 Overview of the Software Supply Chain 41
5.2 Detailed steps of the Supply Chain Model 41
5.2.1 Sourcecode e 42
5.2.2 Build parameters L 42
5.2.3 Resource Preprocessing 43
524 Compilation L 43
5.2.5 Optimization and Obfuscation 44
52.6 DEX Conversion 44
5.2.7 Resource Packaging 44
528 APK Packaging 45
52.9 APK Signing 45
5.2.10 Distribution Lo 45
5.2.11 Verification L 45

6 Contribution of this thesis 47
6.1 Summary of the proposed approach 47
6.2 Selection of end-to-end encrypted (E2EE) applications 47
6.3 Supply Chains of selected Android applications 48

6.3.1 Existing Supply Chain: Signal Android 48

Contents

6.3.2 Existing Supply Chain: Wire Android
6.4 Implementation of this thesis
6.4.1 Implementation of the supply chain of the Android applications . .
6.5 The CI/CD pipeline
6.6 The Flake
6.7 Fetching the Source Code
6.7.1 Mitigations
6.8 Fetching the dependencies
6.8.1 Mitigations
6.9 Build within the hermetically isolated build environment
6.9.1 Build process aspects common to bothapps
6.9.2 Inclusion of the build tools
6.9.3 Build process specifics: Signal Android
6.9.4 Build process specifics: Wire Android
6.9.5 Mitigationso
6.9.6 Extra arguments passed to the build command
6.10 Signing of the APK
6.11 Comparison to the reference APK,
6.11.1 Using Diffoscope to compare the APKs
6.11.2 Implementation
6.12 Publishing of the resulting artifacts
6.13 Update the Reproducible Build process
6.13.1 Update references
6.13.2 Update dependencies
6.13.3 Update build tools
6.13.4 Update process trigger L.
6.14 Verification process: Concept L.

Evaluation

7.1 Inshort
7.2 Limitations and Scope Lo
7.3 Source threats. e
7.4 Build threats
7.5 Dependency threats
7.6 Availability threats oo
7.7 Distribution threats
7.8 Verification threats

Findings
8.1 Versions that were successfully built
8.2 Missing dependencies in provided verification-metadata.xml
8.3 (Very) long list of dependencies
8.4 Unavailable dependencies
8.5 Difficulty integrating the Gradle build process in Nix expressions
8.5.1 Fetching Gradle dependencies
8.5.2 Sandboxing issues: missing tools and other processes failing
8.6 Limited performance of the build process
8.7 Debug information in release builds

Discussion

9.1 List of threats, excluded from the threat model

9.2 Differences to other approaches

9.3 Use of verifiable logs in the verification process

9.4 Beyond Supply Chain Integrity of a application
9.4.1 Recursive verification of dependencies
9.4.2 Source threats for OSS L.

Contents

9.5 Relevance of this work in the current times

10 Future work
10.1 Improve implementation

10.1.1 Populating the build environment
10.1.2 Close remaining sources of non-reproducibility

10.1.3 Improve update process

10.1.4 Implement distributed verification method
10.1.5 Recursive Integrity Verification of dependencies
10.1.6 Additional trust placed in build environments
10.1.7 Optimization of the distributed verification

10.2 Extend/improve approach . . .
10.2.1 Missing build provenance

11 Conclusion

Bibliography

Vi

7

78
78
78
78
79
79
79
79
79
80
80

81
83

List of Acronyms

A-B Attestable Build

AAB Android App Bundle

AAPT Android Asset Packaging Tool

AAR Android Archive

AGP Android Gradle Plugin

APK Android Package

ART Android Runtime

Cl/CD Continuous Integration/Continuous Development
DEX Dalvik Executable

E2EE End-to-End encrypted

FHS File Hierarchy Standard

FSO file system object

INS Institute of Networks and Security

JDK Java Development Kit

0SS Open-source Software

R-B Reproducible Build

SBOM Software Bill of Materials

SLSA Supply-chain Levels for Software Artifacts
TEE Trusted Execution Environment

VCS Version Control System

vii

Chapter 1

Introduction

Recent years have shown an increase in the number of attacks on various links in supply
chains of software. The SolarWinds attack [1] in 2020 introduced a backdoor in the
attacked software without modifying the source code or tricking users into installing
modified binaries with invalid signatures. The attack was applied to the build system,
which was used to compile and sign the official binaries of SolarWinds. The attackers
abused the large amount of trust placed in the build system and the lack of awareness of
the possibility of attacks on it.

Following the SolarWinds attack in 2020, the NotPetya attack in 2017, the CIA’s ma-
nipulation of Xcode, and many more similar incidents, there was a rise in awareness for
the importance and relevance of Supply Chain Security. The concept of Supply Chain
Security encompasses all methods to increase the security and integrity of all processes
involved in the creation of software—from the source code to the build process and the
dependencies thereof, to the integrity verification of the binaries during the software
distribution phase.

One method to increase the security and verify the integrity of the build process are
Reproducible Builds (R-Bs). As stated on the website of the Reproducible Builds project,
R-Bs allow users to verify that binaries are created only using the exact version of the
source code and build inputs as stated in the build process. The concept of R-Bs has been
around for a while now. It was used already in the 1990s, was first publicly mentioned
in 2000, and then more concretely addressed in 2007 [64], but is recently gaining a lot
more traction as the advantage of being able to verify that published binaries are built
from exactly the published source code, with exactly the listed dependencies,
is becoming more appealing.

In the last few years, events like the ongoing efforts of the European Parliament to
introduce a law to add content scanners to messaging applications, as well as the policy
change of the Google Play Store to compel developers to upload their private signing keys
to their servers, theoretically allowing Google to distribute modified Android Packages
(APKs) signed with the vendor’s official key, increased the need for transparency and
verifiability for much more politically motivated reasons. While this trend can be worrying
for the public, it should be noted that journalists, activists, and political opponents have
been subjects of targeted attacks for a long time already and therefore might benefit the
most from tools and methods allowing them to verify that the software they use has not
been tampered with. The threat model of this thesis is therefore motivated by the risks
faced by two fictional individuals: a common user of E2EE messaging applications and an
investigative journalist. The thesis shows that R-Bs are useful for the considered threats
as they increase the transparency and thereby trust in build processes. With that, R-Bs
can be valuable elements of end-user verifiable software integrity.

1.1 Objectives and Approach

This thesis will focus on the reproducibility of open-source E2EE instant messaging
applications for Android. The goal is to provide an online, accessible archive of binaries

1 Introduction 2

that have been built from their publicly available source code. Along with those binaries,
the instructions of the reproducible build process are provided for every built application.
The archive also provides the results of the comparison of the self-built APKs with
the official binaries published by the vendors to transparently document the differences
between the two applications, if there happen to be any. To allow for accountability and
traceability of the results of the reproducible builds, the APKs and their hash value
are published on a GitLab server operated at the Institute of Networks and Security
(INS). This allows the approach to also provide trust and accountability in cases where
reproducible builds are not yet fully achievable.

The build process is made reproducible by executing it within the build phase of a Nix
derivation. This provides a hermetically isolated build environment that ensures that
no other software binary is accessible to the build process than the exact ones that are
specified by the build process. The comparison between the APK resulting from the
build process and a vendor-published reference APK is done using the tool Diffoscope.
The build is executed by a Continuous Integration/Continuous Development (CI/CD)
pipeline on GitLab that regularly checks for a new version of the E2EE messenger apps.
If a new version is found, it updates the references, starts the build process, compares
the resulting APK with the officially published one, and publishes the result of the
comparison, the self-built APK, and its hash value as GitLab pipeline artifacts. It is
necessary for the source code for the Android application to be publicly available to
allow for R-Bs and therefore this thesis is only concerned with open source software.

1.2 Outline

Section 2 explores the topics and concepts that will be referred to in this thesis. The work
continues in Section 3 by highlighting related research and projects, aiming to provide
similar contributions.

Section 4 then defines the threat model considered in this thesis. Section 5 gives an
overview of the general software supply chain of an Android application and points out
which threats can occur along it. In Section 6, the approach to mitigate the threats
occurring along the supply chain model of the Android applications, and the following
sections will explain the implementation part of this thesis.

Section 7 evaluates which threats are mitigated by the approach and which threats remain
open. Section 8 highlights the findings of this thesis, and Section 9 discusses questions
regarding the presented work. Section 10 gives an outlook on potential future research
topics and extensions of this work, and Section 11 closes the thesis with a conclusion.

Chapter 2

Background

This section explores the concepts, topics, and tools that are referenced and used in this
thesis.

2.1 Android Package

The APK file format is used to distribute and install applications on the Android plat-
form. It is a ZIP-archive format with a predetermined structure that contains all necessary
components to run the application on Android devices. It contains core functionality
in the binary classes.dex file in the top-level directory and required native libraries
as precompiled binaries in the 1ib/ directory. The .dex files are bytecode, optimized
for Android Runtime or the older Dalvik Virtual Machine, and the native libraries are
platform-specific binaries that are typically used for performance critical tasks or hard-
ware specific functionality. APKs then typically also contain resources like icons, images,
and other UI elements in the res/ directory and raw asset files like fonts and sounds
in the assets/ directory. Another essential file in an APK is the AndroidManifest.xml,
which contains the metadata about the application, including its version, package name,
components, required permissions, and required hardware and software features. The
directory META-INF/ contains metadata about the archive itself and the signature files
CERT.SF and CERT.RSA, given that the APK is signed. [37, 42]

Modifying the files of an APK allows to change the UI of applications and to inject
custom code into the applications. In order to prevent such unauthorized modifications,
applications are signed by hashing the contents of the archive except for the APK signing
block. Any changes to the APK outside of the APK signing block will therefore invalidate
the signature. [63]

2.1.1 Other formats in the Android ecosystem

Android App Bundle (AAB) and Android Archive (AAR) are file formats that serve
slightly different purposes compared to the APK format:

= AAB: Is a new format introduced by Google, and since August 2021 it is the required
format to upload applications to the Google Play Store [20]. AABs cannot be directly
installed, but rather provide a bundle of resources from which optimized APKs can
be generated. These generated APKs are then called split APKs and are tailored
to a specific device configuration, which reduces the application’s download size and
improves its performance. [19, 20]

m A AR: This file format is also not directly installable and is instead used to package
reusable Android libraries. It contains compiled code, resources, and a manifest file
to allow developers to include the library in their projects. AAR files are typical
dependencies in Android projects. [21]

2 Background 4

2.2 End-to-end encryption

This thesis focuses on Android applications providing end-to-end encrypted messaging
functionality. E2EE ensures that the content of messages is encrypted in such a way that
only the intended recipient can decrypt it. Essentially, this means that the message is not
decrypted at any point once it is sent—mneither on the server of the messaging applications
nor anywhere else along the communication path between sender and receiver. This
elevates the privacy guarantees that such an application can provide, as no third party
and not even the vendor of the application itself can read the content of the message.
However, recent trends in increased digital surveillance worldwide, as well as legislative
proposals such as the ongoing discussions of the EU’s Child Sexual Abuse Regulation
[7], have raised serious concerns about the future of E2EE [6]. The proposal introduces
mechanisms that could undermine E2EE by compelling messaging application vendors
to scan communications for illegal content. This would effectively require vendors to
provide plaintext access to user data, thereby compromising the core privacy and security
guarantees of E2EE. [70]

2.3 Open-Source Software (OSS)

Open-source Software (OSS) is software that is built from source code, which is freely
available to anyone. This allows anyone to build their own applications from the source
code, as well as to analyze the source code and look for weaknesses and vulnerabilities
in it:

m Benefits for developers: The free access to open source software allows for sev-
eral benefits, including the ability to learn from existing projects and to be able to
build applications faster and more easily by including open source libraries in the
development and build process of the software. It is common practice nowadays for
projects to include OSS libraries to save the time and effort of programming it one-
self. This does, however, require the developer to audit or trust such libraries to work
as intended and to not include any unwanted logic.

m Security benefits: One of the original promises of OSS was that the public avail-
ability of the code would allow for distributed auditing of the software to ensure the
benevolence of the logic of the software and to find and patch vulnerabilities in the
source code of the application to enhance the end users security [56, 67].

2.3.1 Limitations of OSS

While the idea of being able to audit the code of OSS was shown to work well if a
big community of users is interested and motivated in verifying the source code, it can
also give a false sense of security if there are not enough users to perform audits on the
software [81]. OSS can even introduce additional threats, as many OSS projects do not
only allow for audits and feedback on the software but encourage or even rely on users
from the community to contribute to the development of the source code. Depending on
the existing security mechanisms to verify the benevolence of contributed source code,
this could allow attackers to submit code that contains backdoors [50], vulnerabilities,
or other malicious flaws and enable a malicious actor to perform a Supply Chain Attack
(see Section 2.11).

2.3.2 Relevance for my thesis

The aspect of auditability of source code is very central to the approach described in the
thesis, because the source code of the applications needs to be freely and openly accessible

2 Background S

to be able to reproduce the build process (see Section 2.11 for more information). Not
all the applications within the current landscape of E2EE messengers are open source,
but because that is a necessity for reproducible builds to work, this thesis will only focus
on applications for which the source code is available. Table 6.1 lists a selection of E2EE
messengers for which the source code could be found.

2.3.3 F-Droid

F-Droid is a repository of open source Android applications®. It is also a community
driven application store project, a collection of tools to set up and run an app store, and
an app store client to install applications from the central repository or from 3rd party
repositories?. Part of the collection of tools are build and release tools that support
developers in turning app source code into published application builds. F-Droid also
provides tools to upload apps as reproducible builds, which will be covered in more
detail in Section 3.2. [11]

2.3.4 AndroZooOpen

AndroZooOpen [52] is another large-scale collection of open source Android applications
that can be the starting point for future work to apply the concepts of this thesis to
numerous applications to verify the integrity of the build process and the resulting APK
of them.

2.4 Hash Functions

Cryptographic hash functions are software algorithms that map arbitrary strings of data
to fixed length outputs, the so-called hash value. The functions are deterministic, which
means that for the same inputs they will always provide the same outputs. However,
changing the inputs even just in the slightest will result in a very different hash value.
Other properties of modern hash functions are [24]:

m Pre-image resistance: Given a hash value, it is very difficult to find the input that
led to this value.

m Weak collision resistance: Given an input value, it is very difficult to find another
input value that results in the same hash value if the hash function is applied to
them.

m Strong collision resistance: It is very difficult to find two input values that result
in the same hash value, if the hash function is applied to them.

These properties allow hash functions to be used to perform integrity checks: “digest”
large amounts of data (for example, a large file) to check its validity by comparing the
resulting hash value of the file to the expected hash value. [24]

2.4.1 Limitations of Hash Functions

The only reason why the hashes of the differing files could be the same is if a so-called hash
collision occurs, which is very unlikely with modern hashing algorithms like SHA-256,
SHA-512, or SHA-3 variants. Hash collisions can, however, be crafted for older hashing
algorithms like MD5 or SHA-1, which means that getting the same hash from two files
using an old hash algorithm does not guarantee that the files are identical, and therefore
it is necessary to use secure algorithms instead.

Thttps://f-droid.org/repo/
2https://forum.f-droid.org/t /known-repositories /721

2 Background 6

2.4.2 Relevance for my thesis

In this thesis, hashes are mainly used to check whether two files are bitwise identical
by applying a secure hash function to the files and verifying whether the resulting hash
values are identical. This concept is used

m by Nix to verify the equivalence of a derivation and an existing entry in the Nix store
(see Section 2.15 for more information).

m by the conceptual verification method described in Section 6.14 to ensure the equiv-
alence of the Android application to be installed and the APK that was built by the
protected build process described in Section 6.

® in the form of checksums, to reference a specific version in, Version Control Systems
(VCSs) like git.

m in various other steps of the contribution to verify the integrity of some artifact or
piece of digital information (e.g., when fetching dependencies, see Section 6.8).

m as a fundamental building block of transparency logs (see Section 2.16 for more
information).

2.5 Signatures

Signatures are a cryptographic concept that allows to ensure the authenticity in addition
to the integrity of digital information. In this thesis, signatures will be mainly relevant
in the signing step of Android applications (see Section 5.2.9). In this step, the developer
of an Android application takes an unsigned APK and their private signing key to sign
the application. This signed application then allows users to verify that the application
was built by the developer. [35, 53, 63|

2.5.1 Relevance for my thesis

This thesis will make use of the authenticity that signatures provide. It will also use
the fact that signatures are only valid for the exact binary that they are created for.
This allows for a mechanism to verify the integrity of an application after it was built
and to verify the bit-wise equivalence of a signed and an unsigned APK by copying the
signature from the signed APK and patching it into the unsigned application. If the two
applications have differed by more than just the signature, the patched application will
not be signed in a valid way.

2.6 Version Control Systems

VCSs are a very common tool in modern software development. They allow developers
to collaboratively extend and improve the functionality of software in small changes that
are submitted in so-called commits and to combine or revert changes as needed due to
the recording of these commits in the so-called commit history. In combination with the
concept of, OSS (mentioned in Section 2.3) VCSs allow for the concept of accountability
towards the public of every change to the source code, because every commit will show
which changes have been applied to the software and by whom. This concept can be
leveraged to trace back malicious source code, once it is found, to the commits and the
author of the commits that introduced the unwanted changes.

2 Background 7

2.6.1 Relevance for my thesis

Every commit in modern VCSs can be referenced by a checksum (see Section 2.4) and
describes a specific state of the source code. Many VCSs also allow labeling commits with
a so-called tag to allow for human-readable references to a specific commit. The thesis
uses the concept that referencing a specific commit via its checksum or tag describes the
same state of the source code independent of who accesses the code and thereby allows
using the very same code as input to build processes.

2.7 Android build tools

Among the build systems used for Android development, Gradle is the most widely
used one. It is the default build tool for Android Studio and supports complex build
configurations, dependency management, and multi-module projects. There are many
other build tools, most of which are specialized tools or modern tools that allow for
cross-platform development. Some of these tools are:

= Maven, Apache Ant are tools that were commonly used before Gradle became the
standard. There exist some legacy projects that still use them, but in general they
are less commonly used now.

m Meta’s Buck2 and Google’s Bazel can be used to build Android projects, but
are less commonly used than Gradle.

m Apache Cordova, Reactive CLI, Flutter, and Xamarin are a few examples of
build systems that are based on different technologies, but all provide cross-platform
compilations.

This thesis focuses on providing isolated reproducible builds for existing projects of An-
droid applications and tries to provide an approach (see Section 6) that creates minimal
changes to the existing build workflow. Therefore, the approach is designed to wrap
around existing build workflows and such that it executes Gradle builds within a her-
metically isolated build environment. Future work could extend the approach to support
hermetic builds for other technologies.

2.8 Vulnerabilities and Threats

In this section, the terms “vulnerabilities” and “threats,” used in this thesis, will be
described:

® Vulnerability: A vulnerability in general refers to a weakness or flaw, for example,
in a system, some software, a piece of hardware, or a process, that can be exploited
by an attacker to compromise the confidentiality, integrity, or availability of a system.
Vulnerabilities can arise from various sources, such as coding errors, misconfigurations
of systems or software, outdated applications, or inadequate security measures.
In this thesis, vulnerabilities mainly refer to exploitable weaknesses of either the
application itself, the build process of the application, or another link in the Software
Supply Chain (see Section 2.9) that lead to the compromise of the confidentiality or
integrity of the application.

m Threat: A threat is any potential event, actor, or condition that could exploit a
vulnerability to compromise a system. In general, threats can be intentional, such as
cyberattacks by hackers, or unintentional, such as natural disasters or human errors.
In the context of this thesis, threats are mainly referring to malicious actors that
attempt to compromise the integrity or confidentiality provided by E2EE messaging
applications to filter the shared content or steal sensitive information shared in those

2 Background 8

applications. In Section 4 a Threat Model is defined that includes all the threats that
are considered in this thesis.

m Backdoor: Backdoors are hidden methods or mechanisms that allow attackers unau-

thorized access to a system, bypassing normal authentication or security controls.
They are one of the main vulnerabilities considered in this thesis, as they could al-
low attackers to compromise the confidentiality of the considered E2EE messaging
applications.
This thesis will mainly consider bug doors, a subtype of backdoors, as they can be cre-
ated unintentionally by developers or intentionally by malicious actors by introducing
a software bug or coding error that, if exploited correctly, provides unauthorized ac-
cess to a system. Bug doors, since they can be as challenging to detect as other bugs
of software, often go unnoticed for a long time if the source code of the application
is not rigorously tested and reviewed.

2 Background 9

2.9 Software Supply Chains

In this section the concept of Software Supply Chains will be explored. First an introduc-
tion of the concept is given in Section 2.9.1, then in Section 2.9.2 Software Supply Chain
Attacks are introduced, and in Section 2.9.3 examples of recent Supply Chain Attacks
are listed. Section 2.9.4 will then provide the description of the concept of Supply Chain
Integrity.

2.9.1 Introduction to Software Supply Chains

In general Supply Chains are interlinked steps that describe the process that converts
raw materials into finished products and that distributes the final product to the end
customer. Every product in the commerce sector has a supply chain, and likewise, soft-
ware products in the e-commerce sector have a Software Supply Chain. In the following
sections of this thesis, the term Supply Chains will refer to Software Supply Chains and
describe the collection of all individual steps from the creation of the source code of an
application to the distribution of an installable binary. The term Software Supply Chain
will also include the verification steps, confirming the authenticity and integrity of the
application.

Similar to supply chains of physical products, the execution of steps of a software supply
chain involves a set of different parties. The parties involved in a software supply chain
are the developers of the software, the party hosting the build systems, the parties pro-
viding the dependencies and resources included in the build process, and the distributors
providing the applications to the end-user.

2.9.2 Supply Chain Attacks

Supply Chain Attacks are a class of cyberattacks that, instead of directly attacking the
infrastructure of their target, aim to indirectly compromise the system or organization by
attacking third parties that are involved in the software supply chain of some application
that the target is using. For this, supply chain attacks exploit vulnerabilities in software
and processes involved in the software development, compilation, distribution, or verifi-
cation. Supply chain attacks are a growing threat, and due to their indirect attack vector,
they can be used to compromise well secured targets that do not sufficiently verify the
integrity and benevolence of the tools and applications they use.

History of Supply Chain Attacks

Ken Thompson’s 1984 Turing Award lecture, “Reflections on Trusting Trust” [79] already
emphasized the idea that the security of a program extends beyond the logic in its source
code. To ensure the security and integrity of a program, every single step of its software
supply chain needs to be protected. This is necessary to prevent not only vulnerabilities
and backdoors in the source code but also the addition of malicious logic during the build
process and the distribution of malicious binaries as the result of a compromised supply
chain.

Supply Chain Attacks during build time

Supply chain attacks in the build phase of an application work by tampering with the
steps involved in building an application and result in a modified version of the software
product containing unwanted or malicious logic. An attacker might, for example, com-
promise the development system executing the build process and add malicious logic to

2 Background 10

the software binaries at build time. Thereby the resulting application will have been built
and signed by the vendor but will contain unwanted logic. In his lecture [79] Thompson
described an example of a sophisticated Supply Chain Attack that allowed him to inject
malicious logic into a binary that had been compiled with a compromised compiler. This
compromised compiler would propagate malicious logic transparently, without changes
to the source code, and could, for example, also propagate its malicious logic to the next
generation of compilers if they are compiled using this compromised one. This theoretical
attack was known since 1984 but was not considered in many threat models until the
recent attacks on Software Supply Chains gained more attention.

Factors that enable Software Supply Chain Attacks

In recent years attackers recognized the potential impact of attacks on Software Supply
Chains. Compromising a well selected tool or library, which is used in numerous Software
Supply Chains can impact numerous systems or people.

The recognition of Software Supply Chain Attacks as high-value targets and the therefore
increased number of such attacks have mounted into a pressing concern for governments
and organizations worldwide. The large scale availability and benefits of open source soft-
ware (see Section 2.3) have resulted in the trend to include OSS tools and libraries in steps
along the Software Supply Chains of many modern software projects. The use of OSS
speeds up development and is to be found in the whole software life cycle. Dependency
managers facilitate the use and inclusion of third-party libraries. They automatically
resolve, download, and install hundreds of open source packages, as software projects
commonly depend on multiple libraries, and they introduce numerous transitive depen-
dencies themselves. Only a few dependency managers, however, provide functionalities
to verify the integrity of the dependencies.

It was observed, however, that some libraries and other software dependencies are part
of the dependencies of thousands of projects, which results in the risk that if one of
those software artifacts is compromised, the attack will compromise the large number of
projects that depend on it. [61]

In addition to attacks on OSS artifacts, Supply Chain Attacks can also arise if software
artifacts are developed by paid third parties. It should be noted that outsourcing the
software development is not an issue by itself, but rather the tendency to buy software
from cheap providers, which, to save time and costs, might not sufficiently review the
developed source code.

The risk of Software Supply Chain attacks can be reduced if projects include libraries
and dependencies that are of good quality, well maintained, and audited.

