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Abstract

With the most populous countries on the planet relying on biometric identity
systems (e.g. China, India) and a push towards digital identities within the EU
(e.g. EUID), it is important to consider how and where the data linked to these
digital identities is handled. Centralized sets of identifying data lend them-
selves to abuse, necessitating their decentralized storage. This is exactly what
Project Digidow aims to provide: a distributed, scalable biometric authentica-
tion system. To offer its services, Digidow relies on a fleet of sensors which
users have to present their biometric profiles to. Implicitly trusting that these
sensors are trustworthy is potentially dangerous because sensitive data could
be passed to malicious actors. This thesis aims to bridge this gap, by enabling
the sensors to perform remote attestation. Using this process, they gain the ca-
pability of providing evidence to users and their agents, that they are currently
in a known state. Based on this, sensor manufacturers can provide reference
values for trustworthy sensor states, which users can then use to derive trust
from the evidence they received. This thesis shows how attestation can be done
using off-the-shelf hardware like a Raspberry Pi, while also highlighting the
inherent limitations of such an implementation and how to potentially over-
come them. The practical output provides all the necessary code changes and
additions to existing Digidow components to run such an attestation in a secure
and trustworthy manner.



Kurzfassung

Da die Verwaltung der bevolkerungsreichsten Lander der Welt zu Teilen be-
reits auf biometrischen Identitaten (z.B. China, Indien) basiert und es auch in-
nerhalb der EU Anstrengungen zur Einfiihrung von digitalen Identitdten (z.B.
EUID) gibt, ist es wichtig sich mit der Frage auseinanderzusetzen wie und wo
diese hochsensiblen Daten gespeichert und verarbeitet werden. Zentralisierte
Datenbanken eroffnen Wege diese zu missbrauchen, was dezentralisierte Spei-
cherungsmethoden notwendig macht. Hier setzt das Projekt Digidow an und
bietet ein verteiltes und skalierbares biometrisches Authentifizierungssystem.
Um dies zu ermoglichen, verwendet es ein Netz aus Sensoren, welchen die Be-
nutzer ihr biometrisches Profil prdasentieren miissen. Den Sensoren blind zu
vertrauen birgt Risiken, da nicht ohne Weiteres ausgeschlossen werden kann,
dass Dritte Daten an modifizierten Sensoren abgreifen. Die vorliegende Arbeit
versucht diese Liicke zu schlief3en, indem sie den Sensoren die Moglichkeit er-
offnet “Remote Attestation” zu betreiben. Dadurch erhalten diese die Fahig-
keit, Beweise fiir ihren aktuellen Zustand zu liefern. Basierend darauf konnen
Hersteller Referenzdaten verbreiten, was es Nutzern dann erlaubt aus den von
den Sensoren zur Verfiigung gestellten Daten Vertrauen abzuleiten. Diese Ar-
beit zeigt wie sich “Remote Attestation” mit leicht zugdnglicher Hardware wie
einem Raspberry Pi umsetzen ldsst, welche Probleme dabei auftreten kénnen
und wie man diese potenziell 16st. Der praktische Teil beeinhaltet alle notwen-
digen Code Anderungen in bestehenden Digidow Komponenten, um den Pro-
zess der “Remote Attestation” zu ermdglichen.
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Chapter1
Introduction

1.1 Motivation

As more and more of the interactions between a countries government and its
citizens are digitalized [5, 31], digital identities are quickly gaining significance.
These hold a user’s identifying information in a digital wallet to present them
for authentication, just like one would be using a traditional ID. Of all the dif-
ferent forms these identifying datasets can take, biometric profiles are espe-
cially interesting, as they provide a number of major advantages over tradi-
tional password based authentication [38]:

1. Convenience - one does not have to bring an ID along.
2. Security - chosen biometric modalities are hard to steal or fake.

3. Liability - as the features in use are part of human beings, they cannot be
transferred, making it harder for individuals to deny intention.

4. Negative Identification - contrary to traditional authentication methods,
biometrics allow a system to tell whether a person is known or not (e.g. no
second registration with different email).

Building large scale biometric authentication systems is therefore a desirable

endeavor. Traditional biometric systems can be simplified to the process pic-

tured in figure 1.1. In the enrollment phase, participating users present a spe-

cific biometric modality to a sensor, which captures it and creates what is of-

ten referred to as a “biometric embedding”. These user embeddings are then
Enrollment

& extract biometric feature R
L

Biometric
DB

stored

Verification embedding

extract biometric feature i
& > distance ——————> Authentication Policy
measure

Figure 1.1: Simplified architecture of a biometric system based on [38]
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stored in a database. During the verification phase, the same biometric modal-
ity is measured and the result is compared to the stored one. In this context,
the comparison entails the calculation of a distance metric (e.g. Hamming dis-
tance), giving insight on how close these two features are to each other. This
distance metric is then interpreted using a use-case specific authentication
policy (i.e. distance between features is below a certain threshold). The problem
with these systems is, that biometric data is highly sensitive and lends itself to
abuse. Users are effectively at the mercy of the entity controlling the biometric
database. If this entity is a state actor with vast resources, such data sets enable
mass surveillance or at least make such a lot more feasible.

Digidow[29], which in this thesis is used as the short form for “Christian
Doppler Laboratory for Private Digital Authentication in the Physical World”,
aims to provide the means to solve this problem by decentralizing the storage
of its users biometric embeddings. It does so by introducing so-called “Per-
sonal Identity Agents” (PIA). Each PIA is representing exactly one individual
and holds its biometric data. The identification of individuals is done by a net-
work of sensors, each capable of extracting certain biometric features. Since
these sensors need to be able to compare the features they extract with some
known reference (formerly the entries of a biometric database), the PIA will
have to give its biometric profile to a sensor in a process called “registration”.

Figure 1.2 shows a data flow diagram of the current situation. Users provide/
store their embedding to/in the PIA on the left side. They also interact with sen-
sors (on the right) which derive embeddings based on what they are sensing.
PIAs then discover sensors and register with them, transferring their stored
embedding. That way, the sensor is able to recognize specific users and no-
tify them through a callback when their related individual is recognized. The
problem right now is, that the PIA has no way of knowing whether the sensor
can be trusted and will treat the user’s biometric embedding with the necessary
care. It would be desirable for a PIA to discover the trustworthiness of a sensor,
before interacting with it in the first place—a perfect application for remote

Register

Registered user
User embeddings embeddings

Recog-
nition

Detected user
Sensor embeddings
callback |~ -

User

Figure 1.2: Data flow model for the sensor registration flow.
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attestation.

1.2 Objectives

The Goals for this thesis are to:

B enable the sensors to produce measurements with which they can prove
their current system state,

B enable the PIA to interpret these measurements and derive a decision on the
respective sensor’s trustworthiness,

m define a process to guide the interactions between PIA and the sensors,

m develop strategies on how to enable manufacturers to provide the necessary
reference data, and

m identify potential shortcomings in the resulting solution and proposals of
how to overcome them.

1.3 Outline

The thesis will start by introducing the necessary background topics like the
Digidow architecture, the hardware in use etc. in chapter 2. Chapter 3 will
present related work and place the topic in the existing research landscape. In
chapter 4 an overview of the proposed solution is presented. Chapter 5 explains
the most important implementation bits. Chapter 6 tests the created artifacts
and derives key observations. Chapter 7 concludes the thesis by outlining its
limitations and possible avenues for future work.



Chapter?2
Background

2.1 Digidow

As introduced in section 1.1, this thesis was developed as part of Project Digi-
dow. The name is a portmanteau word of Digital and Shadow and aims to con-
vey the core system idea of providing a nearly invisible way for users to au-
thenticate themselves against a digital system using their biometrics. Figure
2.1 shows a simplified version of the architecture as presented in [29].

2.1.1 PIA

As described initially, the personal identity agent (PIA) is the entity holding a
user’s biometric data, preventing the need for a big centralized database. A PIA
more or less “represents” a user within the system boundaries and acts on its
behalf. To enable the user to exercise full control over one’s biometric data, the
PIA could either be hosted by the users themselves or through a trusted third
party hosting provider. Besides the user’s biometric profile, the PIA also holds
a set of attributes retrieved from an issuing authority upon registering with it.
These attributes can be used to authenticate the user towards a verifier, being

Individual

Verifier

represent

register
trust

Y

discover

attributes

Sensor Directory Issuing Authority

information

Figure 2.1: Digidow overview adjusted from [29].
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proof that an issuing authority vows that the PIA indeed represents the person
it claims to be.

2.1.2 Sensor

Sensors are the parts of the system that detect and recognize users. They rely
on some biometric modality. Detection works without the knowledge of a user’s
biometric data. Recognizing specific users and contacting their respective PIAs
on the other hand, requires a biometric profile as well as the address of the re-
lated PIA. Once a PIA decides to provide this information, the sensor will contact
it whenever a person depicted by the biometric profile is detected. The single
modality currently available as a research prototype utilizes face recognition
and is running on a Raspberry Pi 5.

2.1.3 Sensor Directory

In order for the PIA to find sensors that its user is likely going to interact with
(e.g. based on the user’s location), it can query sensors with certain attributes
from the sensor directory. When a sensor starts up, it registers with this direc-
tory in order to be discoverable by PIAs.

2.1.4 Issuing Authority

An issuing authority issues the attributes that the PIAs use to represent their
users. Its main purpose is to create the relationship between an actual person
and their personal identity agent. The check whether that is actually the case, is
based on an out-of-band check utilizing traditional IDs (e.g. a driving license).
Potential issuing authorities include government institutions or any form of
businesses (e.g. access control to corporate buildings).

2.1.5 Verifier

The verifiers are the entities the users want to authenticate with. They trust
certain issuing authorities to have properly checked an individual’s identity
and when presented with a set of valid attributes as well as the proof of inter-
action from a sensor, they provide some sort of feedback or service. A simple
example of such a reaction would be opening the door to a restricted building.

2.2 Remote Attestation

When employing remote attestation, the overall goal is for one system to con-
vince another one, that it is in a certain state. This could, for example, be a
sensor, which wants to prove to a PIA, that it can be entrusted with face em-
beddings. When looking at such procedures the following terminology is used
(defined in [3]):
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0. initial certification

3. validate claims

/N

1. request evidence

2. provide claims

Reference Value
Supplier

0. reference measurement

Figure 2.2: The most basic form of remote attestation, adapted from [3].

m Attester: This is the entity which seeks to prove its trustworthiness or its
overall system state. To this end it gathers different claims and assembles
these as evidence.

m Claims/Evidence: These are properties of or facts about the system the At-
tester garners during evidence assembly, e.g. “This computer is running x,
yand z”.

m Verifier: This is the entity which the Attester is trying to convince. It is the
recipient of the evidence and based on it, it derives a trust decision. To de-
rive this decision, the Verifier is reliant on reference data and/or knowledge
about the sensor.

®m Endorser: A party which provides evidence to the Verifier, that certain pro-
cedures within the Attester did indeed run, and produced a certain output.
An example would be the Endorsement Key inside a TPM, which can be used
to prove, that a certain element is present within a genuine TPM. To do this,
the Endorser is reliant on public key cryptography, certificates and signing
algorithms.

m Reference Value Provider: Another entity supporting the Verifier in its de-
cision, by providing known good values for the evidence presented by the
Attester. The trust in the reference value provider’s ability to measure a
good state alone, is what gives trust in the system after the attestation.

Figure 2.2 shows a very basic form of remote attestation, wherein the verifier
requests evidence and validates the claims afterward, using endorsements and
reference values. The two most important aspects to be highlighted in the fol-
lowing, are evidence and the trust that this evidence is correctly supplied. To-
gether they allow a verifier to argue about the state of an attester.
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2.2.1 Evidence

Johnson et al. [26] distinguish two different types of evidence:

m Static: values and measurements that don’t (or rarely) change over time,
like the checksum of a bootloader, the checksum of the binary of some face
detection software, ...

® Dynamic: values and measurements that do change over time, like main
memory contents, log files, ...

According to Johnson et al. [26], static evidence is traditionally not enough to
stop every attacker, because an attack could simply emanate from a location not
covered by static evidence collection (like main memory). On the other hand,
dynamic evidence is hard to capture and hard to compare to, because it does
not stay constant over extended periods of times. Striking a balance between
these two types is important and basically a question of how easy evidence is to
work with versus how thoroughly it represents the system state.

2.2.2 Trust

One of the most important problems in remote attestation is how the attester
manages to convince the verifier, that the information that is being sent is gen-
uine. This “trust” can be derived in a number of different ways. In related lit-
erature ([2, 15, 26]) these trust anchors are divided into different classes de-
pending on how they achieve this:

m Software-based approaches rely (as the name already implies) solely on
software to prove trust. The way this traditionally works is that the veri-
fier closely measures the time it takes the attestation procedure measuring
the attester to fulfill its task. They are based on the idea that if an attester
tries to send bogus information, additional CPU cycles will be used, lead-
ing to a measurable difference in reaction time. These procedures are very
cheap as they do not need any additional hardware, however they also open
up a number of problems. For one, the verifier needs to be on the same net-
work as the attester as network delays through routing protocols etc. make
it very hard if not impossible to gain accurate timing. On the other hand,
the verifier relies on the assumption, that the attester cannot execute the
attestation procedure any faster as doing so would defeat the timing as-
sumptions. This inflicts additional pressure on the implementation of the
attestation procedure as it has to be, per definition, optimal.

® Hardware-based approaches use hardware trust anchors for attestation.
They are based around the idea, that hardware is harder to alter and (in
some cases) can even operate independently of the system it is installed in.
Given a properly isolated hardware security module, an attacker is forced to
attack the device on the physical layer which is potentially very expensive
(e.g. fault injection). Additionally, any attack of this kind is preceded by the
acquisition of the actual device which (depending on the access controls in
place) bloats the attacks cost even more.

® Hybrid approaches aim to combine software and hardware based attesta-
tion to draw from either approaches advantages, i.e. the strong security
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guarantees of hardware and the lower cost of software based solutions.
Francillion et al. [15] did exactly that and defined a set of minimal require-
ments on an attestation procedure, including both hard- and software as-
pects, without relying on fully developed hardware modules like a TPM.
These boil down to:

® Hardware capable of securing some secret k
® Secure memory erasure and system reset mechanisms

® The ability to disable interrupts to ensure the uninterruptability of the
attestation code

® Hardware that ensures when and how the attestation code can be run

Some of these requirements will become important later in this thesis (e.g.
the first one). The idea of reducing expensive hardware to a minimum and
running the rest of the attestation in software is the main characteristic of
hybrid attestation approaches.

2.2.3 Principles

In a cornerstone paper in the area of remote attestation, Coker et al. [4] state a
set of principles for remote attestation:

®m Fresh Information: Attestation evidence needs to incorporate the current
state of the system, not just static evidence from system startup.

® Comprehensive information: The provided evidence should enable the ver-
ifier to paint a clear picture of the internal state of the attester.

® Constrained disclosure: The attester should be able to control which infor-
mation is sent to which verifier and which information is omitted.

