
JOHANNESKEPLER
UNIVERSITY LINZ
Altenberger Straße 69
4040 Linz, Austria
jku.at

Author
FlorianMader, BSc
k01609425

Submission
Institute of
Networks and Security

Thesis Supervisor
Univ.-Prof. Dr.
RenéMayrhofer

Assistant Thesis
Supervisor
Dr.Michael Roland

February 2024

Evaluation of
technologies to build a
trustworthy directory
for sensors for an
identitymanagement
system

Master’s Thesis
to confer the academic degree of

Diplom-Ingenieur
in the Master’s Program

Computer Science

https://jku.at/

Abstract

Identifying people digitally and securely is already important today and will
become increasingly important in the future. For this reason, the JKU launched
the Digidow project. Digidow tries to use a distributed system to link digital
identities and thepeople associatedwith them.Therefore, everyone is expected
to manage their own identity on their own devices and interact with sensors
which are also distributed. However, such a highly distributed system requires
participants to know or discover each other. For this reason, the idea of a sen-
sor directory which is used to find and identify sensors was born. In this the-
sis, some core requirements are established which are then extended with ad-
ditional requirements after the threats of the system are analyzed. After the
requirements are clear several technologies and their components are ana-
lyzed that could solve parts of the sensor directory. It is also shown how those
technologies might be used to implement the sensor directory. Finally, those
technologies are compared to each other and a group of technologies is shown
which could be used to implement the sensor directory.

ii

Kurzfassung

Personen digital und sicher zu identifizieren ist heutzutage bereitswichtig und
wird in Zukunft immer bedeutender werden. Aus diesemGrund hat die JKU das
Projekt Digidow ins Leben gerufen. Digidow versucht dabeimitHilfe eines ver-
teilten Systems digitale Identitäten und die dazugehörigen Personen zu ver-
knüpfen.Die Personen solltendabei, ihre Identitäten auf ihren eigenenGeräten
verwalten. Um Personen zu identifizieren, müssen deren Geräte mit Sensoren
interagieren, welche ihrerseits ebenfalls verteilt sind. Damit so ein verteiltes
System funktioniert, müssen die Teilnehmer allerdings von einander wissen
oder eine Möglichkeit haben, sich gegenseitig aufzuspüren. Aus diesem Grund
entstand die Idee eines Sensorverzeichnisses, welches benutzt wird, um Sen-
soren zu finden. In dieser Arbeit werden Anforderungen an ein solches System
aufgestellt, diese AnforderungenwerdennachdemdieGefahren für ein solches
System analysiert wurden erweitert. Nachdem die Anforderungen klar defi-
niert wurden,werden einige Technologien und derenKomponenten inspiziert,
welche unter Umständen Potenzial zur Erfüllung der Anforderungen haben. Es
wird auch gezeigt, wie diese Technologien in der Lage wären als Sensorver-
zeichnis eingesetzt zu werden. Zuletzt werden die Technologien miteinander
verglichen und eine Gruppe an Technologien vorgestellt, die eventuell einge-
setzt werden könnte, um ein Sensorverzeichnis ins Leben zu rufen.

iii

Acknowledgements

This work has been carried out within the scope of Digidow, the Christian
DopplerLaboratory forPrivateDigital Authentication in thePhysicalWorld.We
gratefully acknowledge financial support by the Austrian Federal Ministry of
Labour and Economy, the National Foundation for Research, Technology and
Development, the Christian Doppler Research Association, 3 Banken IT GmbH,
ekeybiometric systemsGmbH,KeplerUniversitätsklinikumGmbH,NXPSemi-
conductorsAustriaGmbH&CoKG,andÖsterreichischeStaatsdruckereiGmbH.

iv

Contents

Abstract ii

Kurzfassung iii

Acknowledgements iv

1 Introduction 1
1.1 Digidow . 1
1.2 Sensor Directory . 2
1.3 Trust System . 4
1.4 Objectives . 4
1.5 Outline . 5

2 ThreatModel 6
2.1 System . 6
2.2 Attack Vectors . 6

2.2.1 Denial of Service . 6
2.2.2 Network Sniffing . 7
2.2.3 Fingerprinting . 8
2.2.4 Target Discovery . 8
2.2.5 Data Collection . 9
2.2.6 Malicious Sensor . 9
2.2.7 Compromised Sensors . 9
2.2.8 Compromised Sensor Directory 10
2.2.9 Data Integrity . 10
2.2.10 Manipulation of Data on the Wire 11
2.2.11 Data Validity . 11
2.2.12 Address Problems . 11
2.2.13 Sensor Trust Problems . 12
2.2.14 People Tracking (Sensor Directory) 14
2.2.15 People Tracking (Sensors) . 14
2.2.16 PIA Identification . 14
2.2.17 Split Views . 15

2.3 Selected Attack Vectors . 15
2.4 Attack Vector Mitigation . 17

2.4.1 Transaction Cost . 17
2.4.2 Sensor Verification . 18
2.4.3 Notaries . 19
2.4.4 Redundant Sensor Directories 20
2.4.5 Cache Sensors . 21
2.4.6 Distributed Sensor Directory . 21
2.4.7 Onion Routing . 22
2.4.8 Pruned Sets and Queries . 23
2.4.9 Validators . 23
2.4.10 Immutable Data . 24
2.4.11 Owner Changeable Data . 25

2.5 Threat Model Analysis . 25
2.6 Requirements . 26

v

Contents vi

2.7 Comparison . 29
2.7.1 Attack Vectors . 29
2.7.2 Requirements . 31

3 Background 34
3.1 Byzantine Fault-Tolerance . 34
3.2 Distributed Ledger Technologies . 34

3.2.1 Smart Contracts . 34
3.2.2 Permission . 35
3.2.3 Proof of Work . 35
3.2.4 Proof of Stake . 36
3.2.5 Delegated Proof of Stake . 36
3.2.6 Proof of Activity . 37
3.2.7 Proof of Personhood . 37
3.2.8 Proof of Authority . 37
3.2.9 Raft . 38

3.3 Blockchain . 38
3.4 Directed Acyclic Graph . 39
3.5 Merkle Tree . 41

4 Technologies 43
4.1 Certificate Authorities . 43

4.1.1 CAs for the Sensor Directory . 44
4.2 Web of Trust . 46

4.2.1 Web of trust for the Sensor Directory 48
4.3 Domain Name System . 50

4.3.1 Domain Name System Security Extensions (DNSSEC) 52
4.3.2 DNS for the Sensor Directory . 52

4.4 Secure Untrusted Data Repository . 54
4.4.1 SUNDR for the Sensor Directory 55

4.5 Transparency Logs . 58
4.5.1 Transparency Logs for the Sensor Directory 60

4.6 Append-Only Authenticated Dictionaries 62
4.6.1 AAD for the Sensor Directory . 63

4.7 Merkle^2 . 65
4.7.1 Merkle^2 for the Sensor Directory 66

4.8 Software Distribution Transparency and Auditability 67
4.8.1 Software Distribution Transparency for the Sensor Directory 68

4.9 Accountable Key Infrastructure . 70
4.9.1 AKI for the Sensor Directory . 71

4.10 Attack Resilient PKI . 73
4.10.1 ARPKI for the Sensor Directory 74

4.11 CONIKS . 75
4.11.1 CONIKS for the Sensor Directory 76

4.12 Contour . 78
4.12.1 Contour for the Sensor Directory 80

4.13 CHAINIAC . 80
4.13.1 CHAINIAC for the Sensor Directory 83

4.14 The Onion Routing . 84
4.14.1 Tor for the Sensor Directory . 84

4.15 Distributed State Machine . 87
4.15.1 Distributed State Machines for the Sensor Directory 89

4.16 InterPlanetary File System . 91
4.16.1 IPFS for the Sensor Directory . 92

4.17 DAT . 94
4.17.1 DAT for the Sensor Directory . 95

Contents vii

4.18 Algorand . 97
4.18.1 Algorand for the Sensor Directory 99

4.19 Nano . 101
4.19.1 Nano for the Sensor Directory 103

4.20Byteball . 104
4.20.1 Byteball for the Sensor Directory 107

4.21 IOTA . 108
4.21.1 IOTA for the Sensor Directory 110

4.22 Fabric . 112
4.22.1 Fabric for the Sensor Directory 114

4.23 Ethereum . 116
4.23.1 Ethereum for the Sensor Directory 118

5 Comparison 121
5.1 Attack Vector Comparison . 126
5.2 Requirements Comparison . 128
5.3 Final Comparison . 130

6 Conclusion and FutureWork 134

Bibliography 136

Chapter 1

Introduction

In modern society, there is a constant need to identify people and check for
their permissions. This is mainly done using a sensor measuring personal in-
formation.However, a sensor alone is not able to verify a personor check if they
have any permissions or are denied from any actions. This means each sensor
is connected to a database storing this personal information and permissions.
This information is stored on many servers controlled by many parties. How-
ever, not every party is trustworthy. Therefore the idea emerges that everyone
shouldmanage their ownpersonal identities instead. This is themotivation for
JKU to start the projectDigidow,which is trying to accomplish exactly this goal.
But if everyone maintains their personal data, this means the data of all users
is distributed viamany distinct devices. The devices storing the personal iden-
tities of an individual are called personal identity agents, or PIA. But PIAs are
not the only highly distributed resources in the system, there are also lots of
sensors. Those sensors are required to communicate with PIAs and exchange
informationwith each other. Thismeans there is a huge-scale distributed net-
work consisting of PIAs and sensors that have to discover each other in some
way. Therefore in Digidow, there has to exist a system allowing for the discov-
ery of participants in the network. This element is called the sensor directory.
The goal of this thesis is to analyze the sensor directory, its requirements, and
threats and to find potential technologies able to build it. The sensor directory
has to make it possible to add and find sensors securely and privately while
everybody knows exactly whom they have to trust. This is done by creating a
requirement definition, creating a threat model, deriving more requirements
from this threat model, doing literature research on potential technologies,
analyzing the technologies if those are a potential solution to the problem of
the sensor directory, and comparing those technologies to find those that are
best suited to establish the sensor directory with it.

1.1 Digidow

Nowadays sensors measuring fingerprints and other body parts to allow for
identification or authentication are indispensable, however, the number of
such systems in the future will only rise [85]. The information coming from
suchsystemscould furtherbeused to lift restrictionsdependingon the individ-
ual’s permissions. To allow for restrictions to be lifted, certain certificates al-
lowing sohave to exist. To identify a certain individual a sensor is required, this
sensor has tomeasure parts of the body and send those to a well-known global
authority [85]. This authority would then identify the individual and send the
data to an entity trying to identify the individual, inDigidow this entity is called
verifier [49, 85]. This system makes every physical ID obsolete and could be
used on a wide range of applications on a daily basis. Examples of this applica-
tion are opening doors, as a substitution of a passport for traveling or to verify
an individual is old enough to get a drink in a bar.

1

1 Introduction 2

PIA
Sensor

Directory Sensor

Send request

Set of Sensors

Register

Figure 1.1: Example of the message flow

The process above has one major flaw, there is only one big known global au-
thority that receives every piece of information and therefore knows every-
thing. Digidow tries to prevent exactly this scenario where one party has too
much information or power [77, 85]. Such a partywould be able to restrict peo-
ple or track them. Instead of those big global authorities in Digidow, each in-
dividual is expected to set up their own personal identity agent [49, 77, 85].
This PIA is the only entity storing the biometric data of the individual as well
as their certificates. However, this also means sensors scanning an individual
have to senddata to this specificPIA.Toefficiently solve this problemPIAshave
to know the rough location of the individual, they belong to and register at all
sensors in that area. This means if a sensor discovers an individual tries to use
it, responsible PIAs should be contacted. However this creates the next prob-
lem, while the PIAmay track the individual to know their location, PIAs do not
know all sensors for each possible location. For this reason, a directory hold-
ing a set of sensors, which could be queried by PIAs is needed. In Digidow said
directory is called the sensor directory. This means a PIA uses the location of
the individual to search for sensors in the area. PIAs then register at those sen-
sors and wait. If the individual interacts with the sensor they are notified and
are required to identify the user. A flowchart of how sensors could be derived is
shown in Figure 1.1.

1.2 Sensor Directory

The sensor directory is an essential part of Digidowbecause it is the onlyway to
resolve the distributed systemandallowPIAs to discover sensors in the system.
To allow this, there are some initial requirements the sensor directory has to
fulfill:

Each user using the sensor directory should be anonymous. This is the case be-
cause one goal of Digidow is to hide personal information and help users to get
someof their privacyback. This is onlypossible if PIAs are anonymousandcan-
not be identified. If this is not the case it might be possible to match personas

1 Introduction 3

to PIAs and consequently act differently. This is also important tomitigate dis-
crimination and ensure freedom.

Obviously, the directory is expected to store a list of sensors. It is important to
know for each sensor which data has to be stored. Each sensor has to include
some way to contact the sensor, for this reason, an address has to be stored.
Because Digidow is expected to work in the Tor network this address might be
butdoesnothave tobeanonionaddress. Anonionaddress canbeup to56char-
acters long. Also, a description of each sensor needs to be stored. This is impor-
tant because PIAsmight have to act differently on different sensor types. It can
be assumed such a description would require some kB in storage. Because the
PIAs should be able to query the sensors in a specific area, it is also necessary
to store the location of each sensor. To store the location latitude and longitude
for each sensor has to be stored. It is important in which precision those values
are stored because it might be required to know the exact location for query-
ing later. This information should also fit into a few bytes of storage. Also, a
flag is needed if the sensor is currently active and connected to the internet or
if this sensor is deprecated or not connected anymore. This flag might be used
to show old sensors or sensors that are temporarily unavailable by setting this
field to not connected. If this flag is not set this could also represent sensors
the creator does not expect to be used anymore.Most likely PIAs are only inter-
ested in connected sensors. However, which sensors are not connected might
still be valuable information. Suchaflag couldbe representedbya single bit and
would not take lots of storage. It is also important to verify the creator of a sen-
sor, therefore the creator or sensor provider is expected to sign the sensor. The
signature would also require some storage space depending on the chosen al-
gorithm. Last but not least additional data might be necessary. This data could
be trust information or any other useful information to the sensor. However,
it is not yet determined which information should be stored additionally. It is
assumed the storage required for this additional data would be up to a fewMB.
All in all, a sensor can be assumed to require storage space somewhat between
a few kB up to a fewMB.

The sensor directory has to be queriable. This means it should be possible to
send a request to the sensor directory and the sensor directory should answer
according to the query sent to it. This is important because a system only stor-
ing data without a way of retrieving data is useless.

Everyone should be able to query the directory. This means everyone is ex-
pected to be able to set up their own PIA and participate in the network. Also,
each of those PIAs has to be able to query the sensor directory and gain a list of
sensors in the area of the person they are responsible for. So if someone wants
to query sensors there might be no authentication information included. This
is also important because everyone should be anonymous.

Everyone is expected to add data to the directory. Consequently, the directory
should not differ between different sensor providers. This means every com-
pany and private person should be allowed to add their sensor to the directory.

Two equal requests should always deliver the same data. In other words, the
response should only depend on the data stored and the request received. So
if different users send the same request, they should also receive the same re-
sponse. This may only differ if, in the meantime, a sensor provider adds addi-
tional sensors.

The data of the directory should be immutable. This means it should not be
possible to change data once included in the directory. This is the case for the
provider of the sensor directory, as well as the sensor provider or anyone else.
For sure there might be the need to update sensors from time to time, this

1 Introduction 4

might be the case if the sensor is replaced by a new one or because the sensor
broke down and is not connected anymore. This still should be possible while
maintaining the old data of the sensor. Meaning for each update a new entry
has to be created. Therefore, a history of all existing and deprecated sensors is
stored.

The data of the directory should be verifiable. It means if a PIA receives a set of
sensors from the sensor directory, there should be away of verifying this entry
is included in the directory and also there is no entrymissingwhich is included
in the directory.

Everyone should know whom to trust. Meaning for those using the sensor di-
rectory, everyone should know who is allowed to see their data, under which
condition it is possible for someone to change their data, or which entities are
required to verify data included in the directory. This also means it should be
clear which combination of users could tamper with which information.

1.3 Trust System

A trust system might be required to know which sensors can be trusted. This
system should allow everyone to know which sensor is trustworthy and which
sensor is not. There are many ideas on how to implement such a system. One
option would be for each sensor to store an additional value that changes over
time and shows how trustworthy this sensor is. Someone needs to vote on the
trust value for it to change. Those votes could be summarized into a value be-
tween 0 and 1 which would be a good estimation for trust. The impact of each
vote is important andmight change. Due to the need of this data to change, this
data cannot be stored within the immutable sensor entry, however it might be
an option to store the votes in an immutable list to show who voted for which
change. Another option would be to create a static trust value each time a sen-
sor is added to the sensor directory. Thismeans when a sensor is added, a trust
figure has to be generated and stored with the sensor. Such a trust value would
be generated by the system and would show how trustful sensors were at in-
sertion. An additional example of a trust system would be a system based on
a web of trust. This would allow everyone to sign sensors they trust and other
users can choose based on this information if they also trust a sensor.

1.4 Objectives

The goal of this thesis is to find a set of technologies thatmight be able to solve
the requirements of the sensor directory. To do this the requirements from this
chapter are extended with additional requirements which are concluded from
the analysis of the threat model. But already in the basic requirements of this
chapter, some problems arise, one of those problems which will be tackled by
future work is the immutability combined with the storage capacity. Because
the storage should be immutable it would increase indefinitely, this means it
might be needed for the system to forget data after some timewhile still main-
taining the trust and all other requirements. Different technologies are then
analyzed using the requirements and the threat model. To allow for such a
comparison the different requirements get assigned an importance factor. By
doing this in the end a set of technologies should be foundwhich are best suited
out of the technologies analyzed to implement the sensor directory. Also, parts
of the technologies should be found that could be beneficial to the system and

1 Introduction 5

could therefore bemigrated into other technologies to increase those to better
fit the needs of the sensor directory.

1.5 Outline

In the next chapter, the threat model of the sensor directory is analyzed. This
raises additional requirements which are later used to find a suitable technol-
ogy. After the threatmodel is analyzed some background information is given,
which is used later by several technologies. Afterward, the potential technolo-
gies are explained and it is shown how they could be employed to implement
the sensor directory. It is also shown for each technology which requirements
can be solved and which are not solved. After explaining every technology they
are comparedwith each other by selected figures. Last but not least, an outlook
is given for the sensor directory.

Chapter 2

Threat Model

2.1 System

As already explained, the sensor directory is a system that is used to store a list
of sensors. Those sensors are provided by anyone by sending them to the sen-
sor directory. The sensor directory then adds the sensor to the storage in an
immutable way, this implies the integrity of the data is essential. Everybody
should be able to query a location from the sensor directory and the sensor
directory is expected to answer with a full set of sensors fulfilling the query.
This means confidentiality is not important because everyone can get data. A
full set of sensors means each sensor satisfying the request and stored in the
directory is part of the response set. This should be verifiable. It should also
be confirmable, all sensors in the response are actually stored in the directory.
Depending on the technology the sensors are stored on one or multiple nodes.
It also depends on the technology in which data is included in communication
and how often this is the case. This means if there is only one node the sen-
sors are only communicated with these directories and are only sent from the
directory as part of a response set. If there are many nodes these nodes might
communicate with each other and exchange sensor information. This means
the location of the data can be as follows:

on the node,

in transmission to a node,

in a set in transmission from the directory to the requester,

at the requester (most likely PIA).

The sensors can be provided by:

anyone.

The sensors can be queried by:

anyone.

2.2 Attack Vectors

Obviously, as for each system, also the sensor directory has several attack vec-
tors, which are discussed in the next subsections.

2.2.1 Denial of Service

Denial of Service (DoS) is not one single threat, it is more a combination of
many different threats whichmake a service unavailable. Most of the time this

6

2 Threat Model 7

attack is performed by exhausting all resources a system has available and
therefore paralyzing the system, so it is no longer able to respond to legitimate
requests. Inmany cases, this is donebydraining thenetwork capabilities or de-
stroying the network in another way [73, 101]. Similarly to this, it is also possi-
ble to exhaust the storage capabilities or the computational resources. But the
term is also met if an attacker can generate a hardware failure, use a software
bug, exhaust any other recourse than the network capability, or use any envi-
ronmental condition [63, 73, 101]. Such an attack can lead to legitimate packets
or requests being lost because the service is occupied by the DoS [73]. If a DoS
hits the system the service is not accessible anymore, which means the func-
tions of the systemmight notwork for the duration of the attack. For the sensor
directory, this means it might not be possible to request sensor information or
to add new sensors to the directory.

By Adding Sensors

In addition to commonDoS attacks the sensor directory suffers from the threat
of DoS by someone adding a lot of sensors. It is hard to prevent such attempts
because adding sensors is a legitimate use of the system. Because everyone
should be able to set up sensors and add them to the directory it is not pos-
sible to distinguish between someone buying some sensors and adding them
at once or pretending to do so and therefore performing an attack. If adding a
new sensor requires a lot of resources on the side of the sensor directory, this
means adding many sensors even increases the load on the sensor directory.
Such a situation might also lead to a lot of network traffic if the sensor direc-
tory consists of lots of nodes or a lot of CPU power consumed if there is a lot of
calculation required to add sensors. If this attack hits the system, the conse-
quence would be the same as if a normal DoS attack hits the system. The sys-
tem might not be able to add new sensors or answer queries for the duration
of the attack. This attack might be even more problematic because afterward
lots of potentially useless sensors are stored in the directory occupying storage
resources.

By Requests

Another possibility to attack the sensor directory is to request sensors until
the system cannot handle the requests anymore. This attack is similar to the
generic DoS attack on the network layer. The impact highly depends on the
work required to respond to one request. If lots of calculation is required to
respond to a request this might exhaust the whole computational power and
therefore make the sensor directory unable to respond. If this attack succeeds
the impact on the sensor directorywould be the sameas in the standardDoS at-
tack, the sensor directorywould not be able to add additional sensors or answer
queries while the attack is running.

2.2.2 Network Sniffing

For attackers who are able to read network communication, it is possible to re-
ceive additional information depending on which part of the communication
the attacker is able to sniff. The attacker can position the sniffing tool at the
sensor directory or the PIA. This sniffing toolmight be an actual hardware tool
or it might be a software application installed on a device.

2 Threat Model 8

At the Sensor Directory

If the attacker’s sniffing tool is located in the network of the sensor directory,
the attacker is able to read how often a sensor is requested or how often a spe-
cific sensor is requested. The attacker might also receive each sensor added to
the sensor directory or be able to sniff parts of the consensus protocol if such a
protocol is required. Finally, the attacker might also be able to generate a fin-
gerprint for PIAs and identify them which is explained in section 2.2.3. An at-
tacker could gain some insight into the system and also gain knowledge about
the importance of several sensors this way.

At the PIA

If attackers can position their sniffing tool in away they receive the samepack-
ets the PIA receives, the attackermight be able to knowwhich requests the PIA
is sending, and also what the set of sensors in the response looks like. This
might allow the attacker to locate the user the PIA is responsible for. The at-
tacker might also be able to sniff on the verification step and gain knowledge
about the permissions of the user.

At Both Ends

If an attacker can read both ends of the communication, in addition to the
information from every single location, the attacker may be able to link the
outgoing and incoming messages. This means the attacker can identify which
packets are from this specific PIA and alsowhich sensors the PIA requests. This
means the attacker is able to detect where the individual the PIA is responsible
for moves roughly and it is also possible to identify the PIAs packets. It might
also be possible for the attacker to further identify the PIA by analyzing a pat-
tern.

2.2.3 Fingerprinting

Fingerprinting is an approach that allows the identification of a client. To do
this the attacker collects as much information as possible. This information
might range from hardware information to details about the operating system
as well as it might include information about the used software to perform the
request [62]. The information collectedmay vary depending on the application
[45]. This information can be seen as the fingerprint of a device. If enough in-
formation can be collected these fingerprints are unique for most devices and
can be used to identify the device [62]. This might allow for the sensor direc-
tory to discover different PIAs. In this case, the PIAs might not be anonymous
anymore, and it might be possible to predict actions in a deterministic way.

2.2.4 Target Discovery

It would be possible to use the sensor directory to search for targets and attack
them. To do this and receive potential victims an attacker only has to follow the
normal use case of the directory and request sensors. If no vulnerable target is
found within the response set, the attacker can repeat this attack by retrying
their request using new data until a potential target is found. If the attacker

2 Threat Model 9

is able to receive some sensors that are vulnerable to some known attacks, the
attackerhas an easy shot. It is also possible for an attacker to receive further in-
formation about the vulnerabilities of a sensor from the description field of the
sensor. This attack is quite easy to perform if a user is able to request special at-
tributes from the directory. An example would be if attackers are able to search
for specificmodels of sensors or software versions with known vulnerabilities.
When these conditions are met it is easy for attackers to search and find their
targets. If this attack is not mitigated many sensors might be attacked if they
showany formof vulnerability. Thismeans if this attack vector is notmitigated
the threat for sensors increases.However, the security of sensors is out of scope
for this thesis. If lots of sensors are attacked the number of malicious sensors
in the system rises. Because each sensor could be attacked by new attacks, sen-
sors that are originally trustworthymight getmalicious. As a consequence, the
trust system would lose its purpose. This leads to a situation where no sensor
can be trusted and the whole system is not usable anymore.

2.2.5 Data Collection

The sensor directory can be used by an attacker to collect information and use
this information in another attack. This is the case because everyone can re-
quest andanalyze the systemandcan try togain information.Anexample could
be, if the location of a company is known, it is possible to query the sensor di-
rectory for this location and get some of their used addresses by analyzing the
sensors in the response set. This also means it might be possible to gain in-
formation on which companies are using Digidow and also howmany sensors
are used by which company. If additionally the structural building is known it
may also be possible to identify exactly which sensor is used for what. For fur-
ther information also the type of sensor can be taken into consideration, this
means for example a fingerprint sensor next to a door might be used to unlock
this specific door. It is also possible to gain information about the usage in a
specific area by analyzing the density of the sensors in an area. Theremight be
muchmore information that canbeobtained fromthesensordirectory, but this
may depend on the use case. The threat here is to gain information about the
sensor providers other than only their sensors and their addresses. This might
be useful to plan further actions against someone or to analyze some behav-
ior. This could be perfectly expanded with social engineering to follow up with
some devastating attacks.

2.2.6 Malicious Sensor

Because it should be an option for everyone to set up a sensor and add it to the
sensor directory. This also allows an attacker to set up malicious sensors and
add them to the sensor directory. Such a sensor can be malicious in different
ways, possible examples are a sensor trying to identify the PIA of an individual
(section 2.2.16) or tracking people using sensors (section 2.2.15). But even if the
sensor isnotmalicious in suchadestructiveway, already theexistenceof sucha
sensor is a threat because network capacity, computational power, and storage
are used.

2.2.7 Compromised Sensors

It is possible for sensors to get compromised by an attacker or for an owner to
getmalicious anduse sensors to attackothermembersof the system.This leads

2 Threat Model 10

to a situation,where sensors thatmightpreviouslybe trustedbymanyusersget
malicious and attack other users. As already explained in other attack vectors
the existence of malicious sensors is a threat on its own, but those sensors are
also able to perform devastating attacks. It can also lead to trust issues where
no sensor is trusted and therefore, for the sensor directory to lose its purpose.

2.2.8 Compromised Sensor Directory

It might be possible for parts of the sensor directory or the whole system to get
compromised and be controlled by attackers. The impact might depend on the
technology andwhich part of the system is compromised. Itmight allow an at-
tacker to sniff communication (section 2.2.2), read, or even change data in the
sensor directory. If an attacker gains control over parts of the sensor directory
this allows them toperformseveral other attacks quite easily, examples of such
attacks are Fingerprinting (section 2.2.3), Target Discovery (section 2.2.4), or
Data Collection (section 2.2.5). If the systemconsists ofmultiple nodes it is im-
portant to knowwhich nodes are able to performwhich actions and the impact
it has, if they are compromised. The impact highly depends on the technology
used to implement the directory and which parts are compromised.

CompromisedMajority

For some technologies, it might be possible for everyone to set up a part of
the network. In many of those technologies, nodes do have equal power lev-
els which means a node already running for some time has the same power as
a newly created one. For those technologies in most cases, there is a crucial
number of nodes which has to be honest for the system to work properly, thus
it is not possible tomanipulate data as long this requirement ismet. If attackers
are able to control a big part of the system, attackers can control the systemand
add, modify, or delete data. If everyone is able to set up a part of the network,
theremight be the possibility of someone setting up asmany nodes as needed,
until the crucial number is reached and the attackers have control over the sys-
tem. If not everynodehas the samepermissions in the system this numbermay
change or it is never possible to reach such a situation. It may also be possible
to compromise nodes until the crucial number is reached and attackers con-
trol the system. If nodes do have different permissions in the system, then the
threat for nodes with more permissions to be compromised is higher because
the attackers might need them to compromise the sensor directory.

2.2.9 Data Integrity

If anattacker is able to changedata in the sensordirectory thiswould lead to in-
consistencies and would make the system untrustworthy. This would destroy
the purpose of the directory. Also, if this is not discovered, attackers are able
to manipulate response sets. For example, attackers could send sensors with a
specific address to everyone and create a DDoS attack because all of those PIAs
would connect to this address and register. Attackers would also have the pos-
sibility to send sensors they control to PIAs and gain information about those
PIAs this way. The providers of the sensor directory may also be malicious and
try to perform such actions. If this is possible, the sensor directory is not trust-
worthy, and the whole systemwould break down under this problem.

2 Threat Model 11

2.2.10 Manipulation of Data on theWire

If attackers can change packets sent or received by the sensor directory this al-
lows them tomanipulate sensor information or the correspondingmetadata in
the packet. This allows them for example to send sensors with a specific ad-
dress to PIAs and create situations where many PIAs are connecting to a spe-
cific address and creating a DDoS. Also, it would be a possibility for attackers
to get specific PIAs to connect to sensors controlled by them. This is not only
an option for attackers but also for the owners of the directory themselves. This
means the systemcould send data not included in the systemor datawhichwas
not requested. If this is possible the system is not trustworthy.

2.2.11 Data Validity

Because everyone should be able to add sensors into the directory, there is also
the potential for attackers to add wrong data into the sensor directory. Also,
every sensor should be allowed in the directory and therefore it is not possible
to identifywrongdata.This is also the case since every sensor shouldbeallowed
and therefore unknown information can potentially be valid. If it is possible for
attackers to add data without verification, each included piece of data uses up
some storage. Also, if attackers are able to do this without any cost they can use
this until there is no storage left and the sensor directory is not able to accept
valid requests anymore. This would lead to a DoS attack. The problem is, that
adding data to the directory is a normal use case, and everybody is expected
to do this. Therefore, it is very hard to identify wrong data. Some data might
be verifiable, an example is if the sensor is connected to the internet or if the
address is valid. Even if the address of the sensor is validated by connecting to
the sensor, the attackers are able towait until thishashappenedanddisconnect
the sensor afterward. This compromises the validation in the first place and
the wrong data is included in the directory anyway. An attacker only needs one
sensor or any device that pretends to be one to generate multiple wrong data
into the sensor directory.

2.2.12 Address Problems

Many threats arise from the address field of the sensors. Sensors should be
planned towork in theTornetwork, but if the address is aTor onion address, an
IPaddress, or anyotheraddress, shouldnotmakeanydifference for the threats.
Because everyone canadd sensors, it is possible somebodywho isnot theowner
of an address, could add a sensor with this address. Therefore it is important if
the address field in the sensor directory is unique or not.

Override Sensor

When a user adds a new sensor to the directory, there is the possibility of the
address being taken by an already existing sensor. If this happens, there are
multiple ways the directory could react, on one hand, it is possible to drop the
already included sensor and replace it with the new one. This approach comes
with a lot of problems because everyone could try to drop legit sensors from the
directory, even if the user is not the owner of the sensor. This would be catas-
trophic if everyone is able to drop sensors from anybody else. It would also be
possible to decline thenewly added sensor, but this could lead to thenext threat

2 Threat Model 12

where someone anticipates addresses. Last but not least, it is possible to allow
multiple sensorswith the same address, this would solve this threat, butwould
allow for different attacks.