2.9.3 Examples of Supply Chain Attacks

Any software can introduce vulnerabilities into a supply chain. As a system gets more
complex, it’s critical to already have checks and best practices in place to guarantee
artifact integrity, that the source code you’re relying on is the code you're actually using.
In the past, build systems were either generally trusted or not even considered in the
Threat Models, but the 2020 SolarWinds attack marked a tipping point in the awareness
of software supply chain security, and it became evident that such attacks can occur at
every link along the Software Supply Chain. This attack was only one of many - in recent
years these kinds of attacks have increased in number and damage that they caused. In
the following, some examples of recent attacks are given, as the SolarWinds attack was
only one of many, and literature documents at least 174 similar incidents [61].

m SolarWinds attack [61]
In December 2020, SolarWinds’ Orion software was attacked. In this attack, mali-
cious code was injected into the build system, and subsequently the build process

2 Background 11

injected malicious code into the executables it was building, resulting in compromised
binaries signed with the company’s official code-signing keys. This attack affected nu-
merous U.S. government agencies and private organizations and prominently shows
the devastating potential of supply chain attacks.

m NotPetya attack [61]
In 2017, a ransomware was concealed in a malicious update for a Ukrainian accounting
software. This attack harmed Ukrainian and global companies, creating losses worth
multiple billion dollars.

m Malicious version of CCleaner [61]
Also in 2017, the popular maintenance tool for Microsoft Windows systems,
CCleaner, listed a version containing malicious logic on their official website. In the
time frame of more than one month until the malicious version was detected, the
binaries had been downloaded 2.3 million times.

m event-stream take-over [38]
In 2018, the maintainer of the npm package event-stream was offered by the alleged
attacker to take over the maintenance of the package. After gaining the original
author’s trust, the alleged attacker then proceeded to modify the npm package by
making it depend on a malicious package. At that time almost 1,600 other packages
depended on event-stream and were thereby hit by this attack.

m Straw horse [68]
In 2015, The Intercept published a story on leaked secret CIA documents on the
strategies of an attack, based on Ken Thompson’s attack [79], to inject arbitrary
changes into compiled binaries of applications for iOS. The described attack was
based on the manipulation of the software development kit Xcode, but the documents
did not disclose any indications of the actual execution of the attack or its success
rate.

m XZ Utils [50]

In 2024, a critical vulnerability in the widely used XZ Utils has been found [2]. A
developer gained the trust of the project maintainer until they were promoted to co-
maintainer and could inject a backdoor into the tarballs with valid signatures that
are distributed to a wide range of package repositories for Linux distributions. The
backdoor was not included in the source code to prevent its discovery by reviewing
the code, and only in the binary archives was the file included that activated the
backdoor.

2.9.4 Supply Chain Integrity

The examples mentioned in Section 2.9.3 are just an excerpt of the many supply chain
attacks that have occurred in recent years. They show that a compromised supply chain
can lead to the distribution of software that is validly signed and also not suspicious in
any other way but contains malicious logic. This is why ensuring the integrity of software
supply chains has become a critical concern in recent years, as highlighted by Lamb et
al. [46]. They go on to say that reviewing the source code of applications can increase
confidence in the security of the software product but is not sufficient to guarantee the
integrity of the executable counterpart. Trusting the source code does not equate to
trusting the binaries that are supposedly derived from it.

In addition to reviewing the source code, the integrity of included libraries and the tools
used throughout the software supply chain need to be rigorously verified as established by
Alkhadra et al. [1]. The advice that organizations should gain an overview of their entire
software supply chain. The supply chain should generally be added to the threat model,
and a “third party risk” analysis should be established: vendors of applications should be
carefully chosen and audited. The use of unapproved or unaudited software should be

2 Background 12

eliminated. Alkhadra et al. further advise companies to also carefully audit open-source
software that is used by their software developers and contribute to the maintenance of
the source code by finding and patching bugs. The last piece of advice they mention is to
also monitor the dark web to know about security breaches earlier in case the breached
company does not notice or disclose the breach immediately.

These actions do not replace other threat mitigations but are to be applied alongside
general security measures, like, for example, the concept of least privilege, monitoring
the security status of systems, implementing advised measures by policies and guides
(e.g., NIST standards), having a trained incident response team, deploying intrusion
detection mechanisms, and limiting the number of access points.

Establishing trust using software supply chains

The primary challenge in securing software supply chains lies in the amount of trust
that is placed in third-party software and build systems. Instead of trusting those de-
pendencies and tools blindly, they should be audited and protected against tampering or
unauthorized modification at any stage.

Furthermore, users of an application have to trust the vendor of the application to ensure
the supply chain integrity and have no insight into which resources have gone into building
that application.

The topic of ensuring supply chain integrity has also been recognized to be important
by the US government. In 2021, an executive order [60] was issued by the US President
to protect the integrity of Software Supply Chains. This executive order mentions the
requirement to distribute an Software Bill of Materials (SBOM) alongside the binaries
of the software to allow users to know the resources used to build the software and to
allow them to determine whether they trust the application to be benevolent or not.

Linking sources and binaries together

The list of resources and dependencies, however, is not sufficient yet to guarantee that
(only) these inputs have been used in the build process of the software. To achieve guar-
antees that only a certain set of inputs has been used in the build process, a transparent
link between the source code and the compiled binary must be established.

A promising approach to address the establishment of this link is the concept of Re-
producible Builds [64], as they provide a mechanism to verify that a binary corresponds
exactly to its original source code by allowing anyone to reproduce the build process and
allowing them to obtain bitwise identical build outputs from the reproducible builds. The
exact method of how the reproducibility of the build process is ensured depends on the
implementation, but in general requires the software source code to be publicly available,
as well as the description of the exact build process to be distributed. Section 2.11 will
further expand on the topic and advantages of reproducible builds.

2.10 Supply-Chain Levels for Software Artifacts (SLSA)

In this section the security standard Supply-chain Levels for Software Artifacts (SLSA)
will be introduced. This standard provides general guidelines to improve Supply Chain
Integrity and concrete mitigations against threats to Software Supply Chains.

2.10.1 Introduction of the SLSA standard

The SLSA framework [16] is a checklist of standards and controls to strengthen the
integrity and security of supply chains and their resulting artifacts. The goal of the

2 Background 13

framework is to improve the resilience against supply chain attacks at any link in the
chain. The secondary focus of the standard is to ensure the availability of the package,
its build process, and all its code and change history to allow for future maintainability
of the artifact and to enable future investigations or incident responses.

The framework uses common language to describe measures to harden all the links in
the software supply chain against tampering. It recommends mitigations classified into 4
levels of increasing integrity protection.

The authors of the standard provide the measures for producers, consumers, and infras-
tructure providers to increase trust across the entire Supply Chain of software artifacts:

m Producers: The mitigations help to better protect their source code against tam-
pering and insider threats.

m Consumers: The standard provides guidelines to verify the software they are using,
instead of just relying on its claims of authenticity and integrity.

m Infrastructure providers: SLSA provides guidance for hardening the infrastruc-
ture they provide (e.g., a build platform or package ecosystem).

Tracks

The SLSA levels are split into tracks. Each track has its set of requirements and goals
for the four levels and focuses on a particular aspect of the Supply Chain Integrity. At
the time of writing this thesis, the only existing track is the build track, focusing on the
transparency and integrity of a package artifact’s build process. An SLSA track providing
increasing levels of trust in source code® is currently at the stage of final review. The
focus of this thesis is on the build process, and therefore the levels of the build track are
described in the following list:

Level 0: Does not provide any guarantees. It represents the lack of SLSA. Build processes
of this level include development or test builds that are run on the same machine.
It should be noted that Level 0 might not be considered a proper level of the
SLSA standard, which is supported by the fact that the SLSA Source track is
made of levels 1 to 4.

Level 1: Requires build information to be recorded as the so-called provenance, which
includes information about the entity that built the software artifact, the used
build process, and the top-level build inputs. The build information must then
also be distributed to consumers. Another requirement is to have the build
process be consistent to allow consumers to form expectations about what the
build process should typically look like. The requirements of SLSA Build level
1 require only small adaptations that are easy to integrate into existing build
workflows without changing them. The level already provides a list of benefits,
including easier reviewing and rebuilding of the software and of the build process,
preventing software builds from a publicly unavailable state of the source code if
the provenance is verified, and providing data to create an overview of software
and platforms used in build processes. The provenance of this level does not
provide mechanisms against tampering, as it may be incomplete, unsigned, or
both.

Level 2: Extends the benefits of level 1 by ensuring that an artifact has not been tam-
pered with after it has been built by requiring the provenance to be signed and
its authenticity validated by the consumer. In addition to the requirements of
level 1, it is also necessary to run the build on a hosted platform (dedicated
infrastructure that is not an individual’s workstation), which also generates the
provenance and performs the signing of it. This reduces the attack surface of

Shttps://slsa.dev/spec/v1.2-rcl/source-requirements

2 Background 14

Level 3:

2.10.2

the build process, as the dedicated build platform can be especially audited and
hardened. These requirements also provide the advantage that it requires an
explicit attack to evade the verification or to forge the build information, which
might still be easy to perform but will also deter unsophisticated adversaries
who face legal or financial risks when evading the security controls.

Requires builds to be run on hardened platforms that offer strong tamper pro-
tection. They must implement strong controls to isolate builds from external
influences, which extends to builds within the same project. They must also pre-
vent signing material used to authenticate the provenance from being accessible
to the user-defined build steps to protect credentials from being compromised.
Build processes protected according to this level prevent tampering during build
time and thereby prevent insider threats, credentials being compromised, and
other attacks originating from the same host. They provide strong confidence
that the software artifacts were built from the official source and build process
and ensure that forging build information or evading verification of a build pro-
cess of SLSA level 3 would require attacks that are beyond the capabilities of
most adversaries.

Relevance for my thesis

Section 4 describes the threat model that is considered in this thesis. The underlying
model of the software supply chain in this thesis is based on the supply chain model
of the SLSA standard. The contribution of this thesis aims at providing Supply Chain
Integrity measures equivalent to the SLSA build track level 3. The aim is to provide
authenticated build information about the inputs and execution of a consistent and simple
build process, which is run on a dedicated hosted platform in a hermetically isolated
build environment, ensuring isolation from any external influences during build time.
The contribution should also prevent user-defined build steps from having access to the
credentials used to authenticate the build information.

2 Background 15

2.11 Reproducible Builds

This section explains the concept of Reproducible Builds (R-Bs). Section 2.11.1 gives an
introduction to the concept, and Section 2.11.2 takes a brief look at the history of the
concept of Reproducible Builds. Section 2.11.3 highlights the practical considerations of
Reproducible Builds and explains common causes of non-reproducibility. Section 2.11.4
provides insight into the concept of Reproducible build environments and lists technologies
that provide those.

2.11.1 Introduction of the concept of Reproducible Builds

In general, software is installed by the end-user in its binary form, and these binaries
are distributed by the vendor after compiling the source code using a certain set of build
tools and by including a list of dependencies and libraries in the build process. A general
user is unable to retrace the transformation of the source code of software to the binary
that is distributed by the vendor or an app store. This might seem logical for proprietary
software, for which no source code is publicly available, but it is in general also true
for OSS. OSS, though it allows reviewing the source code, does not necessarily provide
any mechanisms to guarantee the correspondence of the source code to the binary of the
software.

Supply Chain Security benefits

A solution to provide a link between source code and the compiled binary is to enable
anyone to reproduce the build process by providing a description of the build environment
and all the software artifacts involved in compiling the application. The description should
be detailed enough to allow anyone to rebuild bit-by-bit identical binaries. This allows
trust to be established that the described build process is actually the very same build
process executed by the vendor to obtain the APK. Given that the build is reproducible
(i-e., bitwise identical build outputs are obtained), an independent party can audit the
inputs of the build process and the build process itself. They can analyze the source code,
the list of dependencies, and the build tools involved and verify their benevolence.

Fourné et al. [29] emphasize the importance of the concept of R-Bs, as they can provide
protection mechanisms for modern Software Supply Chains. They allow establishing a
strong foundation for defending against attacks on the build system, as any changes in
the build process that result in modified build outputs can easily be detected during the
verification step. [29]

Requirements of Reproducible builds

The definition of reproducible builds by the Reproducible Builds project [64] is as follows:

“A build is reproducible if, given the same source code, build environment,
and build instructions, any party can recreate bit-by-bit identical copies of
all specified artifacts.

The relevant attributes of the build environment, the build instructions, and
the source code, as well as the expected reproducible artifacts, are defined by
the authors or distributors. The artifacts of a build are the parts of the build
results that are the desired primary output.”

There exist many more definitions of Reproducible Builds, but based on the definition
of the Reproducible Builds project [64] it can be summarized that for a build to be
reproducible, the following requirements need to be met:

2 Background 16

m The whole source code of the application must be publicly accessible.

m All the libraries and dependencies included in the build process need to be available.
m The software providing the build environment needs to be available.

m The description of the exact configuration of the build environment must be provided.

This described build environment, to yield bit-by-bit identical outputs, generally needs
to be designed to be deterministic and isolated from the host system it is running on.
The build process, given the same inputs, should always provide the same outputs. The
concept of reproducible build environments is further described in Section 2.11.4.

Advantages of Reproducible Builds

Along with the security benefits, Reproducible Builds also provide a few non-security
related benefits [46]:

= Quality assurance: Reproducible builds complement quality assurance (QA) efforts
by identifying issues that may affect the reliability of software, because problems with
reproducibility often hint at symptoms of larger issues in the build process or software
design. By addressing these issues, developers can improve both the reproducibility
and overall quality of their software.

® Development environments: The adoption of Reproducible Builds in software de-
velopment processes allows to ensure that build processes behave consistently across
systems, which improves the stability and speed of the development process.

= Ensure licensing compliance: distributing the information to make builds repro-
ducible also enforces license compliant usage of libraries and tools, as any abuse could
be detected by analyzing the build process.

Drawbacks of Reproducible Builds

Making build processes reproducible will also introduce operational overhead, as every
input to the build process must be precisely defined to guarantee identical results. This
increase in efforts has led some large projects, such as Kubernetes [25], to stop supporting
reproducibility of their build processes.

2.11.2 History of Reproducible Builds

The widespread adoption of Reproducible Builds as a standard practice in software de-
velopment and thereby a core part of Software Supply Chains is driven by projects and
institutions such as the Reproducible Builds project [64]. The Reproducible Builds project
began in 2014 with the goal of making the Debian operating system fully reproducible
[46]. This initiative was particularly significant because Debian is one of the most mature
Linux distributions and maintains one of the largest curated collections of free and open-
source software (FOSS). Seven years after the beginning of the Reproducible Builds
project, approximately 95% of over 30,000 packages in Debian’s development branch
could be built reproducibly [46]. Lamb and Zacchiroli [46] emphasize that these achieve-
ments are thanks to cross-community efforts that enabled such a large scale adaptation of
the concept. Outside the Reproducible Builds project, many other software distributors
started to adapt the concept of R-Bs (e.g. F-Droid, see Section 3.2 for more information).
Researchers like Fourné et al. [29] aim to identify the remaining challenges that need to
be overcome, such that R-Bs can become more commonly adapted.

2 Background 17

2.11.3 Practical Aspects of Reproducible Builds
Testing the reproducibility of a build process

Due to the scale of the project, developers at Debian needed to create an automated way
of testing build processes for reproducibility. They therefore developed a CI/CD system
that builds each package in the Debian archive twice in a row on two independent build
systems. Those build systems were deliberately configured to differ as much as possible.
In total, more than 30 variations can be applied to the systems; among those variations
are changing the system time, having a different host name, running on different kernel
versions, or using a custom file system to have varying file ordering [46]. With this
infrastructure in place, the reproducibility of the artifacts can be verified with a very
high degree of confidence.

Root-cause analysis of non-reproducibility

In the case that build processes are not reproducible, their resulting binaries will have
differences caused by sources of non-reproducibility. While detecting mismatches between
builds is straightforward (e.g., by comparing checksums of artifacts), identifying the root
cause of differences can be challenging at times. To address this, the Reproducible Builds
project developed Diffoscope [10], a tool that analyzes the differences between two pro-
vided artifacts. If the artifacts are archives of some sort (e.g. APKs or Zip archives), it
will recursively unpack the artifacts and compare the contained files. This allows exact
pinpointing of the differences between two artifacts instead of just providing the infor-
mation that the two artifacts differ. Diffoscope supports many file and archive formats
and can translate binary formats into human-readable forms. It highlights differences
between the analyzed files and provides the found differences as text or HTML output.
It can, for example, highlight build dates embedded in binaries and will provide the con-
text of found differences to help developers identify the source code responsible for the
variation. While the tool is highly effective in finding the differences, it still requires the
judgment of software engineers to attribute the differences to certain causes. [46]

Lamb and Zacchiroli [46] established two main causes for non-reproducibility:

m Uncontrolled build inputs: Many toolchains used in conventional build processes
can be affected by attributes of the host system they are running on. Such attributes
include system time, environment variables, and the build path, and, according to
Lamb and Zacchiroli [46] is analogous to breaking the encapsulation concept in soft-
ware design, as it corresponds to high-level processes being influenced by low-level
implementation details.

® Build nondeterminisms: The second class of root causes for non-reproducibility
can be summarized as build nondeterminisms: aspects of the build process that be-
have nondeterministically and therefore encode random outcomes in the resulting
binaries. These nondeterminisms occur if outputs depend on the state of a pseudo-
random number generator or on the arbitrary order of process scheduling.

In the following, a list of typical examples of sources of non-reproducibility is provided,
and a list of advice on how to mitigate these sources of non-reproducibility is provided.
Section 2.11.4 will introduce reproducible build environments, which are designed to
mitigate a high number of the non-reproducibility sources. Section 8 highlights sources
of non-reproducibility that were encountered in this thesis.

Typical sources of non-reproducibility

Debian hosts a repository [9] containing sources of non-reproducibility they encountered.
The repository contains a list of more than 430 different problems, and in the following
list, the most common ones will be briefly introduced:

2 Background 18

m System time and timestamps: Many build processes include the system time
or include the timestamps of source files during the compilation phase. The system
time is in general different for every invocation of the build process, and also source
file timestamps might be unintentionally changed. The Reproducible Builds project
found that the best solution is to extend build tools to take the build time from the
environment variable SOURCE DATE EPOCH and to then distribute the value
of this variable in the recorded build information.

m File order: Another common source of non-reproducibility is the processing order
of files in a build process. If the order is not explicitly set, they might show up in a
different order in the build artifacts.

m (Pseudo-) randomness: This class of root causes includes (pseudo-) random values
(like temporary file paths and unique identifiers) that can occur during a build process
and might be included in the output artifact.

m CPU-related: The scheduler might change the order of execution of the task in the
build process. If the output binaries are optimized for the current CPU class, they
will differ depending on the architecture the binary was compiled on.

m Memory related: Without corresponding measures in place, the memory addresses
in the binary result might differ between builds. If the memory is not properly initial-
ized by the build process, the built artifacts might also contain the residual values.

m Build paths: Depending on the path in which the build is executed, build paths
that are included in the results of the build process will differ from system to system.

m Locale and timezone settings: These settings might be included in the build
output if parts of the build process include this information.

Hints and solutions to counteract sources of non-reproducibility

This section provides an exemplary selection of methods that can be applied to build
processes to eliminate sources of non-reproducibility [46]:

m “Jail” builds: The most fundamental measure is to sanitize the build environments,
for example, by running the build process inside a container, such that the build
process is always presented a canonical interface to the underlying build system. This
method is applied in the reproducible builds of Bitcoin and Tor [46]. Most variants
of this method bring some overhead with them and therefore can slow down build
speeds. They might also impose technical or societal restrictions on developers, as,
for example, to not have a free choice in the tools they use. Most of the build “jailing”
methods do not address non-deterministic aspects of the build process either. [46]

m Provide build parameters: Environment variables and build parameters that af-
fect the outputs should be explicitly set and provided in the recorded build informa-
tion or the source code.

m Stable ordering for inputs: Listing inputs explicitly or applying sorting algo-
rithms to ensure that multiple inputs are always processed in the same order. This
is necessary as directory listings are not stable across file systems.

= Controlled value initialization: The problem of accidentally recording memory in
the build output can be mitigated by initializing memory regions to a known value.

m Use deterministic versioning: Instead of generating the version number of the
artifact, the information used to determine the version should be extracted from the
source code. It can, for example, be retrieved from the VCS information computed
from the hash of the source code or obtained from a changelog entry.

2 Background 19

m Avoid timestamps: Timestamps are the biggest source of non-reproducibility.
Archives, for example, keep the modification times in the metadata of files. These
timestamps need to be either avoided by providing arguments to the archiving com-
mand or by using tools that remove the timestamps of existing archives. Including
timestamps in the build output should be fully avoided if possible, and if they are
absolutely needed, the source for setting the timestamp should be explicitly set such
that anyone can set the sources to the same value. This can be done, for example,
by setting the environment variable SOURCE _DATE EPOCH, as proposed by the
Reproducible Builds project, to a time that can be extracted from the changelog or
from the commit metadata in the VCS. [45]

®m Avoid (pseudo) randomness: To avoid randomness in the outputs of build pro-
cesses, sources of randomness like pseudorandom number generators should be seeded
to a known value, which could, for example, again be provided in the source code.
Results of other sources of randomness, like, for example, iterations over hash tables
and parallel execution of processes (which can be completed in an arbitrary order
due to processor scheduling), should be sorted.

® Don’t record build system information: Naturally, recording information about
the build system in the build outputs will result in non-reproducibility. Therefore,
the recording of information like the date and time of the build, the hostname, build
path, network configurations, CPU architecture, or environment variables, should be
avoided, or if it is needed to be recorded, then these records should be stored outside
the binaries.

m Signatures: Signing an artifact introduces non-reproducibility because of the con-
fidentiality of the private key that is used to sign. The Reproducible Builds project
proposes three different ways to handle such embedded signatures:

e Ignoring the signature: Using comparison tools, which do not consider missing
signatures a difference in the artifacts.

e Stripping the signature: Removing the signature from the reference binary and
then comparing the two artifacts.

e Copying the signature: In case the signature is desired, it can in many scenarios
be copied to the self-built artifact by extracting the signature from a reference
binary and patching it into the right place of the self-built binary.

2.11.4 Reproducible build environments

The outcome of a general computational process depends on numerous factors, including
the hardware, operating system, and software libraries used. Reproducible build envi-
ronments are tools to abstract these dependencies and decouple the build process from
the underlying host system. The reproducibility of the build environment is achieved by
eliminating sources of non-determinism. They define the tools that are available to the
build process and their specific versions. Depending on the exact type of build environ-
ment, they can also specify the operating system, the build architecture, the build path,
and the build date and time.

List of technologies providing reproducible build environments
The following list is an exemplary set of methodologies used to provide reproducible build
environments:

m Containerization: A widely used approach is the use of so called containers, and
the most popular software in this category is Docker?. Docker can be used to achieve

4https://docs.docker.com/

2 Background 20

reproducibility by defining the exact steps to build an image, which is a standardized
package including all the files, binaries, libraries, and configurations needed to run
the build process in an isolated environment. Users, however, need to make sure to
use Docker in such a way that it does not introduce non-reproducibility.

®m Virtualization: Another approach is to provide a virtual machine in which the build
process can be executed. Tools like Vagrant® help manage such virtual machines and
allow you to define their exact configuration, including the operating system, installed
software, and the settings. This is, however, again to be used in such a way that no
sources of non-reproducibility are introduced, as the tool is not designed to provide
reproducible build environments out of the box.

» Functional Package Management: Package managers like Nix® and GNU Guix”
(which builds upon the concepts of Nix) make use of functional builds and isolated
environments. Both store software in input-addressed directories to separate the soft-
ware on a file system level and to prevent interference of individual software versions
and variants. For more information about reproducible builds using Nix, see Section
2.15.

2.12 Hermetic builds

Many reproducible build environments build on the concept of hermetic builds to ensure
the reproducibility of the build process. Hermetic builds support the guarantee that
passing the same inputs (source code and configuration) to a hermetic build system will
result in the same outputs (e.g., binary software artifacts) by isolating the build process
from changes external to the build system.

To ensure the isolation of the build process, hermetic build environments are insensitive
to the libraries and other software installed on the host machine. They manage the build
tools (e.g., compilers) and dependencies (e.g., libraries) themselves by requiring all tools
and dependencies to be explicitly declared and fetched in a controlled manner. This might
require the developer to specify an exact version number or even the hash value of the
software artifact to unmistakably identify it. Since hermetic build systems do not rely on
system-wide installations to perform the build process, they are self-contained, and the
tools and other dependencies are stored inside a managed file tree, which is independent
of the host system.

The build process is then executed in sandboxed environments to achieve runtime isola-
tion, strengthening the consistency of the build environment and it being unaffected by
external factors. To ensure reproducibility, hermetic builds also disable network access
during the build process. This prevents the build from fetching dependencies or data
dynamically, which could lead to non-deterministic results.

Section 2.15.3 highlights the mechanisms used by Nix to ensure that the build process is
hermetically isolated.

2.13 Bootstrappable Builds

Bootstrappable builds [8] are a concept that is closely related to the concept of repro-
ducible builds, as they share some of the guarantees they want to provide. Both try to
ensure that only the expected code and logic are present in the final output of build
processes. Reproducible builds do so by requiring the developer to specify all the de-
pendencies and tools that are used to build the final software artifact. This, however,

Shttps://developer.hashicorp.com /vagrant
6https://nix.dev/manual /nix,/2.30,/
"https://guix.gnu.org/

2 Background 21

requires consumers of reproducible builds to still trust the included dependencies and
tools, except if the reproducible build concept is applied recursively to all the involved
software artifacts.

At the very end of this recursive approach, there is a single compiler that was built from
another compiler, which creates a chicken-and-egg problem and in general requires users
and developers to trust that the old compiler does not contain any hidden malicious logic
as theorized by Thompson [79]. This is where bootstrappable builds come in, which try
to reduce the amount of trust needed to put into the initial binary standing at the very
start of this recursive build tree. Bootstrappable builds try to do so by reducing the size
of the initial binary by providing tools that are byte-wise smaller compared to the initial
compiler and then building the compiler from those smaller tools.

The concept of bootstrappable builds, together with reproducible builds, provides au-
ditability of the whole source code involved in creating a certain binary artifact.

2.14 Build Attestations

Build attestations contain information about the build process of a build output. They
describe how the output was built and what it contains. Build attestations allow it to
inspect a build output, its origin, the entity that created it, how it was built, and which
inputs were used to build it. This information enables developers to estimate the impact
a software artifact has on the supply chain integrity of their software. It also allows
including or excluding dependencies based on policy rules. [39]

The in-toto framework (see Section 3.1.4 for more information) provides a curated list of
concrete attestation schemes that can be used to provide build attestations®.

