
Extending Cloud Build Systems to Eliminate Transitive Trust
Martin Schwaighofer

martin.schwaighofer@ins.jku.at
Johannes Kepler University Linz

Linz, Austria

Michael Roland
michael.roland@ins.jku.at

Johannes Kepler University Linz
Linz, Austria

René Mayrhofer
rm@ins.jku.at

Johannes Kepler University Linz
Linz, Austria

Abstract
Trusting the output of a build process requires trusting the build
process itself, and the build process of all inputs to that process, and
so on. Cloud build systems, like Nix or Bazel, allow their users to
precisely specify the build steps making up the intended software
supply chain, build the desired outputs as specified, and on this
basis delegate build steps to other builders or fill shared caches with
their outputs. Delegating build steps or consuming artifacts from
shared caches, however, requires trusting the executing builders,
which makes cloud build systems better suited for centrally man-
aged deployments than for use across distributed ecosystems. We
propose two key extensions to make cloud build systems better
suited for use in distributed ecosystems. Our approach attaches
metadata to the existing cryptographically secured data structures
and protocols, which already link build inputs and outputs for the
purpose of caching. Firstly, we include builder provenance data,
recording which builder executed the build, its software stack, and
a remote attestation, making this information verifiable. Secondly,
we include a record of the outcome of how the builder resolved
each dependency. Together, these two measures eliminate transitive
trust in software dependencies, by enabling users to perform verifi-
cation of transitive dependencies independently, and against their
own criteria, at time of use. Finally, we explain how our proposed
extensions could theoretically be implemented in Nix in the future.

CCS Concepts
• Security andprivacy→ Software security engineering; Trusted
computing; • Software and its engineering → Maintaining soft-
ware; Open source model.

Keywords
supply chain security; deterministic build; reproducible build; trust-
worthy build; verifiable build

ACM Reference Format:
Martin Schwaighofer, Michael Roland, and RenéMayrhofer. 2024. Extending
Cloud Build Systems to Eliminate Transitive Trust. In Proceedings of the
2024 Workshop on Software Supply Chain Offensive Research and Ecosystem
Defenses (SCORED ’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3689944.3696169

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1240-1/24/10
https://doi.org/10.1145/3689944.3696169

1 Introduction
1.1 Motivation
Securely building, deploying, and maintaining software packages,
which practically always, but not always visibly, have deep hierar-
chies of dependencies, is not a solved issue. In these deep hierarchies
we must not only consider direct dependencies, but also

• transitive dependencies, including build tools like compilers,
• as well as the hosts building these dependencies,
• and so forth, recursively.

This is necessary to guard against backdoored dependencies, includ-
ing toolchains [19]. Sadly, in practice we often have to optimistically
trust build hosts with dependency specification and resolution, and
trust the software stack of the build hosts themselves. As a con-
sequence, our ability to react to security issues deep within these
hierarchies is severely lacking. See Figure 1 which illustrates the
concept of transitive trust.

As part of our efforts to prevent a compromise in the supply
chain we have to consider not only

• intended dependencies, meaning dependencies specific to the
build step in question, which are deliberately declared or
installed, and intentionally accessed as part of the build step,
but also

• inadvertent dependencies, meaning the remaining software
stack running on the build host, which is not supposed to
influence the build output, but can absolutely do exactly
that, potentially with malicious intent [2]. Examples of inad-
vertent dependencies include the operating system kernel,
device drivers, or background services or developer tools
that could potentially modify the source code or tamper with
outputs.

Cloud build systems [15], like Nix [8], are conceptually powerful
enough to keep track of build dependencies, like compilers, all the
way back to a bootstrapping process [6]. Since they execute each
build step in a hermetically isolated environment (see section 3.2),
which only contains the intended dependencies, they segregate
intended and inadvertent dependencies by design. Some cloud build
systems were created and are deployed at a number of very large
organizations, like Google’s Bazel, while others are widely used
by enthusiasts, for example the Nix [8] and Guix [7] open source
projects.

trusts trusts

transitively trusts

Figure 1: Transitive trust illustrated

 

45

https://orcid.org/0009-0001-1572-0495
https://orcid.org/0000-0003-4675-0539
https://orcid.org/0000-0003-1566-4646
https://doi.org/10.1145/3689944.3696169
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3689944.3696169
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3689944.3696169&domain=pdf&date_stamp=2024-11-19


SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA Martin Schwaighofer, Michael Roland, and René Mayrhofer

The data structure at the heart of a cloud build system is a map,
with each entry mapping an input hash, a hash that is specifically
constructed to identify the set of build inputs (intended dependen-
cies), to a content hash of the build output. This data structure,
which we will call a trace map, enables the core feature of cloud
build systems: sharing of build results between hosts, provided they
have a trust relationship. This works well in centralized ecosys-
tems, where users tend to trust one or at most a few central caches,
which constitutes a verifiable build through a trusted build ser-
vice [1, Chapter 14]. Some existing tools use cryptographic signa-
tures [4, 17] or transparency log entries [21] as the cryptographic
basis for this trust relationship, enabling users to consume build
outputs from build hosts or binary caches they designate as trust-
worthy by public key. In more decentralized ecosystems, we would
want users to be able to distribute trust among a set of indepen-
dently maintained build infrastructure deployments. Not only do
we want the ability to trust multiple parties, we want to be able
to limit the degree of trust which needs to be placed in individual
trusted parties. To achieve this, instead of just obtaining dependen-
cies from any one of those deployments, if individual build steps are
reproducible [11], we can mandate that a number of trusted build
hosts agree about expected build outputs, as a mitigation against
some of them being compromised [21]. This constitutes a verifiable
build through a compromise between reproducibility and trust in
the build service [1, Chapter 14].

However, cloud build systems do not record inadvertent depen-
dencies in any way, which means trusting a specific build host im-
plies trusting its software stack including its configuration, which
is everything it trusts, still making trust a transitive relationship.
This is not specific to cloud build systems; it is how build infrastruc-
ture behaves [12, 22], without serious effort and tools dedicated to
transparency.

1.2 Contribution
We extend cloud build systems, as described in section 3, to elimi-
nate transitive trust relationships by replacing them with verifiable
evidence, in order to better support distributed ecosystems built
on top of them. We do this by adding metadata as part of each
cryptographically secured trace map entry, which already establish
trust in the relationship between sets of build inputs and the build
output produced from executing each build step. Aggregating and
verifying this metadata by trace map entry can then serve as evi-
dence for trusting or distrusting specific trace map entries and how
they are linked.

Specifically, in section 4, we propose two significant extensions
to this existing data structure:

build host provenance We initially propose a minimal addition,
which effectively adds a few indicator values, which rep-
resent whether the signing entity claims to have built the
output itself, and explain the advantages of this addition.
We subsequently propose a much more elaborate scheme,
where we add two things. First, a reference to the build step,
which generated the software stack and configuration that
the build host claims to have been booted with. Second, a re-
mote attestation [5] which serves as verifiable evidence that

this is indeed the case. We explain the additional benefits
and implications of this more elaborate scheme.

dependency resolution Input hashes, depending on how they
are constructed, effectively serve to record either the input
or outcome of a kind of dependency resolution. We explain
why to get rid of transitive trust it is always necessary to
have a record of the outcome of this dependency resolution.
We also explain why it can be practically useful to have a
record of the input to dependency resolution and the ability
to look up trace map entries by this key.