Anticipate Address

If the address field is unique, it is possible to deny other users fromadding data
to the directory. This is the case if a new sensor is not allowed if an already
known, active sensor with the same address already exists. If this is the case,
attackers who know the address space of a victim can try to anticipate sensors
thatwill be added by the victim in the future. The attacker can add data to those
addresses before the victim can do so. Because an active sensor is included in
the directory the legit user would not be able to add sensors in their own ad-
dress space. If this attack is not mitigated and attackers are able to find out the
addresses of targets, the directory would be useless. This is due to the fact an
attacker could prevent legitimate users from using the sensor directory.

Same Address

If it is possible to add multiple sensors with the same address, this allows at-
tackers to add a huge amount of sensors with the same address into the sys-
tem. These newly added sensors can be used to attack any address and would
havedistinct locationsassigned in the sensordirectory.This leads tomanyPIAs
discovering them and trying to connect and register at this address. Because
those sensors all have the same address, all PIAs connect to the same address
and generate network traffic. The address used does not have to be of an ac-
tual sensor in the system, it rather has to be in the same address space used for
sensors in the sensor directory. PIAs receive the address in the sensor directory
and connect there regardless if it is an actual sensor or any other system. If an
attacker adds enough sensors, this leads to enough PIAs discovering them and
therefore connecting to the address, which leads to a distributed DoS (DDoS)
attack. Because those sensors are discovered by lots of PIAs over an extended
period such an attackmight persist for a long time. So, if this threat is notmit-
igated it is possible to deny the service of any sensor included in the directory.
This would mean attackers can prevent sensor providers they do not like from
participating in the system, which would destroy the purpose of the directory
and therefore make it useless. Even more so, if this threat is not mitigated it
could be used to attack any service using the same address space used by the
sensors, this means the sensor directory would be a threat to all other systems
in the same namespace.

2.2.13 Sensor Trust Problems

To prevent certain threats and unnecessary traffic a PIA might choose to con-
nect only to trusted sensors. Therefore information providing trust has to be
stored alongside sensors. This information couldbe a valuebetween0and 1 and
each PIA is expected to choose its own threshold for sensors the PIA is willing
to communicate with. There are different approaches for such a trust value to
be generated, the trust could change over time depending on votes from the
sensors users, it also be possible for the sensor directory to calculate this value.
Another approach would be users signing sensors and therefore showing they
trust a specific sensor. All options do have threats shown in the next sections.

2 Threat Model 13

Destroy Trust

If there is a trust value that can change over time, it is important to know who
can interact with this value and change it in anyway. This is important because
it might be the case that if the trust of a sensor is below a certain threshold
PIAs are no longer communicating with this sensor, this means, that if some-
one can change the trust value to any value, this person can exclude sensors
from getting used. This is a problem because valid participants of the system
are excluded from participating. So if there is a trust value that can be changed
it is important to know who is able to do so. Because PIAs are the only entity
communicating with sensors, only those PIAs can observe if a sensor is trust-
worthy or if it is not. This means only those PIAs could potentially change the
trust in a sensor. Due to the fact everyone is able to create a PIA and participate
in the systemand those PIAs are not interchangeablewith any real-life person,
it is also possible to create multiple PIAs if necessary. Additionally, because all
PIAs are anonymous, no one is responsible for the actions of a PIA. Thismeans
if a PIA actsmalicious, and gets punished for it, the owner can just drop this PIA
and create a new, fresh, unencumbered one. Due to the fact PIAs aremost likely
those changing the trust value of sensors but no one is responsible for their ac-
tions, anyone can change trust in anyway. Because everyone can create unlim-
ited PIAs it follows it is possible to change trust for any amount chosen. This
is the case because the weight of one vote no longer matters if someone is able
to vote indefinitely often. Even if one PIA can only influence the value slightly.
Thismeansmalicioususers canexcludeany sensor frombeing selectedbyPIAs.
But this also means if a malicious user has a malicious sensor, and this sensor
gets a bad reputation from other PIAs, the user can positively change the rep-
utation and make the whole trust system worthless. On the other hand, there
is the option of allowing changes of trust only if the voting device is identifi-
able or kept responsible. If this is the case additionally to who can change the
trust value also the weight of each vote is important. This means if the device
is identifiable and therefore not anonymous everyone can only create one in-
stance and use it to influence the trust once. The amount of change might be
influenced by the number of votes available for this sensor. However, because
those devices have to be known those devices cannot be PIAs because they are
anonymous.

Outdated Trust

It would be an option to create trust values when a sensor is included in the
sensor directory, this might take into account howmany sensors a user has or
if this user is known to perform any malicious actions. Maybe also the type of
sensor or the locationmight be important for such a trust system. But this also
means it is hard to set a trust value for new users who are not known yet. It
alsomeans sensors that are once included with a positive reputation cannot be
flaggedasmalicious afterward. This is also the case if the reputation is built like
aweb of trustwhere users sign the sensors they trust. If a sensor getsmalicious
afterwards the trust cannot be revoked unless specifically possible by the sys-
tem. Itmight also be possible for such signatures to be only valid for some time.
This situation where trust data is not up to date might also appear in several
other trust approaches if trust is not checked regularly. If this is the case this
means if anyone can set up or take over a sensor with a good reputation, this
sensor can take whatever malicious action they like because there is no pun-
ishment for it. If this is the case the whole reputation system itself would be
useless. This is because once a specific trust is reached there is no punishment,
and the sensors can performwhatever action they want to.

2 Threat Model 14

2.2.14 People Tracking (Sensor Directory)

If the sensor directory is able to link several requests to each other or a PIA,
the sensor directory is able to recreate the path a person took. It might also
be possible for the sensor directory to locate people if necessary. If the sensor
directory gets a request for location x and after some minutes for location y
which is in the same street or connected in any other way and it is possible to
identify these requests belong together, then it is possible to infer that a person
is going from point x to point y. Furthermore, if additional data is available it
might be possible to identify a PIA.

2.2.15 People Tracking (Sensors)

An attacker can use the sensor directory to track the movement of a crowd or
single people. This could be done by adding lots of sensors that are evenly dis-
tributed throughout themap. If there is a crowd of people the attackermight be
able to estimate howmany people are in a specific area, andwhere themajority
is located. If this analysis is done over time the attacker might also be able to
identify a direction inwhich the crowd ismoving if there is one. If attackers are
able to connect multiple requests, they are also able to analyze the movement
of single persons with this technique. If it is possible to follow one person it
is possible to identify the location, direction, and speed of this individual. This
could be done by reconstructing the registrations of the PIA at sensors. This at-
tack might at first not look as impactful as others, but attackers might be able
to gain a lot of knowledge from this. Maybe attackers want to gain knowledge
of a location, and when it is less crowded because they want to rob a bank. Or
they want to know when there are big crowds or how those crowds are mov-
ing for a terrorist attack. But also movement profiles of single people might be
interesting and can be recreated if the registrations can be linked. If it is pos-
sible to identify the person additionally, the way a specific person took can be
reconstructed. But this could also be used for educational purposes to identify
peak times at shopping centers or identify over time at which location people
are most crowded.

2.2.16 PIA Identification

Let’s say attackers want to attack a person they know, they know where they
are working or where they are living. The attackers could set up sensors in that
area and add them to the sensor directory. After some time, the PIA of the vic-
timsmight discover the sensors in the sensor directory and connect to it. If the
attackers have additional data, like the location of the victim by using other at-
tacks like social engineering, it is easy to identify the PIA of the victim. This is
the casebecause the time thePIA registers and the time theperson is around the
sensor can be compared. Now attackers knowwhich PIA is owned by the target
and can attack this PIA. An example of an easy attack would be to DoS the PIA
and thereforemakeDigidowuseless for the target. Thismeans thevictimmight
not be identifiable by any sensor because their PIA might not register there or
cannot identify them. While this attack is only possible with additional infor-
mation like the location of the target or their routine, the impact of this might
be catastrophic because highly valuable targets could be selected and attacked
easily. But also every other user who has enemies could get an easy target if
the attacker has enough information. It might be even easier if those people
are people of public interest, such as politicians or celebrities. This attack gets

2 Threat Model 15

evenworsewith the evolution of socialmedia where everyone constantly posts
information and therefore the PIA gets identified even easier.

2.2.17 Split Views

Thesensordirectory could showdifferent setsof sensors todifferentusers even
if those send the same query. This also means the sensor directory could not
send all data that would be valid by the request. Because one of the require-
ments for the data is to be immutable, this means if a PIA once receives data
this PIA has to obtain a modified version of this data each time. If the PIA re-
ceives another version, it can recognize these changes. This means it is only
possible to perform this attack if it can identify a PIA or group of PIAs. It also
means the sensordirectoryhas to storemultiple versionsof thedata, the sensor
directory has to store the data once for each split view. If the sensor directory is
able to perform such an attack it is possible for different users to receive differ-
ent response sets for the same request. This might prevent users from finding
some sensors even if those are available. Itmight also be possible for the sensor
directory to show additional sensors for certain users.

Accountability

It might be a possibility for sensor providers to add sensors to the sensor di-
rectory and the sensor directory only pretends to add the sensor. If the sensor
providers themselves request the data the correct sensors are shown, if it is any
other user this is not the case. This means the sensor directory might be able
not to add sensors to the directory.

2.3 Selected Attack Vectors

Because there aremany attack vectors and not each of them impacts the sensor
directory in the same way, only some of them are selected for further discus-
sion, and mitigations for those attack vectors are selected. The selected attack
vectors are the following:

DoS by adding sensors to the directory (2.2.1),

Fingerprinting (2.2.3),

Target discovery (2.2.4),

Data gathering (2.2.5),

Malicious sensors are set up (2.2.6),

Compromised sensors (2.2.7),

Data integrity (2.2.9),

Data validity (2.2.11),

Override sensor (2.2.12),

Preregister expected sensors (2.2.12),

Insert many sensors with the same address (2.2.12),

Destroy the reputation of sensors (2.2.13),

2 Threat Model 16

Reputation being outdated (2.2.13),

Data gathering (2.2.5),

People tracking (sensor directory) (2.2.14),

People tracking (sensors) (2.2.15),

Sensor directory shows different sets (2.2.17).

First of all, only those attack vectors directly concerning the sensor directory
are selected. Because a generic DoS attackmight hit each system, it is not spe-
cific to the sensor directory. On the other side, someone adding lots of sensors
is specific for the sensor directory and might add lots of data to the sensor di-
rectory, therefore this attack is part of the investigation. Because sending lots
of requests is not much different from the generic attack vector this attack is
not investigated further.

Someone who can bypass encryption, as well as install a network sniffer (soft-
ware or hardware) in any network, might be an insider and therefore has lots
of information. The information such a sniffing attack gains is the same in-
formation, the PIA and sensor directory have, which means such an attacker
could also use their privileges and attack those entities. Because there is no ad-
ditional information leaked and the commitment of such an attacker would be
huge this attack vector is ignored. The same holds if someone can manipulate
data on the wire. This user is again already in a position where each piece of
information is available to this attacker. Also, an attacker in such a position is
able to mimic any device in a network. This attacker can manipulate requests
or responses and therefore alreadypossesses all privileges. Such attackers have
to be repelled before they are in such a position and the sensor directory is not
able to do this. However, manipulating data on the wire should not be possible
if all messages from and to the sensor directory are signed.

Because the possibility of fingerprinting does enable lots of additional attack
vectors, this attack vector is selected to bemitigated. Also, target discovery and
data collection are selected. This is the case since for those attacks the sensor
directory is used. Also, those attacks can only bemitigated by the sensor direc-
tory and if this is not done other attacks might be possible. Also, data integrity
is one of the core requirements of the system, this means if someone tries to
change data this has to be mitigated.

If the sensor directory includes lots of malicious sensors, it is useless. This
means malicious sensors that are created and sensors being compromised are
attack vectors that have to be mitigated. This is especially important because
suchmalicious orwrongdata requires lots of disk space. Thismeans alsowrong
anduseless data shouldbepreventedas successfully aspossible. Afield that can
beverifiedandalso creates lotsofproblems is theaddressfield.Also, the impact
of those attack vectors is enormous and therefore all of those attack vectors are
selected to be mitigated.

However everyone should be able to add an arbitrary number of sensors to the
directory, however those sensors could be used to analyze the location of peo-
ple. While this is generally an attack regarding Digidow and not the sensor di-
rectory it is still selected to bemitigated. A quite different attack is if the sensor
directory is able to track a person, this is an attack done by the sensor directory
which is the reasonwhy it has to bemitigated. Also identifying a PIA and creat-
ing a link to a person is a threat regardingDigidowandnot the sensor directory,
but because the sensor directory is not involved in this attack, it is not selected.

Taking over parts of the systemand compromising it is an option for every sys-
tem because this is highly dependent on the chosen technology. Those tech-

2 Threat Model 17

nologies have tomitigate this attack somehow due to the fact every systemus-
ing this technology suffers from such an attack vector, therefore this attack
vector is not chosen. Also if an attacker is powerful enough to perform such an
attack it is not possible to mitigate it.

Because there might be a trust system needed and tampering with the trust in
sensors might have a huge impact, attack vectors regarding trust are selected.
Last but not least, if the sensor directory can show different views to different
users this wouldmean no response could be trusted and the sensor directory is
useless. For this reason, this attack has to be mitigated.

2.4 Attack Vector Mitigation

In the next sectionsmitigations for the selected attack vectors from section 2.3
are explained and rated in different categories. Each attack vectormitigation is
rated on the following categories:

1. Effectiveness

2. Impact on functionality

3. Impact on usability

4. Impact on performance

5. Implementation complexity

Effectiveness will be rated as low, moderate, or high and shows how effective
thismitigation is. Impact on functionality, usability, and performancewill also
range from low to high. But if the impact is high this is bad while it is good
for the effectiveness to get a high value. Impact on functionality describes if
the functionality of the sensor directory would be decreased by themitigation.
Impact on usability describes howmuch the user experience is impacted by the
mitigation. Impact on performance describes how much the performance de-
creases,most of the time this also describeshowmuch spending increases. Im-
plementation complexity describes how hard it is to implement themitigation
and is also rated as low, moderate, or high.

2.4.1 Transaction Cost

This attack vector mitigation is able to mitigate:

DoS by adding sensors (2.2.1),

Malicious sensor (2.2.6),

Same address (2.2.12),

People tracking (sensors) (2.2.15)

Attackers are only able to send a lot of new sensors because they do not have
any costs to do so. If there is some cost to adding data into the system this does
increase security because it makes it harder for attackers to add data, however,
it is always an option for attackers to solve such a problem by throwingmoney
on the problem. In several distributed ledger technologies this threat is tackled
by adding real costs in the form of crypto coins to transactions. However such
costs are only viable for cryptocurrencies.

2 Threat Model 18

Another option used by distributed ledgers is by adding a nonce field to each
transaction. This field is used to solve a proof of work (PoW) condition. Proof
of work means the transaction is hashed with a hash algorithm and a spe-
cific number of leading characters have to be zeros, because the hash cannot
be guessed it is a computationally difficult task and can only be solved by trial
and error by changing the nonce of the transaction [65]. This PoW can bemade
quite easy just to add costs to transactions. While a blockchain using PoW as a
consent algorithm must have a hard cryptographic puzzle, for this use case it
is sufficient if only a few of the leading characters have to be 0 [65]. See sec-
tion 3.2.3 for more information on PoW.

This means when a sensor is added, the sensor directory has to check the PoW
first, which should be easy because only one hash function has to be calculated.
This should be done first so it cannot be used by attackers to DoS the system
because there is no computational power left in the system. This mitigation
method is only moderately effective because if an attacker has enough com-
putational power attacks can still be performed [65]. The impact on the func-
tionality is not very high, this is the case because the PoW is quite easy to solve
and therefore fast [65]. The usability is not restricted by this mitigation be-
cause valid users only have to calculate an easy PoW value. From the point of
view of one device the performance is only impacted moderately, this is the
casebecause suchaPoWisquite easy andcanbe solvedbyan IoTdevicewithout
any issue [65]. The sensor directory only has to solve one hash so the perfor-
mance is not limited on this side as well [65]. The actual effectiveness of such
anapproach for this applicationhas to be testeddue to the expected asymmetry
in calculation power between an actual user and potential attackers. However
such tests are part of futurework because themitigation techniques are not yet
finalized.

Effectiveness: moderate

Impact on functionality: low

Impact on usability: low

Impact on performance: moderate

Implementation complexity: moderate

2.4.2 Sensor Verification

This attack vector mitigation is able to mitigate:

Malicious sensor (2.2.6),

Override sensor (2.2.12),

Anticipate address (2.2.12),

Same address (2.2.12)

Itmight beneeded to verify entries before they are included in the sensor direc-
tory. The data that is verifiable is the address of a sensor, the connection sta-
tus, and the signature of each sensor. The location of a sensor and the sensor
descriptor cannot be validated. Depending on the address used it can be val-
idated by different approaches or challenges. First of all, it is possible for the
users to receive a token that they are expected to provide on the address, by
doing so they verify, they do have control over the address [35]. Because Tor
addresses are public keys it is possible to verify the user is the owner of the ad-
dress by verifying the owner holds the private key. Doing so is possible by pro-
viding a self-signed TLS certificate containing the received challenge on the

2 Threat Model 19

address [86, 99]. This proves the user holds the private key and therefore is the
owner of the address. The connection status can be checked by connecting to
the sensor and checking if the response is valid. It is important which device
performs this check, if many devices are performing this simultaneously this
may lead to a DoS. Verifying these values uses some computational power, this
means ifmanysensorshave tobevalidated ina shortperiodof time this addsup
and takes much computational power and therefore potentially leads to a DoS.
Thismeans the impact on the performancemight be high. The complexitymay
depend on the verification methods used, the signature may be verified quite
easily. The connection status can also be checked easily by connecting to the
device. How easy it is to check the address highly depends on the address space
used. The implementation complexity is low. This is the case because connect-
ing to addresses and validating signatures is easy. It might be possible for an
attacker to create a sensor or a device that pretends to be one and add it to
the directory. After the device is accepted the attacker may choose to disable
this device. This may add wrong data into the sensor directory while requir-
ing a quite high cost for the attacker. This is the case because the attacker is
required to own the address for each sensor added. If the data is verified the
attacks above are not possible or are very hard, which means the mitigation is
quite effective and is assigned high as a value.

Effectiveness: high

Impact on functionality: low

Impact on usability: low

Impact on performance: high

Implementation complexity: low

2.4.3 Notaries

This attack vector mitigation is able to mitigate:

Malicious sensor (2.2.6),

Override sensor (2.2.12),

Anticipate address (2.2.12),

Same address (2.2.12)

There is the option to require one or multiple signatures of known entities,
called notaries before a sensor is added to the sensor directory. These notaries
could be expected to verify the data included in the data set before signing it
[12, 64, 95]. This means the Notaries could verify the connection and address
field of the sensor before signing. The sensor directory would know this data
is already checked by checking if a signature is available. In general, notaries
are checking the data before it is included in the sensor directory. Users have to
trust those notaries because they are known and responsible for their actions
[64, 95]. Notaries validating data is very efficient while mitigating the attack
vectors above [64, 95]. This is the case because only verified sensors are able to
end up in the sensor directory. Even if a sensor ends up in the sensor directory
byusingamaliciousnotary,PIAswouldbeable toverify the signatureof trusted
notaries before they connect to those sensors and therefore know if the data is
trustworthy [64, 95]. The impact on usability is moderate, this is the case be-
cause everyone who wants to add data to the directory needs to reach out to a
notary for their signaturefirst [64,95]. This couldbemadeeasier if notaries are

2 Threat Model 20

part of the system and after they sign the data directly forward the data to the
sensor directory. The impact on the performance is low, the sensor directory
only has to check if a signature is available. Also, PIAsmight choose which no-
taries they trust. Theproblem is, in addition to the sensor directorynotaries are
requiredwho arewilling to participate and sign sensors. Those notaries have to
be trustworthy because they are known or because they are checked regularly.
The functionality is not impacted by this. This mitigation is quite hard to im-
plement because there are several newdevicesneededand thosehave their own
threatmodelwhichhas to be considered. Also, communication and verification
have to be considered. Because this is the case the implementation complexity
is high.

Effectiveness: high

Impact on functionality: low

Impact on usability: moderate

Impact on performance: low

Implementation complexity: high

2.4.4 Redundant Sensor Directories

This attack vector mitigation is able to mitigate:

DoS by adding sensors (2.2.1),

Fingerprinting (2.2.3),

People tracking (sensor directory) (2.2.14)

Multiple sensor directories can exist next to each other. This would decrease
the performance if someonewants to add sensors to all directories because this
has to be done multiple times. If this is not done, PIAs have to search in mul-
tiple sensor directories to get an absolute impression of the area around the
user, this means the performance is decreased for those adding sensors or for
those searching for sensors. Also, the usability decreases because no one is able
to know if all sensor directories are synchronized or if there are sensors only
available in some directories. Nevertheless, the effectiveness of thismitigation
might be very high because there is a redundant system. This allows for bet-
ter fail-safe and alsomakes it harder for the directory to gain knowledge about
users [60]. This is the case because PIAs might choose to distribute their re-
quests and therefore one directory only gets a subsection of information. For
example, if a directory is only used once every few hours it is hard to track a
person efficiently because there is just toomuch data missing. The complexity
of implementing multiple sensor directories should be low because the soft-
ware can just be started a second time. Of course, the hardware has to be set up
a second time to allow for redundant systems. Also, the redundant directories
should be run by different parties known not to collude, otherwise creating a
redundant system is worthless.

Effectiveness: high

Impact on functionality: low

Impact on usability: moderate

Impact on performance: moderate

Implementation complexity: low

2 Threat Model 21

2.4.5 Cache Sensors

This attack vector mitigation is able to mitigate:

DoS by adding sensors (2.2.1),

Fingerprinting (2.2.3),

People tracking (sensor directory) (2.2.14),

People tracking (sensors) (2.2.15)

PIAs should be able to cache sensors they are using regularly or were using
shortly. This not only relieves the sensor directory from stress but also makes
PIAsmore independent from the sensor directory [8, 69]. This increased inde-
pendence may lead to a situation where an affected sensor directory does not
impact PIAs in the same way it would if the PIAs fully rely on the sensor di-
rectory [8, 69]. This situation allows for a lower impact of a DoS attack on the
sensor directory [8, 69]. If PIAs do not have to request each sensor every time
it also makes it much harder to create a fingerprint for those PIAs. The same is
applicable if the sensor directory tries to track a specific user. If the PIA does
not have to request as often this means the sensor directory has to work with
incomplete data. Of course, fingerprinting and locating persons is still an op-
tion but it gets much harder, which means the effectiveness is only moderate
and highly depends on the update times chosen. If the sensor directory goes
down for any reason, this also allows the PIA only to use the cached sensors.
The performance of the system will not decrease, it is more likely to increase
because of caching, due to the fact some communication is no longer needed.
The impact on usability is low. The impact on functionality highly depends on
the update times chosen for the cache. If the refresh times are chosen low the
effectiveness of this countermeasure is much lower. If the time to live is cho-
sen high it is possible for PIAs to rely on deprecated data. However, it can be
assumed that sensors not to be updated each day and therefore the impact on
functionality is moderate. Due to the fact caching only means data is stored on
the device the complexity of implementation is low. PIAs only have to store ei-
ther the last response so they do not have to send a new query until the person
leaves the area, or they store themost used location so they are able to skip re-
questing those sensors. It might even be possible to cache entire parts of cities
and therefore go incognito for the sensor directory while inside this location.
PIAsmight only cache sensors they trust to decrease storage requirements be-
cause they would not use them anyway.

Effectiveness: moderate

Impact on functionality: moderate

Impact on usability: low

Impact on performance: low

Implementation complexity: low

2.4.6 Distributed Sensor Directory

This attack vector mitigation is able to mitigate:

Fingerprinting (2.2.3),

People tracking (sensor directory) (2.2.14),

Split views (2.2.17)

2 Threat Model 22

If the sensor directory consists of multiple nodes, it is possible for users to add
sensors at differentnodes andalso to request data at differentnodes. Thenodes
of the system have to be synchronized securely and should be controlled by
different parties. This is the case so one party does not accumulate too much
power. Those parties have to be most likely not to collude. Otherwise, there
is no gain from using a distributed approach. If those parties do not collude
they can only gain limited knowledge from the sensor directory because PIAs
only have to send data to one server which distributes the data further. An ex-
ample of such a structure would be a distributed ledger (section 3.2). Because
this requires parties known not to collude the effectiveness is only moderate.
The functionality is not impacted by this change and also the usability stays
the same. The performancemight be impacted because theremust bemultiple
endpoints that have to be synchronized, the impact depends on the number of
nodes and the chosen technology and may reach from low up to very high [15,
51, 91]. If there are multiple nodes that have to communicate with each other,
this may increase the impact and probability of a DoS by adding sensors (sec-
tion 2.2.1) [28]. Implementing such a system comes with rather high costs, a
consent algorithm is needed and also, all nodes need to know what they have
to do. Luckily most DLTs are frameworks and are already ready to use. If such
a system can be used it is easy to implement [59, 67].

Effectiveness: moderate

Impact on functionality: low

Impact on usability: low

Impact on performance: moderate

Implementation complexity: moderate

2.4.7 Onion Routing

This attack vector mitigation is able to mitigate:

Fingerprinting (2.2.3),

People tracking (sensor directory) (2.2.14),

Split views (2.2.17)

It is possible to use Tor to relay requests and responses. Because it is possible to
use different exit relayswhenusingTor and also other PIAswould use the same
relays, the data is diluted. Because this is the case and lots of data may use the
same exit relayfingerprinting ismuchharder [97, 98].While it becomesharder
it is still possible to identify a client by observing different patterns [97, 98].
However, doing so is quite hard when not in a laboratory environment [98].
Unless there is a perfect fingerprint and the device is therefore identified it is
much harder to link requests to one another and therefore track a specific per-
son. Also because it is required to identify a device to split the view for this de-
vice, because the same device needs to receive the same split view each time,
splitting views ismuchharder. This ismoderately effective because it increases
anonymity but fingerprinting is still possible [97, 98]. The functionality is not
impacted a lot, this is the case because the application doeswork the same. The
only difference is the packets have to be routed and encrypted differently. The
usability is also not impacted. The impact on the performance is alsomoderate
because each packet has to be sent through multiple relays. The complexity is
also moderate because the system already exists.

Effectiveness: moderate

2 Threat Model 23

Impact on functionality: low

Impact on usability: low

Impact on performance: moderate

Implementation complexity: moderate

2.4.8 Pruned Sets and Queries

This attack vector mitigation is able to mitigate:

Target discovery (2.2.4),

Data collection (2.2.5)

It should not be allowed to query an arbitrary amount of data, there should
rather be several limitations to stop attackers from accumulating lots of infor-
mation [44, 70]. This means for example the radius should not be selected by
the query, it should rather be static or depend on the density of sensors in that
area. This should not limit legitimate PIAs but it would automatically require
attackers to spend more resources because they would have to query multiple
times. The query should only allow searching for connected sensors in an area
and not for anything else like a description. In addition, it relieves the server
because automatically fewer data is included in the response set [37, 56]. The
response set should also have a limit so it is harder to find information in the
sensor directory or use the response to attack it [44, 100]. If the response set is
huge this could be used by an attacker to create a DoS attack [100]. An example
of such a limitation could be for such a set to include a maximum of 100 sen-
sors. This leads to an effectiveness of low against the attack vectors. This is the
case because attackers easily can sendmultiple requests and avoid thismitiga-
tion [44]. It also impacts the functionality and usability of the system, this is
the case because it may force users to request multiple times. The complexity
of implementing this should not be too hard because the response set has only
to be filtered not to be too long.

Effectiveness: low

Impact on functionality: moderate

Impact on usability: moderate

Impact on performance: low

Implementation complexity: low

2.4.9 Validators

This attack vector mitigation is able to mitigate:

Compromised sensors (2.2.7),

Data validity (2.2.11),

Destroyed trust (2.2.13),

Outdated trust (2.2.13),

Split views (2.2.17)

2 Threat Model 24

It would be a possibility to add validators to the system whose purpose would
be to vote on the reputation of sensors. Those validators would be extra de-
vices that are not anonymous so they can be held accountable if they act mali-
ciously. Everyone should be able to set up exactly one validator, but theremust
be at least a minimum number of them, so some known big players would be
expected to run such validators. Each vote should be documented in a chain
of votes so it can be traced who voted for which changes. This also means if
a validator is marked as malicious it would be possible to drop their votes or
stop them from further voting. One problem is, if a new sensor is added those
sensors do not have a trust assessment yet. A solution to this problem is, that
PIAs could not use such sensors until validators voted on their trust. Valida-
tors should also be used to share their point of view so PIAs are able to compare
theirs with those of the validators [51, 71]. In addition, validators should com-
pare their views with each other to prevent the sensor directory from splitting
views [51, 71]. This would be easy to implement if the data set used is a merkle
tree, this is due to the fact it is sufficient to compare the roots of those trees to
see if they match (see section 3.5).

The effectiveness of this approach ismoderate because the sensors do not have
any trust at the start. It may also be hard to estimate how long it takes until
sensors are validated by those validators. An additional problem is, that those
validators are extra devices with a new threat model. Also, it could be possible
for such a validator to be compromised by an attacker therefore rendering the
system useless. This is the case because the attacker may use the reputation of
the validator to establish their own sensors [46]. This means the effectiveness
is moderate. The functionality is not impacted a lot. The performance is also
not decreased unless it is very hard to validate those sensors. The usabilitymay
suffer because sensors are not usable from the start. Also, the implementation
complexity may be high because there are extra devices needed that have to be
developed and their own threats have to be considered.

Effectiveness: moderate

Impact on functionality: low

Impact on usability: moderate

Impact on performance: low

Implementation complexity: high

2.4.10 Immutable Data

This attack vector mitigation is able to mitigate:

Data integrity (2.2.9)

The data structure the sensor directory is using should be one that does not
allow any data changes. This may decrease the performance but it shouldmit-
igate the threat of someone changing data [65]. Data structures that could be
used are merkle trees, blockchains, or similar technologies. This is very effec-
tive and has a low impact on functionality and usability [65].

Effectiveness: high

Impact on functionality: low

Impact on usability: low

Impact on performance: moderate

Implementation complexity: low

2 Threat Model 25

2.4.11 Owner Changeable Data

This attack vector mitigation is able to mitigate:

Data integrity (2.2.9),

Anticipate address (2.2.12),

Override sensor (2.2.12),

Data validity (2.2.11),

Same address (2.2.12)

If a sensor is already included in the directory, it should only be possible for the
owner of the sensor to change the data. This means it should only be possible
to change data if users provide proof they own the sensor. PIAs are expected to
check the signaturebeforeusinganysensors. This is the case so they canbesure
the sensor is valid. However, verifying a signature is only possible for known
sensor providers due to the fact the public key is required. If the key is available
PIAs may verify if the data was changed and if so if always the same key was
used. This means the creator of the sensor is always the owner and only the
key used in the initial creation is allowed to change it. Because only the owner
can change data, the integrity is ensured. Also once an address is included and
the ownership of this address is verified, no attacks using the address field are
possible. Checking the ownership and signatures may take some time, this is
the reason for the performance to be only moderate. Users are not impacted
when they act honestly and therefore functionality as well as usability is not
impacted. The effectiveness is very high if this is enforced.