Recent advancements, such as Attestable Builds (A-Bs) proposed by Hugenroth et al. [36],
enhance the concept of build attestations by leveraging Trusted Execution Environments
(TEEs) to ensure secure and verifiable build processes. A-Bs integrate attestations with
transparency logs, allowing recipients to verify the origin, integrity, and build process of
an artifact. This approach mitigates risks such as tampering with source code or build
environments and provides strong guarantees of source-to-binary correspondence.

8https://github.com/in-toto/attestation/tree/main/spec/predicates#vetted-predicates

2 Background 22

2.15 Reproducible Builds using Nix

This section introduces the concepts of the Nix programming language, the Nix package
manager, and related terms (e.g., Nix expressions, Nix Flakes). First an overview of the
terms used in the following sections is given, then more information on the concepts
relevant to the thesis is given.

2.15.1 The Nix deployment system

In his thesis [22], Eelco Dolstra in 2006 proposed Niz, a purely functional software de-
ployment model. With this approach to software deployment, he intended to solve a
number of flaws and problems of other, widespread software deployment systems. Among
these problems are issues concerning the environment of the deployed software: presence,
compatibility, and finding of the software’s dependencies; and issues concerning the man-
agement of the deployed software: updating, removing, and rolling back an update of the
software and its dependencies can create side effects, which interfere with the correct
functionality of other software deployed on the system.

The software deployment model proposed by Dolstra should incorporate all the required
features, which are also provided by other models, and solve as many of the remaining
problems as possible. A complete explanation of the flaws and shortcomings of other
deployment models and the advantages of Nix can be found in the thesis [22].

One of the core aspects of the Nix deployment system is that it deploys software in in-
dividual parts, which are installed in individual locations on the file system. These parts
are the basic units of deployment, so called components. Components are in general files
or directories with arbitrary nesting levels, and the concept of components in Nix corre-
sponds to the concept of packages in package management [22] and therefore Nix is often
referred to as a package manager. The individual installation locations of components
allow for the coexistence of software (parts) in multiple variants or versions on the same
system without interference. Every component is stored in the Nix store, which is a des-
ignated directory in the file system (usually at /nix/store). Each component in the Nix
store has a unique path through which the file system-level isolation is established (more
information in Section 2.15.4). The path of components is identical if and only if the
component is derived from the same inputs. In addition to the isolation of components,
Nix also ensures that deployed components are immutable.

Due to the isolation of the components and the absence of side effects of software de-
ployments:

m Nix supports atomic upgrades that ensure that the system cannot end up with invalid
installations if the upgrade process is interrupted.

m Nix allows for constant time rollbacks of a list of applications installed via Nix to a
previous list.

= Nix supports automatic garbage collection of unused components (more information
in Section 2.15.4)

Nix is at its core a source based deployment system but allows, transparently, to deploy
software in binary form instead of building it locally (more information in Section 2.15.4).
In order to build the components from source, Nix provides core functionality to sandbox
the build environment. This can be used to ensure reproducible environments across
different systems, which will result in reproducible builds provided that the build process
itself is sufficiently deterministic and that it does not fail if it cannot access information
outside the sandboxed build environment (more information in Section 2.15.3).

2 Background 23

2.15.2 Nix expression language

Nix uses the Nix expression language to describe how to build individual components and
how to compose them [22, 23]. These descriptions are called Nix expressions [22]. The
Nix expression language is a simple, purely functional language and allows Nix to express
build environments in a self-contained and reproducible way. Variability of components
can be expressed by describing the components as functions of the desired variability.
The language is lazily evaluated, which means that it only evaluates values when they
are needed. This allows to define many components in a single file or expression without
having to build or even evaluate them all.

result = pkgs.stdenv.mkDerivation {
name = "derivation name”;
version = "X.Y.Z";
src = pkgs.fetchGitHub {
reference to the source code
b
buildPhase = "'
running the build of the application

v,
’

installPhase =
persisting the output in /nix/store

Listing 2.1: An examplary Nix-code snippet showcasing the invocation of the
mkDerivation function.

Listing 2.1 shows exemplary code that calls the mkDerivation function—a wrapper func-
tion for the derivation primitive. A dictionary, which in Nix is called an attribute set, is
provided as the only argument of the function.

2.15.3 Building a component

In order to be reproducible, build processes of components should be deterministic and
depend solely on their inputs. The inputs involved in building are typically the software
source code, the build scripts, arguments, or environment variables, and the build time
dependencies’. Before components can be built, however, their (high-level) Nix expres-
sions need to be translated into derivations. These derivations are single, specific, and
constant build actions, which, in comparison to Nix expressions, cannot express variabil-
ity. They are stored in the Nix store, which allows for unique identification of these objects
of source deployment, encoding the inputs from which the components are derived.

The command nix-instantiate evaluates Nix expressions into derivations. These result-
ing derivations can then be built (i.e., realized) using the command nix-store -realize.
The high-level package management command nix-build combines translation and build-
ing of the components.

Sandboxed Nix builds

Nix is designed to ensure that all the inputs that influence the creation of components are
only inside the Nix store, or, in other words, that component builders are not influenced
by external factors. This is a fundamental design principle that ensures that the build
environment is identical across different systems. A build process that is not influenced

9Runtime dependencies are also provided as inputs alongside with the build time dependencies

2 Background 24

by outside factors is referred to as pure, and any breach of this isolation is called an
impurity.

It should be noted that this isolation is different from the isolation that is provided by
the naming convention of store objects, which prevents access to components in the store
if they are not explicitly mentioned but does not give any isolation mechanisms that
prevent access to inputs from outside the Nix store.

To ensure purity, Nix builds components in a sandboxed environment (see Section 2.12 for
general information on hermetic builds), isolated from the normal file system hierarchy.
When a derivation output is built, it will only see its dependencies in the Nix store,
the temporary build directory, and private versions of /proc and /dev [18]. On Linux,
builds run in private namespaces to isolate them from other processes on the system and
from the internet [57]. Nix has built-in functionality to clear the environment variables
[22]. Build processes only see the key-value pairs they are provided in the derivation as
environment variables, alongside special environment variables, like $out, which contains
the file path corresponding to the outpath of the derivation. [18, 57]

Fixed-output derivations

In addition to building components using derivations, Nix allows to create Nix store
entries, for example, from files that are fetched from the web using the concept of fixed-
output derivations. These are derivations of which the output, or rather the cryptographic
hash of the output, is known in advance. This allows to verify the integrity of files
fetched through functions that provide fixed-output derivations. An example of a function
producing fixed-output derivations is the fetchurl function, which allows to download a
file from a given URL. An important aspect for the usability of this function is that the
cryptographic hash for the store path of the output does not depend on the URL of the
fixed-output derivation, but rather on the content that is being fetched. This allows for
updating the URL of the download location, given that the file is still identical, without
subsequently needing to update all the derivations that depend on the output.

2.15.4 Nix store

The Nix store is the core of the Nix software deployment model and is usually located at
/nix/store. In contrast to the conventions of the File Hierarchy Standard (FHS), Nix
stores all components (e.g., outputs of the build processes of derivations) in subdirectories
of the Nix store. Any direct child of the Nix store directory is either a component or an
auxiliary file for Nix. These components are also called “store objects” [22]; the full path
of a store object is referred to as the store path (e.g. /nix/store/<component-name>).

Naming in the Nix store

The name of a component is composed of a representation of a cryptographic hash
and a symbolic name. The cryptographic hash is computed over all inputs involved in
the building of the component. These inputs typically consist of the source code of the
component, the script performing the build, any arguments or environment variables
passed to the build script, and all the dependencies, which most often include build time
dependencies, like, for example, a compiler, a linker, libraries, and other standard Unix
tools, alongside the runtime dependencies [22].

Using a cryptographic hash ensures with very high probability that no two components
result in the same hash value if their inputs differ, which also provides guarantees that it
is in general infeasible to find a second set of inputs, different from the first set of inputs,
that generates the same hash value but a different component (see Section 2.4 for more
information on cryptographic hashes).

2 Background 25

Any two components that do have the same inputs will evaluate to the same Nix deriva-
tion and therefore also have the same output path of the derivation. Provided that the
build process is deterministic, two components with the same inputs will result in iden-
tical binaries.

These aspects allow Nix to assume that a build that has succeeded once will result in
the same component if it is rebuilt, and it therefore comes with built-in functionality to
avoid unnecessary rebuilds. It does so by registering the output path of a derivation as
valid upon successful completion of the build of the derivation. This way a derivation
is built only once (as long as the garbage collector was not run meanwhile), and if the
realization of the derivation is triggered again, the build will not be executed, because
the component exists already. The building of the derivations is also the step that is
replaced by the binary deployment, which is further explained in Section 2.15.4.

The usage of cryptographic hashes to derive the store path of components allows the
coexistence of component versions and variants even if they have the same name. This is
possible, because their differences in the inputs imply that their output paths differ and
that the result of the build process will be stored in different directories in the Nix store.
Conflicting dependencies, such as different versions of a compiler, no longer cause an
issue, as they are stored in isolation from each other. For instance, if package A depends
on dependency D of version 1.0.0 and package B depends on dependency D of version
1.2.0, both versions can be installed alongside each other, as the storage in different
directories will prevent any faulty dependency resolutions.

Garbage collection

Runtime dependencies of software deployed by Nix are specified as store paths within
binaries that point to the exact component the software needs. Nix keeps track of these
runtime dependencies by scanning through the binaries of deployed software and regis-
tering found store paths as dependencies of this component. If no package depends on a
specific component, the component will be removed from the file system the next time the
Nix garbage collector is run. The same is true for software that was originally installed
by a user, but was uninstalled again. The software is not immediately removed from the
file system, but rather deleted by the garbage collector, when it is executed, assuming
that no other software depends on it.

Binary Deployment and Substitutes

Nix is a source based software deployment model but allows for binary deployment as
well. The transparent source/binary model of Nix allows combining the flexibility of
source deployment systems with the efficiency of binary deployment systems. The binary
deployment is enabled by a central repository, which can be queried for output paths for
which a pre-built component is available. The repository provides a so called substitute,
which in its most general form is any file or program that creates a store object through
some means apart from the normal build process and thereby substitutes that process.
Most often the substitute is used to obtain the output of a derivation by downloading a
pre-built file system object (FSO) from a server and placing the FSO into the Nix store.

It should be noted, though, that Nix does not enforce a policy on how substitutes produce
store objects and that there is no guarantee that a substitute produces correct output or
that the integrity of the resulting component was not compromised. This is a problem for
secure deployment and implies a need to trust the repository from which the substitute
is obtained.

2 Background 26

2.15.5 The Nix Packages collection

The Nix Packages collection (Nixpkgs) is a collection of software packages that can be
installed using the Nix software deployment model. It contains Nix expressions that
describe the components and their composition for more than 120,000 packages. [13]

2.15.6 The standard environment

The standard environment (stdenv) is a component described by Nixpkgs with special
significance, as it provides the basic tools needed for almost all other components. It also
includes some convenience functions, for example mkDeriwation a function to simplify
the creation of derivations. [22]

2.15.7 Nix Flakes

Nix Flakes are an experimental feature of the Nix package manager. Flakes were intro-
duced in 2021 with Nix version 2.4 and provide a standard way to write Nix expressions
(and thereby also Nix packages).

Their concept is closely related to the concepts of VCS and repositories. The term flake
refers to a file-system tree that contains a flake.niz file in the root directory of the tree.
The flake.niz files are similar to Nix expressions but have special restrictions and a
specific structure. [58]

They improve reproducibility of software packaged with Nix outside nixpkgs, among
others by pinning versions of dependencies in a lock file. This lock file can be updated
programmatically by invoking the command niz flake update.

2.15.8 Relevance for the thesis

Nix is used in this thesis because it provides tools to ensure the reproducibility of build
environments across systems. It guarantees that the same environment variables, tools,
and build instructions are available when building the same Nix expression on different
systems. It should be noted, however, that Nix itself does not yet guarantee reproducible
builds (i.e., bitwise identical outputs), as this requires not only the build environment
to be reproducible but also the build instructions to ensure deterministic outputs. If the
build process contains instructions that introduce non-determinism (e.g., a random num-
ber generator or key generator), then the build output becomes non-reproducible. These
mechanisms improving the reproducibility of builds are also provided by many other tools
that provide reproducible build environments, but Nix offers additional features that are
needed in this thesis.

Nix provides mechanisms to isolate build processes from the host system and the net-
work, which forces the writer of the Nix expression to provide all the necessary tools,
libraries, and dependencies within the Nix environment, which ensures transparency of
the inputs that influence the build output. Nix, using fixed-output derivations, allows
to ensure that artifacts, like, for example, tools and dependencies, that are fetched from
the web, are precisely what the developer of the Nix expression intended—it thereby
verifies the integrity of this artifact. The isolation mechanisms in combination with the
integrity verification of external inputs provide strong fundamentals to harden the build
process against manipulations by malicious actors from outside or within the Nix build
environment.

Nix also allows for the concurrent existence of tools in multiple versions and variants on
a single system, which is needed to build different applications that need the tools in
different versions.

2 Background 27

2.16 Verifiable Logs

The following sections introduce the concept of verifiable logs [34, 48, 49], a data struc-
ture that allows logging data entries in an append-only fashion, such that entries—once
added—cannot be deleted or modified anymore. Verifiable logs provide auditability that
also allows consumers of the transparency to detect if the log provider were to secretly
add a log entry. These properties and their verifiability allow consumers to rely on a data
structure that logs data entries in a transparent, append-only fashion, without needing
to trust the provider of the verifiable log.

2.16.1 Merkle tree

A popular example of designing a verifiable log is to use a Merkle tree [55] as the under-
lying data structure. The log starts off empty and is mutated by adding entries. These
entries can be arbitrary data that is added as leaf nodes of the tree. The interface that
allows the data to be arbitrary and application specific is called personality in the context
of Google Trillian [33]. A personality defines the data model and validates data entries
against it. It should be noted that the tree does not have to be balanced and therefore
allows storing an arbitrary amount of data.

2.16.2 Root node

Nodes above the leaf nodes hold the cryptographic hash value of their immediate children.
This way the value of the root node of the tree depends on the value of its direct children,
their value depends on their direct children, and so on, which has the effect that the root
node depends on the values of all the nodes in the tree and that if any changes are made
in any of the leaf nodes (e.g., by changing a data point), then the root node value will
change as well.

2.16.3 Consistency proof

One general way to verify that the old log entries are still present in the new log would
be to download the whole log and to search it for all the old values. This, however, is
very storage- and bandwidth demanding and scales badly.

The fact that the root node of a Merkle tree “summarizes” the state of the verifiable
log allows interested parties (so called monitors) to efficiently verify the append-only
property of the log. A monitor may store previous values of the root node and in order
to verify that the mutation of the tree is valid, request the values that have been added
since the last root node value has been stored. It then computes the expected new state
of the Merkle tree and compares the computed root node value to the one provided by
the verifiable log. If the two values match, the new state of the verifiable log is valid, and
the new root node value can be saved for a future consistency proof.

2.16.4 Inclusion proof

Other parties might be interested in verifying that the tree includes a certain set of entries.
In order to prove to the parties (so called auditors) that these entries are present, the
verifiable log provides a list of the values of the nodes along the shortest path from the
respective leaf representing a log entry to the root node of the tree. The auditor can then
compute the expected value of the root node based on the provided list of hash values.
If the expected hash value of the root node corresponds to the value that the verifiable
log publishes, then the entry is present in the Merkle tree.

2 Background 28

2.16.5 Availability and synchronization

In order to increase the availability of verifiable logs, they should be hosted on multiple
servers across the globe. This, however, introduces new problems of consistency between
the different instances of the log and requires a synchronization strategy [47].

2.16.6 Split-view attacks

Verifiable logs can be susceptible to the so called split-view attack [54, 59]. Malicious log
providers can present different log representations to different clients while still main-
taining the append-only property and therefore seeming valid to parties that perform
inclusion and consistency proofs on the log. One way of counteracting such attacks is to
have globally distributed independent parties that regularly query the root node values
of multiple logs. These parties are then called witnesses [54, 76] and a consumer of the
verifiable log can ensure the absence of a split-view attack by verifying that (most of)
the witnesses agree that the current root node value corresponds to the one presented to
the client.

2.16.7 “Bad” entries in a verifiable log

The presence of an entry in the verifiable log does not say anything about the “correctness”
of the content of the entry. Even in the absence of a split-view attack the verifiable log
can contain a bad, malicious, wrong, or invalid entry. Such an entry must then be marked
as “bad” in some way (e.g., by revoking it in the case of certificates [47]).

2.16.8 Relevance for the thesis

Verifiable logs allow us to provide a global infrastructure to distribute data that is needed
in trust-establishing processes without needing to trust the provider of the log itself.
This can be leveraged by parties (e.g., the developers of E2EE messenger applications)
to provide reproducible builds and to publish the R-B process and result in an auditable,
append only log. This log will then also include the hash value of the software that can
be built from the R-B and thereby allow consumers of the software to verify the integrity
of their application by comparing its hash value against the one published in the log.

In order to ensure that the R-B processes and their results are valid, they need to be
verified by independent parties. These parties must then be able to mark the log entries
as invalid in case the published results are not reproducible, and consumers must be able
to know which entries have been marked as invalid. If this cannot be provided by the
verifiable log infrastructure, the consumers cannot trust the entries of the log and must
therefore verify the R-B themselves and the verifiable log does not add any value.

Chapter 3

Related work

This section will explore other projects and tools aiming to improve supply chain integrity
of general software (Section 3.1) and of Android applications in specific (Section 3.1.6.)

3.1 Projects and tools to improve Supply Chain Integrity

Since the topic of Supply Chain security has gained importance in recent years, many
projects aim to provide methods and structures to improve it. These projects allow, for
example, verifying dependencies of a build process, creating isolated build environments,
or independently verifying the correspondence of source code and the binary representa-
tion of an application.

3.1.1 Gradle dependency verification

Including external dependencies and plugins in a build process opens up new attack
vectors (see Section 2.9.2) and thereby creates a need to verify the integrity of those
third-party artifacts. Tools like the Gradle Build Tool [40] allow for automatic verifi-
cations of dependencies. It natively supports verifying the integrity and provenance of
dependencies and plugins used in the build process and detecting compromised artifacts.
In order to verify the dependencies, the developer of the build scripts first needs to create
the verification-metadata.xml file, which will contain so-called components for each
dependency, describing its name, group, version, checksum, and optionally the signature
of its supplier.

This file can be generated by the Gradle Build Tool when running a build with the
corresponding parameters [40], but then requires the developer to still verify created
components before being able to verify the dependencies in future builds. Once the
verification-metadata.xml was created, Gradle automatically uses it in subsequent
builds to verify the dependencies.

Cargo Vet

In the realm of Rust programming, Cargo Vet can be used to improve Supply Chain
Integrity. The tool ensures that developers audit and verify the source code of third-
party dependencies before they can be used in a Rust project—a concept that could be
applied in many other development ecosystems to strengthen the trust in the Supply
Chain. The cargo-vet policy file then lists the dependencies that are trusted and which
require further review.

3.1.2 Gitian

Gitian [66] is a secure source-control oriented software distribution method that addresses
the problem of verifying that a binary is derived from some source code by making the

29

3 Related work 30

build process of software packages reproducible. It does so by executing the build step
inside a virtual environment, the isolation of which protects the host from malicious
build processes trying to compromise the host system and protects the build process from
influences by the host system. The virtualization of the build environment, however, in
practice also results in an increased number of tools that need to be trusted.

Build environment and information recording

Gitian ensures reproducibility of the build process by building the artifacts within vir-
tualized build environments, the contents of which are measured and recorded in the
.assert file. After the build, the .assert file contains hashes of all inputs of the build
process, as well as the hash of the produced output. The file can then be signed using
public key cryptography to ensure its authenticity before it is published.

Verification process

Gitian allows to verify the build process by letting independent parties execute it and
confirm that the same output is obtained. The first step in the verification process is to
retrieve the source code of the specified Git commit, identified by its hash value. Then
the build process is executed through Gitian, which will generate the build output and
the .assert file, which should describe the same initial state and outcome as the original
.assert file. If the generated .assert file differs from the one provided by the supplier,
even though the inputs of the build process were the same (i.e., the hashes of the inputs
in the .assert file match), then this means that the build was not reproducible.

Limitations of Gitian

While Gitian provides a great concept to ensure reproducibility of the build process, the
guarantees of a Reproducible Build using Gitian are limited to being able to audit the
build path of a single artifact and do not include the build process of any dependencies
or tools included in building the artifact. Inputs to the build process consist of the hashes
of the installed Debian packages; this ensures the reproducibility of the build process but
does not provide any trust relations, as long as the inputs are not individually trusted
or audited. Effectively, the solution provided by Gitian moves the problem of ensuring
reproducibility upstream by one step, as the verifiability makes it no longer necessary to
trust the binary output of the build process but still requires trusting every binary that
is part of the build environment.

3.1.3 Guix

GNU Guix [17, 18] is a software deployment and distribution tool that supports prove-
nance tracking, reproducible builds, and reproducible software environments. In compari-
son to Gitian, it allows modeling reproducible builds for more than just the application in
question and allows extending the reproducibility aspect to dependencies of the build pro-
cess. It is a fork of the Nix package manager and therefore inherits some of its attributes,
like, for example, being a purely functional package manager, supporting transactional
upgrades, rollbacks, unprivileged package management, per-user profiles, and garbage
collection. [18].

Guix distributes packages exclusively by providing source code and package definitions
describing how to build the applications from source. The source code is distributed using
Git, VCS and updating applications consists of updating the local copy of Guix source
code. Guix provides an authenticated way to retrieve new source code revisions from Git
in order to combat source code threats. [17]

3 Related work 31

3.1.4 in-toto Framework

in-toto [80] is a supply chain security framework, which aims to provide mechanisms to
protect the software supply chain across multiple of its phases. It does so by verifying
that each step of those phases was executed as intended by the authorized party and
that the result of the step was not tampered with in transit.

The in-toto framework works by requiring the project owner to create a software supply
chain layout, which is a machine-readable description of the individual building steps
of the software. Steps along the supply chain are carried out by specifically assigned
parties, the so-called functionaries. These functionaries carry out their entrusted step
while recording information about the used commands and related files. This information
is stored in a metadata file, which, at the end of the execution, is cryptographically signed
by the functionary to ensure its authenticity. This metadata file is used to link inputs and
outputs of the build step to the functionary. Recording of build step execution is done by
either invoking the commands in-toto-record start and in-toto-record stop before
and after the build step, respectively, or by executing the build step through in-toto-run.

in-toto, in contrast to Gitian, puts fewer constraints on the execution environment of the
build steps and thereby allows for greater flexibility to model the build steps the way
they are executed in real-world environments.

in-toto Attestation Framework

The in-toto Attestation Framework is an extension of the basic framework that allows
adding additional arbitrary authenticated metadata to the description of the individual
build steps. This enables a more complete description of the build environment, which in
turn allows to verify build steps against policies without the need to make the underlying
supply chain layout more rigid.

Verification process

The verification in the in-toto framework ensures that each build step of the layout was
executed by the specified functionary, and a layout is considered verified if:

1. All inputs and outputs in the cryptographically signed record put together form a
chain of build steps without any gaps.

2. The records match up with the layout provided by the project owner.

3. The records are signed with authorized keys of the functionaries.

3.1.5 Extending Cloud Build Systems to Eliminate Transitive Trust

In [69] Schwaighofer et al. propose extensions to existing cloud build systems to elimi-
nate the shortcomings of many other build systems when it comes to transitively trusting
dependencies of the build process. They designed their approach to allow users to verify
transitive dependencies by attaching verifiable metadata to build outputs. This metadata
includes build information, details about the build environment, and a remote attestation
to enable users to independently verify the trustworthiness of build steps and dependen-
cies.

The approach distinguishes itself from others like Gitian [66] and in-toto [80] by a few
key aspects:

m Flexibility in Execution Environments: Unlike Gitian, which runs build steps
within a constrained virtual machine environment, the approach does not impose

3 Related work 32

strict constraints on execution environments, allowing greater flexibility in modeling
build steps closer to how they are executed in real-world environments. It does how-
ever build on Nix and thereby imposes other restrictions that origin from the unique
properties of the functional package manager.

m Elimination of Transitive Trust: The proposed approach enables independent
verifications of transitive dependencies, while Gitian and in-toto rely on trusting the
providers of dependencies of the build process to verify or trust their dependencies.

m Decentralized Trust Models: It allows users to define their trust models to verify
the trustworthiness of the build outputs. This contrasts with other concepts like the
one of the in-toto framework, in which the supplier of the software defines the trust
model and distributes responsibilities belonging to the Supply Chain of the software.

3.1.6 Tools that are tailored to improve Android Supply Chain
Integrity

Some sources of non-reproducibility specific to the way Android applications are built
make applying supply chain integrity methods harder for a typical Android application
build processes. This section will highlight a few tools that have been created to mitigate
these problems for Android application supply chains. For further tools designed to help
improve the reproducibility of build processes, we refer to the comprehensive list by the
Reproducible Builds project [65].

3.1.7 apksigcopier

The tool apksigcopier [72] was written by FC (Fay) Stegerman and helps to create bitwise
identical builds of signed Android packages by allowing valid signatures to be used as a
build input for the reproducible build process. These signatures are obtained by copying
them from a signed reference APK and can then be patched into unsigned APKs.

The tool apksigcopier is packaged for the Nix package manager (see Section 2.15.5) and
can therefore be used in Nix scripts by providing it as a build input. The tool, in addition
to the signature copying functionality, also provides a verification method, which allows
to verify whether the binaries of a signed and an unsigned APK are bitwise identical. For
this, it will copy the signature as described above and subsequently check the validity of
the signature for the previously unsigned application—if the signature is valid, it means
that the builds are identical (see Section 2.5).