The goal of these changes is that users can freely define who and
what they consider trustworthy at verification time, independently
of whom and what the build hosts upstream from them consider
trustworthy. We present a threat model of the relevant threats, in
section 5, to establish that our extensions mitigate them.

In section 6, we finally use Nix as an example to illustrate the
application of what we outlined above, by showing how Nix and
its existing built-in protocols and data structures for caching could
be modified to incorporate our proposed extensions. Since we did
not write an implementation of this proposal, we only discuss it on
a theoretical basis.

2 Related Work
In this section we will introduce other build-process related supply
chain security tools, in the form of Gitian and in-toto as a point of
comparison. Instead of discussing existing cloud build systems as
related work, we introduce them in detail in section 3.

2.1 Gitian
Gitian [10] tackles the problem of source to binary verification
by making the build process of a software package reproducible.
Until 2021 it was the build system of choice for the Bitcoin Core
software, which powers the individual nodes making up the Bitcoin
network. Gitian uses virtualization to provide a build environment
that is tailored towards reproducibility. All the contents of the build
environment are measured and recorded by hash as inputs to the
build process into an .assert file. After the build process, the
.assert file contains hashes of all inputs as well as a hash of the
produced output. The .assert file can be signed using public key
cryptography and published. An independent party would start
the build process from a Git commit of the project source code,
identified by its corresponding hash. Executing the same build
process through Gitian, they should end up with the same output
aswell as the same .assert file, describing the same initial state and
outcome, provided that the build process is actually reproducible.
If the same input hashes lead to a different outcome, the build was
not reproducible.

Gitian is limited in the sense that it only manages a single build
step. The inputs that it measures are actually hashes of installed
Debian packages, which need to be trusted, or audited, in order to
trust the output produced by Gitian. Effectively, we have moved
the problem of reproducibility upstream by one build step. We
no longer need to trust the binary output, but we need to trust
every binary that is part of the build environment. One standout
feature of Gitian is that it executes the build step it manages inside
a virtual machine. This means that a build process which wants

 

46



Extending Cloud Build Systems to Eliminate Transitive Trust SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA

to compromise the host would have to break the isolation of the
VM. In practice, this also increases the number of tools that we
need to trust, in order to replace our trust in the build output with
verification through reproducibility.

To move past the limitation of only being able to model one
build step and depending on binary packages for dependencies,
the Bitcoin Core project moved from Gitian to Guix [7, 9] with
release 22.0 in 2021. As a cloud build system, originally forked from
Nix, Guix makes it possible to reason about the reproducibility of
multiple build steps (see section 4.2.3). Guix is the kind of system
we propose to extend.

2.2 in-toto Framework
In-toto [20] is a supply chain security framework, which aims to
verify a supply chain across a number of build and deployment
steps. Initially, the project owner creates a software supply chain
layout, which contains a machine-readable description of all the
intended build steps to be verified. In-toto allows for modeling a
distributed build and deployment pipeline, where specific parties
are entrusted with performing different steps in the overall process.
Verification in this context means verification that each build step
was executed by some specific party, to which the permission to
execute the build step was delegated in the layout. In order to create
a record of build step execution, the executing party either invokes
in-toto-record start and in-toto-record stop before and
after a build step, or invokes the build step through in-toto-run.
In either case, in-toto produces a cryptographically signed record
which links inputs, outputs, as well as the executing party by their
signing key. A layout can be verified by verifying that the inputs
and outputs in the cryptographically signed records of build steps
form a chain without any gaps, match up with the layout, and are
signed with authorized keys. In contrast to Gitian, this approach
does not place any constraints on the execution environments of
build steps. This leads to greater flexibility in terms of being able
to model build steps as they are currently executed in existing
deployed environments.

Aside from all the build steps that are modeled in the layout
the author could list everything that is present in these existing
environments and could influence the production of outputs as
additional inputs, to the desired degree. However, fitting a com-
plete description of each build environment into an in-toto layout
description ahead of time would be impractical. To close this gap,
there is an in-toto Attestation Framework [3] which allows for
adding arbitrary authenticated metadata to the description of in-
dividual build steps. This way, a more complete description of the
build environment can be recorded and verified against policies,
without making the layout itself impractically rigid. The in-toto
Attestation Framework fills a similar role to what we propose in
section 4.1.2. Overall, in-toto and cloud build systems with our
proposed extensions use very different mechanisms to distribute
the responsibility for various parts of the supply chain. While with
in-toto the supplier exercises authoritative control over this distri-
bution of responsibility, in our proposal consumers independently
decide which parties they trust with no control over which party is
allowed to take over which responsibility.

3 Cloud Build Systems
In this section we will introduce cloud build systems [15], based
on their original description. We will introduce terms for some
parts of their definition and introduce their defining characteristics.
This will be useful in section 4, when we extend their definition
to encompass more of what we would want from a supply chain
security tool.

The class of build systems called cloud build system combines
• looking up build output by an identifying hash value, and
• hermetically isolating build steps so that only dependencies
that are included in the identifying hash value can affect the
build output.

Members of this category of build systems as originally identi-
fied [15] are: Bazel, CloudBuild, Cloud Shake, Buck and Nix.

3.1 Output Lookup by Hash
Like in other build tools, all the individual build steps that are
required to produce a desired output form a tree that represents the
dependency tree of the project. Instead of invalidating out-of-date
artifacts produced by each build step, as for example Make does it,
cloud build systems use specifically constructed hashes to identify
build steps by an exhaustive list of their inputs.

Definition 1. Cloud build systems construct a dependency tree
in which each node is identified by a content or input hash.

Definition 2. Terminal inputs, which are leaves in the depen-
dency tree, for example source files or binary blobs, are referred to by
content hash (a hash of their contents).

Definition 3. The inner nodes of the dependency tree are build
steps, which are always identified by input hash (a hash of their
input set). Sometimes they are additionally also identified by a content
hash to enable extra features (see note 2).

Definition 4. The input set of a build step consists of the build
instructions that get executed during the specific step, including either

(a) the content hashes of the outputs obtained by building all direct
dependencies, or

(b) the input hashes of all dependencies, including transitive de-
pendencies via recursion.

The two tracing approaches are known as using constructive traces (a),
and deep constructive traces up to terminal inputs1 (b).

Figure 2 illustrates how the terms defined above are related.
1Technically, limited recursion depths of 𝑛 ∈ N | 𝑛 > 1, can be used to create deep
constructive traces up to depth 𝑛. Since this is not a popular design decision, we will
not discuss such traces explicitly, but the term deep constructive traces includes them.

compute

compute

execute build step maps to

input set input hash

content hashoutput

Figure 2: Cloud build system terms

 

47



SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA Martin Schwaighofer, Michael Roland, and René Mayrhofer

Based on either of the two presented constructions,
• the input set of a build step contains all the information
required to execute it and

• hashing the input set of a build step produces its input hash.
Cloud build systems always use hashes to look up and store outputs
by the exact inputs that define the build step that produced them.