Effectiveness: high

Impact on functionality: low

Impact on usability: low

Impact on performance: moderate

Implementation complexity: low

2.5 Threat Model Analysis

In this section themitigations are compared with each other, therefore the ef-
fectiveness and the impact on each part are represented by a number. For each
attack mitigation in section 2.4, the numbers for the impact are summed up to
get a final total impact value. If this number is high the functionality, usability,
and performance are impacted only a little while the implementation should
be easy. If the number is low the impact on functionality, usability, and per-
formance is high, and implementing this mitigation should be hard. It is im-
portant to understand that those numbers are only approximations and cannot
be verified yet. To verify those numbers further testing is needed which will be
part of future work. For this reason, the impact values are substituted with the
following numbers:

Negative implication of high = 1

Negative implication of moderate = 2

Negative implication of low = 3

2 Threat Model 26

Table 2.1: Attack vector mitigation classification

AttackMitigation Imp. on Func. Imp. on Usa. Imp. on Perf. Impl. comp. Total
Transaction Cost 3 3 2 2 10
Sensor Verification 3 3 1 3 10
Notaries 1 2 3 1 7
Redundant Sensor Directories 3 2 2 3 10
PIA Cache Sensors 2 3 3 3 11
Distributed Sensor Directory 3 3 2 2 10
Onion Routing 3 2 3 2 10
Pruned Sets and Queries 2 2 3 3 10
Validators 3 2 3 1 10
Immutable Data 3 3 2 3 11
Owner Changeable Data 3 3 2 3 11

Also how easily a mitigation can be implemented has to be represented by a
number. Therefore an implementation complexity of low is represented by 3,
moderate is represented by 2, and high is represented by 1. For each attack vec-
tor mitigated by a strategy, the total impact value is multiplied by the effec-
tiveness to reach a final score. Different mitigation strategies are comparable
by this score for each attack vector afterward. To allow for such a calculation
each effectiveness has to be assigned a number, those numbers are as follows:

No security control effectiveness = 0

Security control effectiveness of low = 1

Security control effectiveness of moderate = 2

Security control effectiveness of high = 3

Alsoheredifferentmitigation strategieswould effect different attack vectors in
different ways. Therefore this number is only a simplified representation and
has to be tested further inhind side by futurework. SeeTable 2.1 for anoverview
of all attack mitigation strategies and their impact values as well as their total
impact value. See Table 2.2 for an overview of which mitigation technique is
how effective for which attack vector. Finally in Table 2.3 the effectiveness and
impact are multiplied for each attack vector for a final score. This score rep-
resents how effective a mitigation is, its impact, and how hard it is to imple-
ment. If the number is high, the costs are low and the mitigation is very effec-
tive against those attack vectors. It also shows which mitigations are required
to counteract the selected attack vectors.

2.6 Requirements

In section 1.2, some requirements for the sensor directory are already men-
tioned. Those are still valid and should be met by the final implementation of
the sensor directory. The requirements mentioned earlier were:

Anonymity of all users,

Queriability of the sensor directory,

Equality for everyone,

Immutability,

Verifiability,

2 Threat Model 27

Table 2.2: Effectiveness of the attack vector mitigations

AttackMitigation Mitigation Effectiveness per Attack Vector

2.2.1

2.2.3

2.2.4

2.2.6

2.2.7

2.2.9

2.2.11

2.2.12

2.2.12

2.2.12

2.2.13

2.2.13

2.2.5

2.2.14

2.2.15

2.2.17

Transaction Costs 2 2 2 2
Sensor Verification 3 3 3 3
Notaries 3 3 3 3
Redundant Sensor Directory 3 3 3 3
PIA Cache Sensors 2 2 2 2
Distributed Sensor Directory 2 2 2
Onion Routing 2 2 3
Pruned Sets and Queries 1 1
Validators 2 2 2 2 2
Immutable Data 3
Owner Changeable Data 3 3 3 3 3

Table 2.3: Effectiveness * impact per attack vector

AttackMitigation Total Impact
Mitigation Effectiveness per Attack Vector

2.2.1

2.2.3

2.2.4

2.2.6

2.2.7

2.2.9

2.2.11

2.2.12

2.2.12

2.2.12

2.2.13

2.2.13

2.2.5

2.2.14

2.2.15

2.2.17

Transaction Costs 10 20 20 20 20
Sensor Verification 10 30 30 30 30
Notaries 7 21 21 21 21
Redundant Sensor Directory 10 30 30 30 30
PIA Cache Sensors 11 22 22 22 22
Distributed Sensor Directory 11 20 20 20
Onion Routing 10 20 20 30
Pruned Sets and Queries 10 10 10
Validators 10 20 20 20 20 20
Immutable Data 11 33
Owner Changeable Data 11 33 33 33 33 33

Storage requirements,

Know whom to trust,

Trust system.

Additional requirements can be derived fromTable 2.3. This is the case because
it shows for each attack vector the most cost-effective mitigation. Because for
each attack vector, amitigation is required the following requirements have to
be fulfilled by the sensor directory as well:

Redundancy/distribution,

Queries as well as sets should be pruned,

Input validation,

Repeated validation,

Only the owner can change data,

PIAs cache sensor data.

The sensor directory should be created in a redundant or distributed way. If a
redundant approach is chosen, this allows the PIAs to be muchmore indepen-
dent of a single sensor directory. However this also simultaneously increases
the work required either to search all sensors in an area or to insert sensors.

2 Threat Model 28

This is the case because those steps have to be done atmultiple sensor directo-
ries. It might also be possible for sensors to be only available on certain sensor
directories or to search only specific directories. Another option, which is al-
most as efficient, is to choose a distributed technology holding the information
stored via several nodes. The reason it is a bit less effective is, that it is harder
to implement and more vulnerable to denial-of-service attacks, because such
attacks may multiply within the network due to the fact those nodes have to
communicatewith eachother. This requirement further improves the claim for
equality, because it is easy for users to check the data on another directory or
another node.

Queries and sets should follow certain rules. Thismeans it should not be possi-
ble to search for arbitrary data. Queries should be limited to defined attributes
of a sensor, like its location. That is important to increase the work for attack-
ers if they are searching for specific things. Also, the impact on legit users is not
very high. This means it should not be possible to search for specific sensors.
It should also not be possible to search for an arbitrarily huge radius. Similar
restrictions should apply to the response set coming from the sensor directory.
The response set should not be arbitrarily big, due to the fact this would al-
low attackers to gain a lot of knowledge. Huge response sets also increase net-
work traffic for legit users because sensors that arenot requiredhave to be sent.
Therefore, there should be anupper boundary of bytes or sensors returnedwith
each query.

Each sensor should be verified when inserted into the directory. This means
the data should be checked if it is valid and does not conflict with any other
sensor. This may result in a decrease in wrong sensor data, as well as prevent
malicious sensors. This job may also be part of an additional device called a
notary. Notariesmight be used to investigate sensors and sign them if they are
valid. If this is deployed in such a way, it could be possible to exclusively allow
signed sensors to the directory. It might also be possible to require multiple
signatures. Such an approach would also allow users to choose which notaries
they trust. If notaries areused theymayalsobepart of the trust systemrequired
in the base requirements.

Sensors should also be validated in a repeated fashion. Such a validation could
be done similarly to a notary by additional devices called validators. Those
could request the sensor directory and check if the sensors found are honest.
Those should be able to flag untrustworthy sensors or influence a trust value,
which can be checked by the PIAs afterward. Those validators should be known,
resulting in responsibility for their actions. This might also be part of a trust
system, as required in the base requirements.

Each piece of data should only be updated when initiated by the owner of
the data. No one else should be able to change the data. These requirements
may collide with some base requirements, like anonymity and immutability.
Anonymity may be guaranteed when the only thing needed to update a sensor
is the private key of a user. That way, the user is unknown, but the only user
able to update a sensor is the owner. It might also be an option to hold nu-
merous different keys, so it is impossible to trace which sensors belong to the
same user. Immutabilitymay also be violated. However, if data is immutable, it
might still be possible to add another data block to update a sensor. Also if only
the owner is able to change data, it might be an option to use a system that is
not immutable, as long it can be guaranteed only the owner can change data.
Therefore, data cannot be dropped by someone else.

While not a requirement for the sensor directory, PIAs caching sensors would
decrease the impact of some attack vectors. It would also decrease the relia-
bility of PIAs on the sensor directory and decreases the information available

2 Threat Model 29

for the sensor directory. It also increases anonymity, due to the fact that less
communication is required which is also a base requirement.

2.7 Comparison

For objectively comparing different technologies, it is important to rank attack
vectors as well as requirements. Also, a importance factor is assigned to each
attack vector and requirement to further allow for better comparison.

2.7.1 Attack Vectors

At first, it is important to figure out which attack vectors are most important
and therefore have to be mitigated. To better separate the attack vectors, they
will be clustered into three categories: critical, high, and low. These categories
represent the importance ofmitigating certain attacks. For a critical attack vec-
tor, it is important that a selected technology canmitigate this. If a technology
is not able to do so it will not be a top contender to build the sensor directory.
For the category high it should be expected for a technology to mitigate this
attack, but if a technology is not able to do so, it is not removed from the tech-
nologies that could be used to build the sensor directory. For an attack vector
of the category low, it is advantageous, but not mandatory for the technology
to mitigate the attack vector. Additionally to clustering all attack vectors into
categories they also get assigned a relevance factor. This is the case because,
for those technologies that could be used to implement the sensor directory, a
score is required to compare them. For this reason, each technology is assigned
a relevance factor for eachmitigated attack vector.

Category: Low

The first attack vector which is in the category low is someone adding wrong
data into the sensor directory. While wrong sensorsmay occupy resources, the
impact of the attack itself is only limited. This is also the case as to why this
attack vector is only assigned a relevance factor of 1. Also because the sensor
directory is expected to be a public log it is expected for everyone to find data.
This means everyone is not only expected, but required to find data, this also
means data gathering or target discovery is expected and therefore in the cat-
egory low. Because leaking data is part of the system, the relevance factor as-
signed for those attack vectors is also 1.

One of the requirements of the sensor directory is anonymity of the users, this
means it should not be able to identify a single user. If it is not possible to iden-
tify a user it is also not possible for the sensor directory to track a person. This
means the attack vector is categorized lowwhile the requirement anonymity is
very important. While this attack vector is not very important to mitigate it is
still more important than leaking data, therefore the relevance factor assigned
is 2. Similarly, sensors could track people. This however is an attack vector re-
garding the whole system and can and should not be mitigated by the sensor
directory. If users are anonymous within the whole system, this might not be
a problem as well. For this reason also for this attack vector, the category is
chosen as low. Because the impact is similar to the sensor directory tracking
someone also here the relevance factor is 2.

2 Threat Model 30

Because DoS by adding sensors is only a temporary attack, it is nice if a tech-
nology canmitigate this attack but it should not bemandatory. After some time
the costs of such an attackmaypile up and an attackermight not be able to sus-
tain such an attack. Also if PIAs cache sensors, the impact decreases evenmore.
Therefore DoS is added to the class low. Also, a relevance factor of 2 is assigned
due to the fact the attack is only temporary.

Category: High

The sensor directory requires a trust system to establish which sensors are
trustworthy and which are not. However, the trust system in itself also has
some attack vectors which could lead to sensors not being used at all. Because
this could lead to legitimate sensors not being used and therefore the trust sys-
tem being useless these attack vectors are assigned the category of high. This
is due to the fact that PIAs would ignore the trust value entirely to find all le-
gitimate sensors. Also, those attacksmight not be only temporary and severely
damage a sensor provider or its users and therefore the relevance factor as-
signed is 3.

If malicious sensors are in the system, PIAs are required to perform lots of un-
necessary work. This is the case because they discover those sensors and try to
register at them. By doing so PIAs also leak information to those sensors which
could be avoided if those sensors are not in the directory in the first place. All
attack vectors regarding malicious sensors are placed in the category high be-
cause of that. This concerns sensors being compromised as well as malicious
sensors being set up. Because thiswould impact PIAs aswell as the information
of their users these attack vectors are also assigned a slightly higher number of
4.

Category: Critical

Because it would break the purpose of the sensor directory if someone is able
to preregister sensors or add already existing sensors to the system, those at-
tack vectors are placed in the category critical. Due to its impact on the system,
the assigned relevance factor is 6 for those attack vectors. Also, anonymity is
a core requirement and would be broken by fingerprinting which means fin-
gerprinting has to be placed in the category critical. This is also the reason for
the relevance factor of 7. The same holds true for data integrity. Because the
sensor directory would be able to perform any action and to tamper with users,
showing different response sets to different users would break the system and
is alsoplaced in the category critical. The relevance factor assigned to this attack
vector is 7 as well. This is because, for all of those attacks, the sensor directory
would be useless. Last but not least inserting many sensors with the same ad-
dressmay be the attack vector with themost impact. This is the case because it
may not only shut down the sensor directory, any PIA or sensor of the system
but also every other system using the same namespace. Therefore this attack
vector is also assigned the highest relevance factor of 8.
The following gives an overview over all assigned relevance factors:

Critical:u 8 - Insert many sensors with the same address (2.2.12)u 7 - Splitting views (2.2.17)u 7 - Data integrity (2.2.9)

2 Threat Model 31

u 7 - Fingerprinting (2.2.3)u 6 - Override sensor (2.2.12)u 6 - Preregister expected sensors (2.2.12)

High:u 4 -Malicious sensors (2.2.6)u 4 - Compromised sensors (2.2.7)u 3 - Destroy trust of a sensor (2.2.13)u 3 - Outdated trust information (2.2.13)

Low:u 2 - DoS by adding sensors to the directory(2.2.1)u 2 - People tracking (sensor directory) (2.2.14)u 2 - People tracking (sensors) (2.2.15)u 1 - Data validity (2.2.11)u 1 - Target discovery (2.2.4)u 1 - Data collection (2.2.5)

2.7.2 Requirements

The requirements are split into three groups similar to the clustering of the
attack vectors, which correspondingly are: critical, high, and low. Critical re-
quirements are the core requirements of the system, which need to be fulfilled
by the technologies.Requirementswithhigh importance shouldbe fulfilled, but
technologies may solve problems in other ways. This means technologies are
not expected to fulfill those requirements. Requirements that are of mediocre
importance are assigned a low value. They are nice to have but not mandatory.
Additionally, similar to the attack vectors, each requirement gets a designated
relevance factor for a better comparison of the technologies. The outcome is
visible in the following list.

Critical:u 10 - Queriability of the sensor directoryu 9 - Equality for everyoneu 8 - Verifiabilityu 8 - Anonymity of all usersu 8 - Only the owner can change datau 7 - Redundancy/distribution

Low:u 6 - Storage requirements

High:u 4 - Repeated validationu 4 - Input validation

2 Threat Model 32

u 4 - Trust systemu 4 - Know whom to trust

Low:u 2 - Immutabilityu 1 - Prune setsu 1 - Prune queriesu 0 - PIAs cache sensor data

Category: Low

PIAs should cache sensors, however, this is not really a requirement for the
sensor directory itself, it rather is a requirement for PIAs. Therefore the cat-
egory is low and the relevance factor is 0. The storage requirement is left for
future work, because the storage may increase indefinitely for such a system
and therefore, cannot be solved in the first investigation. However, it will be
tracked for the technologies.

Requirements that get assigned the lowest value are prune sets and queries.
This is the case because the sensor directory is developed to be a public log.
Whenever queries and sets are pruned, an attacker might circumvent this by
just sending lots of requests. However, this still means higher costs for the at-
tacker, which contributes to security. For this reason, the relevance factor as-
signed to those requirements is 1.

While immutability is a requirementfirstdefined in thedefinitionof the system
and therefore was part of the core requirements, the immutability may not be
as strict as explained in the definition. The reason for immutability in the core
requirementswas to ensure no one couldmesswith the data, even if it is stored
separately from the creator. However, if only the creator is allowed to create
updates and it is ensured no one else has this authorization, true immutability
is not required. True immutability only makes it hard to store the data because
it grows indefinitely. While it may still be a form of immutability if only the
owner can changedata, this does allow for changes tohappen.True immutabil-
ity could still be a requirement, while it is not mandatory. If all data is kept, a
history of the data is always available which is a nice feature and therefore true
immutability is assigned to the group low. However, it still is more substantial
than pruning sets and queries and is, therefore assessedwith a relevance factor
of 2.

Category: High

If a system should be trustworthy, it is essential to know whom to trust. This
is the case, because, with enough resources and determination, every system
may get malicious. Therefore, it is crucial to know who has to turn against the
system, so the system getsmalicious. For this reason, this requirement has al-
ready been assigned a high importance value. Knowing who has to be trusted
so the system stays honest is more relevant than the requirements before and
therefore is given a relevance factor of 4. Knowing whom to trust is useful to
keep the system working. However, if the content of the system is malicious,
nothing is gained from that. Thismeans some kind of trust system should be in
place to check if the sensors are honest. Trusting the sensors has the same level
of importance as trusting the system and its providers. Therefore, it is placed

2 Threat Model 33

in the category high and is assigned a factor of 4. A trust system is useful, but
as already described, for its functionality, known entities are required to scan
the data. Those entities have to scan the data when sensors are inserted and it
is also required to scan the sensors in a repeated fashion. Because those steps
are part of the trust system, the same value is assigned.

FutureWork

Storage is generally part of future work, therefore only little effort is put into
solving any storage-related problems. This means the storage requirement is
assigned an importance of low. However, if some technology can solve stor-
age issues, it is designated a relevance factor of 6, because if this problem is
unsolved, the systemwill break after some time.

Category : Critical

The system should be runnable in a redundant way or a distributed fashion.
For this reason, the requirement is also in the critical importance group and
assigned a relevance factor of 7.

True immutability is assigned a rather low relevance factor because only the
owner of a sensor should be able to change the data and therefore create a light
version of immutability. This means the requirement of the owner exclusively
changing data is crucial. It is also given a high relevance factor of 8 because it is
slightly more important than running the system redundantly or distributed.

It is an important requirement of the sensor directory for all users to be anony-
mous. Anonymity is also critical, therefore a relevance factor of 8 is assigned.
Besides the data owner, the data itself should be verifiable too. This means it
should be verifiable that the data is indeed stored on the server, and fulfills the
query. Also, it should be verifiable that the whole set of sensors fulfilling the
query is contained in the response set. Therefore, the verifiability requirement
is also crucial and assigned a relevance of 8.

While the owner of the data might change the data, this should not violate the
requirement of equality. This means all users of the system should have the
same rights. Everyone should be able to create their own sensors and request
sensors from the sensor directory. Considering this ismore or less the core idea
of the system, it is critical and assigned a value of 9.

Because a systemwithout any possibility of interaction is useless, it is also re-
quired for the system to support queries. Whereas it should allow adding sen-
sors and queries to search within the data set. Since the system is worthless
without this functionality, this requirement is critical and assigned a relevance
factor of 10.

Chapter 3

Background

In the next few sections, the basic background is explained. These concepts are
later required to understand various technologies that are compared.

3.1 Byzantine Fault-Tolerance

To be byzantine fault-tolerant means to be able to solve the Byzantine gen-
eral’s problem. This problem, among other things, is explained next and is
taken from [104]. The byzantine general’s problem is named after a famous
problem of several generals sieging a city. No general is strong enough to con-
quer the city onhis own.Their only chance to succeed is if amajority of thegen-
erals attack thecity at the sametime.Toachieve thisgoal, thegenerals commu-
nicate by sending couriers. The problem is, they do not know if they can trust
the other generals. Additionally, generals can send wrong information or de-
liver variable pieces of information to different generals, which means a gen-
eral can be a traitor. Another difficulty is, the couriers could get caught or killed
by the besieged city, resulting in a loss of their messages. A distributed system
has to face a similar problem as those generals. Each node can be a potential
traitor sending wrong information, no information or packets can be lost on
the wire. Subsequently, it cannot be assumed for all messages to be valid.

One possible solution is, to create a central part that is trustworthy and can
overrule other nodes. Referring to the general’s problem it would be a general
ruling over the other generals and organizing their attacks. If the sensor direc-
tory is a distributed system, it needs to tackle this problemanda solutionmight
be needed.

3.2 Distributed Ledger Technologies

Distributed Ledger Technologies, or DLTs, are trusted ledgers that operate in
a distributed fashion. To do this they are global, append-only, immutable data
structures hosted by mutually untrusted participants [18]. There are twomain
approaches to this task, the first approach is a blockchain and the second one is
a directed acyclic graph (DAG) [18]. Before adding data to the ledger all partic-
ipants have to agree to the data [25]. This is done so one global truth is main-
tained across the whole system [25].

3.2.1 Smart Contracts

DLTs often allow smart contracts within the system. Smart contracts are code
pieces that get executed if a predefined condition ismet and therebymodify the

34

3 Background 35

ledger in a predefinedmanner [7, 17]. Smart contracts can bewritten in specific
programming languages, depending on the DLT used [6]. These smart con-
tracts can support legal contracts or similar structures. It could be an option to
pay taxes automatically or split earnings between partners automatically using
a smart contract.

3.2.2 Permission

DLTs can be built with different privacy goals in mind. Some DLTs are public,
whereas others are private. Interchangeable to public, one could use the terms
permissionless or open-access as well. Most DLTs get constructed to work ei-
ther inpublic orprivate states specifically, but somesupportbothoptions. Pub-
lic DLTs distinguish from private ones by allowing anyone to join and partici-
pate [104].Whereas private oneshave restrictions for certain parts of their net-
work, resulting in limitations on who is allowed to participate or read data [17,
104]. The consent algorithm used highly depends on the permission type sup-
ported. Because public ledgers allow everyone to join, it also allows everyone
to participate in the consent algorithm, because everyone can join and exit at
any time [104]. Furthermore, the number of users is always unknown and there
is no trust for the users. Therefore, consent algorithms for public blockchains
are neither very efficient nor fast [104]. Examples of such public consent al-
gorithms are PoW and PoS. For private DLTs, in contrast, users are known and
might have different roles. Besides, one could use by far much more efficient
consent algorithms [104].

3.2.3 Proof ofWork

Proof ofWork (PoW) is one of the first and best-developed consent algorithms
used by DLTs. The cryptocurrency Bitcoin together with 90%of all other cryp-
tocurrencies is usingPoWat themoment [42]. InPoW,users create and vote for
blocks by using their computational power by solving a problem. Those users
are called miners.

In Bitcoin, the problem that has to be solved is hash-based, which means the
miners have to find a nonce inside a new block of the blockchain so that the
hash of this block is below a specific threshold [42, 76]. If this nonce is found,
the node is allowed to create the new block [42]. Miners are motivated to do
so because they are compensated with cryptocurrencies if they are allowed to
create a block. When aminer finds the nonce and commits it to the blockchain,
all other nodes can check the nonce by validating the hash value [76]. Themost
important feature of PoW is, that it is hard to create, but very easy to verify
[42]. For example in this scenario validating a hash is easy while finding a cor-
rect nonce is pretty hard [42]. One problem of PoW is its speed. This is the case
because it is so challenging to create anewblock andall nodeshave towait until
any node has achieved this to add the next block. The difficulty of the problem
may vary and so does the time required. A solution to the speed of the system is,
to change the block sizes of the blocks [42]. Doing so allows to include of more
information in one block and therefore the speed of the blockchain increases.

Another very important problem PoW systems have is their power consump-
tion. This is the case because the problem which has to be solved is very hard
and there are so many nodes in parallel trying to solve the problem on their
own. However, when one node solves the puzzle and adds a new block to the
blockchain, the effort of all other nodes is worthless. The power consumption

3 Background 36

of all nodes from certain bigger known PoW systems accumulated is compara-
ble to those of some countries [13, 92].

There is also the possibility of several miners finishing their work nearly si-
multaneously, which leads to them all creating the next block. These blocks
fork the blockchain because both are for the moment valid [42]. This means
a second branch in the blockchain is created, this fork can include stale blocks
whichdonot enhance theblockchain further [42]. This is aproblembecause the
miners had to put work in themwhile not being rewarded for it, they also cre-
ate unnecessary network traffic and slow down the system [42]. Because both
blocks are valid, a solution for this problem is required. The next blocks created
are added to one of those chains until one chain is significantly longer than the
others and is the new valid chain [104]. The other forked blocks are dropped
under this condition [104].

3.2.4 Proof of Stake

Proof of Stake (PoS) is also a consent algorithm used in cryptocurrencies. PoS
was developed to solve problems PoW has. Instead of using a hard problem to
ensure security, PoS relies on the amount of cryptocurrency (coins) a user has
and their age. This means there is no need to do hard calculations and use a lot
of power [2, 41, 58, 104]. Because coins are needed for the consent algorithm
to work, this can only be used in a cryptocurrency. The security assumption
of PoS systems is, that users who have a lot of a cryptocurrency are more in-
vested in keeping the system running than other users [104]. Coinage works as
follows, if Alice gives coins to Bob, say she gives him 25 coins. And Bob holds
these coins for 10 days, Bob has a total of 250 coin-days which may be used to
influence the blockchain [58]. If Bob spends the 25 coins the coin-days get de-
stroyed [58]. Eachminer uses their coin days to build up a stake. In each round,
a semi-random function is used to find the miner creating the next block [2].
This semi-random function has to come up with the sameminer for all honest
nodes and depends on the stake every miner has [2, 104].

An important advantage of PoS over PoW, is its reduced risk of centralization
[20]. In PoW systems it is possible for some users to have so much computa-
tional power, that they nearly can guarantee to generate the next block [20].
But this does not mean PoS is free of such a problem. In the case of PoS, a user
can gathermany coins, and therefore the usermay influence the blockchain on
his behalf [20]. This opens an opportunity for those who have much money to
potentially get even more money by influencing the chain [104]. It is expected
for PoS to be less secure thanPoW[104]. As a possible solutionProof of Activity,
which combines both attempts, got constructed [104].

3.2.5 Delegated Proof of Stake

Delegated proof of Stake or DPoS is another possible solution to create the next
block using fewerminers. Similar to PoS DPoS allows to build a stake, themain
difference is inDPoS the nodes vote for a representative [104]. These represen-
tatives are selected according to the combined stake size of their voters and all
selected nodes work on the consent [104]. This decreases network capacity be-
cause only those nodes have to communicate,which also increases the speed of
the system. An advantage of this algorithm is, that if there is a dishonest user it
is possible to replace this user because the voters just have to vote for another
user to solve the problem [104].

3 Background 37

3.2.6 Proof of Activity

Proof of Activity uses a simple combination of PoWandPoS. At the start of each
round, eachminer tries to create a block header containing the previous block,
the miner’s address, the block number, and a nonce [20]. This header is part
of the PoW part of the system, which means that each miner tries to create a
nonce so they can solve the PoW. The difficulty of the PoW is lower than that
of a pure PoW system [20]. When the puzzle is solved the header is distributed
to all other nodes. Using the header, and the stacked coins of the miners, it is
possible to determinewho theN creators of this block should bewith a pseudo-
random function [20]. If a node receives a block, the node then checks if the
PoW is fulfilled by hashing the header and validating if the value is below the
threshold. If this is true, the node checks if it is one of the N stakeholders se-
lected. The first N-1 stakeholders have a look at the block header, and it. Then
they distribute the header and the signature further [20]. If the last of the N
nodes recognizes the header it creates a block containing all the transactions
at the moment known by the node [20]. The final block also includes the sig-
natures of all N-1 nodes that have singed the header before. Also, the last node
signs the whole block which is then added to the blockchain [20]. Afterward,
the node distributes the block to all other nodes in the network. If a node re-
ceives a block it verifies all conditions from above are fulfilled, then the block
is added to the blockchain [20].

The difficulty of the PoW highly depends on the number of nodes and the to-
tal hash power available at the specific point in time [20]. However, the diffi-
culty should always stay below that of a pure PoW system. While PoA is able to
counter problems of PoW as well as those of PoS, PoA does have its own prob-
lems. PoA’s bandwidth need is significantly higher than that of its direct coun-
terparts, while systems like Bitcoin create their block in one communication
round, systems depending on PoA need 2 rounds. In the first round, the stake-
holders are found and in the second round, the block is created.

3.2.7 Proof of Personhood

Proof of personhood (PoP) is a consensus algorithm designed to work in a per-
missionless environment [22, 87]. PoP requires two phases, the first phase is
called the setup phase. In this phase, everyone who wants to participate in the
second phase receives exactly one PoP token [22]. This PoP-tokens binds a
physical and virtual identity, whichmeans each person is only able to hold one
token [87]. Thismeans while everyone is anonymous they are still accountable
[22]. The next phase is called the minting phase. It starts with a minting pool
being formed [22]. Inside this minting pool, everyone with a PoP token is in-
cluded. Then a random selection is performed to select one token from the pool
[22, 87]. The related member is allowed to create the next block [22].

3.2.8 Proof of Authority

Proof of Authority (PoAuth) is a consensus algorithmdesigned towork in a pri-
vate environment [7]. Thismeans in such a system the actors are known. Some
of those known actors are selected to be authorities. Each authority is selected
as a leader for a specific period of time [7]. Whenever a node is selected to be
the next leader, the node creates a block and distributes it to all other author-
ities. Depending on the implementation, all authorities add the received block
into the blockchain or they verify all authorities received the same block before

3 Background 38

Genesis Block

Data

Previous Hash

Hash

Block2

Data

Previous Hash

Hash

Block3

Data

Previous Hash

Hash

Figure 3.1: Structure of a blockchain

doing so [7]. This is done by distributing the received block to all other author-
ities and verifying that the blocks match. This step is called acceptance and is
not implemented in all versions of PoAuth [7]. If a leader tries any malicious
actions the other authorities may vote and kick him from the authorities [7].

3.2.9 Raft

Raft is another consensus algorithmworking with amaster and several slaves.
This consensus algorithm is only an option for a private environment. The
leader of the Raft network is elected, and afterward, the leader is responsible
for creating entries in the logs of the members [32, 79]. If there are any new
blocks, they are forwarded to the leader,which thendistributes the blocks to all
other nodes. The entries at the members are the consent which is found. Raft
can survive the failure of multiple members of the network [32, 79].

3.3 Blockchain

Blockchain is a widespread technology used to store data safely and securely.
Blockchainshaveawide rangeofuse cases, fromfinancial services to riskman-
agement, Internet of Things (IoT) up to public and social services, but their
main field of use is cryptocurrencies [38, 76]. The first blockchain was devel-
oped in 2008 and implemented in 2009 [104]. In blockchain, all stored data is
represented as blocks. Depending on the data used in the system, it is possible
to store several elements in one block. Those blocks are used to build a chain
similar to a linked list. The structure is shown in Figure 3.1. The link between
blocks is created by adding the hash of the previous block to the new block as
a reference [104]. The technology preventsmalicious users frommanipulating
old data blocks without anyone noticing and allows everyone holding a veri-
fied block, to verify all blocks which existed earlier in the timeline [104]. Each
blockchain needs a start, which is called the genesis block [104].

Because the chain is distributed via lots of nodes and a consent algorithm is
used to keep the chain persistent over all nodes, the blockchain is decentral-
ized, persistent, and auditable [104]. Since blockchains aremainly used for dis-
tributed peer-to-peer networks, they are very hard to tamper with and change
[104]. Onemajor disadvantagemost blockchains share is their poor scalability.
This is the case because nodes have to find consent before adding a new block
to the blockchain. Therefore, the addition of new blocks is somewhat time-
consuming [104]. The exact duration depends on the technology and the con-

3 Background 39

sent algorithmused. To gain a complete viewof the data set it is possible to fol-
low the chain from the genesis block to the latest block and update the view ac-
cordingly [23]. That allows theblockchain to supportupdatesof thedata set be-
causeanewerblock canupdateolddata, but ageddatawill alwaysbe included in
the blockchain. Therefore, a blockchain is immutable. Thatmeans, if the com-
plete data of the blockchain should be obtained, n steps are required, where n
equals the length of the chain. It is also possible in blockchains to search for
specific blocks if the IDs or hashes are known [23].

To validate a block of the blockchain, it is sufficient to store one block which
resides later in the chain. That indicates holding the last block of the chain is
able to verify all blocks before this block [10]. Referring to Figure 3.1, if anyone
holds Block3, this user is able to verify all previous blocks (more precisely the
genesis block and Block2) in the chain. In the case all blocks are unchanged,
all blocks back to the genesis block can be verified by verifying the hashes of
all blocks back until arriving at the genesis block. Simply put, whoever knows
about the last block is able to verify all blocks that are part of the blockchain
until this point, given the blocks in between.