® Semantic explicitness: The verifier should be able to derive information
and predictions on the attester by applying logical operations (e.g. A and B
where measured, meaning C must hold). This has implications on how the
evidence is delivered.

® Trustworthy mechanism: The verifier should be able to grasp the trustwor-
thiness of the attestation procedure. Furthermore, both parties should be
aware of how the attestation is performed.

Given the requirements on the attestation procedure, derived from these prin-
ciples, the authors acknowledge that an implemented attestation procedure
would likely not fulfill all of them. The presented procedure will for example
not focus on the constrained disclosure part, as the sensors acting as the at-
tester are supposed to be transparent in the first place.

2.3 The Trusted Platform Module (TPM)

In order to enable the sensor to report on its current software state during
the remote attestation process, a “Trusted Platform Module” (short TPM) was
built into the sensor platform. A TPM is a secure coprocessor which does not
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share its internal state with the system it is built into. This is probably its most
important property, as this means one does not need to trust the majority of
the system, it’s enough to trust the roots of trust in and around the module. A
TPM is often referred to as a “Hardware Root of Trust” and is thus a prime can-
didate if one seeks to report on the internal state of a machine. The following
explanations are based on the TPM specifications [46, 47, 48] provided by the
Trusted Computing Group (henceforth referred to as the TCG).

Trust always needs to be based off of something, it will not spawn out of thin
air. We always want to keep this something as small and compact as possible
as there is at least the perceived notion, that a smaller system (or part thereof)
is easier to evaluate and thus easier to be trusted. The TCG describes this as the
“Roots of Trust”, the parts of a system for which trust cannot be trivially de-
rived. They describe three different roots of trust some of which can be provided
by a TPM and some of which have to be provided by the platform manufacturer.

® The “Core Root of Trust for Measurement (CRTM)” which is responsible for
capturing the system state. There exist two different types of measurement
roots:

® The “Static Root of Trust for Measurement (S-RTM)” is referring to the
first instructions run by a system. It’s the code that runs before the TPM
gets involved and is normally represented by the firmware of a system.
There is no way to tell what exactly it does and thus one needs to trust
thatitisnot doing anything malicious. Once this code runs, it shall mea-
sure whatever code runs next and store that measurement somewhere
safe. That way we do not have to trust whatever code that is as long as
we trust the code that did the initial measurement. This is what the pro-
totype in this thesis will rely on. A depiction of the SRTM can be seen in
figure 2.3.

® The “Dynamic Root of Trust for Measurement (D-RTM)” [52] on the
other hand is not run at boot time, but at a later stage. To still be able
to trust it, the TPM is supported by the system’s CPU which imple-
ments special commands creating a temporary measurement environ-
ment. The latter will ensure this environment’s isolation and thus allow
the system to run trustworthy measurements in this stage. This way at-
testation evidence can be collected, without having to restart the entire
system.

m The “Root of Trust for Storage (RTS)” describes a storage location shielded
from external access. The results one gets from the S-RTM are worthless if
they cannot be kept from being modified. This functionality is covered by a
TPM as outlined below.

Time of first TPM measurement

g
| | >

! Stage-n bootloader | Operating system | User binaries”

Boot process &

Root of Trust for Measurement

Figure 2.3: Depiction of the S-RTM.
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®m The “Root of Trust for Reporting (RTR)” is the key for remote attestation.
It describes the ability to report on various different aspects of the sys-
tem while providing strong evidence to the other party, that this report-
ing can be trusted. For this purpose, every TPM manufactured according to
the TCG’s specification has its own endorsement key with an accompany-
ing certificate signed by the manufacturer. The private portion of this en-
dorsement key never leaves the TPM and can thus be trusted to be known by
no one else. This means that if someone were to take the certificate, check
that it was indeed signed by the manufacturer, trusts the manufacturer to
be able to build a secure TPM, encrypts a secret using the public portion of
the endorsement key, sends it to the TPM and receives the correct plaintext,
one knows that the information must have been passed into a genuine TPM.
This scheme can be used to establish signing keys which can then be used
to sign further communication thus providing a “Root of Trust for Report-
ing”.

Enabling these “Roots of Trust” demands a set of more or less basic features,
two of which are especially important for the work presented in this thesis:

® Cryptographic subsystem: provides elements for symmetricand asymmet-
ric encryption, signature and hashing algorithms, key derivation functions
(which we will specifically encounter in a later chapter) and random num-
ber generators. This enumeration is not exhaustive and the complete list of
features can be taken from the TCG’s specification.

m Protected storage: Storage on a TPM comes in two different kinds:

® Volatile: comprised of the Platform configuration registers, any keys
used for currently running operations, active sessions etc.

® Non-Volatile: contains for example the seed from which the endorse-
ment key is generated. This storage area entails any information that is
supposed to still be available after a power cycle.

2.3.1 Platform Configuration Registers

The platform configuration registers (PCRs) are storage elements that hold a
single hash value. A TPM might have one or multiple banks of 24 PCRs, based
on the hashing algorithms it supports. They are meant to hold checksum mea-
surements issued by the system and cannot be set to arbitrary values. They
change their content based on an extend function, as shown in figure 2.4.

If a new checksum is to be added to a specific PCR, its old value is concatenated
with the new measurement and the corresponding hash function is calculated
over that concatenated byte array. The result is then stored in this register, rep-
resenting the new value. This ensures, that measurements cannot simply be
forged by setting the register to a known good state. The process is depicted in
figure 2.4. The knowledge of the initial measurement (checksum) is necessary
to end up on the same value.
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X_Old | X |ffa6706ff2127a749973072756f83c532e43ed02

checksum to extend
bb21158c733229347bd4e681891e213d94c685be

SHA1(ffa6706ff2127a749973...| | bb21158¢c733229347bd4...) ——

X_new | X |f2708992659f23d064bd441718907082af023842I(—

Figure 2.4: PCR extend operation for SHA1.

2.3.2 Chain of Trust - System Measurement

On a system using a TPM, all trust depends on the fact, that the combination
of early system ROM firmware and TPM are doing their respective work cor-
rectly. Taking this fact as a given and trusting that they do, we can extend this
trust to other parts of the system. When the root of trust measures whatever
it is loading (another bootloader or operating system), what it basically does
is calculating a checksum of the related data and extending it into the TPMs
PCRs. This value can then be used to compare to what is expected for a valid in-
stance of this data/code. If these two values are the same, the chain of trust was
successfully extended. This new code can now also load something else (e.g. a
binary) and again measure it in the process.

In this way, the trust that was put into the Roots, is extended to the whole sys-
tem and without trusting anything outside the minimal startup code and the
TPM, one ends up with a valid system. The theoretical chain, for an arbitrary
system is pictured in figure 2.5. These measurements effectively build a repre-
sentation of the system’s current state inside the PCRs.

System Firmware
(ROM)

Bootloader Kernel Application

Checksum of Bootloader Checksum of Application

Checksum of Kernel

TPM PCRs

Figure 2.5: Chain of trust starting at the root of trust for measurement, span-
ning up to a running application.
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2.3.3 Platform Certificates

As was already established, adding a TPM to a platform is not enough in it-
self. The TPM does not control the RTM and can thus not ensure that it ran,
wasn’t interrupted or modified. Since a modification of the RTM would break
the chain of trust, there needs to be a guarantee that the measurement process
ran at some point. The result is the need of an additional type of endorsement,
provided by the platform’s manufacturer, the so-called “Platform Certificate”
[43]. It attests that a specific platform, being in the possession of a specific
key, has a TPM as well as an immutable RTM, which cannot be interrupted or
replaced. This certificate and the associated endorsement bridges the gap be-
tween the platform’s RTM and the TPM giving proof during the attestation,
that measurements from it can be trusted. A major problem is, that these plat-
form certificates are not easy to come around. Only a handful of manufactur-
ers provide a way to retrieve them, which typically involves a not insignificant
amount of related work. Examples for companies providing such certificate are
the enterprise divisions of both HP [24] and Dell [23]. An overview of how these
should be used to ensure supply chain security is provided in [39].

2.3.4 Talking to the TPM

A TPM can be implemented in a number of different ways. In terms of hard-
ware the main distinction is between TPMs which are implemented as their
own chips (e.g. Infineon SLB9670) and TPMs implemented in a standard CPU,
which are also called firmware TPMs (fTPMs). Dedicated TPMs have to be con-
nected to the rest of the system using a bus system like SPI.

In order to “talk” to a connected TPM, the TCG defines a number of differ-
ent APIs with varying levels of abstraction. The one used in this thesis is the
“libtss2-esys” [41], developed by the “tpm2-software community”, imple-
menting the “TSS 2.0 Enhanced System API (ESAPI) specification” [45] by
the TCG. Just as its underlying “libtss2-sys” (“TCG TSS 2.0 System Level API
(SAPI) specification”) it provides “1-to-1 mappings for TPM2 commands” as
described in part 3 of the TPM2 specification [48]. The thesis implementation
itself uses a crate[32], which provides bindings, in combination with some ab-
stractions, to/from the “libtss2-esys” library. For debug and exploratory pur-
poses, “tpm2-tools” [42] was used, which is a command line based tool pro-
viding access to many of the TPM commands, also developed by the “tpm2-
software community”. Throughout the next subsections, commands from this
tool will be used to underpin what is being explained to make the concepts in
question more tangible.

2.3.5 Handles and Contexts

During operation a TPM interacts with a plethora of different objects like keys,
sessions, key seeds, etc. Every one of these elements currently present on the
TPM is assigned its own, unique handle. A handle is a 32-bit integer identifying
that element inside memory. An example for such an object is the endorsement
key:
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sensor@raspberrypi:~ $ tpm2_createek -Q -c - -G rsa -u ek.pub
sensor@raspberrypi:~ $ tpm2_getcap handles-persistent
- 0x81000000

In this example, the endorsement key is generated from the TPM resident en-
dorsement seed. The “-c” option lets us define at which handle to store the re-
sulting key. Passing ‘“-” tells the program to look for a suitable handle, which
then turns out to be “0x81000000”. There are different types of handles, dif-
ferentiated by their respective most significant octet. The one at hand (“0x81”)
refers to “persistent object handles” which is a group of handles which do not
get erased by power cycling the system, which makes sense in this case, as
the endorsement key does not change. The other handle types are available in
chapter 13 of the tpm2 architecture specification [46].

As one can imagine, if there were a lot of processes using a single TPM, its
memory would fill up very quickly not to mention the fact that other applica-
tions could potentially get access to sensitive TPM contents. Therefore, TPMs
are able to store the context of a handle (and with that the object associated
to it) in a context file outside the TPMs memory. To this end, a key is derived
and the object data encrypted. The integrity of the result is guaranteed via an
HMAC. The resulting structure is returned and written to a file on the systems
mass storage. At a later point in time, this data can be fed back to the TPM to
load the object again and assign a new handle. The related TPM commands used
in this thesis are the following:

m TPM2_ ContextSave: save the current context for a TPM object/handle

m TPM2_ContextLoad: load the stored context for a stored TPM object/han-
dle

m TPM2_FlushContext: erase handle/context information from TPM

Not all objects can be stored using a context file. The subset of objects that can
are either “transient objects” (handles with most significant octet of “0x80”)
or sessions used for authorization, which will be described next.

2.3.6 Sessions and Authorization

A TPM and its contents are potentially available for a number of different pro-
cesses on the system it is installed in. Let’s imagine one process creates an at-
testation key and loads its context into the TPM. Another process could then re-
trieve the handle and use it for something different, potentially against the will
of its creator. This is why, for a subset of elements on the TPM, authorizations
are required. There are four (arguably three) different types of authorizations
(sorted from “weakest” to “strongest”):

® nullauth: no authorization required
m password: plaintext password provided as authValue

® HMAC:session based authorization based on providing a password as au-
thValue “protected” by using an HMAC (password does not get transmitted
directly)
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B policy: session based authorization providing a session digest called auth-
Policy

The first two types are pretty self-explanatory: either no authorization is re-
quired or a password referred to as “authValue”. The latter two types are so
called “session-based” authorization types. Like other objects, sessions can
be loaded from and stored in context files. They get assigned handles like any
other object and handed over when making use of certain commands requiring
either HMAC or policy authorization. When this happens, the internal value of
the session changes. This is also why, besides authorization, sessions can be
used to prove that a certain sequence of commands was executed, as this se-
quence is reflected in the session’s internal value.

When an HMAC session is used, an HMAC gets calculated from the associated
password (in combination with additional data), which is then handed over for
authorization. A policy session on the other hand, does not have a password
associated. Authorization using policy session works by calling any number of
so-called policy assertions. These policy assertions alter the session’s inter-
nal value when the respective assertion holds. Presenting the resulting session
digest thus proves to the TPM that the policy made up of a specific set of asser-
tions holds for that session. It is this exact reason that policy sessions cannot
be used as audit sessions, as the value their internal state holds is necessary for
authorization.

There are a number of related TPM commands that find use in the thesis im-
plementation:

m TPM2_ StartAuthSession: Starts an authentication session of either type
and returns the handle.

m TPM2_ PolicySecret: Asserts that the caller knows the authValue (secret)
related to a certain object identified by its handle.

2.3.7 Attestation

Serving as the “Root of Trust for Reporting” a TPM also provides a lot of func-
tionality to facilitate remote attestation. The following is a list of attestation
related commands provided by a TPM. The exact command usage will be made
clearer in section 5.

m TPM2_ Quote: creates a quote over selected PCRs and signs it using the key
indicated by the passed handle

®m TPM2_PCR_Read: reads all the selected PCRs and returns their values

m TPM2_ CreatePrimary: used to “create an object under the primary seed”
[48]. In this context this command is used to re-create the endorsement
key from the endorsement seed.

m TPM2_ Create: used to create the attestation key as a child element to the
endorsement key

m TPM2_MakeCredential: used to create a credential which ties some object
attributes to a secret, encrypted by a key stored on a TPM.
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m TPM2_ ActivateCredential: here the TPM verifies that the object referenced
by the credential is actually present on the TPM and if (and only if) it is, the
credential is decrypted using the endorsement key and the resulting secret
is returned.

2.4 IMA

The Integrity Measurement Architecture (IMA) is security feature of the Linux
kernel and was first introduced in version 2.6.30 [7]. Its main goal is to make
sure that files are not being altered or at the very least such an alteration is
noticed. To this end it provides 3 core services [21]:

m IMA-Measurement: Upon accessing a file, a hash (checksum) is calculated
and stored in a log. If a TPM is present on the system, that measured hash
is also extended into PCR10, enabling reporting through the TPM on mea-
sured IMA values.

m IMA-Appraisal: Stores measured file hashes in its attributes. If an already
measured file is accessed again, its checksum is recalculated and compared
to the stored hash. If they differ, the access is denied.

®m IMA-Audit: Includes IMA measurement in additional log files, supposedly
improving system audit possibilities.