The supply chain security benefit from output lookups by hash
is that they

• make modifications of build inputs inconsequential, because
they also affect the input hash, and

• make modifications to produced and distributed artifacts
detectable, by comparison against the expected build output
as indicated by the lookup.

Note 1. Most cloud build systems do not require build steps to
be reproducible, so the execution of a build step with a specific input
hash could lead to outputs with many different content hashes.

3.2 Hermetic Isolation
In the previous section we established that cloud build systems use
input and content hashes to store and look up outputs by the exact
inputs that produced them. Many build tools, like Rust’s cargo, also
use this approach to store intermediary outputs in a local cache.

The distinguishing feature of cloud build systems compared to
this is the possibility of relying on remote systems to perform parts
of the build. Those specific parts are

(1) executing build steps on remote builders by submitting their
input set as build jobs and

(2) obtaining outputs of build steps from remote caches by their
input hash, which the requester generates from the input
set.

This necessitates that users trust those remote systems or are able
to verify their actions, so that attackers cannot tamper with other
users’ build outputs, for example to add a backdoor.

Definition 5. In a cloud build system an attacker must not be
able to bypass the isolation of executed build steps with adversarial
inputs.

We can achieve this by suitably isolating the execution of build
steps from the system, each other, and the network. We will refer to
such an isolation mechanism as hermetic isolation.

The addition of the word suitable in the above definition high-
lights that we need to be careful about sandbox escapes. The respon-
sibility to uphold hermetic isolation lies with each individual builder.
A builder which enforces hermetic isolation of build steps can be
trusted by different users, because those users cannot interfere with
each other except for denial of service and resource exhaustion.
Cargo, for example, does not have this property, because it has an
escape hatch out of its regular dependency management, in the
form of build.rs files, which allow for arbitrary code execution
without any sandboxing. Some might argue that the build steps for
Rust code in Cargo are lightly sandboxed, with a compiler bug that
leads from compiling Rust code to code execution constituting a
sandbox escape. We do not consider this sufficient sandboxing for
Cargo to support the sharing features described above, and meet the
definition of a cloud build system. In supply chain security terms,
hermetic isolation prevents tampering during the build.

Note 2. Unrestricted network access could lead to the results of a
given build steps being affected by its interactions with the network.
This needs to be prevented to preserve the completeness of the input
set, but not in any case. Downloading specific files can be allowed, if
an extra content hash of the downloaded output ensures that their
contents are treated as a terminal input by downstream build steps.
This is the extra feature we had in mind in definition 3.

4 Extending Cloud Build Systems
4.1 Builder Attribution and Provenance
Builders compute the build output produced from a given input set
by executing the build step it describes.

Definition 6. The central data structure underlying any cloud
build system is a map from input hashes to build outputs. Often the
build output is included in this map in the form of a content hash. We
will refer to this data structure as a trace map.

The reliability of the information of this map depends on her-
metic isolation, which we cannot assume all builders to (success-
fully) enforce.

If a specific deployment of a cloud build system were using cen-
tralized infrastructure for builds and caching, we could choose to
trust the maintainers of that infrastructure. We will instead con-
sider a distributed scenario, where such infrastructure is deployed
independently by various persons and organizations, and users pick
and choose who they want to trust when obtaining cached outputs
or delegating build steps.

To facilitate a decentralized ecosystem, users need to be able
to attribute trace map entries to the parties which produced them
by executing build steps, so that they can pick and choose which
builders they trust to uphold hermetic isolation (see Threat 1). Any
additional attributable evidence is also especially useful in such
distributed ecosystems, where it is more difficult to obtain reliable
information via informal channels.

Definition 7. To attribute the outputs of build steps to builders
we can

• supplement trace map with provenance data about the builder
and a specific execution of a given build step, and

• protect the integrity of the resulting data with public key cryp-
tography (signature or transparency log entry),

• with the persons and organizations responsible for the builder
holding the private key.

We will refer to such data as a provenance log, with each entry
consisting of input hash, content hash and provenance data.

The user might be able to configure the cloud build system on
the following basis. For a given build step that has been executed
multiple times or by multiple builders:

• The system can choose to trust one of them (pick one prove-
nance log entry for its trace map).

• The system can expect a certain subset of them to be in
agreement (multiple provenance log entries lead to the same
trace map entry).

Such a set of rules about who is trusted constitutes an example of a
trust model. See section 4.2.1 for a general introduction of the term.

 

48



Extending Cloud Build Systems to Eliminate Transitive Trust SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA

trace

input set
deep constructive trace
up to terminal inputs

constructive trace

buildresolveunresolved
dependencies

resolved
dependencies

output

Figure 3: Tracing method comparison

Cloud build systems can verify the provenance data attached
to each log entry according to their user’s trust model and subse-
quently use successfully verified trace map entries.

Provenance logs should enable builders and the consumers of
their outputs to have independent trust models. To enable this,
we need to take a more detailed look at the content of the trace
maps themselves first, before moving on to the other contents of
provenance maps.

4.1.1 Comparing tracing methods. A trace map entry based on
constructive trace determines the identity of direct dependencies
by content hash, so that the corresponding provenance log entry
is cryptographic evidence of exactly one specific build operation
starting from its direct dependencies, which corresponds to one
specific node in the dependency tree.

A trace map entry based on deep constructive traces up to ter-
minal inputs only determines the identity of terminal inputs by
content hash, while the identity of any intermediary outputs, includ-
ing direct dependencies of the build step in question, is determined
by its input hash. Which content hash the input hash of a direct
dependency gets resolved to, ahead of the execution of a build step,
depends on the trust model of the builder for both schemes. Figure 3
illustrates both tracing methods.

For deep constructive traces up to terminal inputs only the input
of this dependency resolution process is represented in the trace
map entry, for constructive trace map entries only the outcome is
represented. As a consequence assembling a dependency tree from
deep constructive traces can lead to Frankenbuilds [15], where a
direct dependency of a cached output, obtained from another cache,
only equals the direct dependency that was used during the build
in terms of input hash, but not in terms of content hash. One of the
possible reasons for such a difference is that the trust model of the
incorporated builder is incompatible. To exclude this possibility, we
have to rely on constructive traces to validate that every link in the
dependency tree satisfies the trust model of the verifying party. If
we want to eliminate transitive trust, we can not place trust in the
mappings from deep constructive traces to constructive traces or
content hashes created by other parties.

Systems built on constructive traces have the opposite problem
in relation to transitive trust. Since they fetch dependencies based
on the result of dependency resolution, which is necessarily trust-
model specific, differences in trust model lead to requesting different
dependencies, which can lead to cache misses. The end result of
dependency resolution needs to be a single result, but there might
be different specific outputs which would fulfill all criteria that are
mandated by a specific trust model.