A blockchain is somewhat resilient to many attacks, but there are still some
attacks that might be successful. First of all, someone can try to change data
within the chain. For example, someone could try to change the second block
(Block2) in Figure 3.1. If an attacker succeeds in changing the data of this block,
the hash of this block changes, which destroys the chain due to the fact the
next block is storing this hash as a link [10]. This means the attacker also has
to change the following block, which also changes its hash. This again breaks
the link of the next block. This process proceeds until the last block in the chain
ismodified [10]. If PoW is used as a consensus algorithm, changing a hash also
means the PoW has to be solved. Additionally because the blockchain is dis-
tributed on numerous nodes, an attacker has to tamper with the majority to
modify the data [10].

3.4 Directed Acyclic Graph

Similar toblockchains, in adirectedacyclic graph (DAG)data is stored inablock
referring to other blocks. The links are also done using hash values. Due to the
fact blocks arenot able toguess thehashof thenext block the edgesof thegraph
have a direction. While in blockchain a block can only refer to one other block
and can be referred to only by one block correspondingly, for DAGs a blockmay
refer to x blocks and also get referred by x blocks, while x is higher or equal to
one [18]. Therefore, amajor difference between a blockchain and a DAG is, that
each block can be validated by multiple new blocks, as well as it can validate
numerous blocks in the DAG [18, 29]. Like in a blockchain, if someone wants
to change a block, this changes its hash and therefore breaks all children refer-
encing the block [29]. If there is noparallel block creation, and all blocks always
refer to the last open block in the DAG, a standard blockchain develops [29].
Another important feature a DAGhas to fulfill is to be circle-free, whichmeans
when following the directed edges, it is not possible to get to one node multi-
ple times [4, 31]. Due to the fact this would require a block to know the hash of
a future block, this is not possible when used by honest users. By using a DAG
instead of blockchain, it is possible to improve performance in several ways,
however, this approach does not remove the need for a consent algorithm [4].
That means a DAG also relies on PoW, PoS, or any other consensus algorithm.
Those consensus algorithmsmight be the same used for blockchain based sys-
tems but they could also be different [4].

3 Background 40

1

2

3

4

5

6

7

8

Figure 3.2: Structure of a DAG

See Figure 3.2 for an example of a directed acyclic graph. DAGs can be built in a
variety of ways, but they all try to tackle the following problems of blockchain
[4]:

ledger size,

scalability,

fork problem.

Inablockchain, all nodeshave toadd the sameblocksafter another, resulting in
a decreased performance. This is the case due to the fact that the next round of
block creation can start earliest as soon as all nodes have stored the last block.
DAGs can avoid this because they allowparallel block creation andaddition into
the data structure [31]. Correspondingly, it does notmatter if every node knows
every other block before creating the next block, speeding up block creation
significantly. But this simultaneously creates a problem because it cannot be
expected from each node to know the entire DAG at any moment in time [31].
After all, there may be a block on the wire of which the node is not aware yet.

Another problem of blockchains is their scalability in terms of block creation
speed and their inclusion of transactions [31]. Because in DAGs no one has to
wait for other users, it is possible to create a block at any time. Therefore this
issue is solved, but as alreadymentioned, it cannot be assumed from each node
to know all previous blocks at a given time, which might be of concern.

A more complex concern of blockchains is the orphan problem, also called the
problemof forks [31]. Because inblockchains there is thepossibility of simulta-
neous block creation, resulting inmultiple chains being created while only one
of them is valid. Whereas energy, time, and effort used to create one of those
blocks is lost. Because DAGs have the advantage of allowing parallel block cre-
ation, this issue does not exist for them[4].

3 Background 41

While DAGs try to solve problems blockchains are facing, they also create some
other challenges that need to be handled. There are 2 types of DAG-based tech-
nologies [4]:

BlockDAGs,

blockless DAGs.

BlockDAG works similarly to a standard blockchain, where transactions get
bundled in a block and refer to previous blocks [4]. However because DAGs al-
low for parallel block creation, there is no need towait and bundle transactions
together. Therefore each transaction can be posted as soon as it is available,
creating a block for each transaction, leading to blockless DAGs [4]. Due to the
fact this is a huge advantage over blockchains, many DAGs use a blockless ap-
proach [4].

Because DAGs consist of numerous branches, there is the possibility of those
branches holding contradicting data [4]. In a blockchain, this issue is circum-
vented because the data is structured in one chain, and everyone knows which
datawas committedfirst. Therefore, another solution is needed to bring trans-
actions on a timeline in DAGs [4]. This implies a solution is needed to find an
order for all blocks which are part of the graph. This is easy if there is a direct
connection between two blocks because this connection has to have a direction
[4]. Thismeans anorder for blocks indifferent branches is required if they con-
tradict each other [4]. Due to the fact the structure and functionality of DAGs
vary a lot their ways of solving this issue differ a lot from each other. For this
reason, the solution to this problem is presented in the respective sections for
each DAG.

3.5 Merkle Tree

Amerkle tree is a structure used to store data in an immutable way and allows
to quick verify whether data is included in a data set. Similarly to blockchains
and directed acyclic graphs, a hash function is essential for the data structure
[82]. This is the case due to the fact the metadata is stored as a tree of nodes
where each node is the hash of its child nodes [88]. As leaf nodes the data that
should be verified is hashed [88]. Because each node always has two children,
if the number of leaf nodes is odd, the last leaf node is duplicated [82]. The root
node of the tree can be utilized to verify all data elements included in the data
[82, 88]. An example of such a merkle tree can be seen in Figure 3.3.

A merkle tree can be used to prove to another individual, that a piece of data is
included in a data set. This can be required after data is inserted into the data
set as proof of insertion, or when data is requested as proof that the data is
included in the data set [71]. This verification is pretty simple as shown in Fig-
ure 3.4. Similarly to the examples from[74, 82], in this example, a userwants to
verify TD is stored in the data set. To prove this data is contained in the data set,
the system responds with some required hashes from the tree [82, 88]. Those
hashes areHC, HAB, HABCD. The response set grows correlatingwith the height
of the tree. However, the size of the set equals only log(n) of all hashes and
proves the data is implied in the structure [88]. Each individual is able to use
TD to calculate HD by hashing it. Afterwards, they use HC and HD to calculate
HCD. After knowing HCD and HAB, it is possible to calculate HABCD. This gives
them the root of the merkle tree. The user can compare the calculated value of
the root with the transmitted value. If they match, the user can be certain the
data is included in the data structure.

3 Background 42

HABCD

HAB HCD

HA HB HC HD

TA TB TC TD

Figure 3.3: Example of the structure of a merkle tree

HABCD

HAB HCD

HA HB HC HD

TA TB TC TD

Figure 3.4: Using a merkle tree to prove TD

Chapter 4

Technologies

In this chapter, a lot of different technologies are shown. These technologies
are explained and it is shown how they could be used to implement the sen-
sor directory and solve the requirements described in section 2.6. In the next
chapter, the technologies are compared and it is shown which of them might
be the best choice to solve the directory. Most of those technologies could not
be used out of the box to implement the sensor directory. However, only mi-
nor changes are required to allow those technologies to be used. Many times
those adjustments are API functionality to interact with the sensor directory or
minor changes at the storage. When searching for technologies that could be
used several starting technologies and keywords were used. Those keywords
and technologies were:

Blockchain,

Distributed Ledger,

Distributed Databases,

Transparency Logs,

Data Provenance and

Tor.

Starting fromthosekeywords, technologies are searchedand related technolo-
gies or technologies that solve similar problems are also added to the search
parameters to find several technologies which could be used for the sensor di-
rectory. Also, other technologies that were found in the process that solved
similar problems were analyzed.

4.1 Certificate Authorities

Today’s web communication is mostly encrypted using TLS, making commu-
nication much more secure and preventing spying on the content of modern
web traffic. Before HTTPS was widely spread, this was not the case, and every-
onewas able towiretap traffic easily. Because TLS is an asymmetric encryption
method a need for public and private key exist. To be able to match a key to an
entity, HTTPS requires known Certificate Authorities (CAs), which are trusted
by the clients [1]. Those CAs are used to sign certificates and therefore bind
identities to their public keys [1]. The public key of the certificate is then used
to communicate with the corresponding server [1]. This approach is by far not
perfect, and there are still vulnerabilities that could be exploited. For example,
modern browsers nowadays require not only the signature of a CA but also the
certificate to be added to a transparency log, which is explained in section 4.5.

43

4 Technologies 44

4.1.1 CAs for the Sensor Directory

Itmay be an option to allow certain knownuserswho are generally trustworthy
(big players) to set up CAs. Those CAsmight sign keys for further CAs, somore
CAs emerge. However, those CAs are related to their root CA’s trust, and if the
root CA loses its trust, also their sub-CAs lose theirs. If sensor providers want
to create sensors, they reach out to one or more of those CAs, and those ver-
ify the sensor by signing it. There might be so-called universally trusted CAs,
which gained their trust because they are run by trusted known operators. But
the users should decide for themselves which CAs they trust and which they
suspect to be malicious. That means PIAs do not trust each signature from all
CAs equally. This also means a sensor provider would have the incentive to get
multiple signatures so PIAs accept at least one of those. It might also be an op-
tion for a PIA to demand multiple signatures from a subset of all CAs, so the
sensor is trusted. In this scenario, everyone can create a CA as long as a user
knows about them, it would be possible to trust them and require their signa-
ture.

This approach is the basis for trust in a system and can be combined with a va-
riety ofways of storing the data. Themost basic approach possible to distribute
sensor information is to setup a service providing a list of sensors and the cor-
responding CAs signatures. Because the storage of those servers is not append-
only it might be an option for those servers to decide to drop certain sensors or
decline to distribute them, depending on the sensor providers. This cannot be
prevented and raises the requirement for the sensor provider to publish their
sensors on several servers of different operators, tomake sure their sensors are
not dropped by all servers at once. However, this might be a requirement any-
way because PIAsmight search on different servers. The sensor providers may
also operate their own servers to prevent their data from being dropped. If the
sensor information is spread via lots of servers, this makes it hard for PIAs to
find all sensors and gain an absolute view of the world. This means PIAs have
to scan multiple servers containing lots of redundant sensors. It is also pos-
sible for sensors to be stored on servers the PIA does not know about which
means those sensorswould not be discovered. To prevent this, the owner of the
PIA should be required to configure which servers the PIA queries for sensors.
There might be a lot of standard servers that are used, but the PIA owners may
also speak to sensor providers and discover additional servers. In Digidow for
most sensors, an initial step might be required. In this step permissions for an
individualmight be exchanged and other preconditions can bemet. This action
involves communication between some entities of the sensor and the PIA. Be-
cause this is the case this step could also be employed to introduce new servers
to the PIA. Whenever a PIA receives data, it may verify the signatures of the
CAs and verify additional requirements, like aminimumnumber of signatures.
Because the data is signed, the server is not able to tamper with the data.

A CA approach would allow mitigation of some attack vectors, as selected in
section 2.3. See Table 4.1 for an overview of those mitigated attack vectors. An
approach using CAs allows the redundant setup of many servers providing the
data, which is part of the requirements in section 2.6. However, it is possible
to attack a single server with a DoS. This would temporarily disable the server,
therefore, sensor providers have to provide their sensors at multiple servers.
Also CAs could be the target of DoS attacks preventing them from signing new
sensors for the duration. However sensors which alreadywere signed still have
their signature and are therefore still valid. Using lots of servers might also be
a solution to fingerprinting (section 2.2.3) because one server does not have
the required data to perform such an attack. It also allows PIAs to mitigate
the possibility of tracking people by the sensor directory (section 2.2.14) by

4 Technologies 45

Table 4.1: Mitigated attack vectors by a CA approach

Technology Attack Vectors Mitigated

2.2.1

2.2.3

2.2.4

2.2.6

2.2.7

2.2.9

2.2.11

2.2.12

2.2.12

2.2.12

2.2.13

2.2.13

2.2.5

2.2.14

2.2.15

2.2.17

CA X X X X X X X X

randomly selecting sensor directories. However, multiple servers also have a
huge disadvantage, PIAs need to know all the servers they need to crawl to gain
the necessary data. A CA approach is not able to protect from target discovery
(section 2.2.4), which is the case because the provider of the server can per-
form such an attack easily by searching the data and the CA information can
not do anything against this. Everyone else is also able to perform such attacks
by querying those servers and searching for vulnerabilities. Similarly it is also
possible for anyone to collect additional data. Server providersmight choose to
prune sets and queries, while this might not be the case for all, it does not stop
such attempts it does only slow themdowna little. This is the case because PIAs
are able to perform lots of requests and therefore get lots of knowledge even if
queries and sets are pruned.

If a request is received, servers have to respond with the sensor data and the
correspondingmetadata. By doing so the PIA is able to verify the signature and
therefore knows the sensor is authentic. However, there is no data structure
tying togethermultiple pieces of data whichmeans it is not possible to check if
a server responds with the full data set fulfilling the query.

Server providers are not required to accept each entry, this is the case because
each server stands on its own and may create its own policy. This could be a
problem because those servers might exclude certain sensor providers. This
means those servers are able to choose who is allowed to publish their data
andwho is not. Because users are anonymous they are not able to perform such
actions on ethnicity or religion, however, they are able to do this on the data
provided like the user’s key or location of the sensors. The same holds true for
CAs and their signing step. Because there is no immutable data structure like
blockchain used the server is able to drop data stored on the server. This vio-
lates the requirements while it also allows the server to dropmalicious sensors
when discovered and therefore save storage space. Thismight be also done af-
ter data has lost its trust orwhendata is updated. Serversmight choose to allow
sensor providers to update their sensors by checking their signature, however,
they are not forced to allow this.

The validity of the data itself could also be a problem. While it is signed by a
CA it might be possible for malicious CAs to exist. This means all attacks that
could be done by inserting wrong data into the directory are an option for at-
tackers. This is also the case for all attack vectors regarding the address field
(section 2.2.12). PIAs however are able to checkwhich CA signed the sensor and
are able to choose not to use sensors signed by untrusted CAs. However, if only
valid information should be stored on servers the servers have to check validity
themselves on insert or only allow for sensors signedby certainCAs. Itmight be
sufficient for some PIA operators to verify the signatures of trusted CAs. Those
CAscanbeexpected to sign trustedsensorsonlyand therefore toverify thedata.
This means not the server is required to check the data but the CAs are. There-
fore, the trust in some CAs might rise even more and the trust in others might
decrease because it is not known if they perform those actions. This validation

4 Technologies 46

Table 4.2: Requirements fulfilled by a CA approach

Technology A
n
on

ym
ity

Q
ueriable

Equality

Im
m
utable

V
erifi

able

W
hom

to
T
rust

T
rustSystem

R
edun

dan
cy/

D
istributed

Prun
e
Q
ueries

Prun
e
Sets

In
putV

alidation

R
epeated

V
alidation

Storage
R
equirem

en
t

O
w
n
er

can
chan

ge
data

CA X X X X X X X ∼ ∼ X X

could already be seen as an initial trust assessment, however, servers might
also support different trust assessments. After some time, there might evolve
an adventitious version of trust assessment, and PIAs can implement their be-
havior according to this. Until then, PIAs have a hard time following different
trust assessment techniques. In section 1.2, some trust assessment techniques
are described, which could be applied by different servers. Each server could
be expected to check the sensors when adding them to the storage and act as
notaries additional to CAs. So far there is no way of checking validity of sen-
sors repeatedly. One option would be for certificates to have a limited lifetime.
This would require sensors to renew their certificate from time to time which
leads to CAs verifying sensors periodically. However thismeans the data on the
servers has to be updated to hold the new certificate. Also the trust into CAs
might be heavily impacted by the duration of their certificates. If a user knows
which CAs they trust, they also know which sensors can be trusted. Neverthe-
less if a CA is not known a PIA does not trust the sensor even if the CA is actually
honest. Therefore the trust problems are solved but some honest sensors could
be missed. Another option would be to add validators that are used to influ-
ence a trust value on the server. However trust values that are stored on the
server are not protected by the CA signature and therefore can be changed by
the server. This requires the trust to be signed by the validators. If this is the
case the server is still able to drop the trust data because there is no immutable
structure preventing the server from doing so. A solution could be if validators
sign thewhole trust data aswell as the sensordatawhenadding their trust. This
would generate a chain. However, the server still has the ability to drop the last
signature.

Servers are able to drop sensors if they lose trust in them. It is also possible for
a server to split views (section 2.2.17) between different users without anybody
noticing it. This can only be discovered, if PIAs gossip with each other. How-
ever, if PIAs are truly anonymous, a server might not be able to do so because
it is not possible to show the same wrong view to the same PIA each time. The
requirements that can be fulfilled by using a CA approach can be seen in Ta-
ble 4.2.

4.2 Web of Trust

Web of Trust is a base concept used to establish trust without a need for cen-
tralization. Web of trust is built on the concept users have higher trust in in-
formation if other users trust this information too. Therefore a concept is re-

4 Technologies 47

Figure 4.1: Graph of trust

quired to enable users to showwhich data they trust. Users can show their trust
by signing data [21, 102]. If a user downloads the data, the user can verify the
signatures and therefore gain trust in the data. Themain benefit of such an ap-
proach is to allow users to gain trust without the need for any centralized cer-
tificate authorities (CA) [26]. This type of trust assessment can be used for ev-
ery piece of information. Therefore it is also possible to use this concept to es-
tablish trust in the keys of other users to create a public key infrastructure (PKI)
[26, 40]. If such a concept is employed this does not only allow for explicit trust
assessment but also for implicit assessments [26, 68]. Inmore detail, someone
having faith in a specific usermay also trust users that are trusted by this user.
When this concept is applied to its fullest potential, a graph like in Figure 4.1 is
created. It is also possible for such trust assessments to not only show which
users they trust but also to include a value for this trust [26]. This also enables
implicit trust to decrease the further away the initial trusted signature is [26].
However, if the trust graph is complicated the calculation of such an implicit
trust gets quite complicated [26].

One technologywhich iswidely knownand is used to raise trust intopublic keys
is PGP. PGP uses a network of key servers to share public keys [21]. This is done
to enable easy encryptionof e-mails andmessages. Trustmaybedemonstrated
in four different trust levels when PGP is used [102]:

Full (level=4),

Marginal (level=3),

Untrustworthy (level=2) and

Do not know (level=1).

Because PGP does not allow removal of keys it gives access to 20 years of PGP
keys [21]. This means there are also lots of trust assessments stored that have
to be considered when calculating trust for a public key.

As long as a key server is available, it is only possible to add new data but not to
remove any from the server. Instead, if a public key is invalid, it can bemarked
as such [21]. Data on the key server can only be revoked by users harboring a
revocation key for this specific private key, which is especially important be-
cause the users may not be able to abolish the key themselves. It is important,
in PGP no one is expected to trust the key servers, and everyone can push data
into them. Therefore, users should only use the server for informational pur-
poses [102]. In the beginning, thefirst serverswere stand-alone servers, which
exclusively stored their datasets [16]. Later, they began to send emails to each

4 Technologies 48

other to update other key servers [16]. Further improvement allowed sending
multicasts to other servers [16]. Key servers may also have the possibility to
crawl other servers to gather more information. Because there is no standard-
ized communication whenever data is updated on one server, it takes up to 30
hours until information is updated via all communicating servers [102]. This
is the case due to some servers not being synchronized with others regularly.
Consequently, if a key gets revoked, this is not the case for all servers immedi-
ately [102]. Because this is a huge drawback, there are several approaches using
new techniques to improve PGP key servers. One option is to use blockchain-
based technologies; another onewould be to useDAT [5, 89]. Both solutions try
to create a decentralized network performing automated synchronization.

PGP key servers based on blockchains, seem to solve many of the problems
normal PGP key servers have. One such implementation is using Ethereum to
solve the known problems of such servers [5]. This approach is distinct, which
means it is not running on the standard Ethereumblockchain. It rather runs its
own nodes. This is done because this approach makes the blockchain, by far,
more lightweight. Allowing the usage of a considerably more lightweight con-
sensus algorithm, like Proof of Authority. Additionally, the cryptocurrency is
removed from this instance [102]. Because a blockchain is used in addition to
the signature, it is possible to ensure only the creator of the initial block or an
administrator (because of Proof of Authority) is able to change included data
[102]. Since this approach is based onEthereum, it can use smart contracts. The
smart contracts in this implementation are used for the following functional-
ities [102]:

1. Checking the rights of the user trying to change data.

2. Add certificates into the blockchain and give the right to change entries.

3. Sign a certificate of another user. This signature has to be accepted by the
owner of the key.

4. Revoke a certificate.

5. Revoke signatures from a certificate of another user.

6. Accept the signature of another user for one certificate.

The implementation using Ethereum also provide some additional benefits:

The whole history is available [102].

Due to the slightly different blockchain the entries are easy accessible (see
section 4.23).

Only the real holder of the key can update their key [102].

By using Ethereum the risk of downloading a malicious outdated certificate
getsminimized, as the synchronization problem does not exist anymore [102].

4.2.1 Web of trust for the Sensor Directory

The sensor directory can be built using a web of trust approach. However sim-
ilar to the CA approach web of trust is about building trust and not about stor-
ing data therefore this can be combined with each storing technology. Sensor
providers would send their sensors to the server, including them in the data
set. Each user of the system, meaning sensor providers but also people who
want to be identified, can own a key pair which could be used to sign sensors
of other users they trust. This key is also used to sign the sensors created by

4 Technologies 49

a sensor provider. Because those sensors are signed, they cannot be modified
later. The signatures also allow verification of the data of a sensor. However, it
is not possible to verify if a server sends thewhole set of data, fulfilling a query.
Signatures establishing trust in sensors cannot transition any further, this is
the case because sensors do not have the ability to trust any other sensor. Yet,
there is the possibility of additionally including user keys in the system. This
would allow users to trust not only sensors but also other users, leading to a
transitive trust in the sensors and users those users trust. By signing sensors
they trust, users generally act as validators because they show their point of
view for several sensors. Some usersmight sign lots of trustful sensors. If they
get known for being trustful, the reputation of those users might increase as
well, and probably additional users will listen to them regarding trustful sen-
sors. Thismeans those usersmight havemore power than others because their
signature has more value. Everyone can add whatever data they want into the
system and trust is generated over time when other users sign the data. This
means there is no initial check for validity, raising a distinct problem of in-
clusion of wrong (section 2.2.11) or malicious sensors (section 2.2.6) into the
directory. Besides, the address field does not get reviewed and attack vectors
of this field (section 2.2.12) are not mitigated. It might be an option for servers
to check certain fields before data is included in the data set. This means the
server could act as a notary before data is included to counteract some attack
vectors. However, servers are not required to do so which means some servers
would do this while others would not. PIAs and sensor providers would have
to choose which servers they trust and use according to known information. It
might also be possible to use CAs before data is included in the system to act
as a notary and validate the sensors before they are inserted. Such an approach
would also be easier to verify. Signatures as trust assessment also have addi-
tional problems, this is the case because they do not show when the trust was
issued, leading topotentially old signatures (section2.2.13),misleadingpeople.
Besides, compromised sensors (section 2.2.7) still have the trust theyhadwhen
they were compromised. However, a user is able to revoke a sensor in the same
way they would revoke a key. While this may take some time until available on
all servers itmight do the trick. Tomitigate this situation itmight be necessary
to remove trust once issued. It might also be an option to include timestamps
or a period of validity to a signature, however, this means after some time sig-
natures lose their validity and therefore the trust in a sensor decreases. This
means users have to sign sensors periodically.

If a sensor should be updated this is only possible by the sensor provider creat-
ing a new entry in the system. This sensor then has to gain new trusted signa-
tures. If the sensor is not owned by the creator the sensor would gain no signa-
tures and therefore only the owner is able to create entries. Nevertheless, own-
ers are only able to disable sensors in the systemby revoking them. If there is an
update it is a new sensor that has to gain new trust. However, if theweb of trust
is mainly used on the user level increasing trust in users, instead of the sensor
level, the impact of such situations is significantly decreased. An overview of
the requirements when using this approach is shown in Table 4.3.

PIAs may search for trusted sensors or trusted users on servers. Depending on
the used data structure, it might be possible for stand-alone servers to drop
sensors, including all their signatures. The only possibility to mitigate this
is if sensor providers check whether their sensors are still part of the server.
However, this also allows standalone servers to maintain their storage while
this might not be possible for cooperative systems. Each PIA is able to query
servers without demonstrating their personality and therefore being anony-
mous. For sensor providers, this might be true as well because they are repre-
sented by a key. However, because the keys are used quite frequently and are

4 Technologies 50

Table 4.3: Requirements fulfilled by a web of trust approach

Technology A
n
on

ym
ity

Q
ueriable

Equality

Im
m
utable

V
erifi

able

W
hom

to
T
rust

T
rustSystem

R
edun

dan
cy/

D
istributed

Prun
e
Q
ueries

Prun
e
Sets

In
putV

alidation

R
epeated

V
alidation

Storage
R
equirem

en
t

O
w
n
er

can
chan

ge
data

Web of Trust
standalone

X X X X X X X X X ∼

Web of Trust
DLT

X X X X X X X X X ∼

not only used to add sensors, the identity of some users might be discovered.
Because servers store information and everyone is able to query this informa-
tion, this alsomeanseveryone can read the information, this alsomeansevery-
one is able to scan for vulnerable sensors (section 2.2.4) or other valuable data
(section 2.2.5). Because servers may not follow the same rules, servers might
choose if they prune sets and queries. However, because users are anonymous
they cancircumvent this by sending lots of requests and receiving thedata any-
way.

Also the chosen structure the servers use is important. While the web of trust
approach can be combined with each storage technology, there are 2 differ-
ent types described next. This means if servers are standalone, communicate
with each other, or are a distributed system all along. If the servers are stan-
dalone ones, they may be vulnerable to DoS (section 2.2.1), but prevention is
rather simple through the communication of servers within each other. How-
ever, it is essential if and how those servers communicate. It is possible to set
up the sensordirectory in a redundantway, regardless of this. Anyway, if anap-
proach based on a distributed technology is applied, it might be an advantage
to cooperate on one system. Because the directory is redundant or distributed,
it is not possible to use fingerprinting (section 2.2.3) or tracking people (sec-
tion 2.2.14) if PIAs distribute their requests. A distributed technology as a base
not only improves update time on all servers but also makes the system im-
mutable, because those systems are based on immutable data structures. Ad-
ditionally, if a DLT is used itmay include a validation of the sensors in the con-
sensus algorithm. The impact of DoS could also bemitigated if servers validate
sensors before propagating them. However, if such an approach is used it also
means data can never be deleted, thismeans the storage grows indefinitely and
at some time the systemwill break. DLT approaches require lots of work at in-
sert, which means inserting data might take longer compared to stand-alone
servers. For an overview of all attack vectors see Table 4.4.

4.3 Domain Name System

Thedomainnamesystem(DNS) iswidespread anddeeply rooted in themodern
internet. It is used to resolve human-readable names, like URLs, to their asso-
ciated addresses [11, 72]. If the system can be trusted, this can also be used as a

4 Technologies 51

Table 4.4: Mitigated attack vectors by a web of trust approach

Technology Attack Vectors Mitigated

2.2.1

2.2.3

2.2.4

2.2.6

2.2.7

2.2.9

2.2.11

2.2.12

2.2.12

2.2.12

2.2.13

2.2.13

2.2.5

2.2.14

2.2.15

2.2.17

Web of Trust
standalone

∼ ∼ X ∼ X X X X X ∼ X ∼

Web of Trust
DLT

X X X X X X X X X ∼ X ∼

PKI [11]. Most of the data presented in this section is from [72]. In general, DNS
consists of twodistinct parts. There arename servers,which are used to resolve
human-readable names to the corresponding data [9]. And resolverswhich are
used to find name servers that are responsible for the human-readable search
terms.

DNS is a distributed database holding data as well as their human-readable
counterparts. Whenever a request is sent to a name server containing the
human-readable string a lookup is performed and the stored data is returned.
Therefore first the corresponding name server has to be found. To be able to do
so the human-readable names are structured in a tree. Each child node con-
tains the name of the parent while also adding specific data. For example, the
child node might be google.com which also includes the parent node which is
.com. This alsomeans at the top of the tree there is only an empty nodewhich is
the parent of the first layer of the tree [9, 11, 72]. For each node, there is a name
server responsible for storing the associated data. In the case of the internet,
the first layer contains the top domains [9, 11]. Some of those top domains are
.com, .org, or .edu. How the structure of those domains looks can be seen in
Figure 4.2. Each name server can also have secondary name servers to provide
thepossibilities of redundancy and loadbalancing [9]. Those secondary servers
query the main server regularly and update their data [9].

Resolvers are used by clients to resolve human-readable names. This is done
by clients sending requests to the resolver, which triggers the resolver to send
requests to several name servers trying to resolve the name [103]. If a name
is unknown to the resolver, it tries to find a server responsible for this name,
starting with the top domains. Those domains respond with the information
aboutwhich name servers have further information on those names, so the re-
solver is able to continue its search [103]. Whenever a name is resolved the re-
solver caches the entry and will use this cached data if the same name should

.

.com .org
.edu

google.com

... ...

Figure 4.2: Structure of the DNS system

4 Technologies 52

be resolved in the near future [103].

WhileDNS is part of the backboneof the internet and therefore iswidely used, it
is not free from vulnerabilities. DNS is for example vulnerable toman-in-the-
middle (MITM) attacks, this is the case because there is noway of verifying the
origin or integrity of a response [9]. Obviously because of its importance the
system is also a target for several DoS and distributed DoS attacks. Those at-
tacks aim to disable the higher layers of the tree because the impact is much
higher [9]. An attack where an attacker manages to change DNS answers on
their way to the user is called DNS spoofing. This could be done by a MITM at-
tack. If this is successful, the attacker is able to connect the victim to whatever
address the attacker prefers. This might be especially effective for conducting
phishing attacks.

4.3.1 Domain Name SystemSecurity Extensions (DNSSEC)

DNSSEC is explained next, most of the information is taken from [9, 11].
DNSSEC works similarly to DNS but adds origin authentication, data integrity,
andauthenticateddenial of existence. Atfirst, all data inDNSSECgets signedby
the server. Therefore, a client can verify the data is received from a legitimate
server. To allow signatures, private and public keys are required in the system,
however, inDNSSECno encryption is used [9]. DNSSEC is backward compatible
to DNS by supporting four different record types:

Resource Record Signature (RRSIG),

DNS Public Key (DNSKEY),

Delegation Signer (DS),

Next Secure (NSEC).

RRSIG is the type of content applied for the signatures and used to authenti-
cate the data. DNSKEY contains the public signing key of a server [30] while
the DS entry type contains the hash of the key [30]. The NSEC record is used
to show nonexistence, this is done by responding with the next entries in both
directions [90]. In addition to those record types, two flags of DNS are used to
indicate if all data has been authenticated by the server and if unauthenticated
data is acceptable. Also, each entry has a link to the next included entry in the
domain [9]. By doing this, it is ensured no unauthorized access can modify or
delete any data.

DNSSEC is not able to mitigate all attacks that could be performed on DNS.
DNSSEC does for example not prevent bad configuration or bad data [9]. Also,
DDoS attacks are still possible [9]. Additionally, it introduces other problems
which have to be solved. Because keys are required, key management or key
infrastructures are needed [9]. Generally, the tree structure of DNS is used for
the keys, but the root has a private key assigned. This key is then used to sign
the keys of the top-level domains, those top-level domains use their keys to
sign the next nodes and so on [11]. Also, the computational load ismuch higher
than inDNS, aswell as it requires amuchhigher synchronization [9]. However,
the lack of tolerance of malicious servers is most important [9].