In the context of this thesis, the measurement feature is of particular interest.
As described in section 2.3, it is used to extend the system’s measurement into
the “Root of Trust for Reporting”. When the TPM produces a signed quote over
its PCRs that also includes PCR10, meaning the IMA access log is transitively
signed by the TPM. An entity with the goal of verifying the IMA log can now
“replay” all the measurements taken and together with individual PCR values
should be able to reproduce the quote, thus proving the contents of the IMA
log. Having access to a trustworthy IMA log is interesting because it gives a re-
mote party insight into the running system and whether files produce expected
checksums. If the log would, for example, contain a binary with a checksum
value not known to the verifier, this could hint at the sensor being modified.

To decide which files to measure and apply its features to, IMA uses policies.
This is especially important, because files that change often are hard to include
into an IMA log audit because it would necessitate constant updates on the ref-
erence log values. We thus use policies to exclude files that change often as
part of systems operation to keep reference material valid for longer. IMA poli-
cies are made up from “measure” and “dont_measure” statements followed
by one of a few possible arguments creating a “scope” which files potentially
match into. If they do, the respective rule applies. The following section shows
a short excerpt from IMA’s built in TCB policy: [21]:

dont_measure fsmagic=0x9fa0 # PROC_SUPER_MAGIC

measure func=FILE_CHECK mask=MAY_READ uid=0
measure func=MODULE_CHECK
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Figure 2.6: IMA log entry layout.

From top to bottom these policy entries state, that the proc-filesystem is
not to be measured which is good as it changes a lot (representation of pro-
cesses). On the other hand it also defines what to measure i.e. every file
(func=FILE_ CHECK) read (MAY_READ) by root (uid=0) and all the kernel
modules (MODULE_ CHECK). With these building blocks one has to build a pol-
icy that on the one hand, covers as much of the system as possible and on the
other hand, does not measure too many (if at all) frequently changing files,
which has a significant impact on how easy it is to check the log.

If IMA is configured correctly, measurement logs show up in /sys/kernel/secu-
rity/integrity/. The following is an example of what such log entries might look
like:

10 6b...dd ima-ng sha256:7b6436b0c98f62380866d9432c2aflee. . .61 boot_aggregate
10 cc...2d ima-ng sha256:94a66d567efa%cab7f80f9ch3e67ecd5. . .f4 /usr/bin/kmod

10 ¢3...27 ima-ng sha256:3dd934e1fb34248b9c7a657d1651964d. ..64 /etc/1d.so.cache
10 af...34 ima-ng sha256:060ff11d8h8a2bbceddcc4a8034b11d1. . .ad /init

10 d4...b8 ima-ng sha256:aa1c8f7b1f36084b34b952de06d06430...ba /usr/bin/sh

The log file is also available as binary data, which then has to be parsed in order
to extract the information necessary for the attestation. Figure 2.6 shows the
entry layout for template “ima-ng”:

Besides “ima-ng” there are other available templates like “ima-sig”, which
contains the same information together with a signature. A complete list of
available templates is available in the IMA documentation [21]. Independent
of which template is used, the digest of an entry which gets extended into the
assigned PCR is always the hash value over the complete “Entry” (marked in
figure 2.6 via a bracket) using the hashing algorithm of the PCR bank to be
extended. Linux kernels before 6.10.6 [21] only had one binary measurement
file with a default digest using SHA1. On these machines the digest for SHA256
needed to be calculated again in order to check the value against PCR10 in the
SHA256 bank. On newer kernels, IMA holds log files for all supported hash al-
gorithms, meaning that there already is an IMA log file containing the SHA256
entry digests.
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2.5 Transparency Logs

A key requirement for the resulting remote attestation to derive any trust is
that the values which the attestation results are compared to are distributed in
a way that ensures they are not being tampered with. To this end, this thesis
uses a transparency log which contains entries for every valid reference data
set. This way, it doesn’t matter how the reference data is distributed since a
proof of inclusion in the log is enough to vouch for its correctness. The log it-
self is built from a verifiable data structure as described in [28]. These struc-
tures use Merkle Trees to achieve the verifiability property. Such a tree stores
the checksums of the data sets, for which the inclusion should be proved, in its
leaf nodes. Every structural node above the leaf level is associated to at most two
child nodes. These structural nodes also hold checksums which are generated
by first concatenating its children’s hash and then feeding the resulting value
into the related hash function. The root node in a tree built according to these
rules holds a hash representing all the currently included entries of the tree. An
example for such a tree can be seen in figure 2.7. The root node is signed by the
transparency log and is needed to prove the inclusion of specific data sets. Say
the inclusion of data set N3 is to be proved. First, the proof is requested from
the log, which if a certain data set is contained, returns a set of hashes. The fact
that an entry is present (indicated by the set of hashes returned), is however not
enough to show inclusion. To do this, the root hash has to be recalculated. The
set of hashes returned by the inclusion proof request contains all those hash
values needed to verify the root hash value given the value of N3. This set of
hashes is called the “Audit Path” of N3, consisting of the hash values for N2,
N6 and N8. First N2 and N3 are used to compute N7 and then N6 and N7 are
used to derive the hash of N9 which can then be used together with N8 to de-
rive the root value. If this matches the signed value, the inclusion was success-
fully proved. Transparency logs do not hold or distribute the data associated
with them. The only information they convey is that some data is included and
whether the structure was tempered by someone else. If only trusted values are
inserted into a log, inclusion can thus prove the trustworthiness of a value.

Merkle Tree Hash =
SHA256( HashN9 | |
HashN8)

HashN9 = HashN8 =
SHA256( HashN6 SHA256( HashN4
| | HashN7) | | HashN5)
HashN6 = HashN7 = HashN4 = HashNS5 =
SHA256( HashNO SHA256( HashN2 SHA256(DataN4) SHA256(DataN5)
| | HashN1) | | HashN3) DataN4 DataN5
HashNO = HashN1 = HashN2 = HashN3 =
SHA256(DataN0) SHA256(DataN1) SHA256(DataN2) SHA256(DataN3)
DataNO DataN1 DataN2 DataN3

Figure 2.7: Example for a Merkle tree used to implement Transparency logs.



Chapter 3

Related Work

Having covered the basic background information necessary to understand this
thesis, it’s important to place it within the broader academic landscape of re-
mote attestation.

First, it is important to differentiate what the word “sensor” actually refers
to. Oftentimes the word is applied to small sensing platforms with very strict
limits on power and cost. This has obvious implications on the type of attes-
tation that is possible within these systems, as a dedicated hardware security
module might be out of scope due to these limitations. Ankergard et al. [1] give
an overview of different software based methods, aiming them at already de-
ployed sensing platforms. They describe a decrease of interest in software-
based attestation, due to the fact that they are deemed less safe than ones,
where the trust is bound in hardware. While the construction of such protocols
is rather interesting, they are wholly unsuitable for the kind of sensor required
by Digidow. Having the components communicate over the Tor network, makes
measuring attestation delays reliably almost impossible.

Given the limitations of software based approaches, some research hasbeen di-
rected towards so called Physically Unclonable Functions (PUFs). These are re-
liant on the inherent variability in computer chips, introduced by their respec-
tive manufacturing mechanism (e.g. uninitialized memory regions stabilizing
at either logical 1 or 0). They produce device specific values and can be used
for fingerprinting or authentication. An identity attestation procedure based
on that technique was proposed by Roman et al. [36]. The scheme is not reliant
on hardware trust anchors but still able to provide unique IDs. Identity attesta-
tion does not necessarily compare to the attestation done in this thesis, but the
idea of having a function reliant on a specific set of hardware could potentially
enable additional security even if one has access to a hardware root of trust (see
replay attack in section 4.2).

Systems which are less bound by cost or power factors, circumvent these issues
by introducing hardware based roots of trust like TPM chips. Given the short-
comings of software based approaches TPMs are also being introduced in less
powerful sensor platforms. An example is the attestation process described by
Tan et al. [40] where each sensor node is equipped with its own Trusted Plat-
form Module. This is getting closer to what this thesis aims to achieve, though
the sensors in use still fall short of what the prototype sensor platform for Digi-
dow (Raspberry Pi 4/5) can do in terms of performance.

Since the face detection sensors in Digidow have to run models for face detec-
tion and recognition, they already require a substantial amount of processing
power, which means, that introducing a hardware root of trust is not a big con-
cern power or cost wise. A prototype for attesting face detection sensors within

18
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the Digidow system was shown in 2022 by Michael Preisach [33]. The goal was
to engineer a system which future research could be based on. The assumptions
that were made during the creation of the prototype, do however not reflect the
current status of the Digidow system. Some major points of contention with the
proposed solution are:

m The attestation prototype was built on x86 hardware whose compatibility
to TPMs is far superior to the aarch64 based Raspberry Pi platform in use by
the sensor today. The Grub bootloader on x86 supports TPM measurements
out of the box, whereas on the Pi one has to resort to third stage bootloaders
to get any kind of TPM support.

®m The attestation procedure was implemented using tpm2-tools in combi-
nation with a set of bash-scripts. While it would theoretically be possible to
call these from within the Rust binaries (which represent today’s Digidow
component prototypes), this would be far from a satisfactory result.

®m The thesis spends quite a lot of time introducing and implementing Direct
Anonymous Attestation. The idea with that is, that the sensor does not have
to share its endorsement key, making it harder to track it across attesta-
tion attempts. Since sensors are identifiable via their onion address anyway,
DAA does not provide any meaningful protection. Besides, that the sensor
is meant to be transparent anyway.

m [t lacks functionality to check SHA256 digests for the IMA log, which is nec-
essary given that SHA1 was retired by NIST in late 2022 [30].

Looking at work using a similar hardware setup, Usman et al. [50] present a
remote attestation procedure called “RASUES” which beyond the attestation
itself, is able to facilitate software updates. For their prototype, they use the
same combination of Raspberry Pi 4 and Infineon sLB9670 TPM as is being
used in this thesis. The most interesting part from this thesis perspective is the
fact that they managed to “activate UEFI”. Upon further research it is likely
that the authors were referring to the EDK2 bootloader which seemingly also
supports measured boot. This could be an alternative bootloader candidate for
future endeavors. It is furthermore interesting because the process of updat-
ing a node that is attested to periodically, is an important one and not directly
addressed in this thesis.

Lastly, it is worth shifting the view from academic research prototypes to sys-
tems actually utilizing remote attestation. One such example is the “Key- and
ID-Attestation” in Android [18]. To run the attestation, Android is reliant on
a hardware trust anchor, which most of the time comes in the form of ARM
TrustZone (TEE - Trusted Execution Environment). This essentially divides the
execution on the processor in two different domains: the secure and the non-
secure world [17]. The key management is handled within this secure world,
protecting them from potential attackers and forming a “hardware-backed key
storage”.

The goal of key attestation in Android is to prove that a certain key is se-
cured within the key store. To this end, Android devices store an attestation
key signed by Google. This is how they derive the endorsement, that the TEE
and its related software parts were implemented correctly. Using this attes-
tation key, the key storage can thus prove that keys are held within by sign-
ing them (comp. credentials in TPMs). Similarly, Android can also attest hard-
ware identifiers like the device IMEI (International Mobile Equipment Identity
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- unique identifier) or the serial number. Just like the attestation key, copies of
the devices identifiers are safely stored within the TEE during manufacturing
to prevent them from being edited after the fact. Once inside the TEE, they can
be attested to by using the attestation key, same as in key-attestation. Beyond
that, Android is also capable of attesting the correctness of its boot, system and
vendor related code in the form of its vbmeta-digest (verified boot meta data di-
gest) [16]. This is essentially a digest over the systems static partitions and as
such precomputable. Once a systems software state is final, its vbmeta-digest
can be stored in hardware-backed secure storage and later attested to like the
hardware identifiers mentioned above. While similar to the remote attestation
presented in this thesis (in that both are reliant on hardware trust anchors),
Android attestation is dealing with significantly less data, limited to static de-
scriptors as opposed to a “full system attestation” giving information about
the whole system, especially the dynamic parts in the form of executed bina-
ries.



Chapter 4
Overview

4.1 Proposed Solution

Given the context outlined in the previous chapters, additions to Digidow’s
architecture and feature set have to be made, to facilitate remote attestation.
The following provides an overview over the proposed solution and the general
idea of how the process is going to work. A more detailed walkthrough is then
provided in section 5. Figure 4.1 shows an overview over the different solution
parts.

® Manufacturer/Developer/Maintainer:

These entities either manufacture/develop or maintain the software and
hardware components that a running Digidow sensor is made of. In the op-
timal case, the whole software (operating system with all its applications)
is provided in the form of a single, bootable sensor firmware image. This,
in turn, should be the output of a build process based on an openly acces-
sible source repository. The image built from this source and booted on a
specific set of hardware then produces a characteristic set of PCR values. If
these measurements are taken from a system state the manufacturer deems
trustworthy, they can be made available in the form of reference values.

B Transparency Log:
The reference data contains information on the sensors hardware and soft-
ware, as well as the data necessary for a verifier to derive an attestation de-
cision. It is included into a transparency log by its manufacturer, so that no
matter where the reference values are sourced from, the verifier can always
check that they are identical to what was measured in the trusted reference
environment of the manufacturer. The integration of the transparency log
is not part of this thesis, but was implemented as part of a master’s project.

= TPM:
ATPMis introduced into the sensor node, providing the PCRs into which the
system state is measured as well as the Root of Trust for Reporting to provide
the collected evidence.

m Sensor Directory:
In order for to be discovered by PIAs, sensors register to the sensor direc-
tory. PIAs could also learn of the existence of a specific sensor from a dif-
ferent source (by getting told its address), which is why the sensor direc-
tory could also be used to just query information about a sensor. The current
plan is that the sensor directory will also be responsible for distributing the
reference data.

21
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4.2 Threat Model
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Figure 4.1: Architecture of the proposed sensor attestation.

PIA:

Contrary to before, the sensor will now provide claims about its running
state, which is to be verified by the PIA. It will make sure that it can be
trusted to handle the sensitive information (of embedding, time and loca-
tion) it is passed. Only after the attestation is successfully completed (using
the endorsement and reference material described earlier), will the PIA reg-
ister to the sensor and the traditional operation of Digidow will commence.

Figure 4.2 contains all the elements that the attestation procedure introduces
into the project, or affects in some way. Based on this data flow diagram, a sim-
plified threat modelling process is done to identify potential threats the proto-
type is exerted to. The following assets were considered:

PIA: user biometric embeddings, reference data, attestation evidence

Sensor: Root of Trust for Measurement, bootloader, operating system, ap-
plications, user embeddings, IMA log, attestation evidence

TPM: PCR values, attestation key, endorsement key/cert

Deployment system: sensor image, reference data

Transparency Log: reference data inclusion proof

Based on the above, the following threats/assumptions were made:

1. PIA embedding disclosure
Vulnerabilities in the PIA implementation could lead to the disclosure of the
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Figure 4.2: Data flow model for the newly introduced attestation procedure.
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user embedding. Since the security of the PIA itself is not within the scope
of this thesis, it is assumed that the PIA is capable of keeping the user’s em-
bedding reasonably safe.