3.1.8 reproducible-apk-tools

reproducible-apk-tools [73] is another tool by FC (Fay) Stegerman to help make Android
applications more reproducible. It is a collection of scripts to help eliminate sources of
non-reproducibility (e.g., changing line endings from LF to CRLF).

The tool was not used in this thesis because none of the potential sources of non-
reproducibility, which this tool could counteract, appeared in the differences that oc-
curred when reproducing the build process of the Android applications. It could, how-
ever, be needed for future extensions of this work, as other build processes might produce
differences that can be eliminated using the reproducible-apk-tools.

3.2 Reproducible Builds on F-Droid

F-Droid supports reproducible builds of the apps that are distributed via their app store.
Originally apps were published by being uploaded by the developer and signed by F-
Droid before publishing it to the repository. Since 2022, however, F-Droid has encouraged

3 Related work 33

developers to build their applications reproducibly. They provide guidelines and tools to
help developers to achieve this. With this push of F-Droid towards reproducibility, aside
from providing general benefits of reproducible builds (see Section 2.11.1), it ensures that
applications use only free and open-source software to build. [12]

Chapter 4

Threat model

This section defines the threat model, which consists of the threats that this thesis aims to
mitigate. The threats are derived from scenarios of two fictional people who were already
mentioned in Section 1. The first person is a common user, the second an investigative
journalist.

First, Section 4.1 gives a more detailed description of the two people, and the threats
that are relevant for the fictional people are mentioned respectively. Subsequently, the
threat model based on these descriptions is defined in Section 4.2. The threat model is
greatly based on the model from the SLSA, but some threats are considered out-of-scope
for this thesis. The threats that are mentioned in the SLSA, but which are not included
in this thesis are discussed in Section 9.1.

4.1 Detailed introduction of the fictional people

This section provides background information on the two fictional individuals upon whom
the threat model of this thesis is based. It begins by introducing each individual and
exploring their motivations for using E2EE messaging applications. The discussion then
shifts to identifying key threat actors, their potential objectives, and the attack vectors
they might use.

For each fictional individual, a brief scenario is outlined to offer a concrete example of
how such threats could impact them. The section concludes with an analysis of their
awareness of potential threats to the integrity of the applications and the confidentiality
of their communications, as well as an assessment of the resources and motivations they
possess to ensure the application’s integrity. These descriptions serve to illustrate the
feasibility of the proposed approach for these individuals.

4.1.1 A common user

The first fictional individual represents a typical user of E2EE messaging applications.
Their primary goal is to communicate privately and securely with friends, partners, and
co-workers. They want to be able to send messages without anyone but the intended
recipient being able to receive and read the messages. No government or other third
party should be able to read, filter, or otherwise manipulate their potentially sensitive
communication.

Possible threats and adversaries

A generic user may be vulnerable to untargeted attacks on their privacy. Entities that
have an interest in undermining the user’s privacy include law enforcement agencies
seeking to filter private conversations for illegal content, totalitarian governments aiming
to surveil their population, and vendors that want to collect user data for purposes such
as targeted advertising.

34

4 Threat model 35

Other adversaries that may target the E2EE messaging application used by a general user
group include hackers. Their objectives could range from stealing sensitive information
(e.g., company secrets) to committing identity theft or other forms of fraud.

The aforementioned adversaries may achieve their goals, depending on their available
resources, through the following methods:

® Introducing a bugdoor (see Section 2.8) or other vulnerabilities into the application’s
source code to compromise its confidentiality.

m Tampering with dependencies that are used during runtime or build time of the
application, such that the resulting app contains malicious code.

m Compelling, bribing, or compromising vendors or distributors to release a malicious
version of the application.

= Abusing the leakage of the vendor’s signing key, which is used to sign valid APKs,
to distribute malicious applications signed with the compromised key.

The scenario

In this scenario, the user of E2EE messaging applications lives in a country that intends
to compel vendors of such messaging applications to include certain software logic capable
of scanning the content of conversations. The user wants to be able to verify that no such
backdoor or scanning logic has been silently included by the vendor or any other entity
along the software supply chain.

Awareness and available resources

The user is aware that an application might contain unwanted or malicious logic and is
willing to make a additional effort to verify that the application has not been tampered
with. Their typical method of obtaining applications involves searching for them on
their preferred app store and installing them from there. They would like to be able to
download applications from a potentially untrusted source and to be able to verify the
integrity and trustworthiness of the application before installation.

4.1.2 An investigative journalist

The second fictional individual is an investigative journalist working on sensitive topics.
The specific nature of their investigation is not particularly relevant in this context,
as there are numerous reasons why journalists must be able to rely on the security
and integrity of the software they use [74]. These reasons include the need to protect
themselves, their sources, or the sensitive information or stories they uncovered. Ensuring
privacy is critical for protecting both the journalist and their sources. An application,
for example, must not leak any information, such as identities, locations, schedules, or
address book contents. Address books can be particularly sensitive, as their leakage can
expose multiple sources at once. [74].

Possible threats and adversaries

For journalists, adversaries are often the subjects of their investigations, such as to-
talitarian governments, corporations engaged in illegal or unethical activities, or other
powerful entities that want to conceal the information uncovered by the journalist. Ad-
ditional adversaries may include rival news organizations or a government intelligence
agencies interested in their work [74].

4 Threat model 36

Therefore, working as a journalist can involve specific risks and needs respective security
measures. These measures begin with basic computer security practices, such as using
strong passwords and undergoing awareness training to mitigate phishing attacks. Once
these foundational measures are in place, protections against more advanced attacks
should be added. Such attacks include compromising the applications or the operating
system of the devices used by a journalist. A trojanized application or vulnerability
in the software could grant adversaries access to sensitive messages and other private
information.

Similar to the threats faced by general users, journalists are vulnerable to attack vectors
such as:

m Backdoors or “bugdoors” introduced into the software to compromise its confiden-
tiality.

m Tampering with runtime or build dependencies of the application, resulting in mali-
cious logic as part of the application.

m Unauthorized modification of the application by a malicious distributor.

m Abuse of a leaked signing key to distribute malicious applications with a valid signa-
ture.

Journalists are also at risk of more targeted attacks by powerful adversaries. Adversaries
might, for example, exploit a vulnerability in the source code of the messaging application
or tamper with their network connection when they download the APK of the E2EE
messaging application.

As a high value target, journalists may also face non-software-related attacks with the
goal to obtain information from them or to prevent them from continuing their work.
These attacks can include legal, social, physical, and other technical methods [74]. While
these attack vectors are relevant, they fall outside the scope of this software-security-
focused thesis and are not further addressed.

The scenario

In the scenario considered in this thesis, the journalist operates in countries with limited
press freedom and a certain degree of censorship. They need to be able to securely share
sensitive information and findings with their colleagues. Given the dangerous nature of
their work and the sensitivity of their communications, the journalist must have complete
confidence in the confidentiality and integrity claims of the E2EE messaging applications
they use. They also need a way to verify the integrity of a downloaded APK, to ensure
that the application has not been tampered with.

Awareness and available resources

The journalist has access to some resources and trusted collaborators who can help
establish a secure method to obtain a trustworthy messaging application. However, they
themselves have only limited time available to invest in the verification process and in
general, do not have the resources to locally build an application from the source code.
Their typical approach to obtaining an application involves visiting the vendor’s official
website, downloading the application directly, and following the instructions to verify the
integrity of the downloaded binary.

4.2 Definition of the threat model

For both fictional characters, the described threats and attack vectors occur along the
links of the software supply chain of the E2EE messenger applications they use. The

4 Threat model 37

considered threat model therefore includes only threats in that scope. It does not include
threats outside the software supply chain, like, for example, Social Engineering attacks
[44], attacks on the operating system [4] or potential backdoors existing in the hardware
of their devices [3].

The considered threat model includes the following threats:

m Source threats: Changes to the source code that either do not reflect the intent of
the software developer or that had to be implemented because the software developer
was compelled to do so. The changes now put the security or privacy of the user of
the application at risk.

m Build threats: Changes to the build process or the inputs of the build process
that lead to an artifact in the output that contains unintended logic or logic that is
unwanted by the user.

m Dependency threats: These are indirect threats, as they can introduce unwanted
behavior in the application by compromising an artifact that is part of the applica-

tion’s build time dependencies?.

m Availability threats: These are the potential threats denying a user access to the
source code or other information that is needed to audit and verify the software.
The eventuality of the unavailability of the software itself is included as well, as that
prevents users from securely communicating through the application, too.

m Distribution threats: This class of threats includes the possibility of a malicious or
compromised distributor providing modified software packages that include unwanted
logic.

m Verification threats: These are threats that are concerned with the verification
process of the software and include the possibility of unauthorized changes to the
records containing the information that enables the verification of the artifacts or
exploitations of cryptographic principles underlying the verification process.

The following sections expand on the short descriptions of the threats listed above and
give concrete examples of how the application’s integrity could be undermined by those
threats. The underlying base model is taken from the software supply chain threat model
of the SLSA framework [16].

4.2.1 Source threats

The first kind of threats we will look at in more detail are attacks on the integrity of the
source code. They include, for example, the introduction of vulnerabilities or backdoors
in the code. Some potential scenarios of this category include

m Insider threats: A developer within the vendor company becomes malicious and
includes harmful logic in the source code of the application.

m Legal obligation: The company providing the messenger application is compelled
to include some malicious or unwanted logic and changes the source code accordingly.

m Malicious contribution: An external developer contributes to the development of
the software and submits some changes that introduce unwanted logic—possibly in
the form of a bugdoor, which makes the vulnerability harder to detect during the
review process.

m Compromisation of underlying infrastructure: An adversary gains control over
the system hosting the source code, and through an administrator interface or manual
changes on the system, they manage to modify the source code.

1Runtime dependencies are not considered in the Dependency threats of the threat model, as they are
considered to be individual artifacts, that have to be individually protected against Supply Chain
Attacks. This is in line with the model of SLSA [16].

4 Threat model 38

4.2.2 Build threats

These threats include any threats that introduce unwanted logic during build
time—without changing the source code. Potential scenarios with that result are

m Modifying build scripts: An adversary gains modifying access to the build scripts
and can introduce unwanted modifications of the software logic by changing the build
scripts of the applications. These changes might, for example, then build a version
that was not intended for production releases or build the application excluding
important security features.

m Changing build parameters: An adversary might gain access to the interfaces to
change the build parameters that dictate the behavior of the build process and alter
the resulting application—again, for example, by excluding certain security features.

These subtle changes of the build process could occur, for example, because of an insider
threat, a legal obligation, or an adversary that compromised the underlying infrastruc-
ture.

4.2.3 Dependency threats

Another threat category includes attacks in which a dependency of the artifact is tam-
pered with. The unwanted changes in the logic of the dependency introduce subsequent
changes to the behavior of the application.

m Artifact replacement: The adversary tampers with network availability during
dependency resolution of the build process and lets the user download a modified
artifact instead of the intended one.

m Hostile takeover: The adversary undermines the integrity of an artifact on which
the target application depends (e.g., by offering to take over its maintenance and
subsequently introducing malicious updates).

m Dependency source threat: Similar threats as for the source code of the appli-
cation also apply to the dependency of the application. An adversary might submit
changes to the source code of the dependency through similar ways as described
above.

m Compromised building tools: If the adversary manages to compromise a building
tool that is used when building the application, then the compromised building tool
could introduce changes in the software logic without changing the source code.

® Compromise included files: If the adversary can introduce vulnerabilities in files,
like assets or prebuilt binaries, that are included in the build process, then these
vulnerabilities could also be passed on to the resulting application.

4.2.4 Availability threats

This category of threats includes any attack on the availability of resources to verify the
application or the availability of the application itself.

m Missing source code: The vendor of the application might make the source code
unavailable, which renders the verification impossible.

m Missing source code meta-information: The vendor might squash commits or
remove other meta-information and thereby reduce the auditability of the source
code or accountability for changes in the source code.

m Missing dependency: A dependency of the application might become (temporar-
ily) unavailable, possibly due to an attack by an adversary. Without this dependency,
the user cannot verify the integrity of the application anymore.

4 Threat model 39

4.2.5 Distribution threats

This category of threats includes all the risks that occur in the distribution phase of
software.

m Malicious or compromised distributor: The main threat in this category is the
possibility that a software distributor turns malicious, is legally compelled, bribed,
or compromised. Independent of the exact reason for the threat, the main problem
would be that the distributor stops providing the original APK and offers an APK
that has been tampered with to the public or to specific individuals. Under certain
circumstances this attack might be very subtle, for example, when the developer is
required to give the distributor the ability to sign releases [20].

4.2.6 Verification threats

Verification threats include any risks that might make it impossible for the user to verify
the integrity of the application.

m Leaked signing key: If the signing key was leaked, an adversary can publish arbi-
trary applications with valid signatures by the vendor.

m Modified verification configurations: If the adversary gains access to the con-
figuration and recorded values that are used to verify the application and if they
can modify them, any verification process is compromised and cannot be trusted
anymore.

m Exploiting cryptographic weaknesses: If an adversary finds weaknesses in the
cryptographic structures used in the verification process, like, for example, the hash-
ing algorithm used or the signature protocol, then they can forge any verification
procedures or push arbitrary applications with the vendor’s signature.

4.3 Threats in scope

Not all the threats of the described thread model can be mitigated by the proposed
approach. Section 7 evaluates the concrete limitations of the approach and which threats
are mitigated by it.

Chapter 5

Software Supply Chain of an Android
application

This section looks at the general steps that are typically encompassed in the Software
Supply Chain of an Android application. For this, the supply chain of an application,
from providing the source code until the distribution of the APK, is considered. First,
Section 5.1 gives a brief overview of the single steps of the Supply Chain and visualizes
them in Figure 5.1. Sections 5.2.1 to 5.2.10 look at the steps in more detail, highlight
tools that are involved in those steps, and identify which threats could emerge in the

respective phases of the software cycle.

Compilation
(Java/Kotlin to Bytecode)

Shrinking, Obfuscation and
Optimization (Bytecode)

DEX Conversion Resource Packaging
(Bytecode to DEX) (XML, Images, etc.)

APK Packaging
(DEX -+ Resources)

APK Signing
(with Keystore)

Distribution
(Google Play, etc.)

Figure 5.1: The Software Supply Chain of a generic Android application

40

5 Software Supply Chain of an Android application 41

5.1 Overview of the Software Supply Chain

Before listing the single steps of the Supply Chain the limitations of this model are briefly
noted:

Output artifact: The Android ecosystem supports different kinds of artifacts that
can be the result of the build process. However, in order to keep the model simple,
only build processes resulting in an APK of the application are considered. Similar
risks and principles apply to the Supply Chain Security, independent of whether the
output is an APK, an AAR, or an AAB (see Section 2.1 for more information).

Source code: In the software supply chain model in this thesis the source code is
assumed to be managed by a VCS. Any access or modification of the source code
occurs through the VCS.

Compilation in cloud: The compilation process of the source code is assumed to
be executed in a CI/CD pipeline. This does mean that the model is not meant to
include compilation processes executed within a development environment on a local
machine. The thesis in general focuses on Gradle build processes to limit the scope for
the implementation of the proposed approach (see Section 2.7 for more information).

A graphical overview of the steps of Software Supply Chain of a generic Android appli-
cation can be seen in Figure 5.1. The single steps are:

1.

10.

11.

Source Code 5.2.1: The starting point is a specific version of the application’s
source code.

Build parameters 5.2.2: The parameters for the build process are passed to the
build tool via the build environment.

Resource preprocessing 5.2.3: Resources are compiled into binary format.
Compilation 5.2.4: The source code is compiled into Java bytecode.

Optimization and Obfuscation 5.2.5: In this optional step, the resulting Java
bytecode is shrunk, optimized, or obfuscated. The exact actions in this step depend
on the build parameters.

DEX Conversion 5.2.6: The bytecode is subsequently converted into Dalvik Exe-
cutable (DEX) format.

Resource Packaging 5.2.7: Resources such as XML files, images, and other assets
are packaged separately.

APK Packaging 5.2.8: The DEX files and resources are combined into an APK.

APK Signing 5.2.9: The APK is signed using a keystore to ensure its authenticity
and integrity.

Distribution 5.2.10: The signed APK is distributed via platforms like Google Play
or other channels.

Verification 5.2.11: This optional step verifies the authenticity and integrity of the
APK to be installed.

5.2 Detailed steps of the Supply Chain Model

In the following sections we will expand on the short descriptions of the single steps of
the Software Supply Chain.

5 Software Supply Chain of an Android application 42

5.2.1 Source code

The process starts with the source code written in Java or Kotlin. The creation of an
application naturally involves many steps before that, like, for example, the usability and
security design of the application, but in this thesis a specific version of the source code
is considered as the starting point for the software supply chain.

Developers will have written Java or Kotlin code within their preferred development
environment (like, for example, Android Studio) and have committed the changes to a
central VCS. In this thesis we consider the applications to be open source and the VCS
of the software project to be hosted on a publicly accessible server or platform (e.g.,
on a GitHub!, GitLab? or Gitea® instance). Many open source projects allow external
developers to suggest changes and will integrate them if they align with the goals and
guidelines of the project.

The source code also specifies the dependencies of the application, which are typically
managed via a dependency management system (e.g., Gradle’s dependency resolution
mechanism). These dependencies include third-party libraries, internal libraries (e.g.,
shared modules within the organization), and plugins.

Source Threats

In this stage, a malicious insider could commit changes to the VCS that will include
malicious logic into the application. If external developers can submit changes as well
and they are not carefully checked, this is another threat.

Dependency Threats

While the actual consequence of including malicious dependencies only takes effect in
later steps of the Android build process, it should be noted that by applying measures,
untrusted dependencies can be detected and excluded in this step already and thereby
protect the following steps from including malicious logic.

5.2.2 Build parameters

The process (e.g., a CI/CD pipeline) that starts the Android build will call a tool to
handle the build itself and provide it the necessary build parameters. In most Android
builds, the tool that orchestrates the overall process is Gradle [51]. It manages depen-
dencies and build configurations and is controlled by providing it the correct parame-
ters. In the most basic form, this includes the requested build task (e.g., calling gradle
assembleWebsiteProdRelease).

Build Threats

Changing the parameters that are passed to Gradle will result in a differently configured
build process and can potentially lead to vulnerabilities, for example, due to skipped
build tasks. In general, unauthorized modifications to the process that starts the build
itself are to be considered a threat to the Software Supply Chain as this provides the
enclosing environment in which the application is built.

Thttps://github.com/
2https://about.gitlab.com/
Shttps://about.gitea.com/

5 Software Supply Chain of an Android application 43

5.2.3 Resource Preprocessing

One of the first steps in the general Android build process is the compilation of the
application’s resources. The tool Android Asset Packaging Tool (AAPT) is used to com-
pile all resources in the res directory into a binary format. Outputs of this step are the
binary versions of the files and the R.java file that contains all the resource IDs. [41, 71]
Resources may also come from included libraries and asset packs. These sets of external
resources are merged with the set of the application’s resources, and potential conflicts
have to be resolved.

Source Threats

In this step the main threats come from existing vulnerabilities hidden within the assets
that have to be compiled. These vulnerabilities might propagate through the compilation
process and compromise the resulting binaries, which then can result in a compromised
application once the compiled assets have been merged into the APK.

Dependency Threats

In addition to that, compromised tools, libraries, and asset packs are a threat. If, for
example, the used version of AAPT contains malicious logic, attacks similar to the one
described by Ken Thompson [79] could be possible.

5.2.4 Compilation

The compilation step is one of the most central steps in the Software Supply Chain of
an Android application. It combines the source code with external libraries (e.g., . jar or
.aar files) to produce Java bytecode. Most Android application projects use Gradle as
the tool to orchestrate the build process; alternatives are Apache ANT, Apache Maven,
and Eclipse ADT. [5]]

Many more tools and plugins are involved in the compilation of the Java or Kotlin source
code of an Android application. These include, for example, the Java Compiler javac,
the Kotlin Compiler kotlinc, which are used to convert Java or Kotlin source code into
Java bytecode (.class files), respectively. [71]

Android Gradle Plugin (AGP) is one of the plugins that is present in Android builds
using Gradle to extend Gradle’s capabilities to manage the full build process [71]

Another tool that might be invoked in this step is an annotation processor that generates
code for the annotations in the source code [41] and thereby introduces logic into the
software that is dependent on the behavior of the annotation processor.

Dependency Threats

If one of the libraries, tools, or plugins used in this phase contains malicious logic, it
can alter the outcome of the build process without any changes in provided source code.
These unauthorized changes, therefore, will remain undetected if one does not analyze
the resulting binaries. This threat is again very similar to the attack described by Ken
Thompson [79].

5 Software Supply Chain of an Android application 44

5.2.5 Optimization and Obfuscation

This is an optional step in the Software Supply Chain, but is rarely omitted because
all modern applications are usually shrunk and optimized to ensure a minimal need for
storage and CPU power to install and run the application. Many use cases also require
some form of obfuscation of the software, which is also done in this phase. Whether the
tasks for shrinking and obfuscating the application are executed depends on the config-
uration and build parameters provided. Common tools used for this step are ProGuard*
and R8%, which has better Kotlin support and more size reduction.

Dependency Threats

If one of the tools or plugins used in this phase contains malicious logic, it can alter
the resulting artifacts of this step, similar to the threats described in Section 5.2.4. The
rules configuring the tools used in this step are often provided by external libraries, and
therefore, if these dependencies have been compromised, they can alter the functionality
and structure of the resulting bytecode.

5.2.6 DEX Conversion

In this step, the Java bytecode (.class files) is converted into DEX format. This is
necessary, because DEX is optimized for Android Runtime (ART). The DEX format
consolidates multiple . class files into a single . dex file, which leads to improved runtime
performance due to the thereby reduced overhead of the binary code. In general, the tool
used to convert the Java bytecode to DEX is d8%. d8 also enables the usage of Java 8
features by converting newer features to Java 7 bytecode in order to ensure the bytecode
is supported by ART. [41, 71]

Dependency Threats

This step, similar to the optimization and compilation step before, is susceptible to
changes in the binary code.

5.2.7 Resource Packaging

In this phase of the Supply Chain the already compiled resources are packaged to be
included in the APK in the next step. The packaging requires AAPT (e.g. aapt or the
newer version aapt2”) and the result of this phase are the resources, merged into a single
set to avoid conflicts [41].

Dependency Threats

This step could also introduce vulnerabilities or bug doors into the assets of the appli-
cation and thereby introduce the vulnerabilities or a bug door in the application itself.
Due to its rather linear transformation and combination of the assets, it would be rather
suspicious if additional logic was added in this step, but nonetheless this step should be
protected.

4https://www.guardsquare.com/proguard
Shttps://developer.android.com/topic/performance/app-optimization /enable-app-optimization
6https://developer.android.com/tools/d8

"https://developer.android.com /tools/aapt2

5 Software Supply Chain of an Android application 45

5.2.8 APK Packaging

In the final step of the build process of the Android application, the DEX files, the
compiled resources, and other assets, like, for example, native libraries, are combined to
a single APK file. The tools executing this step are Gradle and AAPT. The resulting
artifact can in general be either the APK or the applications AABS®. In this thesis we
assume, however, the resulting artifact to be an APK, to simplify the supply chain model.
71

Dependency Threats

This step could also introduce unwanted logic into the application if the used tools have
been tampered with. However, similar to the resource packing step (see Section 5.2.7), it
would be rather odd if this step introduced changes in the binaries of the application.

5.2.9 APK Signing

After the APK was built, it needs to be signed in order to verify to the user that this appli-
cation was actually built by the vendor. Therefore, the developer will sign the APK with
a private key stored in a keystore that is passed to tools, like, for example, apksigner?
(recommended) or jarsigner!. The signature of the APK will then ensure the authen-
ticity and integrity of the APK to the user and will allow them to install it on their
device. [63]

Dependency Threats

Furthermore, this step could introduce malicious changes to the final application. By
modifying the application, this would, however, be very suspicious, as the signing process
in general does not modify the binaries of the APK anymore and rather just appends
the signature and the information to verify the signature to the APK.

5.2.10 Distribution

In the distribution step, the APK is uploaded to the distribution platforms, like, for
example, F-Droid or Google Play or other platforms. Some of these platforms require the
developers to outsource the signing of the application to them and thereby requires the
developer to upload their key to the distribution platform.

Distribution Threats

If the platform turns malicious or is compromised, it could distribute applications that
have been tampered with but will have a valid signature.

5.2.11 Verification

In the verification phase, the authenticity and integrity of the APK to be installed is
verified. The basic methodology to ensure the authenticity of the application is to verify
the signature of the application. More targeted attacks might require the downloaded

8https://developer.android.com/guide/app-bundle
9https://developer.android.com /tools/apksigner
L0https://docs.oracle.com/javase/8/docs/technotes /tools/windows /jarsigner.html

5 Software Supply Chain of an Android application 46

APK to be checked by verifying the hash value corresponds to the hash value of the
reference APK, to verify that no unwanted modifications have been introduced at any
point of the supply chain. In order to compare the hash value of an APK to the expected
hash value, a user needs to be able to obtain such a reference value securely.

Verification Threats

If the infrastructure providing the verification mechanism is compromised or the user’s
system is compromised, the verification might either be impossible to complete or might
be successful even for applications that have been tampered with. Another verification
threat arises if the user is unable to obtain a reference value to check the APK against.

Chapter 6

Contribution of this thesis

In Section 4 the threat model of the scenarios considered in this thesis was defined.
Section 5 explored a typical software supply chain of Android applications and applied
the threat model to the individual steps of the supply chain.

Section 6 explores the contribution of this thesis: an approach to verify the integrity of
Android applications, that allows users to learn the exact digital resources that were
involved in the creation of the application. Section 6.1 provides a short summary of the
proposed approach.Section 6.2 reasons about the selection of messaging applications for
which the approach has been implemented. Section 6.3 subsequently looks at the concrete
Software Supply Chain of the selected applications.

Section 6.4 covers the implementation of the approach.