4.3.2 DNS for the Sensor Directory

If DNS is used to implement the sensor directory, there would be a need for
parties running the system, at least for the higher layers. One of those par-
ties would be the root party holding the root key. Several other parties have

4 Technologies 53

to be selected, which would be the top-level domains. It would be an op-
tion to distribute those top domains throughout the world, so each region has
its dedicated top domain. However, it should not be required for anybody to
register at a specific regional top domain. Otherwise, this domain could stop
users from entering the system. This means, for example, there might be a
domain like “europe”. Then there might be several subdomains for example
“germany.europe”. Sensor providers might register with their own domain in
these subdomains, such as “db.germany.europe”. The sensor providers might
then use subdomains for their sensors like “mainentry.db.germany.europe”.
The entries might then be resolved using DNS. It might also be a possibil-
ity for the company domain to show lots of sensors, this means for example
“db.germany.europe” would include mainentry as well as additional sensors.
In a similar fashion, it would be a possibility to create entries for specific lo-
cations like Linz. This entry would hold all sensor domains in this area, which
allows for an easy search. This means a PIA would search in the area domain
for sensors and afterwards use the returned domain to receive further infor-
mation. However, such an approach does also bear some problems. The first
problem is who the provider of such servers would be. It cannot be assumed
that there is one entity willing to host this service for each region. Similarly,
theremight bemultiple entities willing to host such a service for other areas. It
is also important if such a domain is expected to accept each entry, or if those
domains can reject certain sensors because those are expected to bemalicious.
Therefore, it is also crucial if the entities running those regional servers are
trustworthy. This also means that it is very important how sensor providers
can provide additional sensors as well as how they can update existing ones. If
such an areal approach is chosen, it is also important how big the area for each
domain is. An additional problem occurs for sensors at the edge ofmultiple ar-
eas. For those sensors it might be unclear in which area they should be in or if
they should be in multiple areas. Another option would be to use the already
existing DNS system and add new domains to this system. There are two ways
of using the already established system. Either an additional subtree is added
to the system, for example by adding an additional top domain. Or sensors are
added into domains distributed over thewhole tree. Thefirst option is to add an
additional top domain for example “digidow” to the first layer of DNS and add
all domains specific to this application to the subtree. This would allow to use
already established servers while it does not change anything else in the struc-
ture than adding “.digidow” to all domains. By analyzing this domain and its
subdomains it is possible to analyzewho provides sensors and atwhat approx-
imate location. Another option is for all sensor providers to add their sensors to
their own domains. The problem is sensors would be distributed via the whole
DNS system. However, DNS does not support verification of integrity nor does
it allow to authenticate the origin of data [9]. Therefore it is not anoption to use
it for the sensor directory. However, while DNS does not support those features
DNSSEC does andmight be an option.

WhenDNSSEC is used, it is ensured that only verifieddata is used. Also,DNSSEC
supports no-inclusion searches by following the chains between entries in a
domain to prove something is not included [9]. Because DNSSEC is vulnerable
to malicious servers, attackers who can set up such servers or take over higher
layers of the systemmay impact the system significantly. An example of an at-
tack by a malicious server would be a server signing and providing wrong or
different data to different users (section 2.2.17). Furthermore, the subdomains
of such a malicious server might be impacted. This is a huge problem for the
sensor directory if it is implemented using DNSSEC.

Because there are some big parties needed which have more power than oth-
ers, this might not be 100% decentralized. However, everyone still is able to

4 Technologies 54

Table 4.5: Mitigated attack vectors by a DNSSEC approach

Technology Attack Vectors Mitigated

2.2.1

2.2.3

2.2.4

2.2.6

2.2.7

2.2.9

2.2.11

2.2.12

2.2.12

2.2.12

2.2.13

2.2.13

2.2.5

2.2.14

2.2.15

2.2.17

DNSSEC ∼ ∼ X ∼

maintain their own data and provide it to the whole world. Another problem
might be, that the domain providers have different power levels and therefore
theymay use it to influence those on lower levels. Thismay violate the require-
ment of everyone being equal. All users requesting sensors are still equal to
each other, however.

Because resolvers cache addresses, name servers get relieved as well and they
receive less information. However, PIAs have to use different resolvers because
otherwise, those resolvers might be able to locate a person (section 2.2.14) or
are able to use fingerprinting (section 2.2.3) to identify PIAs.

Based on the structure PIAs are limited to search for domains and gain the
respective sensors. This means the query would only allow for certain data
and therefore would be pruned. Because the data is stored by the server and
is not stored in an immutable way the sensor provider might change data
when needed. But because this server is local or at least managed by the sensor
provider those providers are the only ones able to change data. Because adding
sensors only affects local name servers, this means there is no possibility for
DoS by the addition of sensors. DoS is still a high concern, this is the case due
to the fact higher layers may be needed to find lower layers and if their service
is impacted the service of the whole system is impacted. Because data is not
encrypted and publicly available, everyone is able to search for targets (sec-
tion 2.2.4) or other useful data (section 2.2.5).

Because everyone may manage their own domains, this may lead to situations
where everyone canaddwhateverdata theywant. Therefore,wrongsensordata
ormalicious sensors (section 2.2.6)maybe included.However, thosemight not
be trusted because the domainsmay not be known or trusted. If an approach is
chosen where one server provider manages lots of information from different
sensor providers additional trust assessment might be needed. If sensors are
taken over, sensor providers are easily able to replace them with new ones or
manipulate their sensordata inaway this sensor isnot includedanymore. Stor-
age is alsonotof concerndue to the fact everyone ismanaging their owndataon
their own devices. Which attack vectors can bemitigated by using DNSSEC can
be seen in Table 4.5. Also see Table 4.6 for an overview of which requirements
DNSSEC can solve.

4.4 Secure Untrusted Data Repository

Secure Untrusted Data Repository (SUNDR), is a network file system designed
to work even if it runs on untrusted servers. The functionality is explained in
this section, the information is taken from[66]. SUNDR is fork consistent for all
honest users having permission and using it properly. It also allows each user
to detect all unauthorizedmodifications and ensures integrity and consistency
as long as all modifications are known. This is possible because each piece of

4 Technologies 55

Table 4.6: Requirements fulfilled by a DNSSEC approach

Technology A
n
on

ym
ity

Q
ueriable

Equality

Im
m
utable

V
erifi

able

W
hom

to
T
rust

T
rustSystem

R
edun

dan
cy/

D
istributed

Prun
e
Q
ueries

Prun
e
Sets

In
putV

alidation

R
epeated

V
alidation

Storage
R
equirem

en
t

O
w
n
er

can
chan

ge
data

DNSSEC ∼ X ∼ X X X X X X

information is requested by its hash making the system a high-performance
hash table. Because each piece of information is requested by its hash this also
means it is easy to verify the data. To allow for users to find data, there are links
for each users and group referring to the files they have access to. Whenever a
user fetches or modifies date on the server the user creates a block which con-
tains the link, the user, and the modification and updated the link by adding
this block. Because the link includes also all previous blocks a chain of signed
information forms. If a user only fetches data, the lastmodification to this data
is added again to signal this request. Whenever a user interacts with data the
user downloads the newest information and verifies, the last action the user
performed is included as well as all users had permission to perform their ac-
tions.

Whenever a user or the server tampers with the data, this is discovered while
those links are verified. This is the case because those users dohave local copies
of the data and are also aware of their last actions. If those actions are not
present in the link or the data does not match the changes something mali-
cious is happening. This does mean a file can’t change unrecognized, as long
some users have the data stored locally and can verify the data and actions. If
the server tries to hide data from certain users, a data fork is forced. This is the
case because users verify their last actions are reflected by the data. Thismeans
at least two valid data objects have to exist. When the server drops a block from
the links, the latest activity of a specific user is missing, this means this user
will refuse to sign thisdataand thereforewill no longerparticipate for thispiece
of information. The servermight circumvent this by showing a valid version of
the file to this user only. If there is communication between the forked parties,
they can effortlessly detect the fork, and everyone can get notified not to trust
the server. If an honest server is employed and a disastrous event happens, the
server can recover or even back up from untrusted clients by using their data.

4.4.1 SUNDR for the Sensor Directory

SUNDR creates a file system for each root user, containing its individual users
and groups. This means if SUNDR is used to build the sensor directory, there
are two options. Either everyone is working on one file system where one root
user is in charge of adding additional users, or each sensor provider creates its
ownfile system. The first optionwould create a central point and an ultimately
powerful user, who would be able to decide who is allowed to participate and
who is not. That violates the requirements and the idea of the sensor directory

4 Technologies 56

Table 4.7: Mitigated attack vectors by a SUNDR approach

Technology Attack Vectors Mitigated

2.2.1

2.2.3

2.2.4

2.2.6

2.2.7

2.2.9

2.2.11

2.2.12

2.2.12

2.2.12

2.2.13

2.2.13

2.2.5

2.2.14

2.2.15

2.2.17

SUNDR X X X X X X X X X X X

and is therefore no suitable option. The second option is appropriate for ev-
eryone who wants to provide their sensors. Each sensor provider can reach out
to a SUNDR server and create their file system there. After they have achieved
this, they can create files containing their sensor information. Each PIA that
tries to find the sensors has to know where to look for the data and is required
to be authorized to do so. This means they are required to hold user data for
each specific SUNDR file system. Whenever permissions for Digidow users get
exchanged, the sensor provider would also have to interchange the server data
including a user. The sensor provider would correspondingly have to add a new
user, executed by adding the PIA key into a file within the file system. The user
of the PIA may get assigned a group that is only allowed to read data. By doing
so, no one except the owner of the sensors would be able to change the sensors.
Another option would also be to assign the same user to each PIA.

Sensor providers would create files containing their sensors on those servers.
Whenever they update the data they would validate the server is honest by val-
idating the link structure. However, PIAs would be expected to download those
files and store them locally. This means while PIAs can search easily in those
files for sensors, theywould also require lots of storage. Periodically PIAs could
update their local view using the server. Considering there is a user required to
find data, there is no need for the sensor directory to use fingerprinting (sec-
tion 2.2.3) to discover PIAs. This is due to them being already known and not
anonymous. Also since many sensor providers would create such servers, PIAs
would additionally have to store lots of users and the associated servers.

Because a sensor provider has to set up a whole file system it is hard to set it
up in a way the information is available redundantly on several servers. If a
sensor provider would still try to do so, they would be required to set up equal
file systems on different servers. This increases the independence of the sen-
sor provider from one specific server provider and increases the availability of
the data but does not add a lot for PIAs. For most technologies, PIAs could use
this redundancy and request data at different locations to disguise themselves.
This is not the case for SUNDR because the sensor provider is in charge of all
instances and receives all data, like which sensor is requested when by whom.
Sensor providers are able to link this information for all file systems they are
in charge. This means it might be possible for the directory to track a person
(section 2.2.14). Also if a server is used by many sensor providers to host their
file systems it might become a target for attackers to deny its service. Since
only the sensor provider can add sensors, only traditional DoS attacks or at-
tacks by requesting sensors by known users are an option. While it is hard to
defend against the traditional attack, defending against an attack consisting
of requests can be denied by removing the user from the file system. Table 4.7
gives an overview of all mitigated attack vectors.

The data is immutable and verifiable by the data structure. This means no data
can be changed or added without getting logged. However, it might be possi-
ble for the server to drop data. This will be discovered because users store the

4 Technologies 57

data locally as well. Regardless, the data stored by the users might not be up to
date which means it might not be discovered by all. It is also possible to allow
other users to change certain files, so it might be an option for larger compa-
nies to have different users in their IT teamswho can change sensor data. That
would also allow for non-repudiability because it gets logged who changed
which data. Furthermore, because all data gets incorporated within their file
system, no unknown user can search for vulnerable sensors (section 2.2.4) or
valuable data (section 2.2.5). However, the server ownersmight be able to read
data and perform such attacks. If the data is encrypted, no one without the key
can collect any information. Sensor owners can update sensors whenever they
want.Whenever a sensor gets taken over and the owner notices, the sensor can
just be removed or updated. Additionally, each user is only able to see what the
user is allowed to do, therefore the set is pruned. Due to file servers only hold-
ing data of one sensor provider, the query is pruned as well. However, this also
means, a PIA is never able tofind all sensors in an area using SUNDR. Further, if
SUNDR is used it is still possible to fork views of different users (section 2.2.17).
That could only be solved if two PIAs would communicate with each other. In
theory, users could also detect this if there are changes in the data and their last
requests are not logged.However, if the data is stable anddoes not change a lot,
the server can continue splitting views. Additionally, a server might not only
choose to split the view of users, but it might also decide to drop a file system
entirely for any given reason. Therefore, until a redundant server exists, the
sensors are lost, which would be a disaster. If this happens the sensor provider
would have to start with a new file server. Even if this server could recover the
information effortlessly from the user’s storage, the used server might not be
the same as last time because it dropped the data once already. This means all
PIAs need to be informed, that there is a new server with the same data, and
they have to search at this server from now on instead.

One additional problem exists if there is a sensor that does not require permis-
sion. This is the case because PIAs require a user and a server address to use a
SUNDR server. Because this informationwould be exchangedwith the permis-
sions required touse certain sensors, if this step is skippedalso the information
required touse theSUNDRsystem ismissingonPIAs. To solve this issue it could
be an option to provide an online directory containing such SUNDR servers and
belonging users. This user would only have read access and would be the same
for all PIAs. Because each PIA would use the same user lots of information is
dropped the sensor providerwould receive otherwise. A similar approach could
also be used by other servers to regain anonymity by giving each PIA the same
user.

Last but not least, because only permitted users are able to change data a trust
systemmight not be required. PIAsmight trust sensors because they know the
sensor provider providing them. A malicious user has no incentive to create a
newSUNDRfile systemandprovide theirmalicious sensors, this is the case be-
cause this systemwouldnotbeusedand therefore the sensorswouldnotbedis-
covered. This is the case because PIAs would not use this file system since they
do not know anything about it as well as would not have a user to do so any-
way. Also if PIAs recognize a file system containsmalicious data, the PIAmight
choose not to use the file system anymore. Given that it is impossible to de-
tect sensors that are not created by a known user it is not feasible for unknown
users to locate persons and their corresponding sensors. However, a malicious
knownuser could perform such attacks. Also because sensors can be taken over
there might be the need for validators. Those validators need additional per-
missions because they are tasked with checking for sensors and updating trust
information. But this means those validators also require users to get access
to sensors. This user can only be created by the sensor provider. Because those

4 Technologies 58

Table 4.8: Requirements fulfilled by a SUNDR approach

Technology A
n
on

ym
ity

Q
ueriable

Equality

Im
m
utable

V
erifi

able

W
hom

to
T
rust

T
rustSystem

R
edun

dan
cy/

D
istributed

Prun
e
Q
ueries

Prun
e
Sets

In
putV

alidation

R
epeated

V
alidation

Storage
R
equirem

en
t

O
w
n
er

can
chan

ge
data

SUNDR X X X X X X X X

would be the only ones who can generate malicious sensors, malicious sensor
providers would not allow honest validators in the system. That means even if
there are validators, those would not be trustworthy because they are chosen
by the sensor provider. This means if the sensor provider is malicious, it can
be expected, also the validators are malicious. The same holds for servers dis-
covered in any additional director used to discover SUNDR servers. Because the
sensor provider might not known there is an even bigger threat of malicious
behavior. This means such a directory would need a trust value for the whole
server.

If a sensor provider adds nonsense data to its directory this is allowed. How-
ever, PIAs might not use this directory if this is discovered. This means sensor
providers are also able to do attacks that use the address field. Since PIAs only
discover parts of all sensors itmight not be a problem if addresses are included
multiple times. However, if an attacker manages to include such a sensor in
all directories of all sensor providers this might be a problem. Nevertheless,
because no one has permission to do so this is not a threat. The requirements
fulfilled when applying a SUNDR approach can be seen in Table 4.8.

4.5 Transparency Logs

Today’s secure web is mainly based on TLS/SSL. TLS/SSL is using Certificate
Authorities (CAs) to verify certificates [55]. This is done by CAs signing certifi-
cates to indicate their validity. For this, a server creates a key pair consisting of
a public and private key. The CA then signs the public key and therefore shows
its trust in this key and that it belongs to the user stated. If a browser receives a
website with a signed certificate, it checks a list of CAs and can verify whether
the key is signed by one of those trusted CAs. If this is the case, the browser
can trust the encryption, and the entity is allowed to host this website. This
system is essential for the internet to work, though it has some flaws. These
shortcomings were already exploited by attackers to disguise themselves [46,
55]. One problem is, that there are no restrictions for whom a CA is allowed to
sign certificates [46]. An additional problem with this structure is when a new
key is signed, the owner of the domain does not get a notification.When some-
one manages to get a key signed for a domain, its owner is unaware of it [46].
Therefore, when a CA is malicious or gets taken over by a malicious user, they
can sign certificates for every domain without anyone being able to stop them
fromdoing so [46].Whenever someonemanages to get a CA to sign a certificate
for them, they can use it to mimic large sites like Amazon or Google. The only

4 Technologies 59

countermeasure for browsers is to remove the CA from their trusted list, which
also invalidates all other certificates signed by this CA.
Toprevent suchascenariowhereCAscansigncertificates for anydomainwith-
out the owner knowing, certificate transparency (CT) logswere introduced and
first applied in Google Chrome [46]. This concept is described next and is di-
rectly inspired by [46]. A CT log is a public append-only log. These logs are
monitoredbymonitors,whereas their cryptographic integrity is verifiedbyau-
ditors. Each CA has to include issued certificates into one or multiple CT logs,
where they are appended to the append-only log, and a promise called SCT is
returned. Whenever a browser connects to a server to retrieve a website, this
SCT is sent to the browser in addition to the certificate when TLS/SSL is used.
This does allow the browser to verify the certificate is part of at least one CT
log. Similar to the CAs, also not all CT logs are trusted by each browser. There-
fore, it is especially important which CT logs are employed by the CAs [33]. To
choose themost trustworthy CT logs browser developers did some research on
themand chose those they expected to be trustworthy [33]. But this alsomeans
if those CT logs do not act properly, they can lose their trust and get removed
from the list similar to CAs.
The traditionalway of building transparency logs is by usingmerkle trees (sec-
tion 3.5). This is the case because a merkle tree can be used as an append-only
structure and supports easy proofs for appends and inclusion. To further im-
prove this approach, it is possible to split merkle trees into multiple smaller
trees and add the root of the last tree into the next one as a leaf node [82].
This does reduce the work required to add new data into the tree because fewer
hashes need to be recalculated when new data is added. This technique allows
gaining the advantages of blockchains or ledgers while still being hosted tra-
ditionally by only one party [51]. However CT logs do also have drawbacks, for
example, they do not support non-membership proofs, so CT logs cannot sup-
port efficient revocation for certificates [51].
Monitors can be operated by anyone. Their task is to check the content of CT
logs and verify everything is legitimate [46, 55]. If malicious CT logs are de-
tected, they can be excluded from trusted lists of browsers. Additionally, audi-
tors verify if CT logs are cryptographically consistent by gathering information
andverifying it against knowndata. This is accomplished similarly tomonitor-
ing in a periodic instance. Auditors can be elements ofmonitors, or designed as
separate software parts [55].
There are still some problems with the idea of CT logs, which cannot be mit-
igated easily. Even if all certificates are published in CT logs, and all browsers
check those, it does notmitigate the possibility of a CA creatingmalicious cer-
tificates and anyone using them. It only allows other users to notice the prob-
lem and allows them to do something about it when the CA publishes the in-
formation in a CT log [91]. This means domain owners have to monitor those
CT logs so their domains are not registeredwithout themknowing. Another is-
sue is, that CT logs can grow indefinitely [33]. That is the case because CT logs
only support appends, and it is impossible to remove entries from the logs [33].
Leading to a data structure that is growing and increasing its dimension over
time. To avoid this, CT logs use temporal shading, where a CT log is allowed to
limit entries in a specific range of time. Most of the CT logs use intervals of one
year, where they only accept certificates issued in this time period. Therefore,
different CT logs are required per time slot and all certificates can be added to
those CT logs. That implies theremay be a CT log for 2020, one for 2021, and so
on. This limit supports maintenance and keeps the system running smoothly
while reducing the impact of oneCT log in case of failure.However this doesnot
reduce the amount of storage required for the data but might decrease over-
head.

4 Technologies 60

Table 4.9: Mitigated attack vectors by a transparency log approach

Technology Attack Vectors Mitigated

2.2.1

2.2.3

2.2.4

2.2.6

2.2.7

2.2.9

2.2.11

2.2.12

2.2.12

2.2.12

2.2.13

2.2.13

2.2.5

2.2.14

2.2.15

2.2.17

Transparency Logs
standalone

X X X X X

Transparency Logs
verification

X X X X X

4.5.1 Transparency Logs for the Sensor Directory

The sensor directory could be built similarly to the CT system. There could be
several sensor directories, operated by non-trusted operators, which getmon-
itored by multiple non-trusted monitors and auditors. If a sensor directory
turned malicious, the monitors would flag it, and the PIAs do not have to use
this directory any more. PIAs could also get the root of the merkle tree from
themonitors, whichwould prevent the sensor directory from splitting view for
several users (section 2.2.17). Sensor directories can be run by everyone who
wants to do so. But this might imply, there are numerous small, rarely used
directories. Therefore PIAswould have to query several of them to receive a to-
tal set of sensors. Sensor providers would also have to publish their data into
many directories because they do not know which ones will be queried by PIAs
and which are trustworthy. It would be much more convenient if there were
some big logs operated by known companies, like Google and Amazon. Which
would always be queried by the PIAs. Sensor providers would still have to add
their sensors into multiple logs because they cannot trust logs to stay honest,
but they can expect PIAs to find their sensors much more effortlessly. Every-
one is still allowed to runmonitors or auditors. If a sensor provider insists and
still wants to add the data into another log, the sensor provider should inform
the owner of the PIA to adjust the PIA in a way it searches in these logs as well.
Similarly, browsers do have their trusted CAs and CT logs also PIAs would have
trusted sensor directories they are using to retrieve data. Because there are lots
of logs, PIAs can distribute their requests among them and therefore mitigate
fingerprinting (section 2.2.3). By doing this, the risk of the sensor directory lo-
cating any person (section 2.2.14) is reduced. However, this is only possible if
sensors are included in multiple logs. See Table 4.9 for an overview via the at-
tack vectors which can be mitigated using CT logs.

Merkle trees add metadata to the stored data, making this data verifiable and
immutable. Each systemhas to stores data inside a database of some kind. This
allows the server to retrieve requests, perform searches in the database, and
return a valid response set. This response set would also include information
from themerkle tree to verify the entries contained in the returned set. Because
the server providers have direct access to the database they easily can search
within the data and gain lots of additional knowledge. Therefore, there is no
protection against the owner searching for vulnerable sensors (section 2.2.4).
The sensor directory might only allow interaction with the data via queries,
so it is more challenging for ordinary users to perform such an attack. Those
queries should be designed in a way they allow maximal flexibility for PIAs
while mitigate all attacks. Obviously the most important query is for the lo-
cation of the sensor or sensors in a specific area. However, because there are
monitors and validators it is required to allow those entities to do their work

4 Technologies 61

anddesignqueries requiredby themaswell. Because everyone is able to request
data in this way it is also easy for anyone to collect data on potential targets via
the sensor directory (section2.2.5). Verifying a response is easy by verifying the
root of themerkle tree. Because each piece of information is included in the log
it is easily possible for a monitor or auditor to verify the content of the logs. It
also prevents the sensor directory fromdeleting any information. It also allows
sensor providers to update their sensors by adding additional information into
the log updating the sensors. The owner of a sensor can be identified via the key
used in the creation and update.

It should be an option for everyone to run their ownmonitors or auditors. This
might create trust in several logs whichmeans there is no need to create addi-
tional logs, this should lead to a decrease in needed logs and therefore work for
sensor providers and PIAs. Thismeans fewer servers aremonitored by numer-
ous devices and correspondingly those are much more trustworthy. Monitors
also have the capability of verifying content, thismeans those devicesmight be
able to verify sensors and their trust as well. This data might be needed to flag
not only which CT logs are trustworthy but also which sensors on which CT
logs can be trusted. To support this CT logs might hold additional information
which is provided by thosemonitors. Tomake this data immutable aswell, this
data has to be incorporated into the underlying data structure as well. If this
is not done it might be changed by someone. This inclusion might be possible
by adding additional nodes to the merkle tree verifying those entries. If data is
retrieved also this data has to be sent and verified using the merkle tree. How-
ever, this does increase the work required drastically because for one sensor
there might be lots of trust entries that have to be verified. If the sensor direc-
tory additionally verifies a sensor before it is included in the directory, it acts
as a notary and thereforemitigates some additional attacks because only veri-
fied entries are allowed. However, neither such a form of monitoring nor such
a verification at insert is used by the standard CT log approach.

The need for storage of such a system is still a problem because this means the
storage grows infinitely. The problem is evenworse because everyone canpub-
lish sensors even if they arenot trusted. Each log canbe targetedby aDoSattack
denying its service for a specific amount of time. Such a scenario is also possi-
ble by adding lots of sensors. To limit the impact ofmany sensors being added,
sensor directories may verify sensors before they are inserted into the direc-
tory, however, this does require resources and therefore increases the initial
impact of such an attack. However, if this is not done the storage requirement
drastically increases and the system eventually breaks down. Correspondingly,
a sensor providermight add sensors intomultiple logs, to increase their avail-
ability via sensor directories.

Another way of using transparency logs to create the sensor directory would
be, to have servers that actually store the sensor directory, while additionally
running logs including verification data of those servers. This means the ac-
tual sensor datawould be stored on the server. The logwould store information
needed to verify the entries in the serverwhich could be for example the hashes
of the different sensors. By doing this the storage required on the immutable
system isminimizedwhile the data provided ismaximized and integrity is still
provided.However, thismeans itmight be possible for sensors to be dropped as
well as information to be outdated. Also if trust is stored on those servers there
is a need to store those values securely, otherwise the server can manipulate
that data. However, this trust assessment cannot bemade bymonitors because
those only have access to the hashes. An overview of all requirements fulfilled
by using CT logs is given in Table 4.10.

4 Technologies 62

Table 4.10: Requirements fulfilled by a transparency log approach

Technology A
n
on

ym
ity

Q
ueriable

Equality

Im
m
utable

V
erifi

able

W
hom

to
T
rust

T
rustSystem

R
edun

dan
cy/

D
istributed

Prun
e
Q
ueries

Prun
e
Sets

In
putV

alidation

R
epeated

V
alidation

Storage
R
equirem

en
t

O
w
n
er

can
chan

ge
data

Transparency Logs
standalone

X ∼ X X X X X X

Transparency Logs
verification

X X X X X X X X

4.6 Append-Only Authenticated Dictionaries

The goal of Append-Only Authenticated Dictionaries (AAD), is to improve the
performance of transparency logs. This is needed because, in the traditional
approach for CT logs, either lookup proofs or append-only proofs are of linear
size [91].

An append-only proof is used after a user adds data to the log, it is used to prove
the new version of the log contains old entries and the new data is only ap-
pended. AADs, realize this by proving the old data is a subset of the new struc-
ture [91], which will be shown later. A lookup proof is used if a user requests
data of a certain key. Using this proof the system is able to prove that the re-
sponse contains the entirety of the data for this specific key. If this proof is not
available, the system could show different sets of data for the same key to dif-
ferent users [91]. This proof alone does not mitigate the problem of two users
receiving different responses, however. The server is still able to fork and cre-
ate distinct logs for different users. This situation allows the server to answer
correctly under the conditionmentioned above [91]. But the server would have
to respondwith the same set of changes to the same user each time [91], which
means the server has to store lots of additional data. Furthermore, the user has
to be identified. If users communicate with each other such a situation can be
detected easily [91]. Merkle trees as they are used in CT logs have the problem,
of either append-only proofs or lookup proofs being of logarithmic size and
never both [51, 91]. If the merkle tree is organized chronologically, append-
only proofs do have logarithmic size. If the merkle tree is organized lexico-
graphically, the lookupproof is of logarithmic size [51, 91]. The issue is the cor-
responding other proof is always of linear complexity [51, 91]. A possible solu-
tion would be to combine both versions of the tree. However this means there
would be two trees and each work step has to be conducted twice, addition-
ally proof is needed both trees hold identical data at any time [91]. AADs, try to
tackle this problem and show how to combine logarithmic-sized append-only
proofs, as well as poly-logarithmic-sized lookup proofs and poly-logarithmic
worst-case time appends [91].

An AAD is a tree storing key-value pairs and supporting lookups as well as
(non)membership proofs. The structure of AADs and how those function is ex-
plained next and is directly taken from [91]. First of all the data elements are
ordered lexicographic. Because the values of one key should be located next
to each other in the tree, the key is concatenated with the values. Each value

4 Technologies 63

∅,0,00,01,000,011,0001,0101,0,00,01,000,011,0001,0101

0,00,01,000,011,0001,0101 1,11,111,1110

00,000,0001 01,010,0101 10 11,111,1110

000,0001 011

0000

111,1110001 010,0101

0001

110

0100 0101 1110 1111

a c b

0 1

0 1 0 1

0 1

0

11 0

1

0

0 1 0 1

Figure 4.3: Example of a bilinear tree which contains a,b and c

is represented by a leaf node in the tree created. The tree is bilinear and each
layer holds the union of the two nodes below. This means the root contains
the union of all nodes. Because this is the case once included data cannot be
changed or deleted. This structure already allows for membership proofs. To
support non-membership proofs as well it is required for each block to store
all elements from the nodes below as well. Such a structure is called a bilin-
ear prefix tree (BPT), and an example can be seen in Figure 4.3. A member-
ship proof is now possible by viewing each node as a subset of the node above.
Therefore, if a membership proof is performed, a subset proof for each higher
layer is done to ensure an element is stored in the tree, leading to a proof of log-
arithmic size. To perform a non-membership proof it is sufficient to prove an
element is not in the subtree it should be in. This proof can also be used to prove
similar elements are not included. For example, if d=0111 and f=0110 are given,
it is sufficient to prove that 011 is not included in the tree, and therefore nei-
ther of them can be part of it. Users may periodically request the latest version
andmake sure the system is append-only by performing an append-only proof
with their old data. This can be conducted by performing a membership proof
using the old data. The lookup-proof can be done easily by proving all nodes
under the key without a value are dead ends. This proof is possible in O(log n)
per node. Because AADs still have very high append times as well as enormous
storage consumption, it cannot be seen as valid option for the sensor directory.

4.6.1 AAD for the Sensor Directory

Because AADs are not yet ready for a productive system, this might not be an
option. Because AADs are developed to work the same way CT logs do, they
would work similarly to CT logs would work for the sensor directory. This
means AADs also bring the same advantages and disadvantages to the table as
they do for their initial purpose. This means while they would allow for ver-
ification as well as ensuring integrity, they would also have very high append

4 Technologies 64

Table 4.11: Mitigated attack vectors by an AAD approach

Technology Attack Vectors Mitigated

2.2.1

2.2.3

2.2.4

2.2.6

2.2.7

2.2.9

2.2.11

2.2.12

2.2.12

2.2.12

2.2.13

2.2.13

2.2.5

2.2.14

2.2.15

2.2.17

AAD standalone X X X X X
AAD verification X X X X X

Table 4.12: Requirements fulfilled by a AAD approach

Technology A
n
on

ym
ity

Q
ueriable

Equality

Im
m
utable

V
erifi

able

W
hom

to
T
rust

T
rustSystem

R
edun

dan
cy/

D
istributed

Prun
e
Q
ueries

Prun
e
Sets

In
putV

alidation

R
epeated

V
alidation

Storage
R
equirem

en
t

O
w
n
er

can
chan

ge
data

AAD standalone X ∼ X X X X X X
AAD verification X X X X X X X X

timesaswell as enormous storage consumption. Theoverviewof all attack vec-
tors, and which could be mitigated, is shown in Table 4.11.

Whenever a PIA tries to query the system it sends a request containing the key
to a server. Said server couldperformasearch in the tree and returnonly the re-
sponse set fulfilling the query aswell as some integrity information in the form
of some intermediate nodes. This search would be done by always searching
the next node containing the searched information. However, because the root
does contain all nodes below the system could also return that root requiring
the PIA to perform searches on its own.