2. Sensor embedding disclosure
Even while using remote attestation, the sensor implementation might
have arbitrary “traditional” vulnerabilities in the services it exposes. To
better focus on the remote attestation procedure, it is assumed that the sen-
sor image is hardened as much as possible, and while it is in a valid state, it
is capable of keeping the user’s data secure.

3. Denial-of-service attack on sensor
An attacker could potentially deny access to the sensor by requesting nu-
merous concurrent attestation procedures. This could, on the one hand,
bind TPM resources, draining access from valid attestation runs, while on
the other hand, fill up the sensor’s state store. Possible controls will be pre-
sented in section 7.2.

4. TPM information disclosure
The extraction of the private portions of either the endorsement or attesta-
tion key from the TPMs storage would break the attestation procedure and
allow an attacker to forge evidence. Attacks on the TPM itself are subject of
its specification and out of scope for this thesis. Going forward, it is thus
assumed that the TPM’s storage secure.

5. Supplying wrong reference values to the PIA

The distribution of the reference data is expected to be carried out by the
sensor directory. If an attacker was able to control this data provision pro-
cess, the attestation could be broken because the PIA would compare the
attestation quote to invalid reference data. To some extent, this threat is
mitigated architecturally by fielding a transparency log, used to prove that
a certain reference data set is trustworthy. The trust into the transparency
log is upheld by its structural properties as well as a set of witnesses, which
constantly monitor the state of the log.

6. Supply chain attack on Deployment system

A supply chain attack is conceivable, in which attackers modify the sensor
images and/or corresponding reference data rolled out to the sensors. This
threat entails all the problems of the previous one, with the added problem
that the sensor can be directly modified. Countering supply chain attacks
is incredibly complex and out of scope for this thesis. It is thus assumed,
that the deployment systems are trustworthy. This argument becomes a lot
easier if the software image is built from an openly accessible source repos-
itory, as the transparency afforded by this will add to the trustworthiness
of the sensor image.

7. Replay of attestation quote
An attacker could record an arbitrary successful attestation and replay it
at a later time to falsely claim legitimacy. This threat demands a freshness
check to be included into the attestation procedure.

8. Relay of attestation procedure by malicious actor to valid sensor
An attacker might not even have to record a valid attestation at all; any
freshness checks could simply be bypassed by relaying the attestation to a
known good sensor. This sensor has no way of knowing who it is talking to
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Figure 4.3: A malicious actor relaying the attestation process to a valid sensor

10.

obtaining “good” attestation data.

and will thus provide all of its attestation material including endorsement
certificates, correct PCR values and IMA log. Since the attestation material
is coming from a known good sensor, the attestation will go through and the
PIA will send its biometric material to an untrusted party, the very threat
this thesis seeks to avoid. Figure 4.3 depicts the message flow causing this
threat. By attaching their own address to the signed attestation data, sen-
sors can protect PIAs from such attacks, as they would provide irrefutable
evidence of the quote’s origin. This scenario gets even more complicated
though, if an attacker is in control of both the malicious and the benign
sensor. The structure of the Tor network would allow for the benign node
to think it is in possession of a certain address while the malicious node
would be the one receiving all the traffic towards it. In this case the afore-
mentioned measure would break. This special case is currently out of scope
and left for future work, while the more trivial case is addressed by adding
the sensor address as described.

. Modification of sensor software (bootloader, operating system or appli-

cation)

In this scenario, an attacker managed to compromise the sensor and altered
the system or its applications (e.g. exfiltrating user embeddings, loosening
IMA policies etc ). Since the TPM does not share its trust boundary with the
PIA and assuming that the root of trust for measurement was not compro-
mised, the system measurement would catch any such modifications and
make it visible to the PIA, prior toits interaction with the compromised sen-
sor. This is the exact reason why remote attestation is used in this scenario.

Modifying the Root of Trust for Measurement (RTM)

As will be discussed in a later section, the Root of Trust for Measurement
is not always comprised of software that is exclusively loaded from system
ROM. In cases where the system firmware is not capable of doing measure-
ments involving a TPM, the RTM will also include software read from mass
storage (e.g. third stage bootloaders like U-Boot on Raspberry Pi). In these
cases the measurement process can be subverted, allowing the modifica-
tion of later stage software like operating system and applications while
still producing correct measurements. This threat will be further explored
in section 7.2.1.



Chapter 5

Implementation

This section covers the most important implementation steps to arrive at the
provided attestation prototype.

5.1 Setup

Before the development of the attestation mechanism can start, essential Digi-
dow components need to be set up. For the previously outlined remote attesta-
tion this means: at least one PIA, at least one sensor, an issuing authority and
a sensor directory. Figure 5.1 depicts this setup and how components commu-
nicate.

Pia 0

Sensor - Issuing
Directory | : Authority

Sensor 0 . Sensor M

Figure 5.1: Components needed for this thesis’s setup.

A verifier is not required for this setup, as the attestation process does not re-
quire that interaction. Once the PIA holds the user’s biometric embedding, the
issuing authority is likewise no longer necessary for testing. To implement the
attestation only the PIA and the sensor needed to be modified as they are the
two participating parties. The modification of further components to improve
the attestation is discussed in section 7.2.2.
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5.1.1 Issuing Authority

The issuing authority® is built and run using Nix [9]. It furthermore automati-
cally creates all of its configuration files. It’s important to take note of the gen-
erated onion address it prints to its console on startup. The web interface (de-
fault port 9000) it provides is later used to manually check PIA identities.

5.1.2 Sensor Directory

At the time of writing the thesis, the sensor directory? is subject of ongoing
development efforts. The current version of the PIA does, nevertheless, rely on
a preliminary version of the sensor directory in order to function. This version
is also built and run using Nix. The only configuration needed is to write down
the respective addresses into its state file (state.data):

"sensors": [
{
"type": "face", #Biometric modality of the sensor
"addr": "..." #Sensor onion address
"pk": ML #Sensor public key
"lat": x, #lLatitude
"lon":y #Longitude
3,
]

Sensor addresses are generated from the seeds assigned to each device and
printed into its console upon startup.

5.1.3 Sensor

Contrary to when the development of this thesis started, the sensor3 will now
automatically generate a default configuration file, making any prior config-
urations unnecessary. It can also be built using Nix, and is best run using the
start.sh script contained within it’s source repository.

5.1.4 PIA

Before one can start the PIA% binary to begin the enrollment, the onion ad-
dress for the sensor directory needs to be set. This is hard-coded into the PIA’s
source, the respective line can be found in ./core/src/net/sensor_directory.rs:

9: const SENSOR_DIRECTORY_ADDR: &str = "...";

thttps://git.ins.jku.at/proj/digidow/issuing-authority
2https://git.ins.jku.at/proj/digidow/sensor-directory
3https://git.ins.jku.at/proj/digidow/sensor
4https://git.ins.jku.at/proj/digidow/pia
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Upon startup, the binary will look for a file named Data.json, where it expects
to find the onion address of an issuing authority. Once the PIA has started, the
web service it opened can be accessed to start the enrollment. The user is asked
to upload a picture, which the PIA can then present to the Issuing Authority.
There, an operator needs to validate the identity of the PIA and its user, based
on traditional means of authentication (i.e. personal ID). If all checks succeed,
the Issuing Authority returns a set of attributes the PIA can present to verifiers
as a proof of the legitimacy of its identity, concluding the traditional PIA setup.

5.2 Sensor Setup

One of the main parts of this thesis was to set up the sensor in a way that en-
ables system measurement. This section is divided into a number of subsec-
tions, representing the different configuration steps needed to achieve this.

The operating system used to power the sensor throughout the thesis is Rasp-
berry Pi OS [13]. The SD card with the respective image was set up using the
Raspberry Pi Imager also provided by the Raspberry Pi foundation. After setting
up the OS and creating a user called sensor, the TPM software stack needs to be
installed, which is achieved by the following command:

sudo apt-get install libtss2-dev

Lastly, to build and run the sensor code, the Nix package manager needs to be
installed. The necessary instructions were taken from[11]:

sh <(curl --proto '=https' --tlsv1.2 -L https://nixos.org/nix/install) --no-daemon

5.2.1 Adding the TPM

First the hardware (Infineon SLB-9670 by LetsTrust) needs to be added to the
sensor. The sensor platform used during the creation of this thesis is the Rasp-
berry Pi 4, which offers a 40 pin GPIO interface for this purpose. Some of these
pins are designated for SPI bus communication, which needs to be activated
through an entry in the config.txt file on the Raspberry Pi’s boot partition. Once
active, the TPM can be connected to the respective pins, as outlined in figure
5.2.

After the TPM is connected and the SPI bus is activated, the device tree needs to
be updated to include the new device. On a traditional desktop hardware discov-
ery is done via ACPI (Advanced Configuration and Power Interface). On devices
without a UEFT or BIOS (like the Raspberry Pi) however, this happens through
the use of so-called device tree files. This tree contains a description for all the
hardware the device is made out of (e.g. SoC or connected devices). There is a
“base” device tree for every Raspberry Pi variant provided by its manufacturer.
Changes to this device tree happen through overlays, which get patched into
the base device tree by the bootloader. The Linux kernel source repository pro-
vided by the Raspberry Pi foundation already includes a device tree overlay for
the SLB-9670 which can be loaded to provide basic TPM functionality. Running
an official Raspberry Pi kernel the changes in config.txt thus boil down to:
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SPIO CE1
SPIO CEO
GPIO 25
Ground
GPIO 24

L @@EE 0069 08 @)@ 69 6@ 6 6 66 6 @
B 0lolololoIE I WIT @@ E)@E @)

3V3 Power
SPI0 MOSI
SPI0 MISO
SPIO SCLK
Ground

Figure 5.2: Raspberry Pi pins the TPM module is connected to. Based on [20].

dtparam=spi=on
dtoverlay=tpm-s1b9670

5.2.2 Measured Boot

The first step to enabling measured boot on a Raspberry Pj, is to install a boot-
loader capable of interacting with TPMs. There are a number of different op-
tions with this feature like EDK2 or U-Boot. Since the thesis started out on the
Raspberry Pi 5, which at the moment has no maintained support for EDK2, U-
Boot was chosen. Later it turned out that the U-Boot version currently available
for Pi 5 was also not suitable doing measurements, which prompted switching
the hardware to a Raspberry Pi 4, whilst waiting for software support on Pi 5
to catch up. Later research found, that on Pi 4, EDK2 would also have been able
to do measurements on boot [50], since there was already progress towards
U-Boot however, no switch was made on the software side. Accordingly, this
section will cover the installation and configuration of U-Boot for measured
boot.

The first step is to download the source code and configure/build an image for
Raspberry Pi. The following configuration is based on [19]. Instructions on how
to cross compile software for the Raspberry Pi are provided here [14]. The com-
mands below download the current version of the U-Boot source, set up a con-
fig file for BCM2711 (which is the SoC on Pi 4) and open up the configuration
menu:

git clone https://github.com/u-boot/u-boot.git
make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- rpi_4_defconfig
make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- menuconfig

After the menu opens, the following settings need to be applied:
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Boot options --->
UEFI Support --->
[ 1 Support running UEFI applications

Device Drivers --->

[x] SPI Support --->
[*x] Enable Driver Model for SPI drivers
[*x] Soft SPI driver

Library routines --->

Security support --->

[*] Trusted Platform Module (TPM) Support
Hashing Support --->

-%- Enable SHA256 support

Device Drivers --->
TPM support --->
[ ] TPMv1.x support
[*] TPMv2.x support (NEW)
[*] Enable support for TPMv2.x SPI chips
(65536) EventLog size (NEW)

Boot options --->

Boot images --->
[*] Measure boot images and configuration when booting without EFI
[*] Measure the devicetree image (NEW)

The build itself is then simply started by calling:
make CROSS_COMPILE=aarch64-1inux-gnu-

The result of this is (among other files) the u-boot.bin binary in the build folder.

Instead of using the Raspberry Pi’s internal SPI controller, we switch to a ”Soft
SPIdriver”, meaning an SPI device realized in software. For that, the device tree
overlay needs to be changed as well, telling this driver which pin plays which
role in the SPI protocol. The adjusted device tree overlay was sourced from [13].
The following snippet shows how the Raspberry’s GPIO pins are manually as-
signed to their SPI role:

gpio-sck = <&gpio 11 0>;
gpio-mosi = <&gpio 10 0>;
gpio-miso = <&gpio 9 0>,
cs-gpios = <&gpio 7 1>;

Another important change that needs to be made, is that U-Boot needs to get
told where in memory the eventlog is to be stored. Every measurement taken by
the bootloader implies the extension of this event log, containing information
on what a measurement was about. In the configuration provided above, the
event log is needed for the measurement to operate correctly. In [35] and [25]
the authors suggest adding the sml-base as well as the sml-size directives to the
device depicted in the overlay:
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linux,sml-base = <0x00 0xfb600000>;
linux,sml-size = <0x10000>;

To arrive at these specific memory values, one has to consult the /proc/iomem
file on the running sensor [25]. This shows, the main memory address regions
as well as which areas are reserved by the system:

40000000-fbffffff : System RAM
f7000000-fb5fffff : reserved
fb6a0000-fb75ffff : reserved
fb760000-fb760fff : reserved
fb761000-fb7e4fff : reserved
fb7e6000-fb7e8fff : reserved
fb7e9000-fb7fcfff : reserved
fb7fdeee-fbffffff : reserved

Then a memory region towards the end, which is not reserved is chosen. The
size is derived from the event log size set in the configuration earlier. The de-
fault value for this is 65536 which corresponds to 0x10000 in hex.

The rest of the overlay file stays unchanged to [19]. While editing, device tree
overlay files have the human-readable dts format. To get the binary overlay us-
able by the Pi, the following command can be used (where tpm-soft-spi.dts is the
input and tpm-soft-spi.dtbo the output):

dtc -0 dtb -b @ -@ tpm-soft-spi.dts -o tpm-soft-spi.dtbo

Once all the necessary files (u-boot image, device tree overlay, Linux image) are
placed inside the Pi’s boot partition, the device is ready to start up. To tell it how
to do so, U-Boot needs a startup script containing the necessary commands to
start the kernel image, which can be found here [27].

setenv bootargs 'console=serial®,115200 ... ima_hash=sha256'
fatload mmc 0:1 ${kernel_addr_r} kernel8.img
booti ${kernel_addr_r} - ${fdt_addr}

m setenv: Sets the name and value of an environment variable. In the script
above this is used to set the memory location and its respective size to be
later used when loading the kernel image. Furthermore, a variable bootargs
is created, containing the arguments passed to the Linux kernel once it is
booted. Using this method, specific boot argument values will be different
for every installation, as the PARTUUID of the root partition is bound to be
different for every system. One way to remedy this was also presented in
[27], though not implemented.

m fatload: A command used to load an image to a specific memory location,
in this specific case the Linux kernel image with the name kernel8.img. The
memory location the kernel was loaded to is then stored in the variable ker-
nel_addr_r.