We therefore propose to use any suitable lookup mechanism to
discover provenance log entries, including (untrusted) deep con-
structive traces up to terminal inputs. The provenance log entries
are filtered down to only those who satisfy the trust model. Con-
structive trace based trace map entries are then extracted from the
provenance log entries, and used to construct one dependency tree
from all possible links. See section 6.3.2 for a proposal of how this
could work to mitigate Threat 3 in Nix. As usual with cloud build
systems, if building locally is allowed, any build steps where no
suitable cached output is available are performed locally.

4.1.2 Provenance data. The role of the provenance data and the
public key cryptography ensuring its integrity and binding to a
specific trace map (entry) is to increase the trustworthiness of the
trace map (entry), so that its consumers do not have to blindly trust,
but can evaluate or verify claims about builders in accordance with
the criteria they define, in addition to their trust in the signing keys
of builders.

Just like the implementation of existing cloud build systems
assumes responsibility over accurately mapping inputs to outputs,
an implementation of the extensions described in this section should
assume responsibility over accurately reporting provenance data
out of the box, so that false provenance data would constitute either
an implementation error or a malicious change to the cloud build
system.

Other than this goal of accurate data reporting out of the box,
it is not necessary to standardize or predefine the contents of the
provenance data. Instead, builders can innovate about what addi-
tional data to include and how to make it trustworthy, while at
the same time users decide which elements they verify, and how.
Ideally provenance logs are verifiable using remote attestation [5].
See section 6.3.3 for a proposal of how this could work to mitigate
Threat 4 in Nix.

4.2 Verifying Build Steps
The definition of verifiable builds [1, Chapter 14] bases them on
trusted builders, reproducibility, or a mix of those two concepts.
For each build step a provenance log entry associates

• a trusted origin system, as identified by a public key, with
• provenance data that constitutes potentially verifiable evi-
dence, moving this trust relationship towards verification,
and

• a trace map entry from input hash to content hash.

4.2.1 Trust Model. We always define verification in terms of some
trust model, which so far we have not defined rigorously. A trust
model is defined at minimum by a set of trusted public keys and
in which combinations they are trusted (e.g., requiring agreement
from multiple specific keys or accepting any one key from a set).
The Trustix project [21] already provides this functionality. We ex-
tend this concept, so that a trust model might additionally include
a number of constraints on the provenance data attached to each
provenance log entry that is signed with such a public key. Such
constraints might for example require an attached remote attesta-
tion to be verifiable in a specific way, or that a specific package
in a specific version is not present on the builder. Some of these
criteria might be verified recursively for a builder, the packages

 

49



SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA Martin Schwaighofer, Michael Roland, and René Mayrhofer

installed on said builder, the builders those packages were built on,
and so forth. One example where this could be useful is for exclud-
ing builders, which depend on libraries with high impact security
issues discovered after deployment, like some recent versions of
XZ Utils which had been backdoored [13]. Eliminating transitive
trust also means that the trust model can be updated at any time,
based on new information, and compliance to the new trust model
can be re-evaluated (see Threat 5).

4.2.2 Reproducibility. We choose not to define reproducibility as
the successful (on-the-fly) repetition of a build process with the
same outcome, which is quite a fleeting observation. Instead, we
assume provenance log entries always act as a persisted and share-
able intermediary format, which decouples building, a computa-
tionally expensive, trust-model independent process, from making
the computationally cheap determination that this process has been
repeated sufficiently in accordance with a trust model.

Provided the cloud build system records repeated execution of
build steps in the provenance log, this definition works locally as
well as for large numbers of potentially trustworthy builders (see
Threat 2).

4.2.3 Bootstrappability. Since verifiability, through reproducibility
or other means, is determined on a build step level, it can be applied
to each step in the dependency tree, covering the tools and depen-
dencies which make up the build environment, all the way up the
tree to a set of bootstrapping binaries. In the case of verification
through reproducibility, verification of each step ensures that the
build process is considered a bootstrappable build [6]. While this
concept is known, our other proposals make its verification more
efficient.

5 Threat Model
In this section we will demonstrate how our proposed extensions
mitigate a number of threats to users of cloud build systems. Broadly
speaking, threats can be mitigated using our proposed extensions
by users moving towards

• distributing trust among a set of trusted signers2, in an open
ecosystem which also contains untrustworthy signers,

• relying on signatures by builders instead of caches in order
to establish build provenance and extend transport security
end-to-end, and

• verifying instead of trusting builders.
Threats are numbered T1 to T5, and their mitigations are numbered
M1 to M5. For this threat model we will take the perspective of a
specific user, who builds a specific project, giving the cloud build
system the opportunity to obtain the outputs of some build steps
from caches. We assume that the cloud build system is used in
such a way that the checked-in source code of the project identifies
specific versions of each dependency back to a set of bootstrapping
binaries.3 We assume that the user invokes a trusted instance of
the cloud build system in a trusted environment and configures it
with a trust model that reflects their trust relationships. Outputs

2Builders and caches can both act as signers, but only builders have first-hand knowl-
edge of the build process.
3One way to achieve this is to use a cloud build system which supports .lock files,
like for example Nix with the flakes experimental feature.

produced based on an incompatible trust model must be assumed
to not be trustworthy. On other trustworthy builders, hermetic
isolation ensures that the invocation of malicious build instructions
can have no side effects, outside the output of the specific build step.
This and the fact that our stated goal is to build a project, not run it,
places the source code and binary blobs that are part of the project
build out of scope of the threat model. The cloud build system itself
and other software running on builders might also be vulnerable
or malicious. While the discovery of such issues is out of scope of
our threat model, Threat 4 and Threat 5 aim to prevent and allow
recovery from placing trust in untrustworthy builders.

There is no technical distinction between the capabilities of dif-
ferent actors in the modeled distributed system. Users are running
an instance of the cloud build systems, trustworthy builders are
running the same cloud build system, possibly with minor distinc-
tions. Caches can be passive, effectively HTTP proxies, as long as
they do not produce their own signatures, and have to run the cloud
build system code that enables signing otherwise. We are taking on
the perspective of the user, as the user of one instance of the cloud
build system, trying to establish trustworthiness of other signers
across intermediaries.

The asset under consideration are trace map and provenance
log entries, which protect the integrity of the relationship between
input sets and outputs. Availability and secrecy of build outputs are
placed out of scope. Availability of build outputs can be regained
via rebuilding4, which is in fact how participants in the ecosystem
can migrate to stricter trust models over time to protect integrity.
Secrecy of input sets is poorly supported in cloud build systems,
and while it might warrant further discussion it is a concern which
is completely orthogonal to the extensions we propose. Availability
of input sets is not a goal of cloud build systems.

T1 Even if a trusted cache signs a trace map entry, this does
not prove to the user which entity executed the build step,
and therefore who the user trusts with upholding hermetic
isolation. The original builder might not be trustworthy,
or cache contents might have been tampered with before
signing. M1: Through the provenance log entry a signer
can claim to have executed the build step and this signature
can be passed on to caches. The user can decide to trust the
builder instead of or in combination with the cache, adopting
a stricter trust model.