Because an AADmaps keys to values it is important which characteristic is se-
lected to be used as keys. One option is to use the keys of the sensor provider
as a key. This would bundle all sensors of one sensor provider below one key.
This would allow PIAs to search for trusted sensor providers and would always
return all sensors created by them. Another optionwould be to use the location
as a key. This would allow PIAs to searchmuchmore easily. Also because in the
AAD the union of child nodes are included in the parent this means there is al-
ready an option to search for an area. This is the case because all sensors in an
area are located below the samenodewhichmeans only this parent node has to
be returned. It also allows for non-inclusion proofs, whichmeans it is also able
to check for locations without sensors. Another optionwould be to add all sen-
sorswithout any key and searchwithin all of that data. This would decrease the
amount of storage required in the system. Also, similar to transparency logs, it
would be anoption touse this structure as an integrity information server stor-
ing only hashes while the data is stored on vulnerable data servers somewhere
else. Doing thismight decrease the used storage capacity drastically, while still
maintaining confidence in the data. However, the different data structure an
AAD provides would not provide any benefits in this situation. All fulfilled re-
quirements can be seen in Table 4.12.

4 Technologies 65

4.7 Merkle^2

Merkle2 is another approach to improve the performance of transparency logs.
It enables users to efficiently monitor data while supporting low latency up-
dates [51]. Whereas this is not possible with traditional CT logs, where it may
be necessary to wait more than an hour for updates, for the purpose of lower-
ingmonitoring costs [51]. This improvement is possible by using, two types of
merkle trees in combination. The used structure allows for improved complex-
ity of monitoring, appending, and lookups.

The data structure is based on the differentmethods available to build amerkle
tree. There are two different merkle tree options [51, 91]:

1. lexicographical trees,

2. chronological trees.

Lexicographical trees enable very fast lookups while having the disadvantage
of linear complexity for append-only proofs [51, 91]. On the other hand, there
are chronological trees that enable very fast append-only proofs while having
linear complexity for lookups [51, 91]. Both have complementary advantages
and disadvantages, which is the reason why Merkle2 combines both. That is
accomplished by nestingmultiplemerkle trees in each other. To bemore clear,
lexicographical trees arenested in chronological trees [51]. A chronological tree
is used as the base of the data structure, this means the leaves are ordered ac-
cording to the time they were committed to the system. In those leaves, the
key-value pairs of the users are stored and given a sequential number. For each
internal node of the calculated tree not only the hashes of the nodes below but
also the root of a lexicographical tree is used tofind thehash value. For this lex-
icographical tree, the nodes are ordered by their index and then amerkle tree is
built. If one user adds multiple values, the data gets concatenated in one node.
How this structure looks exactly can be seen in Figure 4.4.

The server is responsible for maintaining this data structure and providing a
way to interact with it for other participants. Three participants interact with
each other in the system [51]:

Server,

Client,

Auditor.

Servers and Clients work similarly to their counterparts in the CT environment
with the distinction of using another data structure. Also, clients have to check
for their keys regularly and only the owner of a domain is allowed to publish
new data. In this case, the owner is the first user to publish something for one
domain. Also, Auditors have a similar goal inmind, they verify the consistency
of the server and also guarantee, that clients and other auditors are provided
with the correct view.Auditors alsogossipwitheachother toverify eachother’s
views and confirm the server is honest. Everyone is allowed to participate in
one of those options. Using a chronological tree as the outer tree allows for a
very efficient append in log(n). To also enable efficient proofs, auditors have to
check for consistency. That means old versions of the tree are included in the
new structure. Doing so allows clients to only check for their key values every
few iterations of the tree.

4 Technologies 66

H(H01|H02|Root03)

H(H00|H11|Root01) H(H22|H33|Root02)

H(Alice
|0|Val0)

H(Bob
|1|Val1)

H(Charlie
|2|Val2)

H(Alice
|3|Val3)

Chronological tree

H00 H11 H22 H33

H01 H02

H(H1|H2)

H(H00|H01) H(H10|H11)

H(Charlie
|2|Val2)

H(Alice
|0|Val0|3|Val3) H(Empty) H(BoB

|1|Val1)

Root03
Index(Alice)=01
Index(Bob)=11

Index(Charlie)=00

H00 H01 H10
H11

H1 H2

chronologic order

Figure 4.4: Storage structure of Merkle2

4.7.1 Merkle^2 for the Sensor Directory

Because Merkle2 has the same functionality as a transparency log, Merkle2
wouldwork similarlywhenused for implementing the sensordirectory. Similar
to AADs and CT logs, several options for the key exist:

the location,

the address,

or the sensor provider.

When using location AADs might have an advantage, this is the case because
the union is stored in the parent, and therefore the information gets less ac-
curate with each layer and therefore an areal search is possible. This is not the
case for Merkle2, this means sensors might be stored with limited accuracy so
they would be found by PIAs. Otherwise, PIAs are required to search for their
exact locationPIAsdonothave. The address is also anoption for all of such sys-
tems. However, if the address is used, PIAs do have to know an address space
theyare interested in, thismeans it is notpossible tofindspecific sensorswith-
out prior knowledge.However, already in this prior knowledge the sensor could
be contained. Similar to AADs also the sensor provider could be used to allow
PIAs to search for trusted sensor providers. Additionally, it would be possible
to use the system to verify information stored in an additional server as de-
scribed for transparency logs. However because this data is stored on another
server it is not possible the Merkle2 verification server could interact with the
data directly. In Table 4.13 an overview of all mitigated attack vectors is shown.
Table 4.14 shows the fulfilled requirements.

4 Technologies 67

Table 4.13: Mitigated attack vectors by a Merkle2 approach

Technology Attack Vectors Mitigated

2.2.1

2.2.3

2.2.4

2.2.6

2.2.7

2.2.9

2.2.11

2.2.12

2.2.12

2.2.12

2.2.13

2.2.13

2.2.5

2.2.14

2.2.15

2.2.17

Merkle2 standalone X X X X X X X X X X
Merkle2 verification X X X X X X

Table 4.14: Requirements fulfilled by a Merkle2 approach

Technology A
n
on

ym
ity

Q
ueriable

Equality

Im
m
utable

V
erifi

able

W
hom

to
T
rust

T
rustSystem

R
edun

dan
cy/

D
istributed

Prun
e
Q
ueries

Prun
e
Sets

In
putV

alidation

R
epeated

V
alidation

Storage
R
equirem

en
t

O
w
n
er

can
chan

ge
data

Merkle2 standalone X ∼ X X X X X X
Merkle2 verification X X X X X X X X

4.8 Software Distribution Transparency and
Auditability

Software Distribution Transparency and Auditability is an extension to the
Advanced Packaging Tool (APT) to gain additional security features. APT is a
widely used Linux packagemanager [48]. The improvements are accomplished
by following concepts and features from transparency logs. How the system
works is explained next and the explanation is heavily influenced by [48]. The
concept of a transparency log is adapted, and a similar system using a merkle
tree is created [48]. The server holding the merkle tree should allow package
managers to link source code to binaries, to enable better audit and forensic
methods. To allow this, the source code has to follow the rules for reproducible
builds, so all binaries of the same source are equal [61]. The system requires the
following participants to work [48]:

User,

APT server,

Maintainer,

Public log and

Monitors.

Users want to download or update binaries. They want to do this most securely
and efficiently. The APT server is the file server which is used to manage soft-
ware packages. It allows users to download their software as expected. There
is no difference from a conventional APT server. Maintainers deliver the soft-
ware packages, sign the source code, and publish the packages into one or
more public logs, as well as APT servers. The public logs maintain a merkle
tree. The merkle tree includes the hashes of the signed build environment, the

4 Technologies 68

Table 4.15: Mitigated attack vectors by a Software Distribution Transparency
approach

Technology Attack Vectors Mitigated

2.2.1

2.2.3

2.2.4

2.2.6

2.2.7

2.2.9

2.2.11

2.2.12

2.2.12

2.2.12

2.2.13

2.2.13

2.2.5

2.2.14

2.2.15

2.2.17

Software Distribution
Transparency

∼ X X X ∼ ∼ ∼ X X

source code, and the metadata. Metadata can, for example, contain all main-
tainer keys. Those keys can, once included, never get discarded but they could
be labeled expired. The log allows the user to verify a package is included in the
merkle tree. If a new root is created, the log pushes the root of the merkle tree
into themerkle tree of another log and therefore commits to its view.Monitors
work like that of CT logs, they verify the consistency of the logs. Monitors can
also be used to further investigate items added to the tree. A monitor can, for
example, verify a release is reproducible. A monitor can also commit to vali-
dating the view of a log, this is done by validating that the root of the merkle
tree is included in another log. This prevents the log from splitting views (sec-
tion 2.2.17).

4.8.1 Software Distribution Transparency for the Sensor Directory

If this improvement of APT is applied to implement the sensor directory, it
meansanAPTserver isneededwhere all sensorproviderspublish their sensors.
Itmight even be possible to distribute the sensors viamultiple servers, but this
implies the servers have to be known to PIAs or there is some form of infras-
tructure in place distributing requests. They could all be run by mostly trusted
entities, like Google or Amazon, and would therefore be known and evenmore
trusted. However, they do not necessarily need to be trusted, because they are
checked as well as they can be replaced by another server. Also when the sen-
sor directory is built this way there is no need to implement a way to interact
with the data due to the fact this is already possible using the APT server. Pub-
lic logs can be run by everyone, but it might be favorable if some entities which
aremostly trusted volunteer to set up some standard logs. It should be consid-
ered those running the servers and logs should be distinct to increase security.
However, the most used logs might also be those of big companies, like Ama-
zon. Also, since the logs are not trusted at all, everyone could set those up and
the systemwouldwork. That leads tomany servers inparallel, aswell as redun-
dant logs, which can get queried. If PIAs use several of them, there should be no
possibility offingerprinting (section2.2.3) or tracking someone (section2.2.14)
by anyone. However, this requires sensors to be registered at multiple servers.
Yet, APT does not allow for packets to be deployed on multiple servers, this is
the case to prevent dependency issues, nevertheless, those problems are not
present for sensors which means sensors may be present on multiple servers.
Because the system allows for every participant to be redundant, the impact
of one actor being denied is limited. The only impact is this one server being
down for the duration of the attack. An overview of all attack vectors is shown
in Table 4.15.

For APT, devices are required to download an index file which allows those de-
vices to search for specific information, before downloading the actual pack-
age [53]. For the sensor directory, sensors could be indexed by their location or

4 Technologies 69

their sensor provider. This would prevent malicious use of any other field like
someone trying to receiveall sensorsusinga specific softwareversion.Also, the
description of the sensor or if it is currently active could bemasked that way. It
would also allow for searches of locationwhich is probably themost important
query. However this means PIAs are required to download a huge index list for
each server including query data, this might be lots of storage required on the
PIA. Additionally, those indexes should be unique to identify the sensor which
means if it is the location, this field has to be precise.

Everyone can run monitors and therefore validate that a log is working hon-
estly. This means there would be multiple monitors verifying each log. Since
everyone could set up amonitor and verify a log, logs have to be honest, or they
lose all their trust. Sensor providers publish their sensors in APT servers fol-
lowing the use case. Because APT is built to distribute software, it can also sup-
port lots of data, therefore even if sensors require lots of additional space, it
might still be an option. The sensor provider would most likely commit their
sensors to multiple logs and servers to ensure their data is secure and avail-
able. This way PIAs can choose which servers they use. If sensor data has to be
changed for some reason, this is possible by creating a new version of the data
in the APT server and additionally adding a new entry in the logs. The data in
the APT server is not immutable. However, the data in the log is and it will be
discovered if the server changes data. APT servers are also able tomanage their
storage, this might lead to problems but also may solve storage issues. PIAs
need to knowwhich APT servers they have to search in to find the correspond-
ing sensors. To allow this there might be some standard servers a PIA would
use, those could be the ones hosted by Google, Amazon, or other big compa-
nies. Sensor providers can also decide to publish their sensors on additional
or completely different servers. If the sensor provider resolves to use different
servers instead, PIAs have to be able to find them. This could be done by in-
forming PIAs about those servers when other information is exchanged. There
is also the possibility of using a formof loaddistributor knowing lots of servers.
PIAs would use this distributor to receive lots of knowledge from servers they
do not know. However such a load distributor also receives lots of knowledge
and could use this knowledge in a malicious way. After PIAs receive the sen-
sor information, they can verify the sensor is included in logs.When the data is
verified, it can be assumed this server is honest.

Monitors should be used to verify the consistency of logs as well as check if the
merkle trees’ root is incorporated inotherknown logs.This ensures logs cannot
change their views and have to commit to their data for a specific point in time.
Because monitors have to be able to read the data, this holds for everyone else
as well. This means it might be an option for everyone to search for vulnerable
sensors (section 2.2.4) or other useful data (section 2.2.5). Until now, the sen-
sors have not been verified, and therefore there is no trust assessment. Moni-
tors are allowed to invest data further, which means monitors could also have
looked into sensors while investigating logs [48]. Only some monitors would
have to do this to verify those sensors. The details of this investigation have
to be stored somehow with the information. It might also be possible to create
additional devices to verify sensors. This means the data might be verified pe-
riodically, and it could be hard for a malicious user to perform some attacks.
Thus it might be hard to add malicious data (section 2.2.6), or sensors with
hostile address data (section 2.2.12). A system like this might also flag com-
promised sensors (section 2.2.7) if monitors check for them and the system is
correctly implemented. However, sensors are not validated by inclusion which
means those attacks are possible until a monitor checks for them. This is the
case because there are no notaries. It would also be possible to use a web of
trust and store which user trusts which sensor, or howmany times a sensor is

4 Technologies 70

Table 4.16: Requirements fulfilledbyaSoftwareDistributionTransparencyap-
proach

Technology A
n
on

ym
ity

Q
ueriable

Equality

Im
m
utable

V
erifi

able

W
hom

to
T
rust

T
rustSystem

R
edun

dan
cy/

D
istributed

Prun
e
Q
ueries

Prun
e
Sets

In
putV

alidation

R
epeated

V
alidation

Storage
R
equirem

en
t

O
w
n
er

can
chan

ge
data

Software Distribution
Transparency

X X X X X X X X X ∼ X

used. Another option to add verification at insert would be to include notaries
in the formof CAs into the system (section 4.1).What requirements are accom-
plishedwhen software distribution transparency and auditability are applied is
demonstrated in Table 4.16.

4.9 Accountable Key Infrastructure

Accountable Key Infrastructure (AKI) was designed to increase internet secu-
rity by raising public key security and decreasing the required trust in CAs. AKI
also supports important features like swapping out trusted CAs or re-creating
key pairs and certificates after losing them [57]. Following the functionality
of AKI is explained, the information is mostly taken from [57]. In contrast to
current systems, AKI requires additional participants to work together, how-
ever, all participants can be expected to distrust each other. The participants
required are [57]:

Server,

Client,

Certification Agency,

Integrity Log Servers and

Validators.

The server is the entity that should be contacted using the public key. This
means the key pair is bound to this server. The client is the requesting entity,
requiring the key to communicate with the server. The certification agency has
to do the same work a certification authority has to do, but because it has less
power in AKI, it is called an agency. The integrity log servers (ILS) are publicly
available hash trees. Those trees contain all registered certificates in lexico-
graphic order. Validators are the type of participants expected to check if ILS
are valid andmanaged adequately. Validators have to check for consistency and
validate whether updates and policies are respected.

A short use case couldbeas follows,Alicehas set upher server andnowwants to
set up anAKI certificate. To do so, she sets up ruleswhich have to be followed to
gain her keys. In this rule set, trusted CAs and ILS get included, and aminimum
number of CAs is defined. After doing this, Alice reaches out to more than the
minimal number of CAs to sign her key and the rules she specified. Alice then

4 Technologies 71

Table 4.17: Mitigated attack vectors by a AKI approach

Technology Attack Vectors Mitigated

2.2.1

2.2.3

2.2.4

2.2.6

2.2.7

2.2.9

2.2.11

2.2.12

2.2.12

2.2.12

2.2.13

2.2.13

2.2.5

2.2.14

2.2.15

2.2.17

AKI
standalone

X X X X X X X X X X

AKI
verification

X X X X X

sends the signed certificates to the ILSs she trusts. Each of those ILSs adds the
certificate to the hash tree. Alice downloads the verification information from
those ILSs. Each browser used to request data receives this verification infor-
mation from the ILS from now on when connecting to the server via HTTPS. If
browsers receive data, they can verify the key the same way as done nowadays
by checking the signatures of the CAs, but additionally, the browser can check
the ILS information. To prevent malicious users from creating certificates on
their own, and immediately using them, certificates only become active after a
domain-specific time. That is in place so the actual holder of the domain could
take some action to prevent harmful activities from happening. Also because
there is aminimumamount of CAs required releasing newkeys ismuchharder.

4.9.1 AKI for the Sensor Directory

Using AKI for the sensor directory would work in a similar way CT logs work.
This means there are two distinct ways of using AKI to allow the implementa-
tion of the sensor directory. The first option is to use AKI as a standalone sys-
tem to store the sensor information. The second option is closer to the initial
use case by using AKI to verify the content of an untrusted server.

For thefirst option,AKIhas tobe changed slightly. The ILSwould store the sen-
sor information instead of the hashes of the keys. Also, those ILSs would have
to implement searchoptions to allowPIAs to send requests and senda response
with verification information. If those servers would not allow for searches
they would respond with the whole dataset and require the PIA to search the
data itself. While the first approach requires some additional APIs to be devel-
oped, the second approach would require lots of network and computational
capacity of the PIA as well as the ILS. In such an approach CAs would act as
notaries and would only sign sensors they trust. This would be already a sort
of trust however the data would only be verified at entry. Because the ILSs are
monitored they cannot get malicious without raising suspicion. Because ILSs
run in parallel a redundant server structure is available which prevents fin-
gerprinting (section 2.2.3) and tracks any person by them (section 2.2.14). But
this only is true if the sensor data provided on such servers is partially redun-
dant.However, because those ILSs have to bemonitored the data has to be pub-
lic and therefore everyone can gain knowledge about vulnerable sensors (sec-
tion 2.2.4) or other information (section 2.2.5). See Table 4.17 for an overview
of those mitigated attack vectors.

Another clearproblemof suchanapproach is, thatPIAsdonotknowwhichsen-
sors would be in which ILS, so they do not know if they ever have found all im-
portant sensors as long they do not have additional information. Because there

4 Technologies 72

might be a permission exchangewith the sensor provider, the sensor providers
could also provide a list of ILS that they trust, so the PIAs knowwhich ILS they
have to crawl for all the essential sensors. There may be sensors, which do not
expect the user to have any permission but still try to verify the identity of a
user, that might be for example, in public transport. This means PIAs would
still have to crawl additional ILS for this sort of sensor, but it could be an op-
tion to concentrate this sort of sensoronseveral knownILSso thePIAs can limit
their required resources. This ILS could be run by countries that are at least a
bit trustworthy. When following the rules set, an owner can update their data
by following the normal use case and adding new information. In this process,
multiple CAs would be contacted. Those would act as notaries, check if updates
are valid, andmandatory conditions are set. For example, theywouldalso check
if any problems with the address field (section 2.2.12) would occur. However,
because the system has many ILSs it might be hard to mitigate those attack
vectors because those directories might interfere with each other.

The second option of using AKI, would be for sensor providers to set up their
sites and use the ISL as a verification as in the original idea of AKI. This means
for each sensor provider there would be a server holding the sensor informa-
tion. When PIAs connect to those servers they receive this list of sensors from
thesensorprovider. Those sensors arehandled likekeys in theoriginalAKI sys-
tem, this means they are signed by CAs and added into ISLs. Whenever a PIA
receives a sensor, the additional information from the ISL is concatenated. The
PIA may use this information to verify the data. By including the ISL informa-
tion there is also no longer the problem of not knowing which ISLs are used
by which sensor provider because this information is included in the rule sets
of the data and therefore known. Nevertheless, PIAs are still required to know
onwhich servers the information they are interested in is provided. Thismeans
theserver thesensorprovider isusinghas tobeknown.This server couldalsobe
a server combining lots of data from different sensor providers and supporting
searches for location. By doing this the afford required decreases a lot for PIAs,
this is the case because there are fewer known servers holding lots of sensors
that also support queries. However, this means providers for those servers are
needed. While those servers provide the sensor data, this data could be verified
by using ILSs. Several such servers are required so the data as well as requests
can be distributed to prevent fingerprinting (section 2.2.3) or tracking persons
(section 2.2.14). However, such servers do not support immutability, if no data
structure is enforcing the server to do so. This means those servers can delete
unwanted data. This also means they can delete malicious data as well as solve
storage problems. The server is also able to change the stored data. Because the
ISL still verifies the original content validators or PIAs canflag such a situation.
Regardless, the structure of the ILSdoes enforce immutabilitywhichmeans the
data of those systems will grow indefinitely. It is also possible to verify which
informationgot droppedby a server and therefore if a server is trustworthy. For
anoverviewof suchanapproachseeTable4.17.Whenevernewdata is added toa
server the data has to follow certain rules. The data has to be signed bymultiple
CAs as well as get included in ILSs before the data is added to the distribution
servers. Using this approach also means only the owner of a sensor can update
it. Also, malicious data should not get into the system. However, because those
servers distributing sensors are not validated or bound to any data structure,
they could show different views to different users. Yet, this might be discov-
ered when PIAs gossip with each other.

Trust for such a system is not that hard to achieve. First of all, CAs would act as
notaries and check the data before it is inserted into the system. This means it
should not be possible to add malicious or wrong data into the system. Addi-
tionally, the system supports validators who are expected to frequently check

4 Technologies 73

Table 4.18: Requirements fulfilled by a AKI approach

Technology A
n
on

ym
ity

Q
ueriable

Equality

Im
m
utable

V
erifi

able

W
hom

to
T
rust

T
rustSystem

R
edun

dan
cy/

D
istributed

Prun
e
Q
ueries

Prun
e
Sets

In
putV

alidation

R
epeated

V
alidation

Storage
R
equirem

en
t

O
w
n
er

can
chan

ge
data

AKI
standalone

X ∼ X X X X X X X X X

AKI
verification

X X X X X X X X X X X

the content of the logs. This means those could check the data as well, if any
data is malicious those might flag this. To be able to validate this, validators
have to communicate with the entity. Validators might then inform the sen-
sor provider or the server about this situation so they may take some action.
It might also be an option to have a list of malicious sensors which is filled by
those validators so PIAs would be able to query this list and only use sensors
not listed by them. However, this might allow for trust to be destroyed so PIAs
may not trust those statements. Nevertheless, this might only be needed if the
responsible entity does not take action. Because there are lots of validators it is
also not possible for the system to split views for different users (section 2.2.17)
because those would notice such an action. The requirements fulfilled by using
an AKI approach can be seen in Table 4.18.

4.10 Attack Resilient PKI

Attack Resilient PKI, or ARPKI, is designed to solve problems current CA struc-
tures suffer from. It tries to allowusers to get their certificates signedwhile not
having to trust anyone and not allowing anyone else to create certificates for
their domain. Following ARPKI is explained, how it works is taken from [14].
The idea of ARPKI is based on AKI. Therefore the entities of the systems are
similar. Additionally, there is also a rule set that has to be fulfilled for each cer-
tificate. ARPKI requires the following participants:

Server,

Client,

Certification Authority,

Integrity Log Server and

Validators (optional).

The server and client do not differ from those of AKI considering their tasks.
They only differ in the content of theirmessages. The certification authority in
ARPKIhas additional tasks assigned. It still has to check for ownership and sign
certificates as in most other systems, but they have additional validator tasks

4 Technologies 74

assigned, which will be explained in the next paragraph. Integrity log servers
(ILS) are, similarly to AKI, hash trees that cannot be changed and are publicly
available. Comparable toCAs, also ILSgot additional tasks.Besidesmaintaining
a hash tree, they have the chore of distributing new certificates to most other
known ILS if they get chosen as trustworthy ILS. Validators can be part of the
system, but they are not required. If validators are present, they perform the
same actions CAs perform, but they do not sign new certificates.

A short use case could be as follows, Alice is setting up her new website and
wants to serve her certificate with ARPKI. To do so, she has to select at least 2
CAs and an ILS she trusts. ARPKI guarantees security, even when n-1 trusted
entities are compromised. When a higher number of CAs get selected, the sys-
temssecurityguarantees increase inparallel. Alice creates a rule set, like inAKI,
and sendsher keys to theminimumnumber of CAs to sign it. Alice then receives
a certificate she needs to add to the system. To do this, Alice contacts one of the
selected CAs (CA1), and CA1 verifies the ownership of Alice and signs the cer-
tificate. Alice now has to wait while CA1 takes the next steps. CA1 contacts the
ILS,whichwas selected as trustworthy byAlice, and sends the certificate to this
ILS. The selected ILS nowhas the task of distributing the certificate to a variety
of other known ILSs. When the majority of the ILSs agree to add the certificate
to the integrity tree, the selected ILS also adds the certificate to the tree and
sends an acceptance to the second selected CA (CA2). This acceptance is proof
for CA2 most ILS added the certificate into the tree. CA2 now takes the role of a
validator for this certificate and starts to monitor ILSs, which are added to the
certificate.CA1 alsomonitorsCA2 aswell as the ILSs. The acceptance is relayed
to the client of Alice, so she can provide it as proof if someonewants to connect
to her website. Each time the ILS gets updated, all selected CAs download the
whole data set and verify the content is valid and contains Alice’s correct key.
The ILSalso connects to theCAsandverifies the tree root thoseCAsuse. If this is
done, the domain owner gets informed about the validation information. Fur-
thermore, validators could be used to download and proof the ILS information
as well.

4.10.1 ARPKI for the Sensor Directory

In the same way, AKI could be used to build the sensor directory also ARPKI
could be used. This means ARPKI could be used in two ways to implement the
sensor directory by either using it as a standalone system or by using it as a
verification system for additional servers.

If the system is used as a standalone version the system would work the same
way AKI would work in its standalone version. The difference is a user adds
sensors by sending it to a CAwhich then relays it to ILSs which then automati-
cally further distribute the data. Thismeans the data is available in a redundant
way onmultiple ILSs automatically. However this is not only an advantage, this
means many ILSs grow rapidly and require lots of storage and if PIAs have to
download the whole list and filter the data themselves this means lots of load.
Therefore an API that supports adding new sensors and searching for sensors
is needed. Additionally, automatic distribution does increase the risk of attacks
by someone adding lots of sensors at once and therefore creating a DoS attack
(section 2.2.1). This is the case because this would attack all ILSs at the same
time and therefore disable the whole system for the duration. Also while in AKI
CAs only verify data when inserted, here CAs and validators do have the task of
repeatedly verify the content of those sensors. See Table 4.19 for an overview
of the mitigated attack vectors.

4 Technologies 75

Table 4.19: Mitigated attack vectors by a ARPKI approach

Technology Attack Vectors Mitigated

2.2.1

2.2.3

2.2.4

2.2.6

2.2.7

2.2.9

2.2.11

2.2.12

2.2.12

2.2.12

2.2.13

2.2.13

2.2.5

2.2.14

2.2.15

2.2.17

ARPKI
standalone

X X X X X X X X X X X

ARPKI
verification

X X X X X

Table 4.20: Requirements fulfilled by a ARPKI approach

Technology A
n
on

ym
ity

Q
ueriable

Equality

Im
m
utable

V
erifi

able

W
hom

to
T
rust

T
rustSystem

R
edun

dan
cy/

D
istributed

Prun
e
Q
ueries

Prun
e
Sets

In
putV

alidation

R
epeated

V
alidation

Storage
R
equirem

en
t

O
w
n
er

can
chan

ge
data

ARPKI
standalone

X ∼ X X X X X X X X X

ARPKI
distributed

X X X X X X X X X X X

If ARPKI is used only to verify sensor information provided on an additional
server, the advantages and disadvantages are the same as using AKI. However
here the information is relayed tomore ILSs andCAs verify the content of those
ILSs. However, the additional effortmight not change a lot in terms of the sen-
sor directory. See Table 4.20 for an overview of all fulfilled requirements when
using ARPKI.

One problem is if any problems occur CAs and validators can only flag this situ-
ation and there is no actual action they can perform. In the standalone variant,
there is no action at all. The only approach possible is to create a list of un-
trusted sensors or inform the sensor provider about the situation. In the second
version, CAs and validators could inform servers about this situation. Those
servers could either store additional trust information or they could drop the
sensor completely after checking. However, because sensor providers choose
which CAs they use those trust assessments might not be trustworthy. How-
ever because PIAs might not trust each CA, sensors signed by those CAs might
not be trusted.

4.11 CONIKS

CONIKS is a key-verification system that could be used to get automated trust
establishments, even with untrusted providers. In this section CONIKS is ex-

4 Technologies 76

plained, many of the information provided is from [71]. CONIKS is designed in
away that expects numerous providers to be present in parallel while talking to
each other. Each of those providers is expected to have their own distinct user
base. While inmost key-verification systems clients can verify the correctness
of keys,whichmeans if the key of Alice is controlled byAlice, in CONIKS, clients
confirm the consistency of keys. That means they check if keys do not change
rapidly or unexpectedly and all clients see similar keys. To allow users to check
keys and verify they are included in the data set, the data is stored in a merkle
tree in CONIKS. This means the data storage is tamper-evident. Additionally,
the root of the tree is signed and called signed tree root, or str, which is done
to ensure the non-repudiation of this tree. The str can also be seen as a com-
mitment to the merkle tree, and the provider cannot opt out of it anymore. In
addition, if a newmerkle tree is built, the old str is included in the tree to con-
struct and create a verifiable hash chain. CONIKS provides its users with two
security guarantees:

No unexpected key changes and

Non-equivocation.

No unexpected key changesmean all changes have to be included in themerkle
tree and are verified by the str. This can be ensured by the client, by checking
the authentication path given by the system (section 3.5). Non-equivocation
means all users see the same data. This is not given until this point be-
cause even if the hash chain of the strs is checked, it is still possible another
user gets a completely different, yet valid, dataset. To ensure this identity,
providers cross-verify each other and collaborate with clients to ensure non-
equivocation. Whenever a provider creates a new merkle tree, and therefore a
new str, they publish this str into the merkle trees of other CONIKS systems.
These providers verify the hash chain to make sure the old str is included in
the tree. If a client receives data, they do not only check the validity of the hash
chain but additionally connect to other providers and request the str of the used
provider. The client compares the strs, and if theymatch, the client can be sure
non-equivocation is given.

If Alice wants to opt into CONIKS, she has to provide her key to any CONIKS
server she trusts. If Bob wants to communicate with Alice, his client requests
the key at the CONIKS server and performs consistency checks. To be certain all
keys are correct, each client performs this check for their keys regularly. This
means they notice if their key is not correct. If the provider wants to provide
them with a different data set, this is perceived when the str is compared with
strs from other systems.

Privacy is an important feature of CONIKS. Therefore CONIKS does not only
protect the user information but also how many users there are. Also instead
of using the user name as key to find the stored information a user index is
used internally. Doing so does prevent the system from leaking usernames.
This user index is calculated using a verifiable unpredictable function. CONIKS
allows providers to disguise their real user numbers by adding arbitrarilymany
fake users, which are not distinguishable from real users. That means no one
can guess the actual user number or which entry is from a real user.