Sections 6.7 through 6.13 explore parts of the implementation in more detail, and Section
6.14 concludes the contributions with the description of the verification process.

6.1 Summary of the proposed approach

The approach proposed in this thesis aims at ensuring the integrity of the supply chain of
E2EE messenger applications for Android. Part of the approach is to provide reproducible
builds for the applications, to allow anyone to rebuild bitwise identical binaries. Like other
instances of reproducible builds, the implementation part of this thesis allows a user to
rebuild the APK and to verify the resources involved in building the Android applications
for Signal and Wire. In contrast to many other instances of reproducible builds, this
implementation can give guarantees, that no additional resources have been introduced
during the build process, due to the hermetic isolation of the build environment.

6.2 Selection of end-to-end encrypted (E2EE)
applications

This section explains the process that led to the selection of Signal Android and Wire
Android as the two applications to be considered in this thesis.

For the selection of potential applications to be considered in this thesis, they had to
meet some criteria:

®m Available for Android: This thesis set out to analyze and mitigate threats of
Android applications, and therefore the first criterion was the availability of the
application for the Android platform.

m E2EE messaging apps: The applications needed to be E2EE messaging apps, to
align with the focus of the thesis.

m Open source: The last mandatory criterion was, that the application’s source code
needed to be publicly available, as this is needed in order to be able to reproduce the
build process of the application.

47

6 Contribution of this thesis 48

Messenger Repository Type URL
Signal Github https://github.com /signalapp/Signal-Android
Wire Github https://github.com/wireapp /wire-android
Threema Github https://github.com /threema-ch /threema-android
Cwtch Other server (Gitea) https://git.openprivacy.ca/cwtch.im/cwtch-ui
Briar Other server (Gitlab) https://code.briarproject.org/briar/briar
Element Github https://github.com/element-hq/element-x-android
Telegram Github https://github.com/DrKLO/Telegram

Table 6.1: List of repositories hosting the source code of E2EE messenger applications
for Android

These criteria were fulfilled by a list of applications, and the list of considered candidates
can be seen in Table 6.1 alongside the URLs pointing to their publicly available source
code.

The final selection for the applications Signal Android and Wire Android was based on
a subjective ranking among the possible candidates derived from qualitative criteria,
“popularity” and “usability.” The limitation of the final selection to only two applications
was due to time constraints of the thesis. This leaves the possibility to extend this list of
applications in future projects.

6.3 Supply Chains of selected Android applications

This section takes a brief look at the existing software supply chains for the selected
messenger applications: Signal Android and Wire Android. The implementations of the
secured supply chains in Section 6.4 are based on the existing supply chains.

6.3.1 Existing Supply Chain: Signal Android

The source code for Signal Android [28] is hosted on GitHub, as can be read on their
blog [12] about the reproducibility of the application. On every major version release,
Signal provides a release on GitHub, which includes a universal APK, that is suitable for
most Android devices and the source code from which the released APK is built. The
published source code corresponds to the state of the code of the commit that has been
tagged with this respective version.

Signal provides instructions [27] on how to build their Android application reproducibly,
from which can be taken how to build the universal APK that is published on GitHub,
and the versions of the required tools can be taken from one of the build scripts. They
also provide the verification-metadata.xml file, which can be used to verify the depen-
dencies used by Gradle during the build process. This file is, however, incomplete, the
implications of which will be discussed in Section 8.2.

The signing step of Signal Android is not available in their source code, but would
naturally also not be replicable by a third party, as they do not have access to the
signing key.

After the building and signing of the APK, the app is distributed. It is published to
GitHub as an APK and uploaded to Google Play as an AAB, which allows users to
download the applications that are optimized for their device.

In order to verify the application, Signal provides the Python script apkdiff.py, which
can be used to compare the APK to be installed to a reference APK.

6 Contribution of this thesis 49

6.3.2 Existing Supply Chain: Wire Android

The source code of Wire Android [32] is hosted on GitHub as well, which can be learned
from their support website[31]. Similar to Signal, Wire Android provides artifacts for
every major release on GitHub, which includes the source code that was used to build
the application and a build of the Android application. Alongside these artifacts, Wire
Android also publishes the file version.txt, which includes version codes and other

information, that was generated and used during the build process of the published
APK.

The command that builds Wire Android can be taken from one of the GitHub workflows.
When building from the source code, one has to take care to also check out the submodule
kalium, as this is required to build the application. Wire Android does not provide a
verification-metadata.xml file to allow for verification of the dependencies. A user,
therefore, in general cannot ensure to use the same dependencies as were used in the
compilation of the APK published by the vendor.

The signing of the application is done as part of the build process that is executed by
the GitHub workflow, but is again not replicable, due to the necessary confidentiality of
the used signing key.

Once the application is built and signed, it is published at a few different places, including
on Google Play, on F-Droid, and on their website.

Wire Android does not provide instructions of how the integrity of the downloaded APK
can be verified.

6.4 Implementation of this thesis

This section provides an introduction to the implementation of the proposed approach
to ensure the integrity of the software supply chain of the two Android applications.
The subsequent sections (Section 6.7 until 6.12) give more detailed information on the
individual parts.

The implementation part of this thesis consists of multiple components:

= A simple GitLab pipeline: This CI/CD pipeline is configured to execute automat-
ically according to the predefined schedule. It will start a Nix-shell, which, as part of
the shellHook, runs the script update.py, and if the update script has found a new
release, the pipeline will continue by trying to build the Nix derivation of the new
release. The build might fail in the beginning, because it is still missing dependen-
cies. To add those dependencies, the script extend_verification_metadata_xml.py
is called and the build restarted until all dependencies have been added and the
build succeeds. The outputs of the build process are saved as pipeline artifacts on
the GitLab instance.

m Update.py: This Python script queries the repositories of the Signal Android and
Wire Android for the newest release. If a new release is found, the Nix files and other
helper files will be updated to build the newest version of the applications.

m Extend_verification metadata_xml.py: This script is used to extract the miss-
ing dependencies from the error log of the build process and will programmatically
add the necessary dependencies to the verification-metadata.xml file of the re-
spective application.

m Flake.nix: This file contains the expressions to build the derivations, which run the
build process to produce the Android applications and compare the APKs to the
respective reference applications. Some logic is outsourced into other Nix scripts to
increase the readability.

6 Contribution of this thesis 50

6.4.1 Implementation of the supply chain of the Android
applications

Figure 6.1 should give an abstract overview of the steps of the process executed by the
derivations declared in the Nix Flake. The included steps are:

1. Fetch Source Code: The first step of the Supply Chain is to fetch the source code
from the repositories of the applications.

2. Include verification-metadata.xml: If the source code of the application does not
include the verification-metadata.xml already, or if the provided file is incomplete,
the build process has to include a file that was generated in a previous step (e.g.,
during the update step).

3. Fetch Dependencies: In the next step, using the tool gradle-dot-nix [43] all the
dependencies and plugins that are needed during the build process are downloaded
and cached in a locally provided Maven repository.

4. Build in a hermetically isolated environment: The build process of the Android
application is executed within the hermetically isolated build environment of the Nix
derivation, to isolate the build process from the internet and the influences of the
host systems.

5. Signing the APK: In the next step, the APK resulting from the build process
in the previous step gets signed. One should note, that because the signing key is
inaccessible, the signature is added to the APK by copying the signature from the
reference APK and thereby is only valid if the binaries of the self-built APK are
bitwise identical to the reference binaries.

6. Comparison to reference APK using Diffoscope: In this step, theAPK, pub-
lished by the vendor, is downloaded to provide a reference APK. This reference APK
is compared to the self-built APK using the tool Diffoscope [10]. The result of this
step is an html-file that contains the differences between the two applications, if there
are any.

7. Publish: APK, Hash value, Diffoscope result: In the last step of my Supply
Chain model, the hash value is computed by calling sha256sum on the self-built
APK and subsequently published as an artifact of the CI/CD pipeline, alongside the
application itself and the html-file from the comparison in the previous step.

6.5 The CI/CD pipeline

The CI/CD pipeline is executed at scheduled times, and for every application it executes
an update stage and a build stage. Listing 6.1 shows exemplary code for the stages for
the Signal Android application.

In the update stage, the pipeline first executes a script, which updates some meta-
information that is saved in the application specific directory. These files contain, for
example, the current version number of the app, the commit hash of the current version,
and other information that is provided as input for the build process of the application.
Next, the pipeline executes a script to update all version numbers and hashes of the
fixed-output derivations within the Nix expressions that are needed to build the appli-
cation. The script uses the tool nix-update by Jorg Thalheim [78] to perform this step.
The last step in the update stage ensures that the build process will be able to access all
needed dependencies and therefore updates the verification-metadata.xml file for the
respective application (see Section 6.13.2 for more information).

In the build stage of the application, the pipeline essentially just calls the nix build
command for the respective derivation of flake.nix (see Section 6.6) that builds the

6 Contribution of this thesis 51

Fetch Dependencies

Build in hermetically
isolated environment

Copy signature of reference APK
to self-built APK

Comparison to reference APK
using Diffoscope

Publish:
APK, Hash-value, Diffoscope-result

Figure 6.1: Abstract overview of the steps of the build process implementation.

application. The derivations ending in . ..-diffoscope also compare the resulting binary
with a reference APK that was downloaded from the official repository of the application
vendor. The parameter -L prints build logs, and the parameter -o path is used to provide
a path to a directory in which the symlink to the build results will be created. This stage
depends on the update stage to be executed beforehand and will provide the build outputs
of the derivation as pipeline artifacts.

default:
tags:
- nix-container-shell

variables:

BUILD_DIR_SIGNAL: build_signal

... more build folders for other apps
stages:

- update-signal
- build-signal
... more stages for other apps

update-job-for-signal:
stage: update-signal

rules:
- if: $CI_PIPELINE_SOURCE == "schedule” # Only run on scheduled pipelines
- if: $CI_PIPELINE_SOURCE == "web” # Or manual triggers

script:

- nix-channel --add https://nixos.org/channels/nixpkgs-unstable nixpkgs
- nix-channel --update

6 Contribution of this thesis 52

- nix-shell

- git config --global user.email "ci@git.ins.jku.at”

- git config --global user.name "GitLab CI"

- git add .

- git diff --staged --quiet || git commit -m "Automated script changes [skip cil”
- git push https://oauth2:$CI_PUSH_TOKEN@git.ins. jku.at/proj/android-device-
security/source-transparency/android-clients.git HEAD:$CI_COMMIT_BRANCH

build-job-for-signal:
stage: build-signal
script:
- nix build -L -o $BUILD_DIR_SIGNAL .#signal-diffoscope
dependencies:
- update-job-for-signal
artifacts:
paths:
- $BUILD_DIR_SIGNAL/*

Listing 6.1: An exemplary code snipped showcasing the update stage and the build stage
of the Signal Android application.

6.6 The Flake

The core of the Nix expressions for building the Android applications is the flake.nix
file in the top-level directory of the repository. A single Nix flake can contain multiple
derivation definitions, and in this case it defines the needed derivations for each messenger
application that should be built reproducibly (which currently includes Signal Android
and Wire Android; see Section 6.2 for more information). The derivations describe how
to build a specific Android application from the source code and how to compare the
self-built APK to a reference binary and produce the result as an output.

Listing 6.2 shows an exemplary code snippet of the flake.nix file, which contains the

necessary expressions that the approach uses to build an application (in this case, Signal
Android).

At the beginning of the file, a string describing the flake is given, followed by the dec-
laration of its inputs. These inputs describe the dependencies of the flake and in this
case, include nixpkgs, android-nixpkgs, and gradle-dot-nix. nixpkgs [13] is a very
central dependency of many flakes, as it provides access to more than 120,000 packages,
which include compilers, libraries, development tools and other software. It also provides
fundamental functions that are helpful for building derivations, such as mkDerivation,
fetchurl, and fetchgit. android-nixpkgs [26] is a package by Tad Fisher that provides
all packages from the Android SDK repository as inputs for Nix expressions. It is used
to provide the necessary build tools in the required version to the build process of each
application. gradle-dot-nix [43] is a package by Stefan Kempinger that allows Gradle
projects to be build within Nix derivation builds, as it fetches dependencies (that can be
declared in a verification-metadata.xml file) in a Nix compatible way and populates
a local Maven repository within the Nix store with these dependencies. It then provides
a Gradle init script that can be used to configure the Gradle project build to look for
dependencies in this local Maven repository.

These inputs are then passed to the outputs function in line 13 in Listing 6.2. Within the
outputs function, a let expression introduces local bindings and then proceeds to define
an attribute set for each application (for Signal Android, it is called signalOutputs).
This attribute set is defined using another let expression, which defines signal, which

N
N

6 Contribution of this thesis 53

in turn is an attribute set returned by the Nix expression that builds the Android appli-
cation (see Section 6.9 for more information), and signal-reference-binary, which is a
derivation that provides a reference binary that the self-built binary can later be com-
pared against. The derivation is defined using pkgs.stdenvNoCC.mkDerivation. It should
be noted that it was a purposeful design choice to use stdenvNoCC to make sure that
no unnecessary binaries are provided in the build environment. The derivation defines
the package name (pname) and the version attributes to ensure that the tool nix-update
can correctly recognize the derivation and update the version and hash of the fixed out-
put derivation that is provided by pkgs.fetchurl. The URL to the reference binary is
thereby constructed dynamically using the version attribute.

The signalOutput attribute set contains a development shell (see line 46 in Listing 6.2)
and a set of packages for the target system, that is defined beginning from the line 36
in Listing 6.2. For the Nix expression for Signal Android, this set of packages consists of
the following:

m signal-reference-binary: which, if build, results in the reference binary that is also
used by the comparison algorithm.

m signal-maven-repo: which can be used to debug the local Maven repository to ensure
that it is populated as expected. This proved very useful to ensure that the repository
worked correctly when the apps would not build because they were unable to find a
required dependency.

m signal-built: provides the self-built APK provided in the signal attribute set from
line 19 in the Listing 6.2.

m signal-diffoscope compares the self-built APK to the reference binary using the
lightweight pkgs.runCommand. The commands used to perform the comparison are
described in Section 6.11.

In line 60 of the Listing 6.2 the outputs of the individual applications are merged into
a single set of packages to allow for building single output derivations using nix build
. #NAMEOFTHEDERIVATION.

{
description = "Building the End-to-end-encrypted Android applications using Nix";
inputs = {
nixpkgs.url = "nixpkgs”;
android.url = "github:tadfisher/android-nixpkgs”;
android.inputs.nixpkgs.follows = "nixpkgs”;
gradle-dot-nix.url = "github:CrazyChaoz/gradle-dot-nix";
gradle-dot-nix.inputs.nixpkgs.follows = "nixpkgs”;
... other versions of nixpkgs for specific gradle versions
b
outputs = {self, nixpkgs, android, gradle-dot-nix, ...3}@inputs :
let

system = "x86_64-1inux";
pkgs = import nixpkgs { inherit system; };

signalOutputs = let
signal = import ./nix/signal-build.nix { inherit system pkgs inputs; 3};
signal-reference-binary = pkgs.stdenvNoCC.mkDerivation rec {
pname = "signal-reference-binary”;
version = "7.56.10";

src = pkgs.fetchurl {
url = "https://github.com/signalapp/Signal-Android/releases/download/v${
version}/Signal-Android-website-prod-universal-release-${version}.apk"”;
sha256 = "sha256-FvIwtF8TLgbUxnHtZJIBIjAKLA8+x1gNpawv4dHIg1EI=""

6 Contribution of this thesis 54

3

phases = ["installPhase"” 1;
installPhase = "'
mkdir -p $out
cp -r $src $out/Signal-Android-website-prod-universal-release-${version}.
apk

b
in {
packages.${system} = {
inherit signal-reference-binary;
signal-maven-repo = signal.maven-repo;
signal-built = signal.built-apk;
signal-diffoscope = pkgs.runCommand "diffoscope-comparison” {
nativeBuildInputs = [pkgs.diffoscope pkgs.apksigcopier 7;

3o
... comparison of the self-built APK to the reference binary using
diffoscope
I
devShells. ${system}.signal = signal.devShell;

3

default to ensure that is executed when “nix build™ is run without specifying a
specific derivation

defaultOutput = {
packages.${system}.default = signalOutputs.packages.${system}.signal-diffoscope

’

3

allOutputs = [

signalOutputs

... outputs of other applications

defaultOutput

1;

in
nixpkgs.lib.foldl nixpkgs.lib.recursiveUpdate {3} allOutputs;

Listing 6.2: An excerpt of the flake.nix file defining the derivations to build the Signal
Android application.

6.7 Fetching the Source Code

In this first step, the Nix function fetchgit is used to obtain the source code to build
the Android applications. This step needs to be done within a derivation in order to
retain the structure that is expected by nix-update [78]. Listing 6.3 and Listing 6.4 show
the Nix expressions that retrieve the source code for Signal Android and Wire Android,
respectively. The parameters for fetching the source code consist of the URL pointing to
the repository, the revision (in this case the version label) identifying the exact state of
the source code, and the hash value that is expected when fetching this exact version of
the source code.

For the source code of Wire Android, the parameter fetchSubmodules has to be provided
in order for the function to also include the submodule kalium when obtaining the source
code.

6 Contribution of this thesis 55

built-apk = pkgs.stdenvNoCC.mkDerivation rec {
pname = "build-signal”;
version = "7.56.10";

src = pkgs.fetchgit {

url = "https://github.com/signalapp/Signal-Android.git"”;

rev = "refs/tags/v${version}";

hash = "sha256-GUEVBDsHZmt@bR2ptiBEBIk5KOptMD/pQni9FRI752I=";
IH

...

};

Listing 6.3: The Nix-code snippet fetching the source code for Signal Android.

built-apk = pkgs.stdenvNoCC.mkDerivation rec {
pname = "build-wire”;
version = "4.15.0";

src = pkgs.fetchgit {
url = "https://github.com/wireapp/wire-android.git";
rev = "refs/tags/v${version}";
hash = "sha256-WIA1Nonzjd2vL151zaSvaKsqs3NiBHoOetVWEOpOs3k="";
fetchSubmodules = true;

IE

...

};

Listing 6.4: The Nix-code snippet fetching the source code for Wire Android.

6.7.1 Mitigations

Retrieving the source code within the Nix Flake, using the function fetchgit ensures
the integrity of the source code, by comparing the hash value of the retrieved source
code against the expected hash value. This does not mitigate any threats concerning
vulnerabilities or bug doors that have been added to the VCS, but ensures that no
manipulations of the source code happened when retrieving it.

6.8 Fetching the dependencies

In this step the dependencies and plugins needed for the build process are fetched.

The needed artifacts are listed in the verification-metadata.xml file. If this file is
included in the source code of the repository, it can be accessed from there. If the
verification-metadata.xml file is not provided by the vendor or if it is incomplete,
it needs to be manually generated in a separate step and included in this step, as can be
seen in line 4 of the Listing 6.5.

Additionally to the list of needed artifacts, the tool gradle-dot-nix also needs the list
of Maven repositories in which it should look for the artifacts (see Listing 6.5. This list
generally includes a few common repositories, but in the case of Signal Android, for
example, it also included some specific repositories, that are maintained by Signal.

6 Contribution of this thesis 56

gradle-dot-nix-params = {
gradle-verification-metadata-file = ./path/to/verification-metadata.xml;
public-maven-repos = "'
L
"https://jitpack.io/",
"https://dl.google.com/dl/android/maven2”,
"https://repo.maven.apache.org/maven2”,
"https://plugins.gradle.org/m2",
"https://maven.google.com/",
"https://repol.maven.org/maven2/",
"... other application specific repositories”

]

[
’

b
gdn-results = import ./gradle-dot-nix.nix {
inherit (inputs) gradle-dot-nix;
inherit pkgs gradle-dot-nix-params;
3
maven-repo = gdn-results.maven-repo;
gradleInitScript = gdn-results.gradlelnitScript;

oo,

Listing 6.5: An examplary Nix-code snippet showcasing the usage of gradle-dot-nix to
fetch and cache the dependencies.

At the end of the fetching process, gradle-dot-nix has created an entry in the local Niz
store for each fetched artifact and thereby provides a local Maven repository hosting the
needed dependencies.

gradle-dot-nix also provides a script, that can be used to initialize Gradle, such that it
will obtain the dependencies from the Niz store only. An example of how this initialization
will happen in general can be seen in Listing 6.6

...

buildPhase = "'
gradle build -I ${gradlelnitScript}

(]
’

Listing 6.6: An example Nix-code snippet, showcasing how Gradle is configured to use
the local Maven-repository.

6.8.1 Mitigations

By using the verification-metadata.xml file or generating it and providing it to the
public, anyone can build the application using the very same dependencies and plugins.
Additionally, gradle-dot-nix uses the hash values provided in the dependency verifica-
tion file in order to guarantee the integrity of the downloaded artifacts. These propositions
guarantee that the application builds with the same dependencies, in the same version,
and with the same content and thereby mitigate attacks that involve the manipulation
of dependencies while they are being retrieved.

6 Contribution of this thesis 57

6.9 Build within the hermetically isolated build
environment

In the following section, the process providing the verifiable builds is described. The
builds of the E2EE messaging apps Signal Android and Wire Android are executed
in the hermetically isolated environment of the Nix derivation build phase. The build
environment is configured to only contain the minimal set of tools needed to build the
applications. The environment additionally has access to the local Maven repository in
the Nix store containing the verified artifacts that have been fetched in the steps described
in Section 6.8.

6.9.1 Build process aspects common to both apps

The build process of the Android applications is executed within the build phase of the
Nix derivation and therefore is unambiguously described by the functional programming
language. For the compilation of each application, a separate derivation was implemented
in the Nix script, to ensure, that the two build processes cannot interfere with one another.

The first part of this derivation was already shown in Listing 6.3 and Listing 6.4 and
defined the source of the build process. The next parameters of the function mkDerivation
are the optional declarations of the nativeBuildInputs, the postPatch phase, and the
two phases buildPhase and installPhase.

The declaration of the build inputs is needed to have the necessary tools available in
the build environment. The Gradle build instructions are provided in the buildPhase
parameter. The install phase is then used to define copying the resulting artifact into the
output directory of the derivation.

6.9.2 Inclusion of the build tools

In order to be able to build the Android applications, it is necessary to provide the
Android SDK, Gradle, the Java Development Kit, and Git to the build process. All the
tools, except for the Android SDK, are available as Nix packages. Android SDK needs to
be declared as a separate input to the Nix script, and once it is added to the inputs, it can
be used to define the exact versions of the tools needed, depending on the application.
An example of the Android SDK definition can be seen in Listing 6.7.

android-sdk = inputs.android.sdk.${system} (sdkPkgs: with sdkPkgs; [
build-tools-35-0-0
cmdline-tools-latest
platform-tools
platforms-android-35
ndk-28-0-13004108
cmake-3-22-1
D;

Listing 6.7: Android SDK declaration for Signal Android.

When building Android applications using Gradle, the version of the build tool is included
in the resulting APK. In order to make the build bitwise identical to a reference binary,
the same version of Gradle needs to be used. This can be achieved for most versions
of Gradle by using the respective nix-packages version that includes the needed version.
For versions that are not packaged for nix-packages, one has to package the versions
themselves in order to include and use them in the build process.

6 Contribution of this thesis 58

6.9.3 Build process specifics: Signal Android

Listing 6.8 shows the helper function mkDerivation being used to encapsulate the build
process in the hermetically isolated environment provided by Nix. The build of Signal
Android is executed with the initializing script that gradle-dot-nix provides to ensure
that the dependencies are obtained from the local Maven repository, that was created in
the dependency fetching step described in Section 6.8. The parameter in line 25 in 6.8 is
necessary to build the application successfully, because the verification-metadata.xml
was not trusted by Gradle. The following two parameters, set the paths of Java and
AAPT, because the build process could not locate them without it.

built-apk = pkgs.stdenvNoCC.mkDerivation rec {

pname = "build-signal”;
version = # ...
src = # ...

nativeBuildInputs = # ...

commit_hash = builtins.readFile ../signal/commit_hash.txt;
postPatch = "'
export GIT_COMMIT_HASH="${builtins.substring @ 12 commit_hash}"
export GIT_COMMIT_TIMESTAMP="${builtins.readFile ../signal/commit_timestamp.txt
3
export GIT_TAG="${builtins.readFile ../signal/tag.txt}"

Replace assertions in the Gradle script
substituteInPlace "app/build.gradle.kts” \
--replace-fail 'fun getGitHash()' 'fun getGitHash(): String { return System.
getenv("GIT_COMMIT_HASH") ?: "unknown”} fun formerGitHash()' \
--replace-fail 'fun getlLastCommitTimestamp()' 'fun getLastCommitTimestamp():
String { return System.getenv("GIT_COMMIT_TIMESTAMP") ?: "@" } fun
formerLastCommitTimestamp()"' \
--replace-fail 'fun getCurrentGitTag()' 'fun getCurrentGitTag(): String {
return System.getenv("GIT_TAG") } fun formerCurrentGitTag()'

[
’

buildPhase = "'
gradle assembleWebsiteProdRelease \
-I ${gradlelnitScript} \
-Dorg.gradle.dependency.verification=lenient \
-Dorg.gradle. java.home=${pkgs. jdk17}/1ib/openjdk \
-Dorg.gradle.project.android.aapt2FromMavenOverride=$ANDROID_HOME/build-tools
/35.0.0/aapt2

[
’

installPhase =
mkdir -p $out
cp ./path/to/apk $out/

’

1

Listing 6.8: The Nix script running Gradle to build the Signal Android application.

.git-folder dependency of Signal’s build process

The Gradle build for the Signal Android application requires the .git folder to be present,
because it includes the information, that can be retrieved from that folder, in the build

N

6 Contribution of this thesis 59

process. If the .git folder is included in a fix-output derivation, the resulting hash code
will, however, change with every new commit on the repository. Therefore, it was neces-
sary to patch the build-script app/build.gradle.kts to take the necessary information
from previously populated environment variables instead of from the .git folder (see
lines 11 to 19 in Listing 6.8).