Note 3. The cache might adopt a stricter trust model, by only
signing artifacts that are already signed by an origin that is on
the cache’s allow list. This is however only a variation of the
exact problem we are trying to resolve, as the cache’s allow list
reflects its trust model, which then leaks into the users trust
model. The significant issue with such a setup, which we are
trying so solve, is that there is no way to later revoke trust
in specific members of the allow list. We think caches should
either only distribute builder signatures, or use cryptography
and protocols, which allow for revocation.

4This has been demonstrated in practice using Nix [14], with caveats around bit-for-for
bit reproducibility, which would often take more upfront effort to achieve.

 

50



Extending Cloud Build Systems to Eliminate Transitive Trust SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA

T2 Since builders might trust each other directly or transitively5,
two trusted builders signing the same trace map entry does
not prove that the corresponding build step has been exe-
cuted by both. This makes it impossible to formulate trust
models where builders are only trusted if they directly pro-
duce the same output. M2: Through the provenance log
entry, both builders can claim to have executed the build
step themselves.

T3 If the cloud build system is based on deep constructive traces,
an output produced by a builder with an incompatible trust
modelmight incorporate untrusted dependencies. Since trace
map entries do not contain resolved dependencies, it is im-
possible for the user to detect this issue. M3: The builder
can add the content hashes of all direct dependencies to the
provenance log entry. The cloud build system of the user can
then require the dependency tree of the project to be valid on
this basis, which is a constructive trace basis, eliminating the
issue for trustworthy builders with differing trust models.

T4 A builder might be breaking hermetic isolation, by running
insecurely configured or vulnerable software, which could
allow others6 to bypass hermetic isolation or exfiltrate the
signing key. A compromised builder might also be dishonest
about provenance data.M4: The builder can include a link to
the booted software state in the provenance data, make this
information verifiable to the user as part of the dependency
tree and keep the signing key in secure hardware. See Section
section 6.3 for details.

T5 Over time the users trust model might become outdated, and
they might want to adapt it. Reasons for this might be the
discovery that a particular builder, or software or hardware
component used by the builder, is vulnerable or compro-
mised or simply no longer judged to be trustworthy. M5:
The user can update their trust model accordingly. As long
as the compromised component is reflected in the prove-
nance data verified by the users trust model, for any output,
we can identify if there still exists a trustworthy path from
the set of bootstrapping binaries to said output. Missing
links in the path can be handled via rebuilds from source,
or changing the build instructions to depend on earlier or
newer uncompromised versions of inputs, which are/were
derived by verifiable uncompromised instances of the cloud
build system running on uncompromised builders.

6 Applying Extensions to Nix
In this section we are first going to explain how caching of build
outputs and signing works in Nix. Then we will outline how our
proposed extensions would apply to the integrity verification of
build outputs that are cached by the Nix package manager7.

5Nix is one example of a cloud build system which allows this, and we make the same
assumption in this threat model.
6This could be anyone on the web, anyone running other build jobs, or an administrator
of the builder.
7We assume that Nix was installed using the installer available at https://zero-to-
nix.com/start/install, because this installer enables the nix-command and flakes exper-
imental features out of the box, which includes a CLI that offers better reproducibility.

6.1 Build Outputs and Caching
As an illustrative example of how caching works in Nix, we will
look at obtaining a specific version of the GNU Hello program
packaged using the Nix language.

The exact version of the package is defined by a specific git com-
mit hash in the https://github.com/NixOS/nixpkgs repository on
GitHub, which contains the hello package and all of its dependen-
cies back to a set of bootstrapping binaries8.

We can build this exact version of the package with the following
command that includes a unique prefix of the desired git commit
hash.

$ nix build nixpkgs /4 f807e8940284ad7#hello

When this operation successfully terminates a symlink with the
name result linking to the build results will appear in the current
directory.

$ readlink result

/nix/store/yb84nwgvixzi9sx9nxssq581pc0cc8p3 -hello

↩→ -2.12.1

This symlink points to the build output, stored at a read-only path
inside the /nix/store directory. Nix incorporates input hashes into
the storage paths of build results, using a hashing scheme that is
based on deep constructive traces up to terminal inputs.

Note 4. Derivation is the Nix-specific term for the input set which
defines a build step. Since content and input hashes determine storage
paths in Nix, they are also referred to as addressing schemes. More
specifically, those schemes are called input addressing and content
addressing. Since build recipes in Nix always refer to their inputs
by store path, switching the inputs of derivations to content address-
ing is the same as changing the hashing scheme to one based on
constructive traces. There is an experimental feature in Nix called
ca-derivations which does this.

As a cloud build system Nix might have produced the build
output in various ways, depending on which caches it considers
trustworthy. It might have re-built the full dependency tree up
until and including the hello package from source. When terminal
inputs were required, it would have placed them within subdirec-
tories that were named based on their content hash. Alternatively,
it might have successfully looked up just the hello package and
its runtime dependencies from https://cache.nixos.org, which is
the cache configured by default, or from any other cache. A mix
between the two options, where some build outputs were obtained
from a cache and others were built locally, might have also occurred.
In any case, as long as none of the involved caches are malicious,
the build results have been obtained by executing the same build
step and are in that sense semantically equivalent and Nix therefore
considers them semantically equivalent. This kind of equivalence
however cannot distinguish between a legitimately produced out-
put and one where a transitively trusted malicious builder has led
to a malicious direct dependency being incorporated into the build

8The file which defines the hello package at the exact commit in ques-
tion is available on GitHub at https://github.com/NixOS/nixpkgs/blob/
4f807e8940284ad7925ebd0a0993d2a1791acb2f/pkgs/by-name/he/hello/package.nix.
The dependency tree of the hello package consists of 93 build steps and 155 terminal
inputs.

 

51

https://zero-to-nix.com/start/install
https://zero-to-nix.com/start/install
https://github.com/NixOS/nixpkgs
https://cache.nixos.org
https://github.com/NixOS/nixpkgs/blob/4f807e8940284ad7925ebd0a0993d2a1791acb2f/pkgs/by-name/he/hello/package.nix
https://github.com/NixOS/nixpkgs/blob/4f807e8940284ad7925ebd0a0993d2a1791acb2f/pkgs/by-name/he/hello/package.nix


SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA Martin Schwaighofer, Michael Roland, and René Mayrhofer

undetected, and is therefore too weak for our purposes (see Threat
3).

6.2 Unaltered Signature Verification
For each cache lookup, like for the hello package itself, all con-
figured caches are queried by input hash, by looking up a specific
URL9.

In case of a cache hit, Nix finds the metadata from Listing 1 about
the build output in question in the .narinfo file available at this
URL. A NAR-File (Nix ARchive) is a Nix-specific archive file format,
which is used to transmit the actual build output. It is available at
the URL listed in the .narinfo file. The NAR format also serves as
the basis for the content hashing scheme that Nix uses. Effectively,
NAR-Hashes are the specific kind of content hash that Nix relies
on.

Many of the metadata from the .narinfo file (Listing 1) are
combined in the detached signature scheme Nix uses to protect its
trace map entries. Each entry in the map is secured by a detached
signature over a fingerprint, containing various data. Listing 2
shows the fingerprint calculation.