4.11.1 CONIKS for the Sensor Directory

CONIKS could be used to implement the sensor directory. Because CONIKS ap-
plies a merkle tree, the data is immutable and easily verifiable. Also, non-
repudiability is ensured, by requiring the server to sign the merkle tree. Addi-
tionally, because other servers hold the strs to other servers as well, no server

4 Technologies 77

Table 4.21: Mitigated attack vectors by a CONIKS approach

Technology Attack Vectors Mitigated

2.2.1

2.2.3

2.2.4

2.2.6

2.2.7

2.2.9

2.2.11

2.2.12

2.2.12

2.2.12

2.2.13

2.2.13

2.2.5

2.2.14

2.2.15

2.2.17

CONIKS standalone X X ∼ X X ∼ X X
CONIKS verification X X X X X

can provide different clients with different views. CONIKS would have to be
slightly adapted to map-specific sensors instead of the public keys. The dif-
ferent options for the key value mapping are the same as already explained in
AADs. However, the locationwould require some changes. In AADhigher layers
get less accurate because they contain theunionof thedata. Such a convenience
does not exist in CONIKS, this means either the data has to be less accurate so
the sensor is foundmore often, or when a request is sent a radius should be re-
quired. If this is the case, this means the server has to search the data for this
radius. The systemmay also be used to search sensors committed by a specific
sensor provider ormight be used to verify sensor data of another server by ver-
ifying a hash. To allow for such searches an API would be requiredwhichwould
allow users to interact by searching and adding sensors.

Toallowfor thesensordirectory tobebuilt usingCONIKS, it is important todis-
able some privacy features employed. This is the case because, unlike CONIKS,
the sensor directory requires all data to be public. Instead of using an index to
increase anonymity, the sensor directory should store the key in clear text. If
sensors are found by location this is required because else near sensors can-
not be discovered. Also, the way such an index is created is especially impor-
tant when the sensor provider is used as a key, this is the case because only the
name or key should be required to get the index. If it is possible to keep some
of CONIKS privacy elements, it might be possible to increase the difficulty for
malicious users to gain valuable knowledge. If these securitymechanismswere
disabled, it might allow users to search for whatever information they like and
allow for target discovery (section 2.2.4) and data collection (section 2.2.5). If
the system is only used to verify data discovered on another server it might be
possible to keep all of those security mechanics intact and use CONIKS as it is.
In that event, all data is known which means the index could be found by the
server.

CONIKS relies on a redundant server structure, which means it is expected
many distinct servers run in parallel. Those should be run by different users,
some of them known as big players. This redundancy is required for CONIKS
to avoid servers being able to split views (section 2.2.17) for different users be-
cause they store the str of theother servers. If not only the structure but also the
data is redundant thismay alsomitigatefingerprinting (section 2.2.3) and sen-
sor directories that try to locate anyone (section 2.2.14). This redundant struc-
ture also limits the impact of someone denying the service of one sensor direc-
tory. On the one hand, this redundancy is a huge advantage, on the other hand,
it requires sensor providers to publish their sensors on multiple servers. That
is especially important if one server becomes malicious or is attacked. How-
ever, this redundancy also requires PIAs to request data from different servers
because they cannot expect one server to contain all relevant sensors. See Ta-
ble 4.21 for an overview of all mitigated attack vectors.

Sensor providersmight update their sensors anytime by adding additional data
to the merkle tree. Besides, old data is always available and can be requested if

4 Technologies 78

Table 4.22: Requirements fulfilled by a CONIKS approach

Technology A
n
on

ym
ity

Q
ueriable

Equality

Im
m
utable

V
erifi

able

W
hom

to
T
rust

T
rustSystem

R
edun

dan
cy/

D
istributed

Prun
e
Q
ueries

Prun
e
Sets

In
putV

alidation

R
epeated

V
alidation

Storage
R
equirem

en
t

O
w
n
er

can
chan

ge
data

CONIKS standalone X ∼ X X X X X ∼ ∼ X
CONIKS verification X X X X X X ∼ ∼ X X

needed. Sensor providers might be able to add any sensor to the system. That
is the case because there is no validation which is conducted by the CONIKS
servers. Therefore, it is possible to add malicious sensors (section 2.2.6). Ad-
ditionally, all attack vectors emerging from the address field (section 2.2.12)
might still beaproblem. InCONIKS, theonlyvalidation isperformedby thedata
owners, this may be used to prevent servers from changing data. If the sensor
owners also connect to the sensors, theymight verify if they are compromised
(section 2.2.7). However, if a sensor provider is malicious, they might choose
not to flag their own sensors, and therefore hostile sensors (section 2.2.6) are
not detected. Furthermore, no trust system is embedded in the technology.
That means there is still the requirement for additional trust which cannot be
solved initially. CONIKS servers might have to check sensors before they add
them into the system to limit the number of malicious sensors in the system.
Also, the storage capacity would shrink and DoS by adding sensors would not
have asmuch impact. For an overviewof all requirements that could be fulfilled
using CONIKS see Table 4.22.

4.12 Contour

Contour is developed to allow for transparency in distributed software pack-
age binaries. How it works and its advantages and disadvantages are described
next, the information is directly from [15].Whilemost ledger and transparency
systems deal with a quite low amount of data, Contour is designed toworkwith
binaries, which means it has to work with arbitrarily large data objects. The
following participants are required for the system to work:

Service,

Authority,

Monitor,

Auditor,

Client,

Ledger and

Archival Nodes.

The service is the type of actor creating the content of the system, in Contour,
this content consists of binaries. This data is then sent to the authority, which

4 Technologies 79

Distributed
Ledger Authority

Service

Monitor

Auditor Client

Archival Nodes

1. send binary

2. commit

3. send binary
and proof

of incluseion4. get header

5. check

6. get commits

7. inspect data

8. get commits

10. get archive state

9. Mirrors
binary data

Figure 4.5: Interaction of the different actors in Contour [15]

has the task of publishing the data, somonitors and auditors can conduct their
work. Authorities do this by creating amerkle tree. The root of this tree is then
committed to public audit logs in the form of a distributed ledger. Monitors
scan the data and ensure no malware is included in the binaries. Auditors en-
sure data that is claimed to be published is public and can be verified. Clients
request binaries at services or authorities. The data is publicly available and
monitored by unconcerned parties, thus the binary cannot be changed without
raising suspicion. Also, monitors can build the binary and verify the content.
Contour can use each established ledger available, for authorities to commit
their roots into. Because the Bitcoin blockchain is currently the most expen-
sive one to attack, Contour uses it but could also use any other append-only
log. By using the public keys of authorities, auditors and monitors can verify
themerkle root and therefore verify the view for each authority. Archival nodes
are used to keep track of the history. This type of actor is not required, and the
system works properly without them. How these actors interact can be seen in
Figure 4.5. After an authority creates a new merkle tree and commits its view
to a ledger, all clients can request and receive the binaries. Whenever a binary
is sent, a proof of inclusion into a ledger as well as information of the merkle
tree is transmitted with it. A client might choose to run an auditor on the same
machine and verify the binary before executing it. So the auditor reaches out to
the blockchain and gains the needed header. Then, the header and the proof of
inclusion are compared. In parallel, after the data is included in the blockchain,
monitors can reach out to the blockchain, as well as to the authority, and ver-
ify the binaries. Also, after data is included in the ledger, archival nodes can

4 Technologies 80

request the data andmirror it.

4.12.1 Contour for the Sensor Directory

Contour could be used in the sameways Transparency logs and similar systems
could be used. This means it could be used as a standalone or to verify entries
by storing hashes. However, a huge difference between Contour and other sys-
tems presented is, that Contour is designed to store much bigger data in the
form of binaries. This does mean it might also be better suited to store sen-
sors instead of hashes. Also, it already has to support search capabilities even
if they might not match the required search parameters for sensors. Similar to
other technologies the redundant structure of the system allows PIAs to use
different authorities to get the required data, however, this is only possible if
also the data is stored redundantly on some of those servers. This requires the
sensor provider to provide their sensors on multiple authorities and PIAs to
query multiple authorities at once. Contour also incorporates monitors which
are not only expected to check authorities but also to verify the content. This
perfectly matches the requirement of the sensors being validated repeatedly.
Therefore those monitors would be able to raise suspicion if a sensor acts ma-
liciously. PIAs could also run auditors which would allow them to be more se-
cure by checking the view of each authority in a ledger. If Contour is used to
build the sensor directory there is also the need for a secure ledger. There are
two distinct options for this ledger:

Use an established ledger.
By using an established ledger, it can be ensured the ledger is run by many
users and also the security of those established ledgers is already known.
But in most cases, they already have a purpose and therefore would be hi-
jacked for the sensor directory. Thatmeans if any changes do notworkwith
the sensor directory, this will not work anymore. Also,most of these estab-
lished ledgers are used for cryptocurrencies, whichmeans these currencies
are required for publishing data in those ledgers.

Set up a new ledger.
Settingupanew ledgermight decrease thedanger of changes in established
ledgers. Furthermore, the ledger that is set upmay not demand crypto cur-
rencies.However, if anew ledger is setupvolunteers running the systemare
required. Thismeans the new ledger is most likely not run bymany devices
and therefore its security is considerably lower.

When creating the sensor directory with Contour, it is essential to choose one
of those options. However, itmight also be possible to swap between those op-
tions later. This ledger would be used to prevent authorities from showing dif-
ferent sets of sensors to different users and therefore split their views (sec-
tion 2.2.17). An overview ofmitigated attack vectors is given in Table 4.23while
Table 4.24 shows which requirements would be fulfilled by using Contour.

4.13 CHAINIAC

CHAINIAC tries to improve the software update process by changing from a
centralized to a decentralized system design [75]. CHAINIAC can do this while
still guaranteeing client security, usingminimal bandwidth and computational
overhead [75]. CHAINIAC also allows simple verification of integrity and au-
thenticity [75]. That is all possible because CHAINIAC uses a skipchain to store
all data.

4 Technologies 81

Table 4.23: Mitigated attack vectors by a Contour approach

Technology Attack Vectors Mitigated

2.2.1

2.2.3

2.2.4

2.2.6

2.2.7

2.2.9

2.2.11

2.2.12

2.2.12

2.2.12

2.2.13

2.2.13

2.2.5

2.2.14

2.2.15

2.2.17

Contour X X X X X X X

Table 4.24: Requirements fulfilled by a Contour approach

Technology A
n
on

ym
ity

Q
ueriable

Equality

Im
m
utable

V
erifi

able

W
hom

to
T
rust

T
rustSystem

R
edun

dan
cy/

D
istributed

Prun
e
Q
ueries

Prun
e
Sets

In
putV

alidation

R
epeated

V
alidation

Storage
R
equirem

en
t

O
w
n
er

can
chan

ge
data

Contour X X X X X X X X X X X

Skipchains

Skipchains are best compared to blockchains. However skipchains are chains
that allow traversing the chain forwards and backward, also each block does
not only have one reference to the last block but multiple references to pre-
vious once [75]. This structure allows to skip some blocks when traversing the
skipchain. The sameholds true in theopposite direction, thismeansblocks also
hold references to future blocks [75]. The structure of such a skipchain can be
seen in Figure 4.6. Those references to future blocks are added to a block after
their creation [75]. However, because this future block does not exist yet when
a block is created this reference is not a hash link [75]. Instead, those links into
the future are created as digital signatures which are not included in the hash-
ingalgorithmfor thenext blocks [75]. This structure allowsmuchquicker block
verification because the blockchain can be traversed considerably faster [75].
This also allows users to compare their chains without the need for a server
because amatching block can be foundmuch quicker [75]. It also allows for ef-
ficient traversal of arbitrarily long timelines both forward and backward from
any reference point [75]. Also to validate a block of the chain instead of all in-
termediate blocks only a logarithmic number of them is required [75].

Functionality of CHAINIAC

The concept of CHAINIAC is explained next and is taken from [75]. CHAINIAC
requires the following participants:

Users,

Developers,

Download center,

4 Technologies 82

Figure 4.6: Structure of a Skipchain

Witnesses and

Build verifiers.

Users are those participants of the system who download new software re-
leases, install and run them. They do not want to trust anyone while still being
certain of the connection from source code to binary. Developers are the de-
velopers of the source code. Those are expected to act independently of each
other, and at least their majority is honest. Developers are expected to prove
their source code and sign it. The download center is a server storing the re-
leases and allowing users to download this data. Witnesses are servers chosen
by the developers, which should be run by them, as well as by third-parties.
They are used tomake trusted statements and check if release policies are ful-
filled.Witnesses are also required to change trusted keys or policies. Witnesses
are not trusted individually but as a whole group. This is possible because after
they check a policy they produce a collective signature. This signature is nearly
as effective to verify as a conventional signature [34, 75]. Build verifiers are a
subgroup of thewitnesses. Those are chosen by the developers and used to ver-
ify the link from source code to binaries. To do this, they download the source
code, compile it, and compare it to the binary delivered by the developers. If
those do not match, a malicious action is detected. Build verifiers can be obli-
gated to sign a non-disclosure agreement. All witnesses store a synchronized
skipchain. The skipchain stored includes thehash values of the releases and the
developer’s policies.

Whenever developers want to create software they are required to create a pol-
icy, this policy contains howmany of them are supposed to sign a new release.
Later this number is enforced and only source code with enough signatures is
considered valid. If a new binary is created a hash tree containing the source
code and the binary is created. Developers verify the source code and sign the
root of the tree. The minimum number of developers defined in the policy is
required to sign the root. Data and signatures are then sent to the witnesses.
They are used to combine all signatures and check if all requirements are met.
The witnesses then sign the whole package and add it to the skipchain stored.
This is done to improve the performance of verifying the correctness of the re-
lease and enforce validity. Build verifiers are used to compile the source code
and compare the result with the included binary. For this process to work it is
required for the source code to follow the rules for reproducible builds so each
binary createdmatches [61]. This means also the binding between source code

4 Technologies 83

Table 4.25: Mitigated attack vectors by a CHAINIAC approach

Technology Attack Vectors Mitigated

2.2.1

2.2.3

2.2.4

2.2.6

2.2.7

2.2.9

2.2.11

2.2.12

2.2.12

2.2.12

2.2.13

2.2.13

2.2.5

2.2.14

2.2.15

2.2.17

CHAINIAC ∼ ∼ X X X X X X X ∼ X

and binary is guaranteed. The binary is also published at download centers to
enable users to download the new binary. If users download the binary, they
validate the content by reaching out to the witnesses and verifying the binary
is included in the skipchain and considered valid. If keys are compromised or
the developers decide to change their keys for any reason, it is possible through
changing the policy and publishing it into the skipchain stored [75].

4.13.1 CHAINIAC for the Sensor Directory

CHAINIAC could be used to implement the sensor directory. Its design allows
download centers to hold the data and verification data being stored into a
skipchain which is verified. Therefore, there are multiple servers validated by
a DLT. This design seems to be quite similar to several other technologies. Ex-
amples of similar ideas are transparency logs, Contour, and others. Therefore
CHAINIAC also shares most characteristics with those technologies. See Ta-
ble 4.25 for an overview of all mitigated attack vectors. However while many
of those technologies are not designed to validate data stored on a download
server and would be tweaked to fit this structure, CHAINIAC is designed with
such an idea in mind. Also, CHAINIAC is already designed to work with big-
ger data in the form of binaries and therefore easily could store sensor data
[75]. Also, those servers already have to support some sort of search which
easily could be updated to match the needs of the sensor directory. Also, sen-
sors would be verified by witnesses on insert, and build verifiers could be used
to further investigate those sensors. However, because binaries cannot change
their behavior over time CHAINIAC does not include continuous verification.

CHAINIAC also uses quite a different data structure to most of the other
technologies. While most of the comparable technologies use merkle trees,
CHAINIAC is using a skipchain. This skipchainmight be used to easily compare
and find entries in the chain. Also, CHAINIAC does allow multiple developers
to work together on one binary, in the same way, it would be possible to re-
quire multiple users to work together to publish a sensor. This means a sensor
provider would not only be one user but multiple ones, this might be used by
big companies for example to make sure their sensors are validated by multi-
ple employees. Also, this increases the trust in a sensor if multiple providers
validate it. If the policy of a sensor provider only requires one signature, a sen-
sor provider is still able to act independently. In the same way, an update for a
binary would be published also an update to an existing sensor would be pub-
lished.

Also similar tomany other technologies, PIAs would be required to know some
download servers, preferred those used by known sensor providers. Also, sen-
sor providers should publish their data on multiple download centers to allow
PIAs to distribute their requests and also decrease the impact of failure or DoS.
Which requirements aremet when CHAINIAC is used can be seen in Table 4.26.

4 Technologies 84

Table 4.26: Requirements fulfilled by a CHAINIAC approach

Technology A
n
on

ym
ity

Q
ueriable

Equality

Im
m
utable

V
erifi

able

W
hom

to
T
rust

T
rustSystem

R
edun

dan
cy/

D
istributed

Prun
e
Q
ueries

Prun
e
Sets

In
putV

alidation

R
epeated

V
alidation

Storage
R
equirem

en
t

O
w
n
er

can
chan

ge
data

CHAINIAC X X X X X X ∼ X X X X

4.14 The Onion Routing

The Onion Routing, or Tor, is a network privacy technique that can be applied
to browse the internet anonymously. To achieve that, thousands of voluntary
relays are embedded [50, 54]. Clients encrypt their packet several times. Af-
terward, the packet is sent through multiple relays, where each relay decrypts
one layer and further relays the packet [54]. By doing this, no single node can
read the data until the packet reaches its destination. Also, the response packet
is sent through the Tor network to protect the users. It is impossible to form
a connection between sender and recipient without network analysis, making
it an optimal tool for preventing censorship [54]. The problem that has to be
solved is how one client can find different relays. This task has to be fulfilled
by several directory authorities [50]. Those authorities are hard-coded into all
Tor clients and can be seen in [80, 83]. Each new relay registers at all those
authorities and only receives traffic after those added the relay to the consen-
sus [50]. Those authorities publish their view of the Tor network recurring in a
period of an hour as a single document [50]. Then, the consensus gets created
within an hour by collecting the views of all authorities (including their own).
The consensus incorporates all relays contained in the majority of views [50].
The authorities’ views do not only comprise the relays but also some statis-
tics about them, for example, if a relay is fast or stable [50]. This information
gets transmitted into the consensus [50]. Authorities then sign and publish the
consensus [50]. They also exchange and distribute the signatures, so each au-
thority provides all signatures, and it is verifiable that all of themhold the same
data [50].

4.14.1 Tor for the Sensor Directory

It might be possible to create a system similar to Tor’s directory authorities to
establish the sensor directory. Meaning, that there would be a need for some
trusted parties, which are hard-coded into PIAs. Therefore those parties have
to be specified beforehand. Thatmay lead to several selected big players, which
earn the most trust throughout the whole world. At any time the majority of
those trusted players have to stay honest. When they are selected, they are
hard-coded into PIAs, which means if they should ever change, it is required
for those PIAs to beupdated. There are twodifferent options to use such servers
to implement the sensor directory:

standalone or

4 Technologies 85

Table 4.27: Mitigated attack vectors by a Tor consensus approach

Technology Attack Vectors Mitigated

2.2.1

2.2.3

2.2.4

2.2.6

2.2.7

2.2.9

2.2.11

2.2.12

2.2.12

2.2.12

2.2.13

2.2.13

2.2.5

2.2.14

2.2.15

2.2.17

Tor consensus
standalone

∼ X X X X X X X X X X X X

Tor consensus
discovery

X X

discovery.

The first option is to use those known servers directly as storage servers, the
other option is to use them to discover servers of sensor providers where sen-
sors are provided. For the first option, each sensor provider would have to reg-
ister their sensors at those servers. The servers would check the properties of
the sensor before including it, with an option to review connection and validity.
That could prevent wrong sensor information (section 2.2.11) or sensors with
malicious address information (section 2.2.12). Because a signed list would get
published on all of those servers, the whole list is available for all users at any
time. Thatmay lead to a lot of sensors being found, implying that everyone can
search for potential targets (section 2.2.4) as well as gaining additional infor-
mationaboutanyone (section2.2.5). SeeTable4.27 foranoverviewofmitigated
attack vectors using this approach.

After a sensor is provided to one of those servers, one cannot connect to it di-
rectly. Those sensors are only available as soon as the next consensus is found,
which may take some time. The time depends on the period chosen when de-
signing the system. An optionwould be to increase the frequency for the sensor
directory to find newer sensors faster, however, this does increase the load on
those servers. This is the case because for each period new consensus has to be
found and eventually all sensors have to be validated. Due to the periodic struc-
ture, it might also be feasible for the servers to drop sensors in the next period,
if the majority considers it reasonable. This might be the case for malicious
sensors (section 2.2.6) or compromised sensors (section 2.2.7). But this also
implies if there is a situation where the majority decides to boycott someone,
they may drop the sensors of a specific sensor provider. That is also true be-
cause those sensors alwaysprovide the latest data exclusively,meaning there is
no effortless way of receiving old data. Because all of those servers provide the
same consensus, PIAs can distribute their requests preventing fingerprinting
(section 2.2.3), and tracking people using the sensor directory (section 2.2.14).
Since the consensus is signed by all servers, no server can show different sets
to different users (section 2.2.17).

Because so fewactors are required for suchasystemtobecreated, itmightbean
opportunity to run this redundantly and create distinct systems with different
trusted players. However, this might be hard because those servers have to be
hard-coded in all PIAs. The low number of serversmaymake the system a tar-
get for DoS attacks of any kind, however, such big players should have enough
power to sustain such attacks. Also, attacks by adding lots of sensors are only
slightly more problematic than other DoS attacks, this is the case because only
a small effort is involved. Serversmay check sensors for their connection or va-
lidity but they would not have much more work to do. It might be a possibility
for those servers to require the signatures of notaries before adding sensors,

4 Technologies 86

Table 4.28: Requirements fulfilled by a Tor consensus approach

Technology A
n
on

ym
ity

Q
ueriable

Equality

Im
m
utable

V
erifi

able

W
hom

to
T
rust

T
rustSystem

R
edun

dan
cy/

D
istributed

Prun
e
Q
ueries

Prun
e
Sets

In
putV

alidation

R
epeated

V
alidation

Storage
R
equirem

en
t

O
w
n
er

can
chan

ge
data

Tor consensus
standalone

X X X X ∼ X X X X

Tor consensus
discovery

X ∼ X X X

which might decrease the work demanded from the servers even further. For
Tor, the relays as well as their properties are agreed upon, which might also
serve as an alternative for the sensor directory. Possible properties for sensors
might be similar to those of Tor andmight include if it is a fast sensor or if it is
stable, how long it is already available, and maybe also a trust value. That may
be checked each iteration by those servers. However, if all of those properties
are tested for all servers, it would lead to a lot of network traffic,whichmay not
be feasible for those servers. This means it might be an option to do this with a
subset of all sensors for each iteration if checking all sensors is not feasible.

After each period a new consensus is found which is published as a new docu-
ment containing all signatures. However because it is only one huge document
this also means PIAs are required to download the whole information at once
andperformtheir searcheson their own.Thiswouldbeahuge storage commit-
ment by thePIAaswell as lots of computational power required. Toprevent this
those servers could additionally provide anAPIwith search capability, however
when this is done it is not possible to verify the consensus found. Table 4.28 de-
picts, which requirements are met when using a Tor consensus approach.

Using those servers to discover download serverswould be adifferent approach
that could be implemented. This approach would be much closer to the tradi-
tional Tor approach. This would mean each sensor provider would choose one
download serverwhere theyprovide their sensors. If thedatahas to be checked,
is up to those servers. Also theway thedata canbequeried is up to those servers.
This also means in general every sensor and each piece of information can be
included. Thus allmalicious actions regardingdata arenot preventedusing this
approach. The big advantage of this approach is the low resources required for
the servers. This is the case because the number of elements is much lower
when each download server hosts lots of sensors. However, there are many
servers providing sensors so this approach is also distributed. Similar to the
other approach also here PIAs would have to download the whole document
and search download servers they are interested in.However because the num-
ber should be much lower and those servers could be cached, the difficulty can
be seen as much lower. Also the actual sensor querying is done by the down-
load server afterwards. Such an approach could also be used in combination
with lots of other technologies where servers have to be discovered. Examples
of this might be to use such a system to discover servers storing sensors which
are then validated using a transparency log, AAD, Merkle2 or similar approach

4 Technologies 87

to verify the data. Also, those servers might require data to be validated by CAs
before they are added to those servers. However, those improvements depend
on the chosen server andmight not be implemented in all of them.

4.15 Distributed StateMachine

Distributed state machines, or byzantine fault-tolerant (BFT) state machines,
are distributed and therefore need many nodes working together. By doing so,
theyachievehighavailability andsecurity [59].Theyalso fulfill reliability, con-
fidentiality, lowoverhead, andcan recover fromfailures [59]. Also, they can re-
sist byzantine faults (section 3.1) [27, 59]. In such a system all nodes have to be
known beforehand and cannot easily be adjusted while the system is running.
This system can implement almost every functionality in a distributed fash-
ion, however, the focus of such systems is more centered around computation
than data storage [24]. A major disadvantage of this technology is the limited
system throughput, for big clusters of nodes [59]. This is the case due to the
fact each node has to perform the same actions in the same total order [59].
One possibility to improve performance is to have fewer calculating nodes. If
the number of nodes is kept down, it allows the system to gain a very high data
throughput, hence the quantity of nodes should be somewhere between 10 and
20 [96]. This ismostly the case due to the communication strategy chosen [96].
This communication strategy is discussed later. To be able to keep the number
of working nodes low, the system consists of replicas and clients [59]. Replicas
are nodes performing actions, while clients request actions and state changes
[59]. Each request from a client always triggers two actions, agreement and
execution [59]. Those are closely coupled and may be operated on the same or
different devices [59]. In the agreement stage, an agreement protocol is run
by the replicas to agree on the order of the requests. This consensus stage has
to be byzantine fault-tolerant. In the execution step, all replicas execute the
same requests in identical order which was found by the agreement step [59].
The time eachnodeneeds for specific actionsmay vary due to the hardware and
architecture of those nodes. Each node needs to finish the executing request i
before starting to perform request i+1 [59]. The distributed structure of such a
systemcan be seen in Figure 4.7. Each replica executes requests performed on a
state machine which is explicitly built to conduct one service exclusively. This
state machine always consists of a state, some variables, and some commands
to alter the state. For all non-faulty statemachines, it is required tofinish in the
same state when using the same variables and actions if they start in the same
state [59]. Most state machines support any of the following requests [59]:

Read a subset of state variables,

Modify or write a subset of state variables,

Produce an output.

These requests get sent to the replicas by clients and are processed afterward.
For the distributed system to work, non-faulty nodes have to fulfill several re-
quirements. These requirements are [59]:

Deterministic,

Agreement and

Order.

For the system to work, all non-faulty nodes need to be deterministic, which
means their output only depends on their input and their internal variables

4 Technologies 88

Execution

Agreement

Execution

Agreement

Execution

Agreement

Execution

Agreement

Replicas

Clients

Figure 4.7: Structure of a BFT state machine

which should be the same for all nodes [59]. It is also required for all non-faulty
nodes to receive all requests, so they can follow the same steps all other nodes
follow [59]. Last but not least, the order needs to be absolutewhichmeans each
node has to execute each request in the same order [59]. By following these re-
quirements, it can be ensured each non-faulty node finishes in the same final
state and produces the same output sequence [59]. It can be shown a BFT state
machine implementation can handle up to ⌊n−1

3
⌋ faulty nodes [27]. Thismeans

it is a requirement for clients if they request data to wait until they receive at
least ⌊2n−1

3
⌋ + 1messages with the same content, so the client can be sure this

result gets accepted by themajority of replicas [27].Whenever a client requests
data by one node, all will answer because replicas multi-cast the request to all
other replicas. This behavior can be seen in Figure 4.8.

During the agreement step, all requests are ordered. One way of getting an ab-
soluteorder is byusing thepre-prepare, prepare, commit steps [27]. To create a
total order first pre-preparations aremade. Thismeans the request is assigned
a sequencenumber by thefirst node that encounters the request. Thenode then
distributes the request which is only accepted by all nodes, if those state ma-
chineshavenot encountered this sequencenumber yet.When the request is ac-
cepted by a node, the node enters the prepared state and sends amessage to all
other replicas to notify them about this step. By doing this, all nodes knowhow
many other replicas accepted the request, and a total order is achieved [27].
After this step, execution is triggered in the commit step, and again all other
replicas are informed. Afterwards, the client gets provided with a response set.
This sequence leads to a communication similar to the one shown in Figure 4.8.

Themain problemofBFT statemachines is their limited throughput, caused by
the fact each step has to be done on all nodes in the same order and therefore
parallelization is not an option. This problem can be tackled by adding a paral-
lelizer into the construct of the replicas [59]. Whether this is possible strongly
depends on the agreement and execution steps [59]. This approach leads to a
structure shown in Figure 4.9. The parellelizer identifies requests which are

4 Technologies 89

request pre-prepare prepare commit reply

C

0

1

2

̸ 3

Figure 4.8: Network communication of a BFT state machine

not dependent on each other, enabling their parallel execution. Being indepen-
dent means one request does not depend on the output of another request or
does change any variable needed by this other request. Conducting those non-
dependent requests in parallel, should not change anything in the final state
[59].

4.15.1 Distributed StateMachines for the Sensor Directory

Because for a BFT state machine, all nodes of the network have to be known, if
it is used to build the sensor directory big players are needed. Those big play-
ers would operate those nodes and would be known and trusted as a unit but
not as an individual. Also, the number of nodes is quite limited. Changing par-
ticipating nodes or their number is quite hard using BFT state machines. All
clients would have to support requests to add new sensors as well as to add
new ones. Whenever a sensor provider would have to add a new sensor they
would send it to a clientwhichwould forward it into the system.However, those
clientswould be responsible for the data relayed and thereforewould check the
content first. By doing so they can prevent malicious sensors (section 2.2.6) as
well as wrong sensors (section 2.2.11). They would also validate only the owner
can update sensors. However, because the nodes are hard to change and not
trusted it might be necessary this check is performed in the acceptance step
by all nodes. If a request is required to find data this request might be pruned
and only a finite set of sensors could be contained in the response. To trigger
such a request a PIA would send a request to the sensor directory, by sending a
request to any client of the directory. The client then requests the data on one
replica, which distributes the request to all other replicas. The response is sent
back to the clientwhichbundles themandall responses are sent back to thePIA.
This means the PIA always knows the view of all nodes but also has to receive
the content from all nodes. It might also be an option for the client to bundle
those responses and only respond with those sensors the majority agree with.
While distributed State Machines are able to solve each issue when employed
properly, they also require lots of individualization tomatch the needs of those
problems. The sensor directory is no exception to this rule whichmeans lots of

4 Technologies 90

Execution

Parallelizer

Agreement

Execution

Parallelizer

Agreement

Execution

Parallelizer

Agreement

Execution

Parallelizer

Agreement

Replicas

Clients

Figure 4.9: Structure of the improved BFT state machine

individualization would be needed to build the sensor directory. Such imple-
mentations could be done by using available libraries [59, 67].

Due to the fact the system is distributed via some nodes, PIAs can distribute
their requests andmitigatefingerprinting (section 2.2.3), and the sensor direc-
tory tracking people (section 2.2.14). Also, no node can split the view between
users (section2.2.17). BecausePIAswoulduse clients to request data their iden-
tity is obscured by them. However, because there are so few nodes this might
not work as well. Because there are only so few nodes this also means the big
players running themareonly fewand theremightbeusersnot trusting theen-
tirety of those big players. Therefore there might be several sensor directories
run by different big players trusted by different users. Consequently, sensor
providers and PIAs have to usemultiple directories to provide andfind sensors.
Thiswould lead to distinct distributed systems. Anoverviewof allmitigated at-
tack vectors when a state machine attempt is used can be seen in Table 4.29.