® booti: One of the boot commands provided by U-Boot, in this case refer-
ring to “boot image”. This first sets up the environment and then starts the
kernel (internally using the bootm command).
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Table 5.1: Measurement results for the attestation procedure

PCRindex Content

0 EV_SEPARATOR + Digest of U-Boot version string
1 EV_SEPARATOR + Digest of Device Tree + Linux bootargs
2-7 EV_SEPARATOR
8 Digest of kernel image
9 Digest of initrd buffer
10 IMA log entry digests

These commands are written to a simple text file (e.g. boot.txt) which then has
to be converted into a U-Boot image called boot.scr which will be automatically
found and executed by the bootloader. This is done by invoking the mkimage
program provided through the package repositories of most common Linux
distributions:

mkimage -A arm -T script -C none -n "Boot script" -d "boot.txt" boot.scr

The last necessary step is to tell the Raspberry’s firmware to run the U-Boot
binary instead of the Linux kernel, which can be done by adjusting the following
line of config.txt inside the Pi’s boot partition:

kernel=u-boot.bin

Restarting the system, U-Boot measures the boot process according to its
”Legacy measured boot” rules [35]. The individual PCR values can be read using
tpm2-tools:

sha256:

0 : 0x88A54DB2A99C82EADEQFF8FID146C3B81BEA80C381070995B30D192D8D5EI8BS
1 : 0xC20F3DFAFBCFBF5305906F 1DDBOESCFAA847A767A523500748C3A82DC8B8F6EG
2 : OxE21B703EE69C77476BCCB43ECO336A9A1B2914B378944F7B00A10214CA8BFEA93

: OxE21B703EE69CT7476BCCB43ECO336A9A1B2914B378944F 7BOOA10214CABFEA93
: 0xBE6244593A83906D20A752A7C823C78ED8655C2EA62039FF85376737D0D2BFCC
: OxCFC7D8042593E188C59D2FD523F@7A95D06DD3160F0955D8C34BOEBA67F517B6
0: 0xCCD1DB2D7C4FAD9C5536507FC83A64630F9EA11A55DFE48D0458D0EB381895C8

— W oo — -

The registers 2-7 contain the same value. The reason for that is,
that the “Server Management Domain Firmware Profile Specifica-
tion” of the TCG [44]), demands a so called EV_SEPARATOR to be in-
serted into PCRs 0 to 7 after the “Pre-0S” measurements conclude.
This separator has the value oxFFFFFFFF, the SHA256 digest of which is
adg5131bcob799cobiaf477fb14fcf26a6a9f76079e48bfogoacb7e8367bfdoe , which
extended into an empty PCR results in the observed hash. The table 5.1 shows
what the specific PCRs contain. U-Boot uses PCRs 0, 1, 8 and 9 for meaningful
measurements.
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The event log, which the memory was reserved for via linux,sml-base and
linux,sml-size, can be printed using tpm2_eventlog (part of tpm2-tools) and is
located under /sys/kernel/security/tpmo/binary_bios_measurements. It contains
all the events that led to measurements into the PCRs, here for example, the
measurement of the device tree:

- EventNum: 4
PCRIndex: 1
EventType: EV_TABLE_OF _DEVICES
DigestCount: 2
Digests:
- AlgorithmId: shal
Digest: "4edb71d79074010da5f709bd0796c9a9ab6a29cc2"
- AlgorithmId: sha256
Digest: "6e04880chaec2a79939f3398f3abcfch106413af8532b7a0e20af994af2b30d3"
EventSize: 4
Event: "64747300"

According to /proc/iomem, the event log memory area does not stay reserved
once the kernel is running.

5.2.3 Enabling IMA

Since the default kernel used by Raspberry Pi OS does not have IMA support en-
abled, it needs to be recompiled with the specific flags set. Detailed instructions
on how to do so can be taken from the Pi’s documentation [14]. First, the latest
version of the Linux kernel source, provided by the Raspberry Pi foundation,
needs to be procured:

git clone --depth=1 https://github.com/raspberrypi/linux

Next, the necessary build dependencies need to be installed, which is dependent
on the distribution installed on the build host. On a Debian system this looks
like the following:

sudo apt-get install bc bison flex libssl-dev make libc6-dev libncurses5-dev \
crossbuild-essential-armé64

When building the kernel, the system needs to be told which version to build

and what to call the output. This makes it easier to distinguish the built kernel
containing the modifications:

KERNEL=kernel8
CONFIG_LOCALVERSION="-v71-Remote-Attestation"

The U-Boot repository already contains a base config file for the Raspberry Pi
4, which can be built using the following command:

make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- bcm2711_defconfig
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Just as with the U-Boot build before, the menuconfig can be utilized to set the
necessary configuration flags:

make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- menuconfig

The changes are depicted below and are based on a sample implementation
provided by the TPM’s manufacturer [51]:

Security options --->

[x] Enable different security models

[x] Integrity subsystem

[*] Integrity Measurement Architecture(IMA)
Default template (ima-ng (default)) --->
Default integrity hash algorithm (SHA256) --->
[*] Enable multiple writes to the IMA policy
[*] Enable reading back the current IMA policy

[*] SELinux Support

Device Drivers --->
[x] SPI support --->
<*> GPIO-based bitbanging SPI Master
Character devices --->
-%- TPM Hardware Support --->
<x> TPM Interface Specification 1.3 Interface / TPM 2.0 FIFO Interface - (SPI)

The documentation provided by the manufacturer of the TPM in use suggests
using the onboard BCM2835 SPI controller. When enabling both measured boot
and IMA measurements this doesn’t work. There is likely a problem when us-
ing the TPM using software based SPI in U-Boot and then using the dedicated
hardware in the kernel. Using the software based driver for both eliminates this
issue.

Another problem that was encountered when using the dedicated SPI hardware
with IMA is, that for some older kernel versions the TPM would initialize af-
ter IMA started up. This would lead to the subsystem switching into a “pass-
through” mode, simply not extending the measurements into the PCRs. For
these kernel versions, the TPM’s manufacturer provides kernel changes solv-
ing this issue, outlined in [51]. Newer kernels already include this fix, rendering
the change obsolete.

After adjusting the configuration, the kernel can be built:
make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- Image modules dtbs

In a last step, the build output needs to be written to the Raspberry Pi’s mass
storage. To this end, the SD card is mounted and then the image itself, the base
device tree as well as the overlays are copied over:

sudo cp mnt/boot/$KERNEL.img mnt/boot/$KERNEL-backup.img

sudo cp arch/arm64/boot/Image mnt/boot/$KERNEL.img

sudo cp arch/armé64/boot/dts/broadcom/*.dtb mnt/boot/

sudo cp arch/armé4/boot/dts/overlays/*.dtb* mnt/boot/overlays/
sudo cp arch/armé64/boot/dts/overlays/README mnt/boot/overlays/
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The next step is to define the measurement policy to be used. This specifies
which files are being measured by IMA, written to the IMA log and extended
into PCR 10. There are a number of different built-in policies available and the
policy used for this implementation is based on the built-in TCB (Trusted Com-
puting Base) policy (defined in the Linux kernel, annotations copied from [21]):

dont_measure fsmagic=0x9fa0
dont_measure fsmagic=0x62656572
dont_measure fsmagic=0x64626720
dont_measure fsmagic=0x1021994
dont_measure fsmagic=0x1cd1
dont_measure fsmagic=0x42494e4d
dont_measure fsmagic=0x73636673
dont_measure fsmagic=0xf97cff8c
dont_measure fsmagic=0x43415d53
dont_measure fsmagic=0x27e0eb
dont_measure fsmagic=0x63677270
dont_measure fsmagic=0x6e736673
dont_measure fsmagic=0xde5e81e4

# PROC_SUPER_MAGIC

# SYSFS_MAGIC

# DEBUGFS_MAGIC

# TMPFS_MAGIC

# DEVPTS_SUPER_MAGIC
# BINFMTFS_MAGIC

# SECURITYFS_MAGIC

# SELINUX_MAGIC

# SMACK_MAGIC

# CGROUP_SUPER_MAGIC
# CGROUP2_SUPER_MAGIC
# NSFS_MAGIC

# EFIVARFS_MAGIC

measure func=MMAP_CHECK mask=MAY_EXEC

measure func=BPRM_CHECK mask=MAY_EXEC

measure func=FILE_CHECK mask="MAY_READ euid=0
measure func=FILE_CHECK mask="MAY_READ uid=0
measure func=MODULE_CHECK

measure func=FIRMWARE_CHECK

measure func=POLICY_CHECK

# binary executed

# root opened r/o, r/w

This policy starts by defining a number of different file systems which are not
to be measured. The rules after that (starting with “measure”) define the kind
of files which are going to be included:

m Every file which is memory mapped into a process (i.e. visible through
/proc/pid/maps) which includes libraries or shared objects (.s0)

®m Every program for which the kernel creates a binary parameter structure,
i.e. every program which is getting executed

® Anything read by root, with the read bit set
®m Kernel modules as they get loaded

® Firmware being loaded

®m Custom IMA policies as they are applied

While this policy already covers a lot of what is happening on the system, it
has a major flaw. It tends to measure files which do not stay constant across
reboots, like:

m /var/log/lastlog: reporting user logins
m /var/lib/NetworkManager/timestamps: network connection timestamps

m /etc/fake-hwclock.data: Contains a timestamp from when the system was
last shut down for continuity reasons
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These files pose a problem, since the goal is to measure the IMA log at a specific
pointin time, and then use that log to confirm new measurements in the future.
One has to expect that the system could have been restarted, otherwise refer-
ence values would have to be taken every reboot. Also, someone would have
to make sure, that the system ends up in a secure state after every power cy-
cle which could be difficult (who could tell what was done to the system since
the last reboot?). In the optimal case, the parts of the system observed by IMA
stay the same from the moment the manufacturer of a sensor is taking the ref-
erence measurements all the way up to the point where the system needs to be
updated which would force remeasuring the reference values. The goal is there-
fore to find a tradeoff between what files are being measured, and having the
measurement remain constant across a given timespan of the system running.
Taking too many files out of the measurement potentially reduces its signifi-
cance while keeping too many (also changing) files in affects the operation of
the remote attestation.

There is no functionality within IMA to exclude specific files from the mea-
surement procedure. IMA is however capable of applying rules on the basis
of SELinux labels. These were used to gain a more fine-grained control over
the exclusions. Per default, SELinux is disabled, which is why the respective
configuration option was chosen in the kernel configuration’s security section.
Starting with the TCB policy, whenever a file with changed checksum occurred,
its associated SELinux label (which can be printed via Is -Z filename) was added
to the exclusion list, resulting in the following additions to the policy:

dont_measure obj_type=etc_t

dont_measure obj_type=lastlog_t

dont_measure obj_type=wtmp_t

dont_measure obj_type=1d_so_cache_t
dont_measure obj_type=NetworkManager_var_lib_t

In the case of /etc/fake-hwclock.data this led to the exclusion of the label etc_t
which encompasses parts of the etc directory. This in turn means that this ap-
proach will lead to many files not being measured even though they would be
relevant. This approach also has the problem that the files which came up as
changed during testing might not form an exhaustive list of files to exclude.
Overall this solution is unsatisfactory and highlights the complexity of work-
ing with IMA logs. Possible solutions to these inconsistencies will be presented
in a chapter 7.1.3.

5.3 Attestation Process

At this point, the Digidow components are set up to support the measurement
of the sensor’s state, which means that now the procedure itself should be in-
troduced. Figure 5.3 gives an overview of the most important events taking
place during the attestation process.

1. Upon starting up, the PIA retrieves a list of all available sensor nodes from
the sensor directory and initiates the attestation procedure with each one,
by calling the sensor’s REST api (the attest_init endpoint to be specific).
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Figure 5.3: Remote attestation process implemented in the prototype.
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2. When a sensor receives an attestation request, it creates a new attesta-
tion key by calling into its TPM. Since the EK is not necessarily present in
the TPM, it also has to be generated from the stored seed. The attestation
and the endorsement key, together with the endorsement certificate are re-
turned to the PIA. The handles and context variables generated during this
phase are stored in a shared data structure on the sensor.

3. The PIA then checks the endorsement key certificate and ensures that it
trusts in it stemming from a genuine TPM (is signed by a trusted party, e.g.
Infineon). It then generates a random secret and protects it in the form of
a credential, a process explained in section 5.4.2. This credential is sent to
the sensor in the form of an attest_finalize request.

4. After receiving the second request, the sensor first retrieves the stored at-
testation structure from its shared object. This is then used to open the cre-
dential and derive the attestation reply. Once the three TPM calls to open
the credential, read the individual PCR values and create the PCR digest are
done, the information is formatted accordingly and returned to the PIA.

5. At this point, the verifier can utilize the reference values associated with
this specific sensor to verify the reported measurements and derive an at-
testation decision. The process outlining the various checks is described in
5.4.1.

5.4 PIA

This section describes the changes to the PIA to enable the attestation. First,
the PIA contacts the sensor directory to retrieve a list of applicable sensors. At
the time of writing, the sensor directory is not able to deliver sensors based
on the location or detected intentions of the PIA so all sensors that are stored
within it are returned. For each of these sensors, a new SensorConnection struc-
ture is created. The creation of such a structure triggers the registration of the
PIA with the respective sensor, therefore copying the locally stored embedding
to the sensor. Furthermore, an individual callback address is created, enabling
the sensor to notify the PIA if the sent embedding is detected. The code for re-
mote attestation has to go in between the start of the creation function and the
registration itself, in order to be able to cut off the interaction in case the sensor
is not trustworthy.