The store path represents the input hash which identifies the
build step, the NAR-Hash represents the corresponding content
hash of the produced build output. The reference set is the set
of runtime dependencies, meaning all other store paths that are
contained in the output as strings. Additionally, the leading 1 allows
for changes to the fingerprinting scheme, which we will propose.

In conclusion, we note that the signature does not contain in-
formation about the signing party and the signing key is also not
associated with this kind of information in any other way.

6.3 Proposed Changes
As mentioned above, we can create a newer version of the fin-
gerprinting scheme by changing the leading 1 to a 2. Since the
.narinfo file format supports a list of signatures, we can add one
signature using the new scheme alongside another signature using
the old scheme, for backwards compatibility with existing Nix in-
stallations.10 In the new scheme, we can then add additional data
to the updated fingerprint. Effectively this gives us the opportunity
to add more data which the producer and consumer of a cached
output have to agree about. We can communicate the expected
values for these additional fields as additions to the .narinfo file.
In line with our more generic proposals we want to do this with
two pieces of data. This additional data turns our signed trace map
entries into provenance log entries.11

6.3.1 Claimed origin information. First, we add a single origin
enumeration with a number of predetermined values to the finger-
print.

Those values in increasing order of trustworthiness are:

9For our example the URL Nix looks up in order to determine a cache hit is
https://cache.nixos.org/yb84nwgvixzi9sx9nxssq581pc0cc8p3.narinfo.
10We have not tested this.
11As the name suggests, a transparency log is one promising way to implement such a
data structure. Nonetheless, to limit the scope of the proposed changes for this paper,
we decided to propose extending the existing scheme that is based on signatures. Some
technical details of our proposal are described in the following, at the time of writing
open, issue we created: https://github.com/NixOS/nix/issues/9644.

“unknown” The signer did not build this output itself, so it has no
first-hand knowledge of its origin. The signature provides
transport security starting at the signer. Note that a differ-
ent signature by the original builder indicating first-hand
knowledge may be passed along in addition to this one.

“trusted” Additionally to the properties described in unknown
the signer considers this output trusted.

“builder-according-to-db” TheNix database of the signing builder
indicates that it has built the output itself (this uses existing
database records of build results for legacy support).

“builder-signature” This signature was created directly by the
builder immediately after the build.

This additional information makes two things possible, which were
not possible before:

(1) We can choose to only trust build outputs for which we can
obtain a signature that states that it was built directly by a
trusted builder (see Threat 1). This guarantee is still weak,
because we have no evidence of the software stack of the
builder, but at least the claimed origin is clear.

(2) We can determine that a build step is reproducible, if we
can obtain two different signatures of the same trace map
entry, which are both marked as builder-signatures by two
different keys we consider trustworthy (see Threat 2).

6.3.2 Verify constructive traces. Nix uses deep constructive traces
up to terminal inputs. The input address inside the unmodified
signatures is therefore ambiguous about the identity of direct de-
pendencies in terms of content hash, since they are only identified
by their own input hashes (see Threat 3). To resolve this ambigu-
ity we add a list with the content hashes of direct dependencies
to both the fingerprint and .narinfo file. We define the order of
the list in a way that allows us to match up corresponding input
hashes and content hashes, for example by picking the same order
of appearance that is used to compute the input hash.

This additional information makes it possible to reject cached
outputs during dependency resolution, if the content hashes listed
for all direct dependencies do not match the content hashes of
trusted outputs, ensuring that the full dependency tree is valid
in terms of constructive traces and therefore does not introduce
implicit transitive trust in potentially untrusted third parties.

6.3.3 Evidence of origin. We can additionally add a reference to
the build step, which builds the software stack that is running
on the builder itself, to each provenance log entry. This reference
cannot simply be an input hash, because it has to contain enough
information to reconstruct the dependency tree of the builder’s
software stack. A reachable URL, pointing to a git repository, with
a suffix that identifies a specific commit and build step, for poten-
tial verification, is suitable. This can use the same format as the
hello reference we used above,12 with the produced output being
a bootable system configuration. Producing references to system
configurations for the NixOS Linux distribution is already common
practice in Nix, while at the same time we are proposing extensions
to Nix which do not rely specifically on NixOS and Nix is capable
of assembling images of other kinds of systems this way [16, 18].

12This format is called a flake reference.

 

52

https://cache.nixos.org/yb84nwgvixzi9sx9nxssq581pc0cc8p3.narinfo
https://github.com/NixOS/nix/issues/9644


Extending Cloud Build Systems to Eliminate Transitive Trust SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA

Listing 1: .narinfo file
StorePath: /nix/store/yb84nwgvixzi9sx9nxssq581pc0cc8p3 -hello -2.12.1

URL: nar/1 a2rz1s7r6b7zy25dbrjxgkhpgkd4cybqch6nh56l63m9fcn4zzm.nar.xz

Compression: xz

FileHash: sha256 :1 a2rz1s7r6b7zy25dbrjxgkhpgkd4cybqch6nh56l63m9fcn4zzm

FileSize: 50364

NarHash: sha256 :0982 m132as66yjs4jcddjks1r7g9r6x50x90bim1vfr4wca3hacb

NarSize: 226560

References: 3dyw8dzj9ab4m8hv5dpyx7zii8d0w6fi -glibc -2.39 -52 yb84nwgvixzi9sx9nxssq581pc0cc8p3 -hello -2.12.1

Deriver: crmj28zg09517n5sskml9fmy2c6r3rsr -hello -2.12.1. drv

Sig: cache.nixos.org -1: DIsZWyTRIauN6NyAhtGxQgwo2fF3IMrAf5T+

↩→ W1PyPZYuyO5rh4ZCEJwZWq2fNavzJYOLUcR3pC2s8NUHymikDg ==

Listing 2: excerpt from libstore/path-info.cc file
std:: string ValidPathInfo :: fingerprint(const Store & store) const

{

if (narSize == 0)

throw Error (" cannot calculate fingerprint of path '%s' because its size is not known",

store.printStorePath(path));

return

"1;" + store.printStorePath(path) + ";"

+ narHash.to_string(HashFormat ::Base32 , true) + ";"

+ std:: to_string(narSize) + ";"

+ concatStringsSep (",", store.printStorePathSet(references));

}

With this additional information the decision whether to trust a
specific builder can take its claimed software stack into account.13

In order to make this information trustworthy, to mitigate Threat
4, we can implement a scheme for remote attestation of the builder.
As a prerequisite this requires that we can derive the expected hash
values for measured boot from the built OS image14. We also need
to have some reason to trust the hash values lower in the boot
chain, for example by knowing they are derived from unmodified,
up-to-date hardware which we consider secure.

There are various suitable, standardized mechanisms available
for different hardware platforms15, which generate a key in secure
hardware and can provide a remote attestation, which

• proves that the key was generated in secure hardware,
• incorporatesmeasurement values frommeasured boot, which
correspond to the built and booted OS image and

• uses the trace map entry and a monotonically increasing
counter as the nonce16.