6.9.4 Build process specifics: Wire Android

built-apk = pkgs.stdenvNoCC.mkDerivation rec {

pname = "build-wire”;
version = # ...
src = # ...

nativeBuildInputs = # ...

postPatch = "'
cp ${version-txt-file}/version.txt app/version.txt
cat ${version-txt-file}/version.txt | grep "Revision” | \

awk '{split($e0, array); printf "%s", array[2]}' >> app/src/main/assets/
version.txt
the revision number needs to be added here (can be found in version.txt)

[
’

buildPhase = "'
CI=true gradle app:assembleProdCompatrelease \

-I ${gradlelnitScript} \
-x includeGitBuildIdentifier \
-x generateVersionFile \
-Dkotlin.native.distribution.baseDownloadUrl=file:${maven-repo} \
-Pkotlin.native.distribution.downloadFromMaven=true \
-Dorg.gradle. java.home=${pkgs. jdk17}/1ib/openjdk \
-Dorg.gradle.project.android.aapt2FromMavenOverride=$ANDROID_HOME/build-tools

/34.0.0/aapt2

[
’

installPhase =
mkdir -p $out
cp ./path/to/apk $out/

3

’

Listing 6.9: The Nix script running Gradle to build the Wire Android application.

version.txt dependency of Wire

The build scripts for the Wire Android application generate the current sub-version
depending on the build time and save the sub-version and other build metadata in the
version.txt file. To ensure that the built APK would have the same sub-version as the
reference, APK the approach was, to fetch the version.txt file that was published on
the Wire repository and patch the build script such that it would look for the file and
read the sub-version number from it.

Dependency fetching at build-time

In order to compile native binaries, Kotlin needs the Kotlin-Native libraries. These li-
braries are by default fetched at build time, if they are not found in a local cache folder.

6 Contribution of this thesis 60

There exist parameters that can be set to make Kotlin look in a Maven repository for
the dependencies and to specify the location of this Maven repository. It was neces-
sary to set these parameters to point to the local Maven repository that is created
by gradle-dot-nix and add the Kotlin-Native libraries to the dependency list in the
metadata-verification.xml file to provide Kotlin with the needed libraries during the
hermetic build process.

Diverging parameter handling

In the build script of Wire Android, the plugin CompleteKotlin [5] is included, which is
intended to provide Kotlin-Native libraries independent of the architecture of the current
host by fetching specific libraries at build-time. This plugin, however, does not fully
support the parameters that are supported by Kotlin-Native, and in order to prevent
CompleteKotlin from trying to fetch the libraries during the hermetic build process and
from breaking the build, if it fails to retrieve the libraries, the environment variable
CI=true has to be set.

6.9.5 Mitigations

Running the build processes for the Android applications in hermetically isolated environ-
ments increases the confidence that the build process only included those resources that
have been specifically declared. The build phase of the Nix derivations is isolated from
the internet and can therefore ensure that the Gradle build does not resolve and fetch
dependencies during build time. The only dependencies, the build process can access, are
the ones described in the verification-metadata.xml file.

6.9.6 Extra arguments passed to the build command

In order to ensure that the Gradle build tool could access all the necessary tools, it
did not suffice for all the tools, to be provided in the nativeBuildInputs argument. For
some tools, it was necessary to provide their location to Gradle, by specifying them as
arguments of the build command. This included:

m Setting the location of java.home (see, for example, line 26 in Listing 6.8)
m Override the path for aapt2 (see, for example, line 27 in Listing 6.8)

After the build of the Android application finishes, the resulting APK is copied to the
output folder.

This step completes the reproducible build of the messengers. No matter on which system,
at which time, or how many times one runs this build process, the resulting APK will
always be bitwise identical to the APKs of previous runs.

6.10 Signing of the APK

In this step of the implementation of the R-Bs of Signal Android and Wire Android,
the self-built application is provided with a signature, by copying the signature from the
reference binary and patching it into the unsigned APK using the tool apksigcopier.

It should be noted that, as mentioned in Section 2.5, this is not the way an application
is supposed to be signed, but it achieves the identical result. Given that the self-built
unsigned APK is bit-wise identical apart from the signature, adding the signature allows
to obtain a signed application that is bit-wise identical to the reference binary obtained

6 Contribution of this thesis 61

from the vendor. This means that the build process is fully reproducible and the self-built
application has a valid signature, allowing anyone to install it on their device.

If the self-built unsigend APK however differs from the reference binary by more than
just the missing signature, adding the signature to it will not result in a valid APK and
therefore cannot be installed. Adding the signature in this case still has the advantage
of reducing the list of differences that will be found by Diffoscope in the next step (see
Section 6.11 and will make the root-cause analysis easier.

It should be noted that the signature is still valid, and the resulting signed application
might not be bitwise identical if the metadata of the APK differs from the reference
APK. This is a problem that needs to be addressed by future work (see Section 10.

6.11 Comparison to the reference APK

The easiest way to show that two files (here the APKs from two different build runs)
are bitwise identical, is to compute the hash of both and compare them. If the two files
differ even only in a single bit, the hash will look very different, and only if both files are
fully identical, the hash of both files will be identical as well. This is true as long as a
secure hash algorithm is used, for which it is not possible to find collisions, as elaborated
in Section 2.4.

6.11.1 Using Diffoscope to compare the APKs

In the best case, comparing the self-built APK with the reference binary by computing
the hash will confirm that the two applications are indeed bitwise identical, and we
can confidently publish the artifacts. In the case that the binaries differ, however, it
is relevant to find out where those differences stem from and if those differences could
indicate an unwanted change in the application’s logic or just some minor source of non-
reproducibility. Some potential differences, that might occur and that do not indicate a
potential unauthorized modification, but rather hint at deviating configurations of the
build process include

m Missing signatures: If the previous step was skipped and the signature not copied
onto the self-built APK, then this self-built application does not have a signature,
but the distributed official applications do. Analyzing the differences between the two
binaries will then show that the self-built APK is missing the signature, which results
in two big sections in the Diffoscope results. The consequence of this difference is
merely the fact that the self-built APK should not be published, as it cannot be
installed.

= Build tool versions: Some build steps might include the version code of the build
tools used in the build output, and if the build tools differ or if a different version of
the same build tools is used, then this difference will show up in the results of the
APK analysis.

m Misconfiguration of build process: given that the wrong build task or the wrong
build parameters are provided, the build result will look different and for example,
have different features enabled. An example would be that instead of the build com-
mand for the generic Android application, the command to build the application
optimized for a certain device type is provided—the functionality of the resulting
APK would be mostly the same, but the binaries would differ. These differences are
therefore not a problem by themselves, but are not easily distinguishable from a build
that actually includes malicious code and should therefore be carefully avoided.

m License statements: The application of Wire Android includes the licensing state-
ment within the APK itself. These licensing statements are missing, in the application
resulting from the isolated build process.

N

6 Contribution of this thesis 62

m Missing VCS information: Since Android Gradle Plugin version 8.3, the file
META-INF/version-control-info.textproto is generated during the build process
and included in the APK. Within the hermetically isolated environment of the Nix
derivation build phase, the tool fails to retrieve the necessary information, and there-
fore the resulting VCS information file differs.

m File size, but same content: Another difference found in the outputs of
Diffoscope, was a file size difference of a file in a ZIP archive, without a corre-
sponding difference in the analysis of the individual file. This is an indicator, for a
file that is identical in its uncompressed state but, due to differences in ZIP com-
pression algorithms or levels used when creating the ZIP, shows in the ZIP archive
metadata with a differing file size. [30]

All the differences mentioned above are a result of a lack of reproducibility of the build
process and indicate a need for further steps to be taken to get the build closer to
reproducing a bitwise identical result to the reference APK or for the upstream developers
to adapt the build process to facilitate its reproduction.

6.11.2 Implementation

The comparison using Diffoscope and the comparison of the APKs using their hash
values are done within the Nix build environment. Using Diffoscope within the build
phase is possible because the tool has been included in the nixpkgs and can therefore
be included in the build environment of the derivation by providing it as a build input
parameter. Calling sha256sum to compute the hash values of the APKs is possible due to
the fact, that the build phase of Nix derivations includes some core utilities. Given, that
comparing the two binaries using Diffoscope only needs a minimal build environment,
one can use the function runCommand instead of calling mkDerivation to minimize the
necessary overhead to create the Nix derivation, as can be seen in the Listing 6.10.

Line 5 of the Listing 6.10 shows the invocation of the tool Diffoscope. Diffoscope returns
with the value 0 if no differences have been found, returns with 1 if the tool has found
differences in the input files, and returns with exit codes that are greater than 1 to
indicate errors. Due to the fact, that Nix scripts abort the execution if any of the called
commands return a non-zero result, the return value of Diffoscope needs to be caught
and handled. The OR expression and the bash condition following the call of Diffoscope
ensure that this line returns O for as long as the return value of Diffoscope was either 0
or 1 and thereby ensure that the Nix script continues its execution and only aborts if an
actual error occurred in the execution of Diffoscope.

run-diffoscope = pkgs.runCommand "diffoscope-comparison” {
nativeBuildInputs = [pkgs.diffoscope 1;
3o
...
diffoscope --html=$out/diff.html ${self-built-apk} ${reference-apk} || [
$? -eq 1]

[
’

Listing 6.10: An examplary Nix-code snippet showcasing how diffoscope is run to
compare the self-built APK to the reference binary.

6.12 Publishing of the resulting artifacts

The APK resulting from the R-B, the hash value computed from the APK and an
analysis of the differences between the built APK and a reference APK are pub-
lished as pipeline artifacts on the GitLab instance, that is executing the CI/CD

6 Contribution of this thesis 63

pipeline. The GitLab instance is hosted by the INS, at the Johannes Kepler University
Linz and can be accessed at https://git.ins.jku.at/proj/android-device-security/source-
transparency/android-clients, which allows users to access the results later and for exam-
ple, verify their locally installed messaging application by comparing their hash value to
the published one (for more information about the verification possibilities, see Section
6.14).

6.13 Update the Reproducible Build process

In a first attempt, the goal was to build the E2EE Android messengers for Signal and
Wire for one certain version only, but as newer versions of the applications are being
published by the vendors, users want to update their applications, and therefore also the
R-B of the messenger must be brought up to date. In order to allow users to verify and
subsequently install newer versions of the applications, the Reproducible Build process
must provide this newer version, which requires an updating process for the Nix scripts
and other version-dependent files, which are included in the reproducible build process
of the application. The list of inputs and references that need to be updated for every
new release includes

m References to the source code and reference binaries: The Nix scripts de-
scribing the build process contain function calls that retrieve the source code and
reference binaries from the repositories, which need to be updated to point to the
newer versions.

m New (versions of) dependencies: After updating the previously mentioned refer-
ences and inputs of the build process, the build might fail, because the newer version
of the Android application needs newer versions of dependencies or depends on other
artifacts, it did not depend on before.

m Build tools: The build tools used to compile the application need to be updated as
well, in order to still obtain bitwise identical artifacts from the build process.

m Helper files for the R-B: In order to run the Gradle build process of the applica-
tions in such a way that it would generate APKSs, identical to the reference binaries,
a few helper files had to be created (see Sections 6.9.3 and 6.9.4). These files contain
mostly version dependent information and therefore need to be updated as well.

If the new version of the application has other changes in the build process or the require-
ments of the build process, the update process might not be sufficient, and the build of
the applications might fail. In order to recover from this, a maintainer of the R-B process
needs to manually identify the source of the failure.

6.13.1 Update references

The Nix expressions building the APKs use the function fetchgit to retrieve the source
code of the application. This function requires arguments to specify the URL and revision
to access the right version of the source code, as well as the expected hash value that the
obtained code should evaluate to. Similarly, the reference binaries to compare against
the self-built APKs are retrieved using the function fetchurl, which requires a version
dependent URL to point to the artifact to be obtained and its expected hash value.

These arguments, that are provided to the fetching functions can be updated to reference
the values for the newest release by calling the tool nix-update. This will update all URLs
to point to the newest release, and it will also change the expected hash values to the
ones corresponding to the new artifacts.

6 Contribution of this thesis 64

6.13.2 Update dependencies

Newer versions of the applications often depend on newer versions of their dependen-
cies or new dependencies, that they did not need before. In order to build the new
version of the application, the reproducible build environment also needs to provide
the artifacts for the newer build dependencies. This means that the new dependencies
need to be added to the verification-metadata.xml file, in order to be fetched as de-
scribed in Section 6.8. The missing dependencies can be added by running the script
extend_verification_metadata_xml.py. This bash script will look for the descriptors of
the missing dependencies in the error log of the build process and search for them in a list
of known repositories. If it cannot find a specific dependency in any of the repositories,
the build pipeline fails and the update must be finished manually. If, however, all the de-
pendencies could be found in at least one of the repositories, the script will generate the
new entries for the verification-metadata.xml file, such that the tool gradle-dot-nix
can later retrieve the actual artifacts and populate the local Maven repository with them,
as explained in Section 6.8.

6.13.3 Update build tools

If the new releases are built using newer versions of build tools, or if they require new
tools, that were not necessary in previous versions, the Nix scripts have to be updated
to include these new tools as well. The current implementation does not include an
automatic way of updating the environment to include new (versions of the) build tools.

6.13.4 Update process trigger

The update script is executed by the GitLab pipeline, which is running based on the
defined schedule. Every time a new version of one of the two Android applications is
published, the update script will update the necessary files and invoke a build process to
verify the reproducibility of the new version.

6.14 Verification process: Concept

The verification process is as follows: a user can download an application from any source
on the internet and compare its hash value with the hash values that have been published
for this app on the GitLab repository of the INS. If the hash value matches either the
APK that is built by the GitLab pipeline or the APK that was retrieved from the official
vendor’s repository (the value would match either both or neither, if the self-built APK
is bitwise identical to the reference binary), then the user can look at the reproducible
build process to analyze the source code, tools, build parameters, and other artifacts,
that are involved in building the application to determine whether that build process will
produce a trustworthy APK. If the hash value of the application that the user retrieved,
matches only the official binary, but not the APK built by the pipeline, then they have
to additionally look at the report provided by Diffoscope to determine if the differences
are insignificant enough to be ignored.

This first part of the verification process is possible to perform in the current implemen-
tation of the contribution. Figure 6.2 depicts the steps that a user would undergo to
ensure the trustworthiness of an application. This scenario assumes that the users trusts
the INS to be honest about the relation of R-Bs and their results.

The second part of the verification process requires a trusted independent third party
that verifies the correspondence of the described reproducible build process with the re-
sults published on the GitLab repository of the INS. This third party should also perform

6 Contribution of this thesis 65

an analysis of the inputs of the build process to ensure that no malicious software artifact
or configuration is present. Once the correctness of the R-B and the benevolence of the
inputs were verified, this third party could provide a reference to the description of the
R-B (i.e. the exact version of the repository that provides the R-B for the requested ver-
sion of the application) and a reference to the results of the R-B (i.e. the pipeline artifacts
hosted on the GitLab repository that resulted from the execution of the referenced R-B).

These references could be published as entries of a verifiable log (see Section 2.16) to
strengthen the guarantees on the trustworthiness of the referenced R-B and the referenced
results. This approach requires the user to trust the party that provides the entries of
the verifiable log or to have some way of differentiating entries of the verifiable log that
are not trustworthy (see Section 9.3 for more information).

Figure 6.3 depicts the extended concept of the verification process that involves the R-Bs
and their results being published to a verifiable log. It provides a few extra security
guarantees and a better user experience (as the user does not have to verify the R-B or
the build inputs themselves), but it also requires a more sophisticated infrastructure (as
the verifiable log also needs monitors, witnesses, and auditors to be present).

6 Contribution of this thesis 66

Compute the hash Retrieves hash value
of the downloaded app of APK built by INS

Yes

Does hash match
the self-built APK?

Retrieves hash value
of APK built by vendor

Does hash match Yes
the vendor ——> Check diffoscope report

provided APK?

Report only

. L Analyze reproducible
mentions insignificant

build process

differences?

Build process
reproducible and
inputs trusted?

Yes

N t ided
o guarantees provide APK is trusted
by the approach

Figure 6.2: Verification process part 1. This part of the process can be performed with
the current implementation, but it requires the user to trust the provider of
the R-B to be honest, and it requires the user to analyze the build inputs
themselves to determine whether the APK is trustworthy.

6 Contribution of this thesis

67

Trusts

Verify reproducibilty
of build process

Verify trustworthiness
of build inputs

Build process
reproducible and
inputs trusted?

Yes

Download an app
from the internet

R-B not correct
or inputs not trusted

Create verifiable log entry
with reference to
R-B and results

Verifiable |

Hash of app in
verifiable log?

Query log

log entry |

No guarantees
provided
by the approach

App trusted

Figure 6.3: Abstract overview of the implementation.

Chapter 7

Evaluation

This section gives a critical analysis of the contribution described in Section 6 and the
actual mitigations it can provide against the threats described in the threat model in
Section 4. After a short summary of the contribution is provided in Section 7.1 and an
overview of the limitations of the contribution in Section 7.2, the section reflects which
threats are mitigated by the approach and which remain open.

7.1 In short

The contribution described in Section 6 provides a method to recognize when the build
process of binary applications has been tampered with. It provides reproducible builds
for the two Android applications of Signal and Wire and thereby gives a general user
of the applications the opportunity to verify the build process of the APK they want
to install and use. They can analyze exactly which dependencies and tools have been
used to compile the application and can review the exact source code from which the
application was built. The integrity of the Supply Chain is ensured at multiple steps
throughout the build process by verifying the hash values of inputs and outputs of those
steps. The proposed approach, however, does not comply with the requirements of SLSA
build level 3 (see Section 2.10 for more information). It provides the required isolation
for the build execution, but does not provide build provenance. This problem and the
necessary future work are further addressed in Section 10.2.1.

7.2 Limitations and Scope

The following list describes aspects that are outside the scope of this thesis:

m Authenticate source code and reference binaries: The application vendor must
provide source code and reference binaries. The reproducible build process must
guarantee to access only valid URLs to ensure the source code and binaries are
authentic and original. This has been done manually and based on the information
provided on the official website of the vendor.

m Availability threats: In general, the proposed approach does not provide miti-
gations for availability threats, as no measures to ensure continuous availability of
the source code or dependencies are included. Furthermore, the build provenance
could become unavailable and thereby render the build unreproducible. Such prob-
lems could be tackled by distributors of applications if they archive all the needed
resources for the R-B or through legal obligations.

m Trust in source code: The contribution does not provide any mechanism to detect
or prevent the existence of vulnerabilities or backdoors in the vendor’s source code.
The provided solutions only ensure the integrity of the source code as it was at
the time of creation of the R-B. The source code must be secured by other means,
including the use of software development tools and distributed audits of members
of the open source community.

68

7 Evaluation 69

m Trust in dependencies and tools: A user needs to trust or verify the dependen-
cies and tools used of the build process. The contribution does not provide methods
to mitigate any dependency threats, aside from guaranteeing the integrity of the
declared dependencies and tools. Existent malicious logic, bugs, and other vulnera-
bilities in those binaries need to be addressed by other means.

m Trust in the build environment: Additional trust needs to be put into the binary
tools that are used to provide the environment of the R-B. Executables, like the
software binaries of Nix, which execute the Nix expressions, need to be trusted or
verified. These binaries could have been tampered with and might thereby undermine
all guarantees and mitigations, that the approach otherwise provides.

7.3 Source threats

The proposed approach pinpoints an exact version of the source code by referencing a
specific contribution of the VCS by the label that was applied. The contribution also
provides methods to ensure the integrity of this version of the source code. It guarantees
that the same source code was used to build the reference binary as well as any other
binary that was created using the R-B, by matching the hash value computed over the
obtained source code to the hash value of the source code as it was obtained at the
creation of the R-B.

An additional benefit that is achieved through the use of VCS is accountability. As
contributions are tracked by the VCS, any changes in the source code can be unambigu-
ously assigned to the single contributors of it. This does not prevent the introduction of
malicious logic, but provides transparency and the ability to pinpoint introductions of
malicious logic to the compromised developer.

7.4 Build threats

The contribution protects the integrity of the build scripts of the Android applications,
as they are part of the source code and are thereby protected from source threats in the
same way as the rest of the Android application source code. The integrity of the build
parameters is subject to source threats targeting the description of the R-B. They are
protected by the mechanisms of the R-B - any changes to the build parameters, that
would lead to changes in the outputs of the build process, will be detected at the stage
that compares the build process results with the reference binary and at the verification
step, when the hash value of the compromised application does not match with the
expected value.

7.5 Dependency threats

The proposed approach provides transparency about which dependencies, libraries, plu-
gins, and tools are used during the build process and verification of the integrity of those
dependencies and tools. The approach ensures that the very same binaries are used in
the build process independent of the executing user, underlying host system, or execution
time. The approach mitigates the threat of dependency confusion, because the fetched
artifacts are matched against a cryptographic hash value and therefore have to be the
exact binary that is specified in the verification-metadata.xml file. The R-B of the
Android application moves the border of trust by one step, as the build process of the
application itself is verifiable, but the reproducibility of the dependencies and tools is
not provided by the approach.

7 Evaluation 70

7.6 Availability threats

The contribution provides the R-Bs using the Nix package manager, which in turn sup-
ports caching of build inputs and build artifacts using the Nix store. This feature is
leveraged to provide a caching mechanism for dependencies and tools after the first build
execution and thereby mitigates the problem of temporarily unavailable dependencies or
tools.

7.7 Distribution threats

The implementation of the approach allows users to verify that the distributor they are
obtaining the APK from, provides an application that was not tampered with. They
can verify the absence of unauthorized modifications by comparing the hash value of the
obtained APK with the expected hash value provided by provenance data.

7.8 Verification threats

Threats like a leaked signing key of the application supplier are mitigated by the con-
tribution, as the user can verify any obtained APK by comparing its hash value to the
reference value. The exploitation of cryptographic primitives used in the approach is
mitigated by using strong algorithms for the hashing and signing steps included in the
Software Supply Chain.

Chapter 8
Findings

This section highlights findings of this work. It will first list the versions that were
successfully built with the approach of this thesis and will then continue highlighting the
encountered difficulties and surprising elements found while implementing the approach.

8.1 Versions that were successfully built

Table 8.1 lists the versions of Signal Android and Wire Android that were successfully
built at the submission time of the thesis. It should be noted that none of the builds
was fully identical to the reference binaries, and therefore, to this point, no version could
be built fully reproducibly. The main reasons why the builds are not reproducible are
mentioned as future work in Section 10.1.2.

8.2 Missing dependencies in provided
verification-metadata.xml

The verification-metadata.xml is a file that can be generated by Gradle to ensure the
integrity of all dependencies of the build process. Therefore, it should contain all depen-
dencies and plugins of a Gradle build task it was generated for. The file can then be used
to verify the integrity (by the provided hash value) and optionally also the authenticity
(using signatures) of those dependencies. Given that the vendor has generated the file
and included it in the source code, it allows for improving the reproducibility of the
build process and additionally allows the user to trust the vendor to have verified the
benevolence of the included dependencies. In the repository of Wire Android, the file was
not included and therefore potentially also not used by the vendor. In the repository of
Signal Android, a verification file was included.

One finding of this thesis was, however, that the verification-metadata.xml, which
was included in the repository of Signal Android, did not include all the necessary de-
pendencies to build the application. While it may be the case that the file was not
updated recently, further investigations have strongly suggested that a newly generated
verification-metadata.xml file also does not include all dependencies.

The finding occurred, because the build process failed to find dependencies in
the hermetic build environment, even though the tool gradle-dot-nix fetched

Signal Android | v7.47.2, v7.53.2, v7.53.4, v7.53.5, v7.56.10

Wire Android | v4.14.1, v4.14.2, v4.15.0, v4.15.1, v4.15.2
Table 8.1: Versions of the E2EE messenger applications that were successfully built us-

ing the approach of this thesis. To this point no version was built fully repro-
ducible.

71

8 Findings 72

all the dependencies that are listed in the included verification-metadata.xml
file and correctly populated the local Maven repository. Consequently, the
verification-metadata.xml file was generated by running the Gradle build task with
the parameter —write-verification-metadata sha256, a command that is supposed to
list all needed dependencies of the build task at hand.

This added quite a few dependencies to the file of Signal Android, and also, when run-
ning for Wire Android, generated a rather long list of dependencies needed to build the
application (see Section 8.3), but running the build after this unexpectedly failed again,
because there were still dependencies missing.

The solution was to write a small Python script to programmatically filter all the missing
dependencies from the log of the failed build and generate the missing dependencies with
this script, to add them to the verification-metadata.xml.

So the finding was, for both applications, that some dependencies were not included in
the proper way for Gradle to find them to generate the verification file.

8.3 (Very) long list of dependencies

As mentioned before already, the list of dependencies contained in the
verification-metadata.xml was very long, with more than 12,000 elements for the
Wire Android application and around 5,500 elements for the Signal Android application
to be downloaded by gradle-dot-nix upon first running the build process. This resulted
in an initial run-time of the R-B for Wire Android of more than 3 hours.

8.4 Unavailable dependencies

Some versions of Signal included an artifact in the build process, which could not be
found in any of the public Maven repositories. The source code of the dependency was
available on GitHub, and older versions of the dependency were available in the Maven
repositories, but this version was not uploaded yet. This meant that the newer version of
Signal could be build by building the dependency from the source code and providing it
to the build process. However, because the artifact could not be built reproducibly and
presumably differed from the artifact built by Signal, the application resulting from the
otherwise reproducible build of Signal Android differed from the reference binary. The
dependency was eventually found to be listed in a Maven repository hosted on a GitHub
repository of Signal.