First, a new function send_http_request(shared,request) is introduced, allowing
a user to send an arbitrary http request using the shared zwuevi instance.

async fn send_http_request(shared: &Shared,request: Request<String>)
-> Result<String,...>{
let mut personality_request_tries = 0;
loop{
let locked = shared.read().await;
let reply = locked...send_http_request(request.clone()).await;
drop(locked);
match reply {
Ok(reply) => {
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return Ok(reply);
}
Errerror) => {...}
}
IR
}

Sending the request is tried MAX_ATTESTATION_REQUEST_TRIES amount of
times, before the try is aborted. Using this function, the attestation starts with
the retrieval of the reference data. Currently, this is just being stored in a file
in the PIA’s working directory. In the future the reference material will most
likely be distributed using the sensor directory:

let Ok(reference_data_file) =
std::fs::read("./reference_psr...tqd.onion.json") else{...};

After that, the reference material needs to be checked against the state present
in the transparency log. To this end one has to first request the latest log root,
to retrieve the current size of the tree, and then request the inclusion proof for
the individual reference set. First, the log root request:

let Ok(latest_log_root_request) = http::Request::get(
format!(
"http://{}/1og/latest-signed-log-root?log_id={}",
PERSONALITY_ADDRESS,
TREE_ID
)
)

And after that the request for the inclusion proof, where body is referring to the
JSON structure representing the reference data:

let Ok(inclusion_proof_request) = http::Request::post(
format!(
"http://{}/1log/inclusion-proof?log_id={}&tree_size={}",
PERSONALITY_ADDRESS,
TREE_ID,
latest_log_root.tree_size

)
).header("Content-Type", "application/json").body(body)

As described in section 2.5, getting a return value for an inclusion proof is not
enough. The consistency of the tree based on the value returned by the trans-
parency log needs to be shown, the process of which was also outlined previ-
ously. If the inclusion of the reference data could be proven, the attestation can
continue. If not, and no trustworthy reference could be retrieved, the verifica-
tion cannot be executed correctly, making the attestation meaningless. On such
terms, the attestation (and by extension the registration) should be aborted.
Once the reference data is secured, the PIA initiates the attestation process by
calling the sensor’s attest_init endpoint, including the list of PCR values to in-
corporate:
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let attest_init_request = http::Request::post(

format! ("http://{}.onion/v1/attest_init", &sensor.url)

)

.body(

json!({"pcrselect": PCR_SELECT,}).to_string()

)

let Ok(credential_data) =

send_http_request(&shared, attest_init_request).await else{...};

At the moment, only PCRs 0-10 are selected, as these are the ones that the cho-
sen measurement mechanisms (Measured Boot and IMA) use:

const PCR_SELECT: [u32; 11] = [0,1,2,3,4,5,6,7,8,9,10];

This array is later converted into a vector using to_vec(). The result is then
passed to the generate_credential() function, which parses the returned data,
checks the EK certificate as well as the key attributes associated with the en-
dorsement key and returns the credential blob itself, the attestation key that
was generated by the sensor for this attestation run, and the secret the sensor
will have to return later:

let Ok((credential,attestation_key,secret)) =
Attestation::genrate_credential(credential_data).await else{...};

This credential is then packed into the attest_finalize request and sent off to the
Sensor.

let attest_finalize_request = http::Request::post(

format! ("http://{}.onion/v1/attest_finalize", sensor.url.clone())
)

.body(credential)

Based on this, the sensor is then able to produce the data necessary for verifi-
cation, the attestation evidence. This is returned and then handed to the PIA’s
check_quote() function, the result of which either aborts, or allows the follow-
ing registration:

match Attestation::check_quote(
quote_data, reference_data, attestation_key,
credential_secret, sensor.url.clone(), PCR_SELECT.to_vec()
) {
Ok(result) => {
if result {
info!("Quote verification for sensor {} went through." sensor.url);
Yelse{
info!("Quote verification for sensor {} failed.",sensor.url);
return;
}
}

Err(err) = {
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info!("..." sensor.url, err);
return;

}

}

Figure 5.4 presents an overview of these HTTP requests:

5.4.1 Quote Verification

The checking operation starts by deserializing and unmarshalling the quote
data, which is represented by a QuoteReply JSON structure:

pub struct QuoteReply{

pub quote: Vec<u8>,

pub signature: Vec<u8>,

pub pcr_slots: IndexMap<u32, Vec<u8>>,
pub ima_log: Vec<u8>,

}

The variables within the structure hold binary data encoded in BASE64 strings.
After retrieving the binary data, the PIA starts with its checks. Figure 5.5 shows
a waterfall diagram of these and the conditions that need to hold for each of
these checks.

1. The secret is a 32 byte array, filled with random data. It is generated by the
PIA upon generating a credential, which is then passed to the sensor. When
the sensor passes it back to the PIA, it is compared to the one stored for two
reasons:

® Endorsement: to prove that the quote was created by a TPM which is
endorsed by its respective manufacturer as the credential that encap-
sulated it can only be open if the endorsement key of the TPM the cre-
dential was aimed at is known.

PIA Sensor
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Figure 5.4: HTTP message flow of attestation procedure.
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® Freshness: to prove that the quote is not a replay from a previous attes-
tation procedure, as the secret would have been a different one.

2. The attestation quote also contains the sensor address, which needs to be
compared to the one that the attestation requests were sent to. That way, a
malicious node will not be able to pose as a valid sensor using some other
sensor’s attestation data. Any attempt to do so would be thwarted by the
fact that the PIA is then able to compare the address of the sensor it thinks
it’s attesting to, to the address of the sensor that is actually providing the
attestation evidence. This addresses threat 8, presented in the threat model
in chapter 4.

3. The quote is signed using the attestation key promoted to the PIA when re-
questing the credential. When the PIA checked the secret, it automatically
proved the endorsement, meaning that the attestation key is resident on a
genuine TPM and can thus be trusted. The PIA can then check the signature
on the quote with the public portion of the attestation key which proves that
this quote is coming from inside the TPM.

4. The sensor returns both the individual PCR values and a digest over all of
them, only the latter of which is signed by the TPM. For this reason, the
digest over the claimed individual values needs to be calculated and com-
pared to the digest in order to extend the trust provided by the signature to
the individual values.

5. Once the correctness of the PCR values has been established, they can be
compared to their reference counterparts. This only works for PCRs 0-9 as
PCR 10 contains the IMA log which is bound not to hold the same value as
the one in the reference data.

6. In a last step, the IMA log needs to be checked. First, the correctness of the
IMA log needs to be verified. This happens by taking the entries from the
provided log and calculating the final digest. An important point while do-
ing this is, to keep in mind that the IMA log is potentially newer than the
PCR values it is provided with, meaning that the log could potentially con-
tain more entries than are necessary to calculate the claimed hash in PCR
10. That means one has to go through the log and accumulate the digest. If
the digest at any point matches the claimed PCR 10 value, the log up to this
point is confirmed. Any log entries beyond that point are not attested and as
such no longer interesting. If the calculated digest matches, one can start to
check the individual entries and compare them to the IMA log provided as
part of the reference data. The IMA policy was constructed in a way, that ev-
ery entry in the newly acquired log should be the same in the reference log. If
the new log contains an entry not within the reference data or a hash which
does not match, the log has to be deemed malicious. All of this functionality
isimplemented in the check_ima_log() function, which heavily relies on the
structures defined in section 2.4.

5.4.2 Credential Generation

Credentials are needed to prove that a genuine TPM is present on a system. This
works through the endorsement key embedded into the TPM. The public por-
tion of it is used to encrypt some data and tied to some object attributes, for
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example a name. If the TPM receives such a credential and an object with the
specified name exists on the TPM, it uses the private portion of its endorsement
key to retrieve the encrypted data. If this data is presented to someone else, it
proves that a TPM is present as the only way it could have been encrypted would
be the knowledge of the private endorsement key for which the manufacturer
signed a certificate (endorsement). Thus, before the credential is created, the
PIA needs to run two major checks:

m Check the endorsement certificate chain

®m Check the endorsement key attributes, showing that it is fixed to a TPM,
does not have a parent key and is not restricted (meaning it is not used for
signing and does not have an associated signing scheme)

If these checks fail, creating a credential is not necessary, as the endorsement
key cannot be trusted to begin with.

The process of credential creation only involves the name of the object, the
public portion of the endorsement key as well as some data chosen by the ver-
ifier (the secret mentioned earlier). It is not dependent on any internal TPM
state and as such does not need one to be present on the system. This also means
that the function can be implemented in software only. The problem is that at
the point of the creation of this thesis, there were no Rust library functions
covering this use case. According to the specification [49], TPMs provide this
functionality for convenience. Expecting every PIA to contain a TPM however is
an unsatisfactory assumption as in its current design it would only be used for
credential generation (which could change in the future). These circumstances
prompted the reimplementation of the credential generation in Rust. This way
the PIA can create the credential itself without relying on the environment it is
running in, while also making the generation a lot faster.

The credential generation process is specified in [49] and includes two func-
tions:

m The key derivation function described on page 45 of the specification.

®m The credential generation function itself, outlined on page 167 of the spec-
ification.

Key Derivation Function: KDFa()

The key derivations function’s signature as well as the interpretation of the re-
spective parameters:

fn tpm2_kdfa(

hash_alg:u16,

key:Vec<u8>,

label:Vec<u8>,

context_u:Vec<u8>,

context_v:Vec<u8>,

bits:u32

) -> Result<Vec<u8>, AttestationError>

® hash_ alg: the hash algorithm to be used for key derivation
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m key: secret keying material used in the derivation

® label: character data containing information on the use of the key
®m context_u & context_v: arbitrary data vectors

m bits: the desired length for the resulting key

The function starts by checking hash__alg, as it currently only supports SHA256.
If any other ID is encountered it returns an error. The bits parameter is con-
verted to bytes, the counter i is initialized with 1 and the derivation loop starts:

if hash_alg != SHA256_ALG_ID {return Err(...)}

let mut result: Vec<u8> = Vec::new();

let Ok(bytes) = usize::try_from(bits/8) else {return Err(...));};
let mut i: u32 = 1;

The loop runs as along as the result vector does not contain enough bytes. As
soon as it does the result is truncated to the length defined by bits and returned.
In the loop first an HMAC object is initialized using the secret key. After that, the
counter i, the label, context_u, context_v as well as the desired length bits are
accumulated into a byte buffer and fed to the HMAC object. If label is empty or
does not end on a zero byte, one is inserted in between the label and the context
area.

while result.len() < bytes {
let hmac = Hmac::<Sha256>::new_from_slice(8key.as_slice());
let Ok(mut hmac) = hmac else{...};
let mut buffer: Vec<u8> = Vec::new();
buffer.append(8mut i.to_be_bytes().to_vec());
buffer.append(&mut label.clone());
match label.last() {
Some(last) => {
if *last != Qu8 {
buffer.append(&mut @_u8.to_be_bytes().to_vec())
}
}
None => buffer.append(&mut 0_u8.to_be_bytes().to_vec())
3
buffer.append(&mut context_u.clone());
buffer.append(&mut context_v.clone());
buffer.append(&mut bits.to_be_bytes().to_vec());
hmac.update(buffer.as_slice());
result.append(&mut hmac.finalize().into_bytes().to_vec());
i+=1;
}
result.truncate(bytes);
Ok(result)
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Credential Generation Function: MakeCredential()

The credential generation functions head as well as the interpretation of its re-
spective parameters:

fn make_credential(

ekpublic:Public,

secret:Vec<u8>,

akname : Vec<u8>

) -> Result<Vec<u8>,AttestationError>

m ekpublic: the public endorsement key of the TPM this credential is being
created for

m secret: the secret data to be encrypted inside the credential
® akname: the name of the object which’s presence is to be checked

Justlike the key derivation function, this implementation of the credential gen-
eration is assuming a narrow selection of encryption, padding and hashing
schemes and checks that it is adhered to. The code doing all these checks is
omitted to avoid clutter. This function makes use of Tpm2b structures, which
in the context of a TPM denotes a buffer which when serialized is preceded by
its length. In a first step, such a buffer is initialized with the secret, creating the
credential to encrypt:

let cv: Tpm2b = Tpm2b: :new(secret);

Next a seed is generated “using methods of the asymmetric EK”[49]. In the
case of an RSA key this means the seed should be randomly generated (using
a cryptographically secure random number generator according to [37]) and
encrypted with the endorsement key using “Optimal Asymmetric Encryption
Padding” (OAEP) and the label “IDENTITY”:

let mut seed= vec![0Qu8; SHA256_LENGTHI;

let Ok(mut rng) = Hc128Rng::try_from_os_rng() else{...};

if rng.try_fill_bytes(8mut seed).is_err() {...}

let padding = Oaep::new_with_label::<Sha256, &str>("IDENTITY\0");

let Ok(enc_seed) = ek.encrypt(&mut thread_rng(), padding, seed.as_slice()) else{...};

Using the key derivation function described above, a key is generated using the
seed, the name of the object whose residency is to be checked as well as the label
“STORAGE”.

let Ok(sym_key) = Self::tpm2_kdfa(
SHA256_ALG_ID,
seed.clone().to_vec(),
"STORAGE".as_bytes().to_vec(),
akname . clone(),

Vec: :new(),

bits

) else {...};
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Using “Cipher Feedback Mode” (CFB) this key is then used together with the
associated symmetric encryption scheme (AES in our case) to encrypt the cre-
dential. The target TPM will be able to retrieve the plaintext credential by de-
crypting the seed and regenerating the symmetric key:

let mut enc_identity = cv.serialize();
Aes128CfbEnc: :new(sym_key.as_slice().into(), &iv.into()).encrypt(&mut enc_identity);

Serializing enc_identity returns its binary buffer preceded by the buffers length.
Next, an HMAC is calculated over the encrypted identity (the encrypted creden-
tial). To this end, another key is generated again using the seed but this time
using the label “INTEGRITY”:

let Ok(hmac_key) = Self::tpm2_kdfa(
SHA256_ALG_ID,
seed.clone().to_vec(),
"INTEGRITY".as_bytes().to_vec(),
Vec: :new(),
Vec: :new(),
256
) else {...};

Using this key, the HMAC is calculated:

let Ok(mut hmac) = Hmac::<Sha256>::new_from_slice(hmac_key.as_slice()) else{...};
let mut outer_hmac: Vec<u8> = enc_identity.clone();

outer_hmac.append(&mut akname.clone());

hmac . update (&outer_hmac);

let outer_hmac = hmac.finalize().into_bytes().to_vec();

This concludes the credential generation process as described in the specifica-
tion. Unfortunately, the different parts need to be arranged in a specific way to
be correctly interpreted by the activateCredential() TPM call on the sensor node.
The problem is that the header that needs to be specified is poorly documented.
Luckily tpm2-tools[42] implements the functionality, which means its source
code contains the correct structure. The project’s repository contains the nec-
essary information: 4 magic bytes (‘“badccode”) followed by a 4 byte integer
depicting the version (“1”).

5.4.3 Endorsement Certificate Check

To deal with certificates, the openssl crate was used to implement a function
called check_cert(cert:X509, intermediate_ certs: Stack<X509>, trusted_root_certs:
Option<Vec<X509»), which takes the certificate to check, all the necessary in-
termediate certificates to complete this check as well as optional trusted cer-
tificates to avoid having to alter the developer machines certificate store. First
the function creates a new X509Store:
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OxbadccOde 0x00000001 —]

size | size | outer_hmac enc_identity A]
VTt ;T ’
(—> size enc_seed

Figure 5.6: Structure of the final output of MakeCredential(). (sizes are 2 bytes,
big-endian order)

let mut builder = match X509StoreBuilder::new(){
Ok(cert_store_builder) => cert_store_builder,
Err(err_stack) => return Err(...)

IR

match builder.set_default_paths(){
ok(_) = {3

Err(err_stack) => return Err(...)
}

Calling the set_default_paths() function on the X509StoreBuilder automatically

retrieves the certificates from the system certificate store. The optional root
certificates are also added:

if let Some(certs) = trusted_root_certs {
for root_certificate in certs {
match builder.add_cert(root_certificate){
ok(_) = {3
Err(err) = {
info!("Could not add root certificate: {}", err);
}
}
}
}

Another (omitted) helper function, called retrieve_intermediate_certs(cert:
X509) automatically tries to retrieve all the certificates needed to verify the
chain. It does so by reading the respective authority info fields. This is just a
placeholder as the plain HTTP connection in use would obviously break the
security provided by Tor. In future instances, these certificates need to be
provided by some other party, and passed to the check_cert(...) function. The
X509Store with the trusted certificates, the certificate to check as well as the
intermediate ones are then passed to a X509StoreContext and checked:
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match context.init(
&store,
cert.as_ref(),
intermediate_certs.as_ref(),
|ctx| {ctx.verify_cert()}
i
Ok(ret) => Ok(ret),
Err(err_stack) = Err(...)