The resulting remote attestation can then be incorporated into the
provenance data of the provenance log entry in question and signed
with the attested key.
13Build steps, including those involved in building builders, can be verified to meet
specific criteria this way, including reproducibility as we define it.
14NixOS itself does not support measured boot yet. If the OS image can be built
reproducibly we can demand that multiple builders agree about the output of each
build step.
15Examples are a standard TPM 2.0 in a server setting, or Key Attestation on Android.
16The benefit of the counter is the ability to record multiple builds on the same host,
even if they are reproducible. A liveness check should not be required in this application.
A repeated nonce value is not a security threat in this setting, because it would just
re-state the same statement.

When the abovementioned requirements are fulfilled and satisfy
the trust model of the verifier, which may change over time to
mitigate Threat 5. The verifier should then be able to

(1) verify the claimed software configuration of the builder
against the verifiers trust model, which may or may not
mandate reproducibility,

(2) derive the expected measurement values for measured boot
from the built software configuration,

(3) verify the signature on the provenance log entry,
(4) verify from the contents of the remote attestation, that
(a) the included trace map entries match up,
(b) the upper level measurement values from measured boot

match up, the lower level values are trusted,
(c) the attestation itself is valid, and
(d) the attestation is about the intended signing key.

If all of these properties can be verified, this establishes a corre-
spondence between the booted system and the configuration it was
built from.

The verifier needs to additionally determine that the configura-
tion of the builder, which we have established as booted at the time,
is trustworthy. While this might sound like another daunting task,
verifiers might whitelist specific configurations, and configurations
can be maintained and audited in public.

Note 5. One important prerequisite before such a scheme could be
deployed in production is that the build sandbox Nix uses for hermetic
isolation has to hold. Since, if hermetic isolation is broken, the builder
can make false statements about the relationship between inputs and

 

53



SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA Martin Schwaighofer, Michael Roland, and René Mayrhofer

outputs. We assume that the build sandbox would have to expertly
integrate a component with a proven track record to suitably enhance
sandboxing, in order to enable this use case in production.

6.4 Limitations and Adoption
We have aimed to present our approach clearly and concisely so
far, leaving some open and broader questions for this section. We
will mention such topics here, in a way that gives a clearer picture
of how an implementation of our extensions aimed at adoption in
Nix might be tackled.

The adoption of Nix and other cloud build systems, is a different
issue, which we will not get into.

6.4.1 Implement provenance log entries. Builders should sign pack-
ages per default.17

To add provenance data, adding a single field with a base64
encoded JSON object would probably be preferable to extending
.narinfo files with additional fields, because it makes it possible to
handle unknown provenance data. This makes it easier for compet-
ing additions to provenance data to coexist, facilitating innovation
and an open ecosystem.

It is not clear which cryptographic mechanism should protect
the integrity of provenance log entries. The available options are
the existing signing scheme, as discussed in section 6.3, or a trans-
parency log, specifically Trustix [21]. Both options offer different
security properties, because a transparency log is a complete record
of executed build steps, which potentially reveals more informa-
tion than a signature based design. The issue of key lifecycle and
revocation might provide another relevant point of comparison for
both options.

6.4.2 Changes to dependency resolution. Nix’s existing dependency
resolution would need to be adapted, so that it can take provenance
data into account. In section 6.3.2 we assumed that missing depen-
dency information would be added to input-addressed derivations.
Another option would be building on content addressed derivations,
from the experimental ca-derivations feature, instead. Since this
feature uses constructive traces it might be the better approach.
One not yet implemented, but originally proposed [8], aspect of
ca-derivations allows Nix to rewrite references inside build out-
puts to increase cache efficiency. This would also have to be taken
into account when reasoning about trust.

The implementation of Nix has recently added a number of inter-
nal interfaces, in order to make the project more modular. We think
that a generic interface that identifies the trustworthy subset from
a set of provenance log entries would be beneficial, to encourage
the implementation of different verification mechanisms. We are
not sure how such an interface would incorporate the references
to the source code of a builder. It is our assumption, that the basic
claim to be the builder would also be implemented in Nix directly,
to ensure accuracy out of the box.

6.4.3 Implement trustworthy attestation. Putting the generic sup-
port described above in place could encourage various parties to
17As of right now they do not, since signatures are primarily used as a mechanism
to communicate that a cache considers a trace map entry trustworthy and provide
transport security, not to attribute packages to the original builder. At the time of
writing, there is an open issue about generating signatures per default: https://github.
com/NixOS/nix/issues/3023.

implement and later open source more complex validation mecha-
nisms, including attestation. We assume that doing attestation in a
generic way that works on a wide range of deployed systems would
be exceedingly difficult, because of all the different possible hard-
ware and system configurations involved. Initial implementations
will most likely be developed for in-house use inside very specific
and controlled environments, with excellent support for hardware
attestation, with solutions with broad hardware support arriving
much later.

6.4.4 Open questions about usage. Other open questions exist
around the usage of such a system

(1) What does its bootstrapping look like?
(2) How costly is the generation and validation of evidence

computationally?
(3) How can the sandbox providing hermetic isolation be im-

proved to the required degree?

7 Conclusion
Our introduction into cloud build systems provides the necessary
terminology to discuss how they function in general and in terms
of specific design considerations like trust. We analyze what data
cloud build systems can use to establish trust in cached outputs, and
how this process can involve transitive trust in third parties. With
the specific use case of distributing trust across an open ecosystem
in mind, we

• eliminate implicit transitive trust relationships that exist in
systems based on deep constructive traces,

• link provenance data to build steps, in order to attribute their
outputs to those build hosts, which originally executed them,

• make implicit transitive trust in the software stack of build
hosts explicit and independently verifiable, via remote attes-
tation, instead.

Our proposed scheme adds what we call a provenance log, which
• is motivated by the included threat model, and
• decouples the creation of provenance data and its verification
as much as possible, to facilitate the creation of an open and
evolving ecosystem, which can accommodate participants
with a diverse set of trust models.

Finally, we explain how what we propose could be implemented in
the Nix package manager in the future.

We do not see this work only as an innovation in the space of
cloud build systems, but as a potential path forward for supply chain
security, building and managing provenance data into one unified
tool, which could offer quite a principled and elegant solution for
real problems that exist in our current software supply chains.
The open questions about the implications of this warrant both
further research and the creation of testable implementations, and
therefore, we hope that the build system and supply chain security
communities will help us answer them.

Acknowledgments
We want to thank Linus Heckemann for first pointing out to us the
gaps around the outcome of dependency resolution, which exist in
Nix, and which we address in this paper.

 

54

https://github.com/NixOS/nix/issues/3023
https://github.com/NixOS/nix/issues/3023


Extending Cloud Build Systems to Eliminate Transitive Trust SCORED ’24, October 14–18, 2024, Salt Lake City, UT, USA

This work has been carried out within the scope of Digidow,
the Christian Doppler Laboratory for Private Digital Authentica-
tion in the Physical World and has partially been supported by
the LIT Secure and Correct Systems Lab. We gratefully acknowl-
edge financial support by the Austrian Federal Ministry of Labour
and Economy, the National Foundation for Research, Technology
and Development, the Christian Doppler Research Association, 3
Banken IT GmbH, ekey biometric systems GmbH, Kepler Univer-
sitätsklinikum GmbH, NXP Semiconductors Austria GmbH & Co
KG, Österreichische Staatsdruckerei GmbH, and the State of Upper
Austria.