8.5 Difficulty integrating the Gradle build process in Nix
expressions

Nix expressions are designed to provide build environments for R-Bs. It is well docu-
mented and has many resources to learn the usage and principles from [75, 77]. Never-
theless, it proved to be quite challenging to start off with the implementation of the Nix
expressions for the Gradle build processes, as, for example, it was difficult to attribute
whether errors came from mistakes in the Nix expressions or from the Gradle build pro-
cess, which was unable to perform certain tasks due to the isolated environment it was
executed in. Wrapping the Gradle build process was found to be cumbersome in parts,
as Gradle handles many of its tasks, for example, the fetching of dependencies, in a way
that is incompatible with the principles of Nix expressions.

8 Findings 73

8.5.1 Fetching Gradle dependencies

The dependencies of a Gradle build process are normally fetched from any repository that
provides the artifact in question, which means that the artifacts might be obtained from
different repositories in different invocations of the build process and therefore might
even have different hash-values because of minor differences between instances of the
same artifact on different repositories. This makes the integrity verification very difficult.

This process could be simplified thanks to the tool gradle-dot-nix [43], which allows
the integration of the Gradle dependency fetching in Nix environments by programmat-
ically fetching all the dependencies listed in the verification-metadata.xml file and
populating a local Maven repository with the artifacts before the isolated build phase.

8.5.2 Sandboxing issues: missing tools and other processes failing

Other difficulties that were met during the work of making the build processes repro-
ducible in the hermetic environments included tools not being found by the build pro-
cesses and differing behavior by some Gradle tasks due to the isolation from the internet:

m Missing JDK: The first tool that was needed and not found despite its declaration
in the build inputs of the derivation function, was Java Development Kit (JDK). It
needed to be provided to the Gradle build process by providing the corresponding
argument with the path to the location of the JDK.

m AAPT2 not found: Despite providing Android SDK to the build environment,
Gradle was unable to locate the binaries for the AAPT and needed an argument to
be passed to the build invocation, which provided the path to the tool.

m VCS Information generation: Despite including the .git folder when fetching
the source code for the applications and providing Git to the build environment,
Gradle was unable to generate the same VCS information file, as it did outside the
hermetic environment.

m Changed behavior of AboutLibraries: The tool AboutLibraries [62] behaved
differently inside the hermetic build environment from when Gradle was executed
outside the isolated environment. In contrast to the reference binary, the binary from
the R-B process did only include URLs pointing to the licenses of the application
rather than including the full text of the license. This hints at the possibility that
the tool accesses the internet during the build process to fetch the license content,
which it cannot do from within the hermetic build environment.

8.6 Limited performance of the build process

Nix expressions allow to improve the performance of their execution by retrieving outputs
of derivations that have been build before instead of building them again. These mecha-
nisms to cache intermediary results, however, are not integrated in the Gradle build tool
yet, which means that Gradle cannot access caches of previously performed build tasks.
If any of the attributes of the derivation containing the Gradle build process have been
changed, the derivation will be build again, which means that every single build step of
the build process will be executed anew. The result of this missing support of the caching
mechanism is a multiple minute long waiting time for every change in the script invoking
the Gradle build, which made the development and debugging of the Nix expressions for
the Android application build processes very time consuming and difficult.

8 Findings 74

8.7 Debug information in release builds

Executing Signal Android’s build task assembleWebsiteProdRelease generates a release
build of the application. Invoking the task in the hermetic build environment, however,
generated APKs that still contained debug information. The reason for this was, that
a tool could not be found by the build process, and so it silently failed to strip the
debug information from the binary. This may in general become an issue in situations
where the build is executed automatically and upon failing to find the tool, publishes the
application that still contains debug information.

Chapter 9

Discussion

In this section we will discuss the list of threats that were not included in the threat model
of this thesis (Section 9.1) and the features that set the proposed approach apart from
other approaches (Section 9.2). Following this, the section will introduce the necessity to
apply the approach recursively to all dependencies of the build process of the applications
to properly ensure the absence of malicious logic in Section 9.4 and in Section 9.5 it will
highlight the events and current trends that heighten the relevance to ensure Supply
Chain Integrity of E2EE messenger applications in the current times.

9.1 List of threats, excluded from the threat model

Other sources , like the SLSA standard, include threats in their model for Software Supply
Chains which are not considered in this thesis [16]. This is due to the deliberate limitation
of the scope and in the case of some threats, because they do not apply to the Supply
Chain instance considered by this thesis. Other models of Supply Chains might include
more threats, and the following non exhaustive list is meant to be a starting point to
explore such threats in other works.

®m Submission of changes to the VCS without review
m Evading the commit process and its review processes

= Compromised layer underlying the Supply Chain (e.g., the host operating system or
the CI/CD program)

m Improper usage of artifacts

9.2 Differences to other approaches

In contrast to other related work (Section 3) the contribution of this thesis does not only
try to ensure the reproducibility of a single Android application, but rather provide a
case study and reference for an approach to wrap build processes for APKs in such a way
that they become reproducible. In addition to the aspect of reproducibility, this work also
builds the application in a hermetic environment to ensure that the list of dependencies
for the application is complete and no other software artifacts are included during the
build process. This allows a user to audit the inputs of the application’s build process
and verify the absence of unwanted or malicious logic by reviewing the reproducible build
process of the application.

9.3 Use of verifiable logs in the verification process

A verifiable log could be provided by the entity that hosts a repository containing the
R-Bs to allow a user to look up if the application of interest can be built reproducibly
and whether the build process does not contain any malicious logic.

75

9 Discussion 76

A user may fully trust this entity, which then requires no further third party that verifies
that the entries in the verifiable log are honest and correct. It should be noted that the
other parties involved in the ecosystem around the verifiable log (i.e., verifiers, monitors,
and auditors) are still needed.

The verifiable log would then provide a simplification for the user to verify the benev-
olence of a certain application, as they only have to look up the existence of the log
entry for the APK. If the provider of the verifiable log, however, does not analyze the
reproducibility of the build process and the benevolence of all dependencies and build
steps involved (i.e., the benevolence of the resulting application), then the user must not
trust the verifiable log, without another party that independently verifies the entries.

9.4 Beyond Supply Chain Integrity of a application

Once the integrity of the Supply Chain of an application has been ensured by applying
methods like the ones proposed in this thesis, the line of trust was pushed beyond the
build process and distribution of the application. The next step to increase trust in the
application is to also ensure the Supply Chain Integrity of the tools and dependencies
involved in the Supply Chain of the application. This would require the same protection
mechanisms to be applied to those tools and dependencies: protecting and reviewing the
source code, ensuring the integrity of the used build tools and dependencies, securely
distributing information to allow for verifications of authenticity and integrity of the
binary artifacts.

9.4.1 Recursive verification of dependencies

In order to ensure the absence of malicious logic in the resulting artifact of a Software
Supply Chain it is required to also ensure the absence of malicious logic in any of the
dependencies and tools included in the Software Supply Chain. Extending the approach
of this thesis, this would mean to recursively provide R-Bs for every single tool and de-
pendency needed in the build process of the application and the build processes of the
dependencies themselves. This approach, then, is very similar to the idea of Bootstrap-
pable Builds (see Section 2.13 for more information), with the benefit, that not all the
software artifacts have to be rebuilt from scratch, but due to the reproducibility of the
build processes, one can trust (or verify) that the outputs cached, e.g., in the Nix store,
are the ones that would result from the build processes.

9.4.2 Source threats for OSS

In the case of open source applications, source threats are still relevant, even aside from
threats like hostile takeovers of the repositories. Even though OSS allows for auditability
of the source code, this is no guarantee for the security of the application’s source code.
Bugs and errors are an inherent part of software development and can always be intro-
duced in code accidentally. Their frequency and impact can be minimized by rigorous
testing frameworks and software verification tools. A malicious developer or contributor
on the internet might, however, purposefully commit source code that includes backdoors
hidden inside bugs—so called bugdoors. These kinds of backdoors are more difficult to
detect and prevent, and commits containing such code might be accepted if the review-
ers did not recognize them. The auditability of OSS is merely a probabilistic mitigation
providing increased confidence in the source code with increased review activity of the
open-source community. The persistence of source threats in OSS is mostly due to un-
derfunding of developers of open-source software and a lack of contributors or auditors.
Ultimately a user needs to trust the source code either because they checked it them-
selves, because others have audited it, or because they trust that the legal or reputational

9 Discussion 77

incentives for the organization are strong enough to ensure the security and correctness
of the source code.

9.5 Relevance of this work in the current times

The approach to reproducibly build E2EE messenger applications for Android as pro-
posed in this thesis and other works (see related work in Section 3) allows users of such
applications to verify the integrity of the applications and review the source code and
dependencies to ensure the absence of malicious or otherwise unwanted logic. Users can
increase their confidence, that no malicious actor has compromised the Software Supply
Chain of the application and that the vendor of the application cannot secretly modify
the source code of the application to include unwanted logic.

Chapter 10
Future work

10.1 Improve implementation

The following sections will highlight a list of projects to improve the implementation of the
proposed approach. The most pressing improvement is the elimination of the differences
between the self-built APK and the official APK, which could not be closed by the current
implementation and which therefore still need to be resolved (Section 10.1.2). Section
10.1.3 highlights improvements to the updating process of the implemented approach.
The approach could be extended with a verification program (Section 10.1.4), improved
with the recursive verification using R-Bs for all tools and dependencies (Section 10.1.5)
and optimized by conceptualizing a secure cache for the results of the R-Bs.

10.1.1 Populating the build environment

As mentioned in Sections 6.9.3 and 8.5.2, the build process for Signal Android could
not find the binaries for JDK17 and AAPT. The build process for Wire Android could
not find the binaries either, which required the paths to be passed to Gradle as build
arguments. This did ensure that the build ran without problems, but it should be noted
that overriding the AAPT binary location is an experimental feature. A future version
of the implementation could improve this by ensuring that Gradle can find the necessary
binaries without needing to specify build parameters.

10.1.2 Close remaining sources of non-reproducibility

The implementation of the hermetically isolated build process (see Section 6.4) was
adapted in multiple iterations to produce artifacts that are as identical to the refer-
ence binaries as possible. However, due to the limited time frame of this work, not all
the differences between the self-built APKs and the reference APKs could be resolved.
These include the following:

m Version Control Info: The binary published by Wire and Signal includes the
file version-control-info.textproto in the META-INF folder, which contains in-
formation about the current state of the VCS at the time of compilation. While
it would be possible to gather the needed information by ensuring that the hid-
den .git folder is present in the fixed-output derivation, this would mean that
the hash resulting from the fetched source code would change with every com-
mit and thereby make it infeasible to use in a fixed-output derivation. A possible
solution to this could be to retrieve the necessary information for generating the
version-control-info.textproto through different means.

m Metadata of the signature: The tool apksigcopier allows copying the signature
of a validly signed APK to an unsigned binary, and given that the APKs are identical
apart from the fact that one of them is signed while the other is unsigned, copying
the signature from the signed to the unsigned binary should result in bitwise identical
APKs. This, however, is not true in practice, as the used tool currently still excludes
some of the signature’s metadata, which means that the APKs differ in those parts.

78

10 Future work 79

10.1.3 Improve update process

Future work could improve on the updating process, for example, by ensuring that the
right version of the build tools is automatically extracted from the source code of the
project and set in the Nix expressions, such that the hermetic build process always uses
the same versions of the build tools, as the build process of the reference binary does.
Currently the versions of build tools (e.g., NDK, Gradle, etc.) are recovered from the
source code and build instructions published by the vendor. An automatic process would
allow scaling the update process.

10.1.4 Implement distributed verification method

A future extension of this work’s implementation should include means to allow users to
programmatically ensure the integrity of an APK, such that users can download an APK
and run a script, which verifies the integrity of the APK by querying the hash value from
a list of independent parties, which verified the R-B of the application. This allows the
user to define a list of such parties that they trust and check that the hash value of the
downloaded APK matches the value provided by the trusted parties.

10.1.5 Recursive Integrity Verification of dependencies

As introduced in Section 9.4, in order to fully ensure the absence of malicious logic in the
application and to verify the link between the source code of the dependencies and tools
used in the build process of the application, the approach would need to be recursively
extended to the build process of all the dependencies as well. A future project could
create R-B for each dependency and tool in the dependency tree of the application. The
resulting artifacts could then be used to verify the dependencies and tools and if all the
verifications of the R-Bs for the dependencies, tools and the application itself succeed,
this will have established a link from the source code of every artifact involved in the
application’s Software Supply Chain to the final binary format of the application.

10.1.6 Additional trust placed in build environments

Using tools providing build environments, requires trusting those tools and any other
binary artifact that is involved in the creation of the reproducible build environments.
Nix, for example, will by default include some toolchains and core utilities in every
derivation and thereby introduce the need to trust those tools in addition to the binaries
of Nix itself. Future work could provide a mechanism to verify these binaries instead of
requiring the user to place trust in them.

10.1.7 Optimization of the distributed verification

In order to allow users to verify software artifacts without needing to verify all of the
R-Bs themselves—which, especially with the recursive dependency verification, would
result in a huge number of build processes—independent parties could verify the R-Bs
and publish the results to a global cache. Future projects could explore the possibility to
publish R-Bs of dependencies used in Android application builds to the NixOS cache!.
The work would need to analyze the security and trust implications of such an approach.

Thttps://cache.nixos.org/

10 Future work 80

10.2 Extend/improve approach

The following sections highlight further enhancements of the general concept of the pro-
posed approach.

10.2.1 Missing build provenance

While executing builds within a Nix build environment ensures that the build is isolated
from external influences and that all the necessary information (e.g., source code, envi-
ronment variables, build inputs, build script, etc.) is well defined, this is not sufficient to
comply with the requirements of SLSA build level 3. In order to fulfill the requirements,
it is also necessary to provide an authenticated provenance (see Section 2.14), signed by
the builder of the artifact. This provenance must be distributed along with the artifact,
in a format (e.g., SLSA provenance schema [14]) such that there exists a verifier for this
(e.g., slsa-verifier [15]).

Future work should focus on providing the provenance for artifacts that have been built
using the approach of this thesis. It should establish a concept to distribute the prove-
nance and to allow for verification of the authenticity of the provenance and its compliance
with policies on who to trust.

A first attempt could try to integrate the signing process of Hugenroth et al. [36] to
provide a comprehensive and verifiable record of the build process.

Chapter 11

Conclusion

This thesis presents an approach to ensure the integrity of E2EE messaging applications
for Android through reproducible builds. By leveraging the Nix programming language to
create a hermetically isolated build environment, the proposed method guarantees that
only the exactly specified resources will be part of the build process and no unauthorized
modifications can be introduced during the build of the application. The Nix scripts
are being called from a regularly run CI/CD pipeline, which checks for new releases of
the Android applications and updates the Nix scripts accordingly. The Nix script then
executes all the necessary steps to retrieve the source code and dependencies, to build the
application, and to compare it to a vendor-published APK to verify the reproducibility
of the build process. If the build process yields a binary that is bitwise identical, the
resulting application will be published alongside its hash value, on the same instance
of GitLab, that also hosts the R-B. This allows users to review the build process and
execute it on their devices, as well as just comparing their locally installed APK to the
one built by the Nix script.

The approach of this thesis allows to make statements on the trustworthiness of appli-
cations even if the applications resulting from the implemented build process are only
almost bitwise identical.

The APKs for the E2EE messengers are being built in hermetically isolated build en-
vironments in a reproducible fashion. This way the complete set of tools, libraries, and
other software artifacts that are involved in the build process are transparently described
in the build process descriptions. The built APKs are also compared to the respective
reference binaries that are published by the vendor. If the hash values of both APKs
are identical, then the binaries are bitwise identical as well, and if they are not bitwise
identical, then the self-built binary and the reference binary are being compared with
one another using the tool diffoscope. The resulting report provides insight in the dif-
ferences that exist between those two binaries, which allows users to judge whether the
differences should not have any significant influence on the behavior of the application.
If the differences are negligible and the users trust the inputs of the build process, then
both the self-built and the official binary are trusted, and with that also any other binary
that is bitwise identical to either of them.

If the differences could have a significant influence on the behavior of the application,
the contribution does not provide any assurances on the trustworthiness of the official
APK. If not all the inputs involved in the build process of the application are trusted,
the contribution does not provide any assurances on the trustworthiness of either the
self-built or the official binary.

While the approach successfully addresses many threats to the software supply chain, it
does not mitigate vulnerabilities inherent in the source code or malicious logic embedded
in build scripts. These threats need to be mitigated by other means, like, for example,
source code analysis.

The current implementation of the approach allows to build the most recent versions
of Signal and Wire Android, but the resulting binaries differ from the reference APKs
and therefore future work should concern itself with closing these gaps to ensure full
reproducibility of the applications.

81

11 Conclusion 82

Future work could focus on extending the verification process to include recursive in-
tegrity checks for dependencies and improving the automation of the update process for
build tools and environments.

This thesis underscores the importance of reproducible builds in enhancing trust in soft-
ware and provides a reference implementation for securing the supply chains of E2EE
applications.

Bibliography

(1]

2]

13l

4]

5]

(6]

7]

18]

19]

[10]

[11]

[12]

Rahaf Alkhadra, Joud Abuzaid, Mariam AlShammari, and Nazeeruddin Moham-
mad. 2021. Solar Winds Hack: In-Depth Analysis and Countermeasures. In 2021
12th International Conference on Computing Communication and Networking
Technologies (ICCCNT). (July 2021), pp. 1-7. por: 10.1109 /ICCCNT51525.20
21.9579611. Retrieved 05/03/2025 from https://ieceexplore.ieee.org/document,/957
9611.

Andres Freund. 2024. oss-security - backdoor in upstream xz/liblzma leading to
ssh server compromise. (March 2024). Retrieved 07/28,/2025 from https://openwa
1l.com/lists/oss-security /2024/03/29/4.

Anatoly Belous and Vitali Saladukha. 2020. Hardware Trojans in Electronic De-
vices. en. In Viruses, Hardware and Software Trojans: Attacks and Countermea-
sures. Anatoly Belous and Vitali Saladukha, (Eds.) Springer International Publish-
ing, Cham, pp. 209-275. ISBN: 978-3-030-47218-4. po1: 10.1007,/978-3-030-47218-4
_ 3. Retrieved 08/23/2025 from https://doi.org/10.1007/978-3-030-47218-4 3.

Jeffrey Bickford, Ryan O’Hare, Arati Baliga, Vinod Ganapathy, and Liviu Iftode.
2010. Rootkits on smart phones: attacks, implications and opportunities. In Pro-
ceedings of the Eleventh Workshop on Mobile Computing Systems & Applications
(HotMobile ’10). Association for Computing Machinery, New York, NY, USA,
(February 2010), pp. 49-54. 1SBN: 978-1-4503-0005-6. DOL: 10.1145/1734583.173
4596. Retrieved 08/23/2025 from https://doi.org/10.1145/1734583.1734596.

Louis CAD. 2025. LouisCAD/CompleteKotlin. original-date: = 2021-05-
24T12:18:55Z. (May 2025). Retrieved 06/26/2025 from https: / / github . com
/LouisCAD/CompleteKotlin.

Chiara Castro. 2025. The EU still wants to scan all your chats — and the rules
could come into force by October 2025. en. (July 2025). Retrieved 08/08/2025
from https://www.techradar.com/computing/cyber-security /the-eu-could-be-sca
nning-your-chats-by-october-2025-heres-everything-we-know.

European Commission. 2022. Proposal for a REGULATION OF THE EUROPEAN
PARLIAMENT AND OF THE COUNCIL laying down rules to prevent and combat
child sexual abuse. en. (April 2022). Retrieved 08/08/2025 from https://eur-lex.e
uropa.eu/legal-content/EN/TXT/?7uri=COM%3A2022%3A209%3AFIN.

Bootstrappable.org Contributors. 2025. Bootstrappable builds. (August 2025). Re-
trieved 08/19,/2025 from https://www.bootstrappable.org/.

Debian Contributors. 2025. Reproducible Builds / reproducible-notes - GitLab. en.
(June 2025). Retrieved 06/29/2025 from https://salsa.debian.org/reproducible-bu
ilds/reproducible-notes.

Diffoscope Contributors. 2025. diffoscope: in-depth comparison of files, archives,
and directories. (May 2025). Retrieved 05/31,/2025 from https://diffoscope.org/.
F-Droid Contributors. 2025. Docs | F-Droid - Free and Open Source Android App
Repository. (August 2025). Retrieved 08/11/2025 from https://f-droid.org/en/do
cs/.

F-Droid Contributors. 2025. Reproducible Builds | F-Droid - Free and Open Source
Android App Repository. en. (2025). Retrieved 08/19/2025 from https://f-droid.o
rg/docs/Reproducible Builds//.

83

https://doi.org/10.1109/ICCCNT51525.2021.9579611
https://doi.org/10.1109/ICCCNT51525.2021.9579611
https://ieeexplore.ieee.org/document/9579611
https://ieeexplore.ieee.org/document/9579611
https://openwall.com/lists/oss-security/2024/03/29/4
https://openwall.com/lists/oss-security/2024/03/29/4
https://doi.org/10.1007/978-3-030-47218-4_3
https://doi.org/10.1007/978-3-030-47218-4_3
https://doi.org/10.1007/978-3-030-47218-4_3
https://doi.org/10.1145/1734583.1734596
https://doi.org/10.1145/1734583.1734596
https://doi.org/10.1145/1734583.1734596
https://github.com/LouisCAD/CompleteKotlin
https://github.com/LouisCAD/CompleteKotlin
https://www.techradar.com/computing/cyber-security/the-eu-could-be-scanning-your-chats-by-october-2025-heres-everything-we-know
https://www.techradar.com/computing/cyber-security/the-eu-could-be-scanning-your-chats-by-october-2025-heres-everything-we-know
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2022%3A209%3AFIN
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2022%3A209%3AFIN
https://www.bootstrappable.org/
https://salsa.debian.org/reproducible-builds/reproducible-notes
https://salsa.debian.org/reproducible-builds/reproducible-notes
https://diffoscope.org/
https://f-droid.org/en/docs/
https://f-droid.org/en/docs/
https://f-droid.org/docs/Reproducible_Builds/
https://f-droid.org/docs/Reproducible_Builds/

Bibliography 84

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

NixOS Contributors. 2025. nixpkgs. original-date: 2012-06-04T02:49:46Z. (August
2025). Retrieved 08/05/2025 from https://github.com/NixOS /nixpkgs.

SLSA Contributors. 2025. Provenance. en. (August 2025). Retrieved 08/14/2025
from https://slsa.dev/spec/v1.1/provenance.

SLSA Contributors. 2025. slsa-framework/slsa-verifier. original-date: 2022-03-
25T21:01:47Z. (August 2025). Retrieved 08/14/2025 from https: //github.com
/slsa~-framework /slsa-verifier.

SLSA Contributors. 2025. Supply-chain Levels for Software Artifacts. en. (June
2025). Retrieved 06/18/2025 from https://slsa.dev/.

Ludovic Courtés. 2022. Building a Secure Software Supply Chain with GNU Guix.
en. The Art, Science, and Engineering of Programming, 7, 1, (June 2022), 1:1-1:26.
Publisher: AOSA, Inc. 1SSN: 2473-7321. DOI: 10.22152/programming-journal.org/2
023/7/1. Retrieved 05/03,/2025 from https://programming-journal.org/2023/7/1/.

Ludovic Courtés. 2013. Functional Package Management with Guix. en.
arXiv:1305.4584 [cs]. (May 2013). por: 10.48550 / arXiv . 1305 .4584. Retrieved
06/24/2025 from http://arxiv.org/abs/1305.4584.

Google Android Developers. 2025. About Android App Bundles | Other Play
guides. en. (August 2025). Retrieved 08/07/2025 from https://developer.andro
id.com/guide/app-bundle.

Google Android Developers. 2025. Build multiple APKs | Android Studio. en. (Au-
gust 2025). Retrieved 08/07,/2025 from https://developer.android.com/build /conf
igure-apk-splits.

Google Android Developers. 2025. Create an Android library | Android Studio. en.
(August 2025). Retrieved 08/07/2025 from https://developer.android.com/studio
/projects/android-library.

Eelco Dolstra. 2006. The purely functional software deployment model. en. OCLC:
71702886. s.n., S.1. 1SBN: 978-90-393-4130-8.

Eelco Dolstra and Eelco Visser. 2007. Automated software testing and release with
nix build farms. In Proceedings of the 3rd European Symposium on Verification and
Validation of Software Systems (VVSS’07), pp. 65-77.

William Easttom. 2022. Modern Cryptography: Applied Mathematics for Encryp-
tion and Information Security. en. Springer International Publishing, Cham. ISBN:
978-3-031-12303-0 978-3-031-12304-7. poI1: 10.1007/978-3-031-12304-7. Retrieved
08/08/2025 from https://link.springer.com/10.1007/978-3-031-12304-7.

Benjamin Elder. 2021. Remove Bazel by BenTheElder - Pull Request #99561 -
kubernetes/kubernetes. en. (February 2021). Retrieved 04/18,/2025 from https://g
ithub.com /kubernetes/kubernetes,/pull /99561.

Tad Fisher. 2025. tadfisher /android-nixpkgs. original-date: 2018-10-21T06:17:39Z.
(August 2025). Retrieved 08/20/2025 from https://github.com/tadfisher/android
-nixpkgs.

Signal Foundation. 2025. reproducible-builds. en. (June 2025). Retrieved
06/29/2025 from https:/ /github.com /signalapp / Signal- Android / tree / main
/reproducible-builds.

Signal Foundation. 2025. Signal-Android. original-date: 2011-12-15T20:01:12Z.
(June 2025). Retrieved 06/29/2025 from https://github.com /signalapp / Signal
-Android.