}

The verification validates the hierarchical relation between the certificates and
makes sure the chain ends in one that’s in the store of trusted ones. If that is
the case, the trust in the initial certificate was successfully established.

5.5 Sensor

In its current stage, the Digidow sensor consists of 3 components:
1. The “face-lib” tasked with detecting and recognizing faces.

2. The “sensor-lib” responsible for providing the REST interface to connect
to the sensor as well as managing registrations.

3. The “sensor” itself, tying all the functionality together.

Since registrations are initiated by the PIA and attestations are optional (espe-
cially when viewed from the perspective of the sensor), the registration logic
should not be altered. The sensor just needs to make sure to provide a handler
providing the necessary attestation proof upon request. The component han-
dling requests towards the sensor is the “sensor-1ib” which is thus a prime tar-
get for the necessary modifications/additions. Before attestation requests can
be served though, the sensor needs to be able to “talk” to its TPM.

5.5.1 Reaching the Sensor

To enable the PIA to reach the sensor, the two previously described HTTP end-
points need to be defined. Since HTTP connections are traditionally stateless,
the sensor needs to store the attestation parameters, until the PIA sends the
second request. For this, the sensor holds a map of all currently running attes-
tations in its shared object:

attestations: HashMap<String, Attestation>
pub fn add_attestation(8mut self, host:String, attest:Attestation) {
self.attestations.insert(host, attest);

}
pub fn retrieve_attestation(8mut self, host:&String) -> Option<Attestation>{
self.attestations.remove(host)

}

The first endpoint (attest_init) is used to initiate an attestation with the sensor:
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(&Method: :POST, "/v1/attest_init") => {
let body_bytes = request.into_body().collect().await.unwrap().to_bytes(Q);
let body_str = String::from_utf8(body_bytes.to_vec()).unwrap();
let attest = match Attestation::new(body_str) {
Ok(attest) => {attest},
Err(error) => {...}
};
let (resp,akpub) = match Attestation::create_credential_data(&attest){
Ok(resp) => resp,
Err(error) => {...}
};
reg.lock().unwrap().add_attestation(akpub,attest);
Ok (Response: :new(resp.into()))
}

Itinitializes the TPM structures necessary (AK, EK and EK cert), packages them
up as a JSON object, stores the attestation structure in the shared object and
returns the result to the PIA. The second endpoint (attest_finalize) retrieves
the corresponding attestation structure from the shared object and creates the
quote based on the received credential. The quote together with the individual
PCR values and IMA log are then returned, again as a JSON object:

(8Method: :POST, "/v1/attest_finalize") => {
let body_bytes = request.into_body().collect().await.unwrap().to_bytes(Q);
let body_str = String::from_utf8(body_bytes.to_vec()).unwrap();
let host = request.uri().host().unwrap().to_string();
let Ok(body): Result<AttestFinalizeRequest, serde_json::Error> =
serde_json: :from_str(8&body_str) else {...};
let Some(attest) =
reg.lock().unwrap().retrieve_attestation(&body.akpub) else{...};
let quote = match Attestation::create_quote(attest, body.credential, host){
Ok(quote) => quote,
ErrCerror) => {...}
};
Ok (Response: :new(quote.into()))
}

One important aspect here is that using the host address provided by the veri-
fier to avoid the “replay” attack described in section 4.2 will not work if the cor-
rectness of the host field is not enforced by the underlying HTTP stack which
one cannot rely on! The reasoning for this arguably very poor solution is the
time at which this bug was discovered, and the related rework required within
the sensor binary to provide the host address from its own internal state.

5.5.2 Interacting with the TPM

As already described in section 2.3.4, the TPM specification presents a few op-
tions on how to interact with the TPM chip. While calling other programs in
the form of the “tpm2-tools” from within Rust would generally be possible,
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dealing with errors and the system dependency of having the programs in-
stalled is not acceptable. Fortunately, there is already a wrapper library called
“tss__esapi”[32] available, granting access to the functions of the “libtss2-
esys”[45] interface directly from within Rust. This crate does most of the heavy
lifting, not only providing the library to Rust programs but also implementing
abstractions for more complex tasks. Besides the library itself, its developers
also provide several examples, showcasing the capabilities of the library. One
of these examples “certify.rs”[32] already includes much of the functionality
required for attestation, which is why some of the TPM related code is based on
it.

For the crate to know where the TPM is, an environment variable called TCTI is
set to the TPM device path:

TCTI=device:/dev/tpmrmd

5.5.3 Generating Reference Data

Before it makes sense to run an attestation, reference data needs to be created.
If the provided proofs cannot be compared to a known set of values, one cannot
derive a decision whether a system is in a known state. Creating reference data
includes the following steps:

B Retrieve current PCR values
B Retrieve current IMA log state

m Retrieve additional information about the sensor system (e.g. software and
hardware state)

® Arrange all of the above into a JSON file

m Create evidence that the derived information stems from a known trust-
worthy source

m Distribute the reference data for PIAs to use in their attestation

The additional information on hard- and software is currently just stored in a
file called Spec.json. This could just as easily be automatically generated by run-
ning a set of commands to retrieve the system configuration, like Ishw to print
hardware information, Isusb to list usb devices or uname -a to get information
about the kernel. How this is done is very much dependent on the specific sen-
sor in question, its operating system, and its architecture. The only important
thing is that it is called Spec.json and that it is not malformed. In the ideal case,
this information would be retrieved directly in the sensor binary, every time a
new set of reference data is requested. This way, one makes sure that the ref-
erence data always contains the newest information. The following structure is
used to manage the reference data around the attestation process:

pub struct LogEntry {

pub pcr_slots: IndexMap<u32, String>,

pub ima_log: IndexMap<String, Vec<String>>,

pub software_version: IndexMap<String,String>,

pub hardware_specification: IndexMap<String,String>,

}
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Reading the IMA log works exactly the same as if the log was read during attes-
tation. The most important thing here is, that the PCR values are read before
the IMA log, so that the digest in PCR 10 can be derived. Retrieving the ref-
erence data as a quote, meaning signed by an attestation key, does not make
much sense, since the residency of the signing key could not be proved without
a credential interaction.

5.5.4 Generating the Attestation Quote

To assemble the quote we need the following components:

An attestation key capable of signing the quote

The PCR selection to be included in the quote’s digest
® Avector containing qualifying data
m The signature scheme to be used

Most of the attestation related code was added to the sensor-lib via a new source
file called attestation.rs. It holds the structure Attestation and the first thing that
happens upon a new attestation request is, that a new object of this structure
is created by calling the structure’s new() function:

pub struct Attestation{

callback: String,

pcrselect: PcrSelectionlList,
context: Context,

_ek_alg: AsymmetricAlgorithmSelection,
hash_alg: HashingAlgorithm,
_sig_alg: SignatureSchemeAlgorithm,
ek_cert: Vec<u8>,

ek_public: Public,

ek_context: TpmsContext,

ak_public: Public,

ak_context: TpmsContext,

It holds information like the PCRs to be added to the quote, the context of the
TPM device in use, the algorithms in use during the attestation as well as in-
formation on the public portions of the endorsement and the attestation key,
together with their respective saved contexts. When calling the new() function,
the algorithms are set to default values, the endorsement key is read, a new
attestation key is generated and the PCR list is parsed. After this structure is
initialized, the information necessary for the PIA to generate a credential is as-
sembled as a JSON structure and returned in the form of an HTTP reply:

let body = json!({
"ekcert": BASE64_STANDARD.encode(attest.ek_cert.clone()),
"ekpub": BASE64_STANDARD.encode(ek_pub),
"akpub": BASE64_STANDARD.encode(ak_pub),

}).to_string();
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Now, the PIA generates the credential and issues an attest_finalize request, as
outlined before. When this arrives at the sensor, it holds all the necessary in-
formation to generate the attestation response. To begin with, the context for
both EK and AK, stored in the shared object is restored:

//1oad ek and ak context from attestation object and retrieve new handles
let Ok(ek_handle) = context.context_load(attest.ek_context) else{
return Err(...);
IR
let Ok(ak_handle) = context.context_load(attest.ak_context) else{
return Err(...);

}’

Next, the secret within the credential needs to be retrieved. For this, two autho-
rizations are needed: one for the attestation key and one for the endorsement
key. Correspondingly two separate authentication sessions are started:

let Ok(Some(ak_auth_session)) = context.start_auth_session(
None,

None,

None,

SessionType: :Hmac,

SymmetricDefinition::AES_128_CFB,

attest.hash_alg,

) else{

return Err(...);

};

let Ok(Some(endorsement_auth_session)) = context.start_auth_session(
None,

None,

None,

SessionType: :Policy,

SymmetricDefinition::AES_128_CFB,

attest.hash_alg,

) else{

return Err(...);

}

For authorizing the access to the attestation key, an HMAC session is enough.
Accessing the endorsement hierarchy requires a policy session, which means
that the corresponding assertion functions need to be called as well:

if context.execute_with_nullauth_session(|ctx| {
ctx.policy_secret(

PolicySession: :try_from(endorsement_auth_session).unwrap(),
AuthHandle: :Endorsement,

Default::default(),

Default::default(),

Default::default(),
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None,

)
}.is_err() {...}

Per default, the secrets necessary to access the endorsement key as well as the
attestation key are empty. As soon as the necessary authorization sessions are
in place, the credential retrieved from the PIA needs to be parsed. The struc-
ture (depicted in figure 5.6) is stripped of the magic value as well as the version
and split into two blocks, one containing the enc_identity with its correspond-
ing outer_hmac and the enc_seed. These together with the sessions can then be
passed to the activate_ credential() wrapper function:

let credential = credential_blob[...].to_vec();
let encrypted_secret = credential_blob[...].to_vec();
let Ok(credential) = context.execute_with_sessions(
(Some(ak_auth_session), Some(endorsement_auth_session), None),
[ctx| {
ctx.activate_credential(
ak_handle.into(),
ek_handle.into(),
IdObject::try_from(credential)?,
EncryptedSecret: :try_from(encrypted_secret)?,
)
}
) else{return Err(...);};

Afterwards, the authorization sessions are dropped, and a new one is created
to run the creation of the quote. Again, an HMAC session is enough as only the
attestation key needs to be accessed and reading PCR values does not require
any authorization. The quote allows for the inclusion of an additional byte vec-
tor, the so called qualifying_data. This is added to the quote structure within
the TPM and consequently signed together with the PCR digest. In this imple-
mentation, it is used for the freshness, as well as the sensor identity checks as
outlined in the threat model in chapter 4. Since the field is only allowed to be
as long as the hash values produced by the corresponding PCR bank (SHA256
= 32 Bytes), the two vectors are concatenated and the checksum (SHA256 hash
in this case) over the result is used:

let mut qualifying_data_digest = Sha256::new();
qualifying_data_digest.update(credential.to_vec());
qualifying_data_digest.update(onion_address.into_bytes());

let qualifying_data = qualifying_data_digest.finalize().to_vec();

After that, the quote can be generated:

let Ok(attestation_quote) = context.execute_with_session(Some(session), |ctx| {
ctx.quote(

KeyHandle: : from(ak_handle),

Data::try_from(qualifying_data.clone())?,
tss_esapi::structures::SignatureScheme: :RsaSsa {
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hash_scheme: HashScheme::new(attest.hash_alg)
Y,
attest.pcrselect.clone()
)
}) else{return Err(...);};
let (quote,signature) = attestation_quote;

And then the individual PCR values:

let Ok(pcr_values) = tss_esapi::abstraction::pcr::read_all(
dmut context, attest.pcrselect.clone()
Jelse {...3;

An important thing to keep in mind is, that in the time between creating the
quote and reading the PCR values, PCR 10 could have been extended by an IMA
measurement. The function is not atomic and as such, there needs to be a check,
whether the digest inside the quote matches the PCR values. If they don’t, the
process needs to be repeated, calling for the following loop:

let (quote, signature, pcr_values) = loop{
//Read operations ...

//Calculate expected pcr digest

let mut quote_digest_check = Sha256::new();
for digest in pcr_bank {
quote_digest_check.update(digest.1.to_vec());

}
let expected_digest = quote_digest_check.finalize().to_vec();

match quote.clone().attested() {
AttestInfo::Quote{info} => {
if info.pcr_digest().to_vec().eq(8expected_digest) {
break (quote,signature,pcr_values);
}
}
_ = {return Err(...)}
}
};

After the PCRvalues and their digest are correctly read, the IMA log is procured
from /sys/kernel/security/ima/binary_runtime_measurements. Here, the timing
of the read is not as important, as long as it is done after the PCRs were read. If
the log contains an entry that was not yet extended into PCR 10 they can simply
be discarded by the PIA while checking the log, while still producing the correct
value. The read binary representation of the file, as well as the byte vectors for
the quote and its accompanying signature are encoded as BASE64 and added to
the following JSON structure.

let body = json!({
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"quote": BASE64_STANDARD.encode(quote_bytes),
"signature": BASE64_STANDARD.encode(signature_bytes),
"pcr_slots": pcr_slots,
"ima_log": BASE64_STANDARD.encode(ima_log),

b;

This JSON string is then returned to the PIA as the reply for the attest_finalize
request, concluding the sensor’s involvement in the attestation procedure. Us-
ing that, the PIA can derive a trust decision as outlined in chapter 5.4 and based
on the outcome, invoke the sensor’s registration endpoint.



Chapter 6

Testing

The system used for testing is a Raspberry Pi 4 with 4 GB of RAM. It is
connected to the institute’s internal network and thus shares the uni-
versity’s internet uplink. The sensor binary in use is the version resulting
from commit 182c2fef252b488bb6564338995fo5b50ebs5dc8dr. The Linux kernel
in use is version 6.12.38, built from (the Raspberry Pi foundation) source
[12] resulting from commit 9co9b75242960117155712f41ce540df2e3cd63c>
using the configuration described in 5.2.3. The U-Boot binary was built
from its respective repository [34] with the state resulting from commit
1c250e4/44ad3bi15315ee8bofcb3fc3acc26449e23 based on the configuration de-
scribed in section 5.2.2.

6.1 A Note on Building

The Raspberry Pi 4, in the configuration used for testing, is not capable of com-
piling the sensor binary itself, as it is seemingly running out of memory. A po-
tential solution is to use or increase the size of a swap file/partition, though the
build speed still does not lend itself to quick iteration (>1h build time). Since the
sensor is built using Nix, a Pi 5 was used as a remote build host. When building
the sensor binary on Pi 5, the part that takes the longest is compiling the sen-
sor’s dependencies, clocking in at approximately 50 minutes. An unfortunate
side effect of building via Nix is that a small code change, like inserting tim-
ing measurements, triggers Nix to rebuild all dependencies as it deems them
as one unit called “sensor-deps”. This obviously drastically increases the time
it takes to test code changes on the sensor.

The rest of these sections describes the necessary configuration changes to use
the Raspberry Pi 5 as a remote builder, based on information provided at [10]
and [6].