References
[1] Heather Adkins, Betsy Beyer, Paul Blankinship, Piotr Lewandowski, Ana Oprea,

and Adam Stubblefield. 2020. Building Secure and Reliable Systems. O’Reilly
Media.

[2] Rahaf Alkhadra, Joud Abuzaid, Mariam AlShammari, and Nazeeruddin Moham-
mad. 2021. Solar Winds Hack: In-Depth Analysis and Countermeasures. In
2021 12th International Conference on Computing Communication and Networking
Technologies (ICCCNT) (Kharagpur, India). IEEE, 1–7. https://doi.org/10.1109/
ICCCNT51525.2021.9579611

[3] Attestation Project Contributors. 2024. attestation: in-toto Attestation Frame-
work. https://github.com/in-toto/attestation 2024-07-03.

[4] Attic Project Contributors. 2024. attic: Multi-tenant Nix Binary Cache. https:
//github.com/zhaofengli/attic

[5] Henk Birkholz, Dave Thaler, Michael Richardson, Ned Smith, and Wei Pan. 2023.
RFC 9334: Remote ATtestation procedureS (RATS) Architecture. https://doi.org/
10.17487/RFC9334

[6] Bootstrappable Builds. 2024. Bootstrappable Builds Website. https://
bootstrappable.org/

[7] Ludovic Courtès. 2022. Building a Secure Software Supply Chain with GNU
Guix. The Art, Science, and Engineering of Programming 7, 1, Article 1 (June 2022).
https://doi.org/10.22152/programming-journal.org/2023/7/1

[8] Eelco Dolstra. 2006. The Purely Functional Software Deployment Model. Ph. D.
Dissertation. Utrecht University.

[9] Carl Dong. 2019. Bitcoin Build System Security. Talk at Breaking Bitcoin 2019
Amsterdam. https://www.youtube.com/watch?v=I2iShmUTEl8 (accessed 2024-
04-12).

[10] Gitian-Builder Contributors. 2024. gitian-builder: Build packages in a secure
deterministic fashion inside a VM. https://github.com/devrandom/gitian-builder

[11] Chris Lamb and Stefano Zacchiroli. 2021. Reproducible Builds: Increasing the
Integrity of Software Supply Chains. IEEE Software 39, 2 (2021), 62–70. https:
//doi.org/10.1109/MS.2021.3073045

[12] Clement Lefebvre. 2016. Beware of hacked ISOs if you downloaded Linux Mint
on February 20th! The Linux Mint Blog. https://blog.linuxmint.com/?p=2994

[13] Mario Lins, René Mayrhofer, Michael Roland, Daniel Hofer, and Martin
Schwaighofer. 2024. On the critical path to implant backdoors and the
effectiveness of potential mitigation techniques: Early learnings from XZ.
arXiv:2404.08987 [cs.CR]

[14] JulienMalka, Stefano Zacchiroli, and Théo Zimmermann. 2024. Reproducibility of
Build Environments through Space and Time. In Proceedings of the 2024 ACM/IEEE
44th International Conference on Software Engineering: New Ideas and Emerging
Results (Lisbon, Portugal) (ICSE-NIER’24). ACM, New York, NY, USA, 97–101.
https://doi.org/10.1145/3639476.3639767

[15] Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones. 2018. Build Systems
à La Carte. Proc. ACM Program. Lang. 2, ICFP, Article 79 (July 2018), 29 pages.
https://doi.org/10.1145/3236774

[16] Nix-Openwrt-Imagebuilder Project Contributors. 2024. nix-openwrt-
imagebuilder: Build OpenWRT images in Nix derivations. https:
//github.com/astro/nix-openwrt-imagebuilder

[17] Nix-Serve Project Contributors. 2024. nix-serve: A standalone Nix binary cache
server. https://github.com/edolstra/nix-serve

[18] Robotnix Project Contributors. 2024. robotnix - Build Android (AOSP) using Nix.
https://github.com/nix-community/robotnix

[19] Ken Thompson. 1984. Reflections on trusting trust. Commun. ACM 27, 8 (1984),
761–763. https://doi.org/10.1145/358198.358210

[20] Santiago Torres-Arias. 2020. In-toto: Practical Software Supply Chain Security.
Ph. D. Dissertation. New York University Tandon School of Engineering.

[21] Trustix Project Contributors. 2024. Trustix: Distributed trust and reproducibility
tracking for binary caches. https://github.com/nix-community/trustix

[22] Scott Yilek, Eric Rescorla, Hovav Shacham, Brandon Enright, and Stefan Savage.
2009. When private keys are public: results from the 2008 Debian OpenSSL
vulnerability. In Proceedings of the 9th ACM SIGCOMM Conference on Internet
Measurement (Chicago, Illinois, USA) (IMC ’09). ACM, New York, NY, USA, 15–27.
https://doi.org/10.1145/1644893.1644896

 

55

https://doi.org/10.1109/ICCCNT51525.2021.9579611
https://doi.org/10.1109/ICCCNT51525.2021.9579611
https://github.com/in-toto/attestation
https://github.com/zhaofengli/attic
https://github.com/zhaofengli/attic
https://doi.org/10.17487/RFC9334
https://doi.org/10.17487/RFC9334
https://bootstrappable.org/
https://bootstrappable.org/
https://doi.org/10.22152/programming-journal.org/2023/7/1
https://www.youtube.com/watch?v=I2iShmUTEl8
https://github.com/devrandom/gitian-builder
https://doi.org/10.1109/MS.2021.3073045
https://doi.org/10.1109/MS.2021.3073045
https://blog.linuxmint.com/?p=2994
https://arxiv.org/abs/2404.08987
https://doi.org/10.1145/3639476.3639767
https://doi.org/10.1145/3236774
https://github.com/astro/nix-openwrt-imagebuilder
https://github.com/astro/nix-openwrt-imagebuilder
https://github.com/edolstra/nix-serve
https://github.com/nix-community/robotnix
https://doi.org/10.1145/358198.358210
https://github.com/nix-community/trustix
https://doi.org/10.1145/1644893.1644896

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contribution

	2 Related Work
	2.1 Gitian
	2.2 in-toto Framework

	3 Cloud Build Systems
	3.1 Output Lookup by Hash
	3.2 Hermetic Isolation

	4 Extending Cloud Build Systems
	4.1 Builder Attribution and Provenance
	4.2 Verifying Build Steps

	5 Threat Model
	6 Applying Extensions to Nix
	6.1 Build Outputs and Caching
	6.2 Unaltered Signature Verification
	6.3 Proposed Changes
	6.4 Limitations and Adoption

	7 Conclusion
	Acknowledgments
	References