Marcel Fourné, Dominik Wermke, William Enck, Sascha Fahl, and Yasemin Acar.
2023. It’s like flossing your teeth: On the Importance and Challenges of Repro-
ducible Builds for Software Supply Chain Security. In 2028 IEEE Symposium on
Security and Privacy (SP), pp. 1527-1544. por: 10.1109/SP46215.2023.10179320.

https://github.com/NixOS/nixpkgs
https://slsa.dev/spec/v1.1/provenance
https://github.com/slsa-framework/slsa-verifier
https://github.com/slsa-framework/slsa-verifier
https://slsa.dev/
https://doi.org/10.22152/programming-journal.org/2023/7/1
https://doi.org/10.22152/programming-journal.org/2023/7/1
https://programming-journal.org/2023/7/1/
https://doi.org/10.48550/arXiv.1305.4584
http://arxiv.org/abs/1305.4584
https://developer.android.com/guide/app-bundle
https://developer.android.com/guide/app-bundle
https://developer.android.com/build/configure-apk-splits
https://developer.android.com/build/configure-apk-splits
https://developer.android.com/studio/projects/android-library
https://developer.android.com/studio/projects/android-library
https://doi.org/10.1007/978-3-031-12304-7
https://link.springer.com/10.1007/978-3-031-12304-7
https://github.com/kubernetes/kubernetes/pull/99561
https://github.com/kubernetes/kubernetes/pull/99561
https://github.com/tadfisher/android-nixpkgs
https://github.com/tadfisher/android-nixpkgs
https://github.com/signalapp/Signal-Android/tree/main/reproducible-builds
https://github.com/signalapp/Signal-Android/tree/main/reproducible-builds
https://github.com/signalapp/Signal-Android
https://github.com/signalapp/Signal-Android
https://doi.org/10.1109/SP46215.2023.10179320

Bibliography 85

[30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Martin Geisse. 2013. Answer to "Compressing and Decompressing same files pro-
duces different size". (November 2013). Retrieved 06/29/2025 from https://stacko
verflow.com/a,/20073435.

Wire Swiss GmbH. 2025. Technology. en-US. (April 2025). Retrieved 06,/29/2025
from https://support.wire.com/hc/en-us/articles/4405932904209-Technology.

Wire Swiss GmbH. 2025. wire-android. original-date: 2020-06-04T09:44:05Z. (June
2025). Retrieved 06/29/2025 from https://github.com/wireapp/wire-android.

Google. 2025. Personalities. en. (August 2025). Retrieved 08/18/2025 from https:
//github.com /google/trillian /blob /05001d1876£9340e42ba8b839¢94e1b79246207h
/docs/Personalities.md.

Google. 2015. VerifiableDataStructures. en. (November 2015). Retrieved
08/18/2025 from https: / / github.com /google / trillian / blob / 30160804ab5203¢
ded412fe26£55a4149112bd92 /docs/papers/ VerifiableDataStructures.pdf.

Klaus Horn. 2018. Code Signing Android and iOS Applications. en, (November
2018).

Daniel Hugenroth, Mario Lins, René Mayrhofer, and Alastair Beresford. 2025. At-
testable builds: compiling verifiable binaries on untrusted systems using trusted
execution environments. arXiv:2505.02521 [cs]. (May 2025). DOI: 10.48550/arXiv.2
505.02521. Retrieved 09/15/2025 from http://arxiv.org/abs/2505.02521.

Vlad Iftimie. 2020. Some points on Android APK files. en. (March 2020). Retrieved
08/07/2025 from https://medium.com/@vlad.iftimie88 /some-points-on-android-a
pk-files-231a36¢bc9lc.

Thomas Hunter II. 2018. Compromised npm Package: event-stream. en. (November
2018). Retrieved 06/28/2025 from https://medium.com/intrinsic-blog/compromis
ed-npm-package-event-stream-d47d08605502.

Docker Inc. 2025. Build attestations. (August 2025). Retrieved 08/13/2025 from
https://docs.docker.com /build /metadata/attestations, .

Gradle Inc. 2025. Verifying dependencies. (June 2025). Retrieved 06/25/2025 from
https://docs.gradle.org/current /userguide/dependency _verification.html.

Aniket Indulkar. 2024. From Code to APK: The Complete Breakdown of Android
Build Tasks. en. (November 2024). Retrieved 06,/15,/2025 from https://medium.co
m/@aniketindulkar /from-code-to-apk-the-complete-breakdown-of-android-build-
tasks-dab1368a4107.

Kashif Igbal. 2019. APK - What is an APK file? en. (October 2019). Retrieved
08/07/2025 from https://docs.fileformat.com/compression/apk, .

Stefan Kempinger. 2025. CrazyChaoz/gradle-dot-nix. original-date: 2024-03-
12T11:37:17Z. (May 2025). Retrieved 06/26/2025 from https://github.com/Crazy
Chaoz/gradle-dot-nix.

Arif Koyun and Ehssan Al Janabi. 2017. Social Engineering Attacks. en. Journal
of Multidisciplinary Engineering Science and Technology (JMEST), 4, 6.

Chris Lamb and Ximin Luo. 2017. “SOURCE DATE EPOCH specification”. Re-
trieved 06/29/2025 from https://reproducible-builds.org /specs/source-date-epoch
/.

Chris Lamb and Stefano Zacchiroli. 2022. Reproducible Builds: Increasing the In-
tegrity of Software Supply Chains. IEEE Software, 39, 2, (March 2022), 62-70.
ISSN: 1937-4194. po1: 10.1109/MS.2021.3073045. Retrieved 04/18/2025 from https
:/ /ieeexplore.ieee.org/document/9403390.

Ben Laurie. 2014. Certificate transparency. Commun. ACM, 57, 10, (September
2014), 40-46. 1ssN: 0001-0782. DOI: 10.1145/2659897. Retrieved 04/22/2025 from
https://dl.acm.org/doi/10.1145/2659897.

https://stackoverflow.com/a/20073435
https://stackoverflow.com/a/20073435
https://support.wire.com/hc/en-us/articles/4405932904209-Technology
https://github.com/wireapp/wire-android
https://github.com/google/trillian/blob/05001d1876f9340e42ba8b839c94e1b79246207b/docs/Personalities.md
https://github.com/google/trillian/blob/05001d1876f9340e42ba8b839c94e1b79246207b/docs/Personalities.md
https://github.com/google/trillian/blob/05001d1876f9340e42ba8b839c94e1b79246207b/docs/Personalities.md
https://github.com/google/trillian/blob/30160804ab5203cde4412fe26f55a4149112bd92/docs/papers/VerifiableDataStructures.pdf
https://github.com/google/trillian/blob/30160804ab5203cde4412fe26f55a4149112bd92/docs/papers/VerifiableDataStructures.pdf
https://doi.org/10.48550/arXiv.2505.02521
https://doi.org/10.48550/arXiv.2505.02521
http://arxiv.org/abs/2505.02521
https://medium.com/@vlad.iftimie88/some-points-on-android-apk-files-231a36cbc91c
https://medium.com/@vlad.iftimie88/some-points-on-android-apk-files-231a36cbc91c
https://medium.com/intrinsic-blog/compromised-npm-package-event-stream-d47d08605502
https://medium.com/intrinsic-blog/compromised-npm-package-event-stream-d47d08605502
https://docs.docker.com/build/metadata/attestations/
https://docs.gradle.org/current/userguide/dependency_verification.html
https://medium.com/@aniketindulkar/from-code-to-apk-the-complete-breakdown-of-android-build-tasks-dab1368a4107
https://medium.com/@aniketindulkar/from-code-to-apk-the-complete-breakdown-of-android-build-tasks-dab1368a4107
https://medium.com/@aniketindulkar/from-code-to-apk-the-complete-breakdown-of-android-build-tasks-dab1368a4107
https://docs.fileformat.com/compression/apk/
https://github.com/CrazyChaoz/gradle-dot-nix
https://github.com/CrazyChaoz/gradle-dot-nix
https://reproducible-builds.org/specs/source-date-epoch/
https://reproducible-builds.org/specs/source-date-epoch/
https://doi.org/10.1109/MS.2021.3073045
https://ieeexplore.ieee.org/document/9403390
https://ieeexplore.ieee.org/document/9403390
https://doi.org/10.1145/2659897
https://dl.acm.org/doi/10.1145/2659897

Bibliography 86

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Ben Laurie, Adam Langley, and Emilia Kasper. 2020. Certificate Transparency.
Request for Comments RFC 6962. Num Pages: 27. Internet Engineering Task Force,
(January 2020). por: 10.17487 /RFC6962. Retrieved 08/18/2025 from https://dat
atracker.ietf.org/doc/rfc6962.

Ben Laurie, Eran Messeri, and Rob Stradling. 2021. Certificate Transparency Ver-
sion 2.0. Request for Comments RFC 9162. Num Pages: 53. Internet Engineering
Task Force, (December 2021). DOI: 10.17487/RFC9162. Retrieved 08,/18/2025 from
https://datatracker.ietf.org/doc/rfc9162.

Mario Lins, René Mayrhofer, Michael Roland, Daniel Hofer, and Martin
Schwaighofer. 2024. On the critical path to implant backdoors and the effective-
ness of potential mitigation techniques: Early learnings from XZ. arXiv:2404.08987
[cs]. (April 2024). por: 10.48550 /arXiv.2404.08987. Retrieved 04/18/2025 from
http://arxiv.org/abs/2404.08987.

Pei Liu, Li Li, Kui Liu, Shane Meclntosh, and John Grundy. 2023. Un-
derstanding the quality and evolution of Android app build systems.
en. Journal of Software: FEvolution and Process, 36, 5, €2602. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002 /smr.2602. 1SSN: 2047-7481. DOI:
10.1002/smr.2602. Retrieved 06,/15/2025 from https://onlinelibrary.wiley.com/do
i/abs/10.1002/smr.2602.

Pei Liu, Li Li, Yanjie Zhao, Xiaoyu Sun, and John Grundy. 2020. Androzooopen:
Collecting large-scale open source android apps for the research community. In
Proceedings of the 17th International Conference on Mining Software Repositories,
pp. H48-552.

René Mayrhofer, Jeffrey Vander Stoep, Chad Brubaker, Dianne Hackborn, Bram
Bonné, Giiliz Seray Tuncay, Roger Piqueras Jover, and Michael A. Specter. 2021.
The Android Platform Security Model (2023). ACM Transactions on Privacy and
Security, 24, 3, (August 2021), 1-35. arXiv:1904.05572 [cs|. ISSN: 2471-2566, 2471-
2574. pOL: 10.1145/3448609. Retrieved 07/28/2025 from http://arxiv.org/abs/190
4.05572.

Sarah Meiklejohn, Pavel Kalinnikov, Cindy S. Lin, Martin Hutchinson, Gary
Belvin, Mariana Raykova, and Al Cutter. 2020. Think Global, Act Local: Gossip
and Client Audits in Verifiable Data Structures. arXiv:2011.04551 [cs|. (November
2020). por: 10.48550/arXiv.2011.04551. Retrieved 08/18,/2025 from http://arxiv.o
rg/abs/2011.04551.

Ralph C. Merkle. 1988. A Digital Signature Based on a Conventional Encryption
Function. en. In Advances in Cryptology — CRYPTO ’87. Carl Pomerance, (Ed.)
Springer, Berlin, Heidelberg, pp. 369-378. 1SBN: 978-3-540-48184-3. por: 10.1007/3
-540-48184-2 32.

Lorraine Morgan and Patrick Finnegan. 2007. Benefits and Drawbacks of Open
Source Software: An Exploratory Study of Secondary Software Firms. en. In Open
Source Development, Adoption and Innovation. Joseph Feller, Brian Fitzgerald,
Walt Scacchi, and Alberto Sillitti, (Eds.) Springer US, Boston, MA, pp. 307-312.
ISBN: 978-0-387-72486-7. pOI: 10.1007/978-0-387-72486-7 _33.

Nix documentation team. 2025. nix.conf - Nix 2.28.4 Reference Manual. (June
2025). Retrieved 06/24/2025 from https://nix.dev/manual/nix/2.28 /command-re
f/conf-file.html.

NixOS Wiki. 2025. Flakes. Documentation. (June 2025). Retrieved 06,/24/2025
from https://nixos.wiki/wiki/flakes.

Linus Nordberg, Daniel Kahn Gillmor, and Tom Ritter. 2018. Gossiping in CT.
Internet Draft draft-ietf-trans-gossip-05. Num Pages: 57. Internet Engineering Task
Force, (January 2018). Retrieved 08/18/2025 from https://datatracker.ietf.org/d
oc/draft-ietf-trans-gossip.

https://doi.org/10.17487/RFC6962
https://datatracker.ietf.org/doc/rfc6962
https://datatracker.ietf.org/doc/rfc6962
https://doi.org/10.17487/RFC9162
https://datatracker.ietf.org/doc/rfc9162
https://doi.org/10.48550/arXiv.2404.08987
http://arxiv.org/abs/2404.08987
https://doi.org/10.1002/smr.2602
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2602
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2602
https://doi.org/10.1145/3448609
http://arxiv.org/abs/1904.05572
http://arxiv.org/abs/1904.05572
https://doi.org/10.48550/arXiv.2011.04551
http://arxiv.org/abs/2011.04551
http://arxiv.org/abs/2011.04551
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/978-0-387-72486-7_33
https://nix.dev/manual/nix/2.28/command-ref/conf-file.html
https://nix.dev/manual/nix/2.28/command-ref/conf-file.html
https://nixos.wiki/wiki/flakes
https://datatracker.ietf.org/doc/draft-ietf-trans-gossip
https://datatracker.ietf.org/doc/draft-ietf-trans-gossip

Bibliography 87

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

Department of Commerce National Telecommunications and Information Admin-
istration. 2021. Software Bill of Materials Elements and Considerations. en. (June
2021). Retrieved 06/22/2025 from https://www.federalregister.gov/documents/2
021,/06,/02/2021-11592 /software-bill-of -materials-elements-and-considerations.

Marc Ohm, Henrik Plate, Arnold Sykosch, and Michael Meier. 2020. Backstabber’s
Knife Collection: A Review of Open Source Software Supply Chain Attacks. Version
Number: 1. (2020). por: 10.48550/ARXIV.2005.09535. Retrieved 04/20/2025 from
https://arxiv.org/abs/2005.09535.

Mike Penz. 2025. mikepenz/AboutLibraries. original-date: 2014-04-22T10:01:06Z.
(June 2025). Retrieved 06,/26,/2025 from https://github.com/mikepenz/AboutLib
raries.

Google Android Open Source Project. 2025. App signing. en. (June 2025). Re-
trieved 06,/19,/2025 from https://source.android.com/docs/security /features/apks
igning.

Reproducible Builds Project. 2025. Reproducible Builds — a set of software devel-

opment practices that create an independently-verifiable path from source to binary
code. (May 2025). Retrieved 05/03/2025 from https://reproducible-builds.org/.

Reproducible Builds Project. 2025. Tools — reproducible-builds.org. (June 2025).
Retrieved 06/25/2025 from https://reproducible-builds.org /tools/#verifiers.

Dev Random. 2025. devrandom/gitian-builder. original-date: 2011-01-
30T21:08:50Z. (June 2025). Retrieved 06/25/2025 from https: / / github . com
/devrandom/gitian-builder.

Peter Rigby, Brendan Cleary, Frederic Painchaud, Margaret-Anne Storey, and
Daniel German. 2012. Contemporary Peer Review in Action: Lessons from Open
Source Development. IEEE Software, 29, 6, (November 2012), 56—61. 1sSN: 0740-
7459. por: 10.1109/MS.2012.24. Retrieved 04,/20/2025 from http://ieeexplore.ieee
.org/document/6148202/.

Jeremy Scahill and Josh Begley. 2015. The CIA Campaign to Steal Apple’s Secrets.
en-US. (March 2015). Retrieved 06/28/2025 from https://theintercept.com /2015
/03/10/ispy-cia-campaign-steal-apples-secrets/ .

Martin Schwaighofer, Michael Roland, and René Mayrhofer. 2024. Extending Cloud
Build Systems to Eliminate Transitive Trust. en. In Proceedings of the 2024 Work-
shop on Software Supply Chain Offensive Research and Ecosystem Defenses. ACM,
Salt Lake City UT USA, (November 2024), pp. 45-55. 1SBN: 979-8-4007-1240-1. DOTI:
10.1145/3689944.3696169. Retrieved 04/18/2025 from https://dl.acm.org/doi/10
.1145/3689944.3696169.

Scientists and researchers from across the globe. 2025. Joint statement of scientists
and researchers on EU’s proposed Child Sexual Abuse Regulation. (September
2025). Retrieved 09/18/2025 from https://csa-scientist-open-letter.org/Sep2025.

SHISHIR. 2023. Android Build Process Step by Step. en. (December 2023). Re-
trieved 06/19,/2025 from https://shishirthedev.medium.com /build-process-in-and
roid-8c955d6467bS.

FC (Fay) Stegerman. 2025. obfusk/apksigcopier. original-date: 2021-03-
25T01:20:33Z. (June 2025). Retrieved 06/25/2025 from https: / / github . com
/obfusk/apksigcopier.

FC (Fay) Stegerman. 2025. obfusk/reproducible-apk-tools. original-date: 2022-11-
22T04:03:34Z. (June 2025). Retrieved 06/25/2025 from https://github.com/obfus
k/reproducible-apk-tools.

Jonathan Stray. 2014. Security for Journalists, Part Two: Threat Modeling. en.
(August 2014). Retrieved 06,/18,/2025 from https://source.opennews.org/articles
/security-journalists-part-two-threat-modeling /.

https://www.federalregister.gov/documents/2021/06/02/2021-11592/software-bill-of-materials-elements-and-considerations
https://www.federalregister.gov/documents/2021/06/02/2021-11592/software-bill-of-materials-elements-and-considerations
https://doi.org/10.48550/ARXIV.2005.09535
https://arxiv.org/abs/2005.09535
https://github.com/mikepenz/AboutLibraries
https://github.com/mikepenz/AboutLibraries
https://source.android.com/docs/security/features/apksigning
https://source.android.com/docs/security/features/apksigning
https://reproducible-builds.org/
https://reproducible-builds.org/tools/#verifiers
https://github.com/devrandom/gitian-builder
https://github.com/devrandom/gitian-builder
https://doi.org/10.1109/MS.2012.24
http://ieeexplore.ieee.org/document/6148202/
http://ieeexplore.ieee.org/document/6148202/
https://theintercept.com/2015/03/10/ispy-cia-campaign-steal-apples-secrets/
https://theintercept.com/2015/03/10/ispy-cia-campaign-steal-apples-secrets/
https://doi.org/10.1145/3689944.3696169
https://dl.acm.org/doi/10.1145/3689944.3696169
https://dl.acm.org/doi/10.1145/3689944.3696169
https://csa-scientist-open-letter.org/Sep2025
https://shishirthedev.medium.com/build-process-in-android-8c955d6467b8
https://shishirthedev.medium.com/build-process-in-android-8c955d6467b8
https://github.com/obfusk/apksigcopier
https://github.com/obfusk/apksigcopier
https://github.com/obfusk/reproducible-apk-tools
https://github.com/obfusk/reproducible-apk-tools
https://source.opennews.org/articles/security-journalists-part-two-threat-modeling/
https://source.opennews.org/articles/security-journalists-part-two-threat-modeling/

Bibliography 88

[75]

[76]

[77]
78]

[79]

[80]

[81]

Determinate Systems. 2025. Zero to Nix. (June 2025). Retrieved 06/26/2025 from
https:/ /zero-to-nix.com/.

Ewa Syta, Iulia Tamas, Dylan Visher, David Isaac Wolinsky, Philipp Jovanovic,
Linus Gasser, Nicolas Gailly, Ismail Khoffi, and Bryan Ford. 2016. Keeping Au-
thorities "Honest or Bust" with Decentralized Witness Cosigning. In 2016 IEEE
Symposium on Security and Privacy (SP). ISSN: 2375-1207. (May 2016), pp. 526—
545. por: 10.1109/SP.2016.38. Retrieved 08/18/2025 from https://ieeexplore.ieee
.org/document /7546521.

Nix Documentation Team. 2025. Welcome to nix.dev — nix.dev documentation.
en. (June 2025). Retrieved 06/26,/2025 from https://nix.dev/index.html.

Jorg Thalheim. 2025. Mic92/nix-update. original-date: 2020-03-05T11:31:09Z.
(June 2025). Retrieved 06/29/2025 from https://github.com/Mic92/nix-update.

Ken Thompson. 1984. Reflections on trusting trust. Commun. ACM, 27, 8, (August
1984), 761-763. 1ssN: 0001-0782. po1: 10.1145/358198.358210. https://doi.org/10
.1145/358198.358210.

Santiago Torres-Arias. 2020. In-toto: Practical Software Supply Chain Security.
phd. New York University Tandon School of Engineering. AAI127963570 ISBN-13:
9798662407565.

Jeff Williams. 2020. Removing a false sense of (open source) security. Computer
Fraud € Security, 2020, 6, (June 2020), 8-10. 1ssN: 1361-3723. por: 10.1016/S136
1-3723(20)30062-2. Retrieved 08/08/2025 from https://www.sciencedirect.com/sc
ience/article/pii/S1361372320300622.

https://zero-to-nix.com/
https://doi.org/10.1109/SP.2016.38
https://ieeexplore.ieee.org/document/7546521
https://ieeexplore.ieee.org/document/7546521
https://nix.dev/index.html
https://github.com/Mic92/nix-update
https://doi.org/10.1145/358198.358210
https://doi.org/10.1145/358198.358210
https://doi.org/10.1145/358198.358210
https://doi.org/10.1016/S1361-3723(20)30062-2
https://doi.org/10.1016/S1361-3723(20)30062-2
https://www.sciencedirect.com/science/article/pii/S1361372320300622
https://www.sciencedirect.com/science/article/pii/S1361372320300622

	Abstract
	Contents
	List of Acronyms
	Introduction
	Objectives and Approach
	Outline

	Background
	Android Package
	Other formats in the Android ecosystem

	End-to-end encryption
	Open-Source Software (OSS)
	Limitations of OSS
	Relevance for my thesis
	F-Droid
	AndroZooOpen

	Hash Functions
	Limitations of Hash Functions
	Relevance for my thesis

	Signatures
	Relevance for my thesis

	Version Control Systems
	Relevance for my thesis

	Android build tools
	Vulnerabilities and Threats
	Software Supply Chains
	Introduction to Software Supply Chains
	Supply Chain Attacks
	Examples of Supply Chain Attacks
	Supply Chain Integrity

	Supply-Chain Levels for Software Artifacts (SLSA)
	Introduction of the SLSA standard
	Relevance for my thesis

	Reproducible Builds
	Introduction of the concept of Reproducible Builds
	History of Reproducible Builds
	Practical Aspects of Reproducible Builds
	Reproducible build environments

	Hermetic builds
	Bootstrappable Builds
	Build Attestations
	Reproducible Builds using Nix
	The Nix deployment system
	Nix expression language
	Building a component
	Nix store
	The Nix Packages collection
	The standard environment
	Nix Flakes
	Relevance for the thesis

	Verifiable Logs
	Merkle tree
	Root node
	Consistency proof
	Inclusion proof
	Availability and synchronization
	Split-view attacks
	“Bad” entries in a verifiable log
	Relevance for the thesis

	Related work
	Projects and tools to improve Supply Chain Integrity
	Gradle dependency verification
	Gitian
	Guix
	in-toto Framework
	Extending Cloud Build Systems to Eliminate Transitive Trust
	Tools that are tailored to improve Android Supply Chain Integrity
	apksigcopier
	reproducible-apk-tools

	Reproducible Builds on F-Droid

	Threat model
	Detailed introduction of the fictional people
	A common user
	An investigative journalist

	Definition of the threat model
	Source threats
	Build threats
	Dependency threats
	Availability threats
	Distribution threats
	Verification threats

	Threats in scope

	Software Supply Chain of an Android application
	Overview of the Software Supply Chain
	Detailed steps of the Supply Chain Model
	Source code
	Build parameters
	Resource Preprocessing
	Compilation
	Optimization and Obfuscation
	DEX Conversion
	Resource Packaging
	APK Packaging
	APK Signing
	Distribution
	Verification

	Contribution of this thesis
	Summary of the proposed approach
	Selection of end-to-end encrypted (E2EE) applications
	Supply Chains of selected Android applications
	Existing Supply Chain: Signal Android
	Existing Supply Chain: Wire Android

	Implementation of this thesis
	Implementation of the supply chain of the Android applications

	The CI/CD pipeline
	The Flake
	Fetching the Source Code
	Mitigations

	Fetching the dependencies
	Mitigations

	Build within the hermetically isolated build environment
	Build process aspects common to both apps
	Inclusion of the build tools
	Build process specifics: Signal Android
	Build process specifics: Wire Android
	Mitigations
	Extra arguments passed to the build command

	Signing of the APK
	Comparison to the reference APK
	Using Diffoscope to compare the APKs
	Implementation

	Publishing of the resulting artifacts
	Update the Reproducible Build process
	Update references
	Update dependencies
	Update build tools
	Update process trigger

	Verification process: Concept

	Evaluation
	In short
	Limitations and Scope
	Source threats
	Build threats
	Dependency threats
	Availability threats
	Distribution threats
	Verification threats

	Findings
	Versions that were successfully built
	Missing dependencies in provided verification-metadata.xml
	(Very) long list of dependencies
	Unavailable dependencies
	Difficulty integrating the Gradle build process in Nix expressions
	Fetching Gradle dependencies
	Sandboxing issues: missing tools and other processes failing

	Limited performance of the build process
	Debug information in release builds

	Discussion
	List of threats, excluded from the threat model
	Differences to other approaches
	Use of verifiable logs in the verification process
	Beyond Supply Chain Integrity of a application
	Recursive verification of dependencies
	Source threats for OSS

	Relevance of this work in the current times

	Future work
	Improve implementation
	Populating the build environment
	Close remaining sources of non-reproducibility
	Improve update process
	Implement distributed verification method
	Recursive Integrity Verification of dependencies
	Additional trust placed in build environments
	Optimization of the distributed verification

	Extend/improve approach
	Missing build provenance

	Conclusion
	Bibliography