6.1.1 On the Builder (Pi 5)

First, the builder defines the features it supports, which is important if re-
quested by a party initiating the build job (change in /etc/nix/nix.conf):

system-features = nixos-test benchmark big-parallel kvm aarch64-linux

thttps://git.ins.jku.at/proj/digidow/sensor/-/commit/182c2fef252b488bb6564338995f05b50eb5dc8d
2https://github.com/raspberrypi/linux/commit/9c09b75242960117155712f41ce540df2e3cd63c
3https://github.com/u-boot/u-boot/commit/ic250e444ad3b15315ee8bofcb3fc3acc26449e2
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After that, the user designated for building, needs to be added to the set of Linux
users trusted by Nix (change in /etc/nix/nix.conf):

trusted-users = sensor

Lastly, the PATH variable needs to be exported once an SSH connection is
started, to allow the system user SSH logged into to access the Nix binaries.
To this end, the contents of the PATH variable are added to the ssh server con-
figuration (/etc/ssh/sshd_conf):

SetEnv PATH=/home/sensor/.cargo/bin:/home/sensor/.nix-profile/bin-
:/nix/var/nix/profiles/default/bin:/usr/local/shin:/usr/local/bin:/usr/sbin-
:/usr/bin:/sbhin:/bin:/usr/local/games:/usr/games

The contents of the PATH variable can be extracted from the build host using:

echo $PATH

6.1.2 On the Target (Pi 4)

First, Nix needs to be made aware of the fact, that there are build systems
available within the network. To this end, the following line is added to
/etc/nix/nix.conf:

builders = @/etc/nix/machines

The machines file contains one entry per build host, similar to the following:
sensor@192.168.240.89 aarch64-linux /home/user/.ssh/id_rsa 4 1

From left to right the entry contains: the user as well as the IP of the build host,
the architecture which the build host builds for, the location of the key used
to authenticate, the maximum number of jobs the builder can serve as well a
speed factor. Lastly, to make sure that Nix can access the build system, a public
key has to be registered with its ssh server. This can be done using the following
command:

ssh-copy-id sensor@192.168.249.89

This will copy the key /home/user/.ssh/id_rsa. For security reasons one might
want to generate a key for use with the build host exclusively.

6.2 Attestation Cost

6.2.1 Approach

In this section, the total time spent running the actual logic of the attestation
is measured. For this purpose, the Rust built-in Instant structure is used, which
can be used to measure the time that passed between the now() and elapsed()
call. In terms of timings the following measurements were taken:
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m The overall attestation time, from its start until it is accepted.
® The round trip time for both the attest_init and the attest_finalize requests.

m The time it takes the sensor locally to serve the attest_init and the at-
test_finalize request respectively. This allows the calculation of the delay
incurred by the Tor network.

®m The time it takes to interact with the transparency log.

m Access times for the various TPM requests at play (creating EK, activating
credential, creating the quote, reading PCR values)

These timings should give a good understanding of the performance impact the
attestation entails.

6.2.2 Results

The measurements were taken a total of 10 times with the following timings
being the respective average. Table 6.1 shows the results of these measure-
ments.

In the current setup, the attestation takes on average 32 s with a comparatively
low deviation of 4.44s. The combination of transparency log interaction, at-
test_init and attest_finalize interactions on average account for 99.4% of the
overall attestation time. The delay inflicted by the Tor network is not always
constant as it relies on the current state of the network and the circuit nodes
that are chosen for a given connection. Building the circuit also incurrs a cost,
which can be seen when comparing the delay for the attest_init request to that
of the attest_finalize request, the latter of which is much lower (6.86 svs 1.04 s).
Applying this logic to the round trip time of the reference checks, a large por-
tion of the very high deviation of 6.52 s can be simply explained by Tor circuit
creation (which the first interaction with the transparency log would obviously

Table 6.1: Measurement results for the attestation procedure

Measure Average Stdev
Overall attestation time 32.36S YANAS
attest_init round trip time 13.07s 3.74S
attest_finalize round trip time 6.05s 0.8s
attest_init sensor execution time 6.228 83ms
attest_finalize sensor execution time 5.018 92ms
attest_init Tor delay 6.86s 3.758
attest_finalize Tor delay 1.048 0.75s8
Complete transparency log interaction 13.06s 6.52s
TPM EK creation 495.6ms  15.55ms
TPM Activate credential 689.76ms 18.85ms
TPM quote creation 506.19ms 12.92ms

TPM PCR value retrieval 540.49ms 16.82ms




6 Testing 60

also be exerted to).

The code that is running locally on the sensor, has a very low deviation of 82.6
and 91.9 milliseconds respectively. It is noteworthy however, that the Rasp-
berry Pi SoC is thermally limited, due to the face recognition models running
on the CPU rather than an AI accelerator. This could have an impact when the
system is running for extended amounts of time. On a Raspberry Pi, thermal
throttling can be checked using the following command:

user@sensor:~/sensor $ vcgencmd get_throttled
throttled=0xe0000

As per a blog post [8] on the official Raspberry Pi forum, bit 17 and 18 of that
result show that, on the one hand, the SoC frequency was capped and, on the
other hand, the system is actively thermal throttling.

In terms of time cost, the 4 observed TPM invocations are rather close together
with a general low deviation. On average, the sensor is spending a total of 558
milliseconds per TPM operation. Given that 3 of them are necessary at min-
imum, it is to be expected that at least 1.67s on TPM cost are spent on every
attestation.



Chapter 7

Conclusion

This thesis presents a possible implementation of a remote attestation pro-
cedure within the CDL Digidow. It demonstrates the necessary techniques and
software components, and integrates seamlessly with the existing registration
process. During the implementation of the practical parts, a number of limita-
tions as well as avenues for future work manifested themselves, which are to
be addressed in the following.

7.1 Limitations

7.1.1 Performance

Section 6.2 surfaced clear shortcomings of the attestation procedure in terms
of timing/cost. To a certain degree, this is due to the Tor network. This is not
limited to the cost of building up a circuit to access a hidden service, but also to
occasional stability problems, that manifest themselves in reset connections:

[2025-10-15T12:43:39.995Z INFO sensor_lib::rest] Could not send credential request:
tor: tor operation timed out: Failed to obtain hidden service circuit to [..]Jtad.onion
2025-10-15T12:42:48.5467 ERROR [pia_core::net::client] Could not fetch sensors: tor:
tor operation timed out: Failed to obtain hidden service circuit to ???jyd.onion

Above, one can see two such fails on the sensor as well as the PIA side respec-
tively. These failed connections cost a significant amount of time.

The minimum TPM cost of 1.67 seconds is also a problem, as this means that no
matter how fast the network connections or the sensor binary run, it is unreal -
istic to serve multiple users in parallel while not breaking real time constraints.

Saving up on round trips is one of the main ways one can deal with these prob-
lems. A promising solution would be to directly distribute the endorsement key,
the endorsement certificate and an attestation key. That way, the verifier can
generate the credential directly, presenting all the needed information in one
go.Also, the sensor could use a single attestation key instead of recreating them
on every request. Since this would cut down TPM interactions as well, the sen-
sor code would likely also run faster.
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7.1.2 Bootloader and Chain of Trust

As already mentioned in the prior chapters, the Raspberry Pi bootloaders are
not suited for creating a robust chain of trust. In the ideal case, one would rely
on the first measurement to be done by immutable code read from ROM. This
does not happen on the Pi, bloating its Root of Trust for Measurement by includ-
ing the first, second and even third stage bootloader with the latter two being
changeable. This obviously begs the question of why it is reasonable to develop
an attestation procedure for the Pi at all, prompting a set of justifications:

m The Pi is hosting a prototype face recognition binary and can thus be con-
sidered a prototype itself. It is not expected to be deployed as-is but rather
using hardware with better support for TPM measurements from software
in ROM. In short, it is a stand-in for a more secure platform, that was cho-
sen because it is easy to develop for.

® While it does not provide all the potential security guarantees provided by
more sophisticated platforms, the implemented attestation still increases
the cost for an attacker dramatically, as altering the bootloader without
having physical access and without triggering a suspicious IMA measure-
ment is not trivial.

7.1.3 IMA Log

There are some issues that were encountered when working with the IMA log
files.

Log size

A problem which was already identified previously in the thesis of Michael
Preisach is, that depending on the uptime of the sensor, the IMA log could po-
tentially grow to a size of “about 40MB”[33]. At the moment, this problem is
alleviated by increasing the allowed request size in the Rocket configuration.
This of course is far from a proper fix.

The IMA documentation proposes a potential solution to this, via “incremental
attestations” [22]. The idea is to “incrementally” check the IMA log with re-
curring attestations, while not including the parts that were already checked.
In theory at some point the IMA log will settle down, as no new accesses on
files that have not already been measured will take place, leading to fewer and
fewer changes. This does not alleviate the first, large initial check, since many
measurements happen early after startup, but it at least mitigates the effects of
a large log later during operation. For this to work, one of the communicating
parties has to store the value of PCR 10 at the point of the last attestation, so
that PCR 10 can still be evaluated for consistency.

Policy

As alluded to earlier, the choice of IMA policy caused quite a bit of problems.
Choosing the policy too tightly, the coverage of the attestation tends to be
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Figure 7.1: Two distinct execution thread leading to the same measurement.

miniscule and the derived security gain is too. Choosing it looser and a lot of
files are measured, causing a set of reference data to break quickly due to the
measurement of a file which was not part of the initial measurement.

7.2 Optimizations and Future Work

7.2.1 Platform Endorsement

Abroader problem with Digidow sensors being built upon commodity hardware
is, that there is no form of platform endorsement, like the platform certificates
introduced in section 2.3.3. There is thus no guarantee, that the S-RTM was
really executed, leading to the problem depicted in figure 7.1.

These are two distinct execution threads leading to identical measurements.
The verifier only observes the PCR-values. From its perspective, these two sys-
tems are thus the same. One has to assume that there was some sort of “chain
of trust”, that at some point more trustworthy code measured less trustwor-
thy code to make it accountable. The reality however is, that one cannot know
how the platform arrived at a measurement, if its origin is uncertain. And this
is not necessarily an exclusive problem for the Raspberry Pi, but might also be a
problem for a more general set of open platforms. If the platform manufacturer
(which is not necessarily the same as the TPM manufacturer) does not provide
endorsement, that the initial code runs and cannot trivially be interrupted, the
whole measurement has to essentially be drawn into question.

In regard of the solution presented in this thesis, this has two main conse-
quences:

®m There needs to be an architectural component introduced into Digidow to
do the platform endorsement of sensors. This could either be a completely
new entity or added to the responsibilities of an existing one. This has an-
other consequence:
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Figure 7.2: Proposed architecture to allow for platform endorsement.

® In the context of remote attestation, sensors need to be treated as individ-
uals as opposed to types. There needs to be a platform certificate and ID for
every sensor node. When using UEFI to run measured boot, PCR values will
also be different for every sensor (e.g. PCR 1 measuring UEFI partition). For
the manufacturer to be able to provide reference material for some type of
device, it would thus be necessary to omit some of the PCRs containing de-
vice specific measurement. This further strengthens the need to treat sen-
sors on an individual basis.

m The Raspberry Pis need to be configured in a way that ensures that the S-
RTM runs all the time. This could for example be done by utilizing the Pi’s
secure boot feature, which locks the device down to only boot signed im-
ages. Exclusively signing bootloaders with enabled TPM support effectively
ensures, that the measurement happens, as there is no other way to start
the device otherwise.

Figure 7.2 gives an overview over the proposed architectural changes.

Each sensor gets its own “Platform Identity Key”, which is secured by its TPM.
The presence of this key can be proven via the directives described in previous
sections. The “Digidow Secure Sensor Authority” then checks that secure boot
is enabled and if it is, issues a certificate for the platform ID. This way sensors
gain an additional source of endorsement, which proves to the verifiers, that
the provided evidence, originates from a valid S-RTM.

7.2.2 Measuring Sensor Directory

One of the major findings of this thesis was, how it is not reasonable, that every
PIA attests to every sensor it wants to register to. This would create a high num-
ber of attestation requests on the sensors, quickly overwhelming what a typical
TPM is capable of in terms of performance. Furthermore, the attestation per-
formance itself is too low for PIAs to register to sensors quickly. It therefore
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Figure 7.3: Remote attestation run by the sensor directory.

makes sense to shift the attestation away from the PIA to a more centralized
position, detached from the registration process.

The one entity which lends itself best under these requirements is the sensor
directory. Figure 7.3 shows a proposal of how such an attestation could work.

1.

The sensor is trying to enter the Digidow system by initiating the registra-
tion process with the/a sensor directory,

Then the sensor directory attests the sensor, making sure it is in a trust-
worthy state.

If the sensor could convince the directory of its trustworthiness, it success-
fully registers to the directory.

At some point a PIA queries the directory for this specific sensor, also re-
questing the attestation data for that sensor.

Since the sensor state potentially changed after being attested the last time,
the sensor directory has to ensure that it is still in a trusted state. For that
it randomly generates a time frame from a previously defined interval, for
which the attestation is valid. This time is chosen at random, to prevent a
potential attacker on the sensor directory from knowing when to expect the
next attestation, making it dangerous to run an attack at any given point in
time, because there might not be enough time to remove the evidence.

. If the attestation is not valid anymore, the directory reruns the process.

The necessary information is assembled and returned to the PIA, which can
now use the attestation data to derive the attestation decision normally.
Having the PIA evaluate the attestation itself takes load from the sensor di-
rectory and allows PIAs to decide for their own attestation policy.

The result of this process is obviously, that the PIA has to put a lot more trust
into the sensor directory than before. Another problem is, that sensors need
to be part of a sensor directory to use attestation which imposes limitations
on out-of-band sensor management. It will however alleviate the performance
problems described above and keep sensors secure from denial-of-service at-
tacks by using a separate, hidden attestation service address only known to the
directory.

7.2.3 Algorithm Support

The attestation procedure is currently limited to:

RSA2048 for asymmetric encryption

AES128 for symmetric encryption
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®m SHA256 for hashing
m RSASSA for signing

Since TPMs also support elliptic curve cryptography, which would allow for
shorter keys, it would make sense to extend the support to these as well. In gen-
eral, a broader support for different crypto schemes would be desirable.

7.2.4 Nix0OS

Quite a bit of time during the creation of this thesis was allocated to getting
NixOS running on the Raspberry Pi. Ultimately, these efforts did not produce
anything of use, not least because of the slow build times in emulated aarch64
environments. NixOS offers vast potential in terms of how the sensor platforms
software is built and deployed with current initiatives within the institute aim-
ing to provide:

m Reproducible builds using Nix

®m Complete aarch64 cross compiling on more readily available x86 build
hosts

If and when these endeavors will bear fruits is subject of future developments;
but if they do, there is a lot of potential for NixOS to improve the sensor’s soft-
ware stack and ultimately making it more predictable and thus more secure.

7.2.5 Attestable Update

Animportant addition to the presented thesis is the ability to update the system
without having to remeasure everything. Schemes like this already exist, e.g.
(50].
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