BFT state machines do not define the way the data has to be stored. If no im-
mutable data structure is used, the datamight be changed by anode. Therefore,
the data is not immutable by default and can also not be verified. It might be an
option to use a blockchain ormerkle tree instead to store the information. BFT
state machines are also not designed to work with trust data, therefore a trust
assessment has to be added. To allow for this clients would have to support ad-
ditional requests depending on the trust systemchosen. An examplewould be a
request to increase trust in a sensor and one to decrease it. The clients request-

4 Technologies 91

Table 4.29: Mitigated attack vectors by a distributed state machine approach

Technology Attack Vectors Mitigated

2.2.1

2.2.3

2.2.4

2.2.6

2.2.7

2.2.9

2.2.11

2.2.12

2.2.12

2.2.12

2.2.13

2.2.13

2.2.5

2.2.14

2.2.15

2.2.17

Distributed State Machine ∼ X X ∼ ∼ ∼ ∼ ∼ X X

Table 4.30: Requirements fulfilled by a distributed state machine approach

Technology A
n
on

ym
ity

Q
ueriable

Equality

Im
m
utable

V
erifi

able

W
hom

to
T
rust

T
rustSystem

R
edun

dan
cy/

D
istributed

Prun
e
Q
ueries

Prun
e
Sets

In
putV

alidation

R
epeated

V
alidation

Storage
R
equirem

en
t

O
w
n
er

can
chan

ge
data

Distributed State Machine ∼ X ∼ X X ∼ ∼

ing such actions would be accountable for those actions. Also because there are
so few clients those have to be selected carefully. Because there are no clients
which validate sensors stored in the system it is hard to find corrupted sen-
sors (2.2.7). It is also not possible to add additional validators to the systemdue
to the low count of supporter nodes. In general, a trust system requiring com-
municationmight have additional problems due to the communication intense
nature of BFT statemachines. Depending on the applied trust system, it is pos-
sible to mitigate old trust values (2.2.13) or destroy someone’s trust (2.2.13).
The requirements that can be fulfilled by using distributed state machines are
shown in Table 4.30.

4.16 InterPlanetary File System

InterPlanetaryFile System(IPFS) is a systemto storedata in adistributed fash-
ion, where everyone can store and download files. How this works is described
next and directly inspired from [52]. Everyone who wants to publish data can
set up a node and publish their data on that node. Nodes communicate with
each other to make data available system wide. This is done by maintaining
a distributed hash table. This hash table does store which node stores which
information. If a block of information is received by a node, the information
is temporarily stored to improve lookup times for this information. This also
means if data is requested frequently, more nodes store this data, and the in-
formation is easier and faster available in thewhole system [19]. Each node can
choose to pin a block, which means it remains in the local storage until it gets
unpinned and removed. Pinning blocks is also a transitive function,meaning if
block A is a file consisting of blocks B and C, and block A is pinned, then blocks
B and C are also pinned [19]. Because the system is distributed, there is no sin-
gle point of failure, and it is not required for the nodes to trust each other. If
data gets requested at one node and this node does not hold the requested data,
the request is forwarded to another node until the data is found and returned.
In IPFS, each node participating in the system can choose to store data, relay

4 Technologies 92

data, or do both.

IPFS is also able to convert data structures like blockchains and merkle trees
into merkle DAGs, which are utilized by IPFS [52]. This means the data can be
transferred and stored in IPFS.Merkle DAGs function similarly to conventional
DAGs (section 3.4). The difference is the nodes of the graph store the hashes
of the data, instead of the content. IPFS splits bigger files into smaller blocks,
which are then linked in the DAG. Higher layers of the DAG represent a larger
junk of the whole file. This structure allows users to download different blocks
from distinct nodes and combine them later into the complete file. This also
means if different files or folders share information the block is stored only
once, leading to less storage consumption. By using this structure, IPFS is also
able to represent whole filesystems. For example, a folder is characterized by
the hash of the files and folders below. Files and folders are consequently again
represented by the files, folders, and blocks they consist of. That leads to a
merkleDAG,where each block can be addressed effortlessly by its content. This
is also the way used if someone wants to search for something in IPFS.

There exist two options when someone is searching for anything, searching
for content or location. In content addressing the search term is part of the
searched object. In contrast in location based searches, the query only includes
the location the object should be at. In content addressing something part of
the object is used to find an object, for example, this might be an ISBN for a
book that identifies this book. In contrast, when searching based on location in
a library, a person would look for the second book in the third row on a specific
shelf. If the book was placed on another shelf the book will not be found that
way. However, location based searches are used frequently in computer sys-
tems. In IPFS the addressing scheme used is content addressing and the cryp-
tographic hash is used as key to find the desired object. By using the hashes to
address the objects, some additional benefits arise [19]:

Tamper resistance, this is the case because thehashes cannot be changed and
it is easy to validate the blocks and

Deduplication, which means if two blocks are the same, they have to be
stored only once.

If someone wants to access data in the system, they need access to the system
itself. This may be done by creating once own node or by using an API. Each
node is able to search the distributed hash table and discoverwhich node stores
the required data to request it at this node. For IPFS it is also easily possible by
using awebbrowser and connecting tohttps://ipfs.io/ipfs/{hash}where thehash
is the one of the searched block.

4.16.1 IPFS for the Sensor Directory

IPFSmight benot the bestfit to build the sensor directory. The reason for this is
the address schemeused. This is the casebecausediscovering something in this
system is impossible. This is the case because to receive any information from
the systemthehashof this informationhas tobeknownalready. Therefore also
the data could be known already. Generally, there are two options IPFS could be
used for the sensor directory.

Because IPFS requires the hash to discover the associated data, this hash has
to be known to PIAs. Therefore PIAs have to be given the hashes they should
be searching for. This might be done ahead of time so PIAs can scan this data.
But because thehash is unique to those sensors and changeswhenever the sen-
sors change, this doesmeanalso the sensors could be transmitteddirectly. This

4 Technologies 93

means IPFS would be a distributed storage extension to PIAs. This also means
it might be possible for PIAs to just receive all relevant sensors ahead of time.
However, suchanapproachalsoallowssensorproviders tobundle all their sen-
sors into one data object and provide this via IPFS. Doing so would save addi-
tional storage for eachPIA. Sensorproviders could also creategroupsof sensors
and provide different users with different sensors. This could be useful if some
users do not need to know anything about those sensors.

Another possibility to use IPFS for the sensor directory would be to use an ad-
ditional server storing a key and the sensor hashes. This key could be one of
several figures, it could be the sensor provider,whichwould enable PIAs to dis-
cover all sensors of one sensor provider. Accordingly, PIAs would only search
for sensor providers they also store permissions for. This also enables the sen-
sor provider to create one file storing all their sensors, therefore PIAs would
discover all their sensors at once and the amount of entries required is low.
Another option for this key would be to use the location. This would create a
similar situation to transparency logs where only a limited accuracy should be
used or sensors would not be discovered. Using the location as the key would
also mean each sensor hash has to be stored and therefore lots of hashes and
entries exist. PIAs would use those servers to discover hashes and then use the
IPFS system to discover the actual sensors. However, here IPFS only acts as a
storage extension to this server. Thismeans this server is the actual sensor di-
rectory and has to fulfill its requirements. Nevertheless because IPFS is used,
integrity would be guaranteed due to the hash cannot be changed. The initial
server could be implemented using another technology explained in this the-
sis, it might also be any other system that does not fulfill the requirement of
integrity.

Independent of which approach is chosen sensor provider would not have an
incentive to add wrong or malicious data into the sensor directory, this is the
case because this data would be stored on their own devices and would not be
discovered regularly. Using the first approach their sensors would not be dis-
covered at all, while in the second approach, it depends on the key used. If the
sensor provider is the key their sensors would still not be discovered, if the
location is used their sensors may be discovered. Also, IPFS would guarantee
integrity for both approaches, however, this also means whenever there is a
change in the data the hash changes, and therefore everywherewhere this hash
is stored an update is required. The content addressing also prevents splitting
the view for different users (section 2.2.17) because those could prove the data
is valid.

Because IPFS is already a distributed system there is no reason to deploy mul-
tiple systems in parallel, rather all participants should be working together on
one system. This also ensures there are lots of nodes working together on one
system distributing the data as well as the distributed hash table via lots of
nodes. This allows PIAs to distribute their requests via lots of nodes and there-
fore prevent fingerprinting (section 2.2.3) or the sensor directory searching for
a person (section 2.2.14). Also because the system is based on hashes, everyone
can be kept anonymous in this system.

Depending on the used approach the trust varies a lot. If the hashes are trans-
ferred directly from the sensor provider theremight be no need for a trust sys-
tem because this sensor provider is trustful already. If an additional server is
required for the system also this server has to hold the trust information be-
cause IPFS is not able to do so. This is the case because there would be no way
to discover this trust value. Thismeans the server not only has to store key and
hash but eventually also a trust value. This servermay also check entries at en-
try or after some timebecause IPFS does not provide such a feature. Thismeans

4 Technologies 94

Table 4.31: Mitigated attack vectors by a IPFS approach

Technology Attack Vectors Mitigated

2.2.1

2.2.3

2.2.4

2.2.6

2.2.7

2.2.9

2.2.11

2.2.12

2.2.12

2.2.12

2.2.13

2.2.13

2.2.5

2.2.14

2.2.15

2.2.17

IPFS X X X X X X X X X X X X X X X

Table 4.32: Requirements fulfilled by a IPFS approach

Technology A
n
on

ym
ity

Q
ueriable

Equality

Im
m
utable

V
erifi

able

W
hom

to
T
rust

T
rustSystem

R
edun

dan
cy/

D
istributed

Prun
e
Q
ueries

Prun
e
Sets

In
putV

alidation

R
epeated

V
alidation

Storage
R
equirem

en
t

O
w
n
er

can
chan

ge
data

IPFS X X X X X ∼ X X X X ∼

in IPFS problems like those of the address field are possible. However, if PIAs
only discover a known subset of sensors this is not a problem. If a server is de-
ployed additionally this has to be prevented. Using an additional server creates
a way for malicious sensor providers to create malicious sensors and get them
discovered again. Independent of the approach used, sensors may be compro-
mised, and sensor providers may check their sensors independently to make
sure this is not the case. This may lead to a situation where a sensor has to be
changed. If thehashof this sensor is storedonanadditional server thishas tobe
updated or the trust information is lost. However, this also means if the trust
is negative malicious users may use this to drop trust problems and pretend
this sensor is brand new. Additionally, the fulfilled requirements are visible in
Table 4.32.

4.17 DAT

DAT is a distributed file storage system that supports versioning. It allows all
users to publish data andmake it available to all who know thenecessary infor-
mation. It can be best compared with IPFS. DAT also uses content addressing,
how it works is explained next, and the information is mostly taken from [78].
Also in DAT data is not stored on one single device, it is rather stored on the
device of the owner and is available to all other devices in the system via com-
munication. This means similar to IPFS nodes have to discover which nodes
hold which information and then communicate with each other to receive this
data. For DAT there are three different options to discover which node holds
which information:

DNS,

Multicast DNS and

4 Technologies 95

Distributed Hash Table.

While IPFS nodes use the data hash to discover information in DAT the public
key of the user is used. These public keys have a length of 32 bytes and are not
only used to discover entries but also to decrypt them. This means data stored
in the system is encrypted and users have to knowwho the owner of the data is
to decrypt it. Therefore, even if someone can obtain the data, it is only possible
to read it when holding the key. To prevent data leaks and increase anonymity
the public key is not used directly to search for information, the key is hashed,
and therefore only users who already know the key can obtain the information
and can decrypt it. However, this also means everyone who holds the key can
read thewhole data related to this key and there is noway of restricting this ac-
cess. However, because the system is anonymous nothing prevents a user from
obtainingmultiple keypairs and therefore creates distinct data objects. Onekey
also can store lots of files within the system. Whenever this is done the system
allows users to download the whole data or only selected files.

To publish data in the network a node holding the private key is required. The
user can publish data on their node whenever they want to do so. Internal the
node creates a merkle tree and signs the root so everyone can verify the data.
Whenever a node discovers and downloads data, the node stores the data for a
limited amount of time. Each nodemay also choose to mirror this information
and provide it to the system aswell. The node itselfmay not even be able to de-
crypt the information because for this a key is required. This feature increases
the availability of data which is required more frequently than other data. Also
like in IPFS it is possible to download parts of the information from multiple
nodes and verify their correctness by checking the merkle tree root. The sys-
tem can also include archival nodes that store data from the past including the
correspondingmetadata.

Comparing DAT and IPFS, DAT has some clear advantages over IPFS. In IPFS,
a new hash is created for each data change, this hash is required if someone
wants to find the new data. This is the case because the process of addressing
is designed the way it is. For DAT, this is not the case because the address is the
public key. This key stays the same no matter how often the data is changed.
Therefore, all versions are available at the same link, while for IPFS a new hash
is needed to find the updated version or each change that is made [94].

4.17.1 DAT for the Sensor Directory

When DAT is used to build the sensor directory, everyone whowants to release
data needs to set up a peer and generate their key pair or needs to find some-
one publishing data in their names. If those sensor providers publish their sen-
sors, they can publish those sensors to those peers. Because the key is required
to create valid data, only the owner of the key pair can create or change the
data. But this means DAT is not immutable because data could potentially get
changed or dropped. If archival nodes are available, the history is stored and
available.However, this violationof immutability is not aproblembecauseonly
the owner can change data. Each sensor provider can use one key pair to pub-
lish all of their sensors or usemultiple key pairs to create different data sets not
readable to everybody. The sensor directory would also automatically use en-
cryption. If DAT is used, all users would work on the same system and increase
its capabilities by doing so.

If PIAs search for sensors, they are required to hold the public key of the sensor
provider. This means there is a need to distribute public keys to PIAs that are

4 Technologies 96

allowed tofind those sensors.Thisdata couldbe transmittedwheneverpermis-
sions for users are exchanged. However, theremight be additional sensors that
do not require permissions but still need to identify people or verify certain at-
tributes. The public keys required to discover those sensors could be published
via apublic key infrastructure. Itmight be agood idea touse already established
key servers because the only requirement is to make the public key known.

If a peer that is known not to store information about connections is used, the
search process is anonymous [78]. Because PIAs can distribute their requests
there is no option for fingerprinting (section 2.2.3) or locating anyone (sec-
tion 2.2.14). Also, every node receiving information can choose to mirror this
data and therefore not only increase the speed of the system but also increase
anonymity because the data is available onmultiple nodes. A problem however
is the limited search capability of the system, this is the case because it is only
possible to search for public keys and therefore sensor providers. This means
PIAs are only able to search for one sensor provider after another. Also, PIAs
are only able to search for known sensor providers and those discovered via a
public key infrastructure. When they search for a sensor provider, they receive
the sensor data of this provider and have to search for sensors they are inter-
ested in inside of this set. Whenever a PIA receives a set of sensors, it can verify
them by using the merkle tree. This also means only the data provider has to
be trustworthy to trust those sensors. The sensor provider is the only one able
to change the data which means if sensors are malicious the sensor provider
is accountable. Because the owner of the PIA has added the keys to the PIA, it
means there might be no requirement for a trust system. This is the case be-
cause the owner already selected only several trusted owners. It might still be
necessary to implement a trust system for those sensors discovered by public
keys found on public key infrastructures.

PIAs cannot discover new sensors that did not get published at their known
public keys. That means users are not able to use sensors that are not in-
cluded in those sets. There is no need for sensor providers to create wrong
sensors (section 2.2.11) because those only consume storage on their own
devices and are also never discovered. Also, no other node would choose to
mirror this information. A sensor provider might still create malicious sen-
sors (section 2.2.6), but if the PIAs owner did a sufficient pre-selection, these
sensors are not found and therefore used. If sensors are compromised (sec-
tion 2.2.7), this might be not discovered and might be a problem. However,
sensor providers should be able to verify their own sensors and if they discover
malicious behavior they may swap the sensor or change the data set. The set
of sensors one provider has is always limited. Therefore, the result set of sen-
sors is also finite, and the query only allows for specific sensors or a sensor
provider. This means the query as well as the response set is always pruned.
Because PIAs only discover sensors of specific sensor providers, it might be
hard for non-trusted sensor providers to locate anyone by using sensors (sec-
tion 2.2.15). That means it is not possible to search in the sensor directory for
vulnerable sensors (section 2.2.4) or to search for information in the sensor
directory (section 2.2.5) because they are required to hold the public keys to
analyze this data. While problems with the address field (section 2.2.12) may
occur, they might be no issue because for honest users, those problems might
not happen and for attackers, their sensors might not be discovered. A disad-
vantage could be, in case the data is notmirrored by any other peer, an attacker
might be able to DoS a peer, and therefore those sensors might not be avail-
able throughout the time of the attack. Additionally, a peer holding the private
key might be able to provide different users with different response sets (sec-
tion 2.2.17), which is the case because the peer can create a new, valid data set.
An overview of all mitigated attack vectors is available in Table 4.33. See Ta-

4 Technologies 97

Table 4.33: Mitigated attack vectors by a DAT approach

Technology Attack Vectors Mitigated

2.2.1

2.2.3

2.2.4

2.2.6

2.2.7

2.2.9

2.2.11

2.2.12

2.2.12

2.2.12

2.2.13

2.2.13

2.2.5

2.2.14

2.2.15

2.2.17

DAT X X X X X X X X X X X X X X X

Table 4.34: Requirements fulfilled by a DAT approach

Technology A
n
on

ym
ity

Q
ueriable

Equality

Im
m
utable

V
erifi

able

W
hom

to
T
rust

T
rustSystem

R
edun

dan
cy/

D
istributed

Prun
e
Q
ueries

Prun
e
Sets

In
putV

alidation

R
epeated

V
alidation

Storage
R
equirem

en
t

O
w
n
er

can
chan

ge
data

DAT X X X X X ∼ X X X X X

ble 4.34 for an overview of the requirements.

4.18 Algorand

Algorand is a DLT designed to solve problems of other DLT systems, like the
enormous amount of computational power required [43]. Algorand is a per-
missionless PoS (section 3.2.4) solution. Because PoS is used coins are required.
However, the core system of Algorand does not demand such, because the core
system can be swapped from a major coin to a major user system [28]. There-
fore, not the majority of coins decide about the next block, but the majority of
users do. That allows the system to consist of many nodes cooperating to find
consent. How Algorand works is explained next, the majority of the informa-
tion is taken from [28, 43]. Algorand is using two distinct messages to com-
municate. First, there is the commondata packet, containing the block and all-
important fields. As a second message, there are control messages, which are
much smaller and are used to keep the algorithm running. Because the mes-
sages have different content, and the control message is much smaller, those
messages take different times to propagate the network. The time it takes for
the data message to propagate to all other nodes is called λ while for the con-
trol message, the time is called Λ. By using those two distinct message types,
Algorand is even able to sustain an ultimately powerful malicious user under
the condition this user never has control over the majority of nodes. Algorand
can resist such types of users while guaranteeing the following attributes:

All nodes agree on the same block after each round. This also means if the
majority of nodes are honest the blockchain never has the issue of forks.

Each round where the leader is honest, is assured to take a maximum of
4λ+Λ.

4 Technologies 98

Each node is guaranteed to know the block for round r, λ after finishing this
round.

If the leader is malicious, the round is assured to terminate in a specific
time.

The algorithm is organized in rounds. Each round leads to a block getting added
to the blockchain of Algorand. Each node starts round r directly after the node
knows the block of round r-1. There is a leader l and some selected validators
(SV) for each round. Both get nominated by cryptographic self-selection. The
leader’s task is to create a new block containing his candidates for the block for
the current round r. The validators have a look into the block and confirm the
content. In general, a majority of 2/3 of honest users is needed for the system
to work.

Cryptographic self-selection is amethod to find a leader and several SVs with-
out requiring any network communication. This is especially important be-
cause if any communication would be needed, a powerful attacker would know
whichnode becomes thenext leader and could compromise this node, the same
holds true for the SVs. Cryptographic self-selection requires the block of the
last round r-1. The node adds its identifier to the block and uses an oracle to
generate a semi-random object. The oracle is a semi-random function where
theoutput cannotbeguessedwithout the input. InAlgorand thisoracle is ahash
function. The calculated object is then transformed into a number between 0
and 1. Following this, a threshold check is performed. If the threshold is higher
than the calculatednumber, thenode is part of the SVs. Also, a second threshold
check is conducted, which requires amuch lower threshold. If this threshold is
higher than the number, the node is considered a potential leader. The node
and only the node itself knows if it is a potential leader or part of the SVs.

Each potential leader creates a block containing all of its candidates, signs it,
and distributes it, so all other nodes know the block as well. Additionally, the
node also sends a control message to all nodes. This control message contains
information, so all other nodes can verify the node, is a potential leader. This
additional message also allows all nodes to compare all potential leaders to
each other. Only the block of the potential leader with the lowest number gen-
erated is considered valid and used as the next block. No single node knows
which node the actual leader of round r is until they have seen the controlmes-
sages of all potential leaders. That means powerful attackers are not able to
corrupt the node in time to influence their block. Attackers could still corrupt
the node if they know the leader‘s identity. However, this leader has already
sent its candidate, which means the attacker‘s attempt is useless. To prevent
the malicious user from creating a second message with different content the
leader uses a cryptographic key pair which is only used once and deleted di-
rectly afterward. Even if an attacker can create a new block, only the first block
a node receives from a potential leader is considered valid. In theory, users can
see the block of round r-1 and add a newnode that has an identifier that creates
a low enough value to be the next leader for round r. To mitigate this potential
attack vector a minimum duration of membership is required. Therefore, each
node that is a potential leader has to be part of the network for k rounds (k is a
high number, in the standard case, 100). The value k has to be set high enough
so the leader of r cannot knowwho the leader of r+k potentially is. It would also
be possible for an attacker in control of the current leader tomanipulate a block
in awayanothermaliciousnodewill turn to thenext leader. Tomitigate this at-
tack vector, the credentials of the current leader are added to the selection of
the next leader. Because the leader cannot influence the value of its credentials,
the next leader cannot be influenced by the last one.

Similar to the potential leaders the SVs are not predictable. To lower the re-

4 Technologies 99

quired network capacity only a subsection of all nodes is selected as SVs. The
SVs are used to find the true leader of a round. That is done by comparing all
calculated values by the cryptographic self-selection to each other and voting
for the block of the leader with the lowest number. A majority of 2/3 of all val-
idators is required to be honest, for Algorand to work as intended.Comparable
to the leaders, the SVs send the signed block and their credentials in two differ-
entmessages. Also, those SVs create a key pair, which is used once and dropped
directly after usage so no one can abuse the node to their advantage.

4.18.1 Algorand for the Sensor Directory

Because Algorand is a DLT, it requires a lot of nodes distributed via numerous
locations and parties, if used for the sensor directory. It requires the majority
to behonest. Thenumber of those nodes is crucial, because the speed, aswell as
the security, depends on it. Because Algorand is a DLT, it is also not a very good
idea to runmultiple instances of the same system, rather the number of nodes
in one system should be higher. The DLT also already ensures immutability as
well as the system being verifiable. Because PIAs only send requests to nodes
of the system and do not use any identifier they are anonyme. PIAs also have
to distribute their requests between lots of nodes and therefore even increase
their anonymity by preventing fingerprinting (section 2.2.3). Similar to other
technologies it is possible to access the data by either running a node on one’s
own or using an API.

This system would require sensor providers to send their sensors to any node
participating in the system. Most likely, they will choose a known and hope-
fully honest node. This node will potentially become one of the potential lead-
ers and will distribute the sensor to all other nodes. Even if the node is not the
true leader of this round, all other nodes are aware of the sensor and may also
choose to add it in the next roundwhen they become a leader. It is also possible
to select an attempt similar to the one possible for Contour (section 4.12) and
use Algorand as an integrity list. This wouldmean a download server holds the
informationwhile the blockchain is used to store the hash values of those sen-
sors. This would allow PIAs to download the sensors from an untrusted source
and verify the data using the blockchain. However, this would add additional
actors as well as new tasks for PIAs where they have to find the correct down-
load server. PIAs themselves would have two options, either they are part of
the Algorand system themselves, which would be rather stressful and would
require lots of storage. Or they request data from the system and verify it by
confirming the blockchain. However, also this might need lots of storage.

BecauseAlgorand is distributed, the sensor directories is not able to locate any-
one (section 2.2.14) or split views for different users (section 2.2.17). Such at-
tempts can be simply mitigated by PIAs if they distribute their requests be-
tween different nodes. Because new sensors are distributed to all nodes, this
might increase the impact of a DoS (section 2.2.1) attack by adding lots of sen-
sors. The impact could be decreased by nodes checking candidates and adding
timeouts for users so they are not able to add an unlimited amount of sensors
instead. However, those nodes may be operated by the attacker which means
the node would not reject malicious sensors. Also, because the system is dis-
tributed timeouts are not an option considering those users can choose to use
anothernode instead. Also, eachusermightholdmultiple keys andprevent this
mitigation this way. Such an attack does not only deny the service for a specific
amount of time by blocking the network, but it may also increase the load of
wrong information (section 2.2.11) in the system and this information has to
be stored on all nodes.

4 Technologies 100

Table 4.35: Requirements fulfilled by a Algorand approach

Technology A
n
on

ym
ity

Q
ueriable

Equality

Im
m
utable

V
erifi

able

W
hom

to
T
rust

T
rustSystem

R
edun

dan
cy/

D
istributed

Prun
e
Q
ueries

Prun
e
Sets

In
putV

alidation

R
epeated

V
alidation

Storage
R
equirem

en
t

O
w
n
er

can
chan

ge
data

Algorand X X X X X X ∼ X X ∼ X

Aproblemusing aDLT for the sensor directorymight be, the verification of en-
tries when inserting. Thismeans if the sensor data is checked before the data is
included in the directory this step has to be performed by all nodes. This gen-
erates lots of calculation power required within the whole network as well as
lots of network capacity. For Algorand, thismight be a little better because only
the leader and the SVs have to perform those actions. The SVs could be used to
verify the sensor provider owns the address andmitigates all address problems
(section2.2.12) aswell aswrongdata being inserted (section2.2.11). Thismeans
those would act as a sort of notaries before the data is inserted. Those notaries
would also be able to ensure only the owner of a sensor can update sensors. It
would also be an option to add CAs to the systemwhich sign the sensors before
they are inserted into the system. Doing so would reduce the stress on the sen-
sor directory and would require honest CAs instead. Another issue with using
DLTs is everyone setting up a node has access to the whole data set. Therefore,
everyone can search in the data, which allows everyone to find vulnerable sen-
sors (section 2.2.4), as well as find additional interesting data (section 2.2.5).
Another big problem of DLT is also not tackled by Algorand. The data has to be
stored at all nodes, which increases the required storage capacity drastically. If
the data increases to a crucial size, it might lead to many users, except for big
companies, to stop running nodes, because the required storage capacity is just
too high. This is especially problematic if the whole sensor data is stored in the
blockchain. If the data is only used to verify an additional server this is far less
of an issue. This is the case because the data would not increase as fast.

While it might be hard to implement a trust system that requires lots of data
using Algorand, it might be possible to use a different approach. Initially, it
is hard to implement a trust system because this trust information has to be
stored in theblockchain, increasing the lengthand therefore the storage aswell
as the verification time. However, by the design of Algorand, itmight be an op-
tion to create a suspicion block including a sensor that seems suspicious. This
block would be added by a leader and validated by all SVs. Because those would
check the content before this is added into the system they would verify if the
sensor is malicious first. If the sensor is malicious, the block is added to the
blockchain, and everyone knows not to trust this sensor. If the sensor is not the
block is rejected. The same could be done when a sensor becomes valid again.
However, the blockchain would always hold the time the sensor wasmalicious
whichmight prevent users from using it. Algorand supports all initial require-
ments from section 1.2. An overview via all met requirements can be seen in
Table 4.35. Also, see Table 4.36 for an overview via all mitigated attack vectors.

4 Technologies 101

Table 4.36: Mitigated attack vectors by a Algorand approach

Technology Attack Vectors Mitigated

2.2.1

2.2.3

2.2.4

2.2.6

2.2.7

2.2.9

2.2.11

2.2.12

2.2.12

2.2.12

2.2.13

2.2.13

2.2.5

2.2.14

2.2.15

2.2.17

Algorand X ∼ ∼ X X X X X ∼ X X

4.19 Nano

Nano is a DLT, and it is used as a cryptocurrency. Nano’s biggest advantage is
the high transaction speed, and the nearly unlimited scalability [65]. This is
possible because Nano is not based on a blockchain but rather on a DAG (sec-
tion 3.4) [18]. Nano was developed with problems of PoW blockchains in mind.
The goals of Nano were to deal with latency, scalability, and power consump-
tion. Nano is explained next, the majority of information is taken from [65].
Nano was one of the first DAG-based approaches. However, it does not use
a standard DAG like those described in section 3.4. Unlike most other DAG-
based structures, Nano uses a block-lattice structure. It does not use one data
structure including all information but rather has one blockchain for each ac-
count created,which is the reasonwhy those blockchains are so-called account
chains. These account chains hold the transaction/balance history for the ac-
count, and only that account can modify the chain. That enables the technol-
ogy to update each chain nearly immediately and asynchronously to the rest of
the system. The basic structure of such a DAG is shown in Figure 4.10 For fur-
ther improvement of performance, the transactions are all small enough to fit
into singlepackets. All blockchain technologiesneedagenesis block containing
the start balance, similar to this start block Nano has a separate genesis chain.
This genesis chainholds thewhole balance at the start, and cannot be increased
later. Therefore, all other chains get their balance from the genesis chain in a
transitive way. To create a new account in this system someone has to trans-
fer coins to the corresponding public key, which is then the representative of
the account. The hardware required for Nano is alsominimal because no actual
work is involved. Nodes storing the DAG are easily able to validate each block.
For a block to be valid, 5 conditions have to be fulfilled:

1. The block has to be distinct.

2. The account owner has to sign the block.

3. The previous block is the last block of the account chain.

4. The account has a starting block.

5. The PoW is fulfilled.

In contrast to most other technologies where only one entry is required to
show a transaction, Nano demands two entries. One block is in the blockchain
of the sending account chain, the other block is included in the receiving ac-
count chain. This structure is demonstrated in Figure 4.10. Because everything
is asynchronous, there could be multiple consecutive transactions that cannot
be ordered properly. The reason for this could be network latency or other con-
nectivity issues. This leads to the state where the receiving account can choose
which block is first within their chain. Forks can only occur if two blocks claim
the same block as their predecessor. Because the only one able to create blocks

4 Technologies 102

R

R

S

A

R

S

S

B

R

R

R

S

C

Figure 4.10: An example for Nanos DAG

in an account chain is the account owner, this can only appear if there are pro-
gramming errors or there is the intention of double spending of a malicious
user. If this problem occurs, the system will start a vote and only the winning
block stays in the ledger. This scenario is the only scenariowhere voting is nec-
essary for the system, and only malicious actions from the account owner can
trigger this. Nanos voting system is similar to DPoS (section 3.2.5) where each
account chooses one node that votes on their behalf. The weight each vote has
depends on the balance the combined supporters of the node have.

The power consumption problem of pure PoW systems is enormous, and Nano
can drastically decrease this. But Nano also requires each block to fulfill a PoW.
This proof of work has to be accomplished by the account owner or their repre-
sentative node. As already explained in transaction cost (section2.4.1), thePoW
in the systemprevents users from spamming the system. This is especially im-
portant because, without any fees or other regulations, a user could spam the
system by sending transactions between two of the user-controlled accounts
and therefore DoS the system. Because the PoW is not required to determine
who creates the next block, the work required can be chosen to be much less
compared to a pure PoW system. The PoW of Nano is solvable even with little
computational power within a few seconds.

Storage is a problem because the amount of data can increase indefinitely. This
means not everyone can operate a full node storing everything. Therefore light
nodes exist. Light nodes are nodes not store anything relating to theDLT. Light
nodes however participate in the network communication and observe several
accounts they are interested in. Full nodes in contrast store the whole DAG and
are also able to vote on behalf of a user if they are selected as representatives.

4 Technologies 103

4.19.1 Nano for the Sensor Directory

If Nano is used for building the sensor directory, the system is distributed. That
means while it is possible to build many systems in parallel, there is no reason
to do so. Thismeans the basic structure of the network looks similar to those of
other DLTs. This also mean Nano has the same advantages and disadvantages
following this structure. InNano, each sensor providerwould create an account
and therefore their own account chain, which would be used to publish their
sensors. The key would be claimed by adding the first sensor into the account
chain. Because each user has its account chain, all sensors added by the same
user end up in the same chain. Because they are the only oneswho can add sen-
sors to this chain, it would be possible to search for sensors of a defined user by
following a specific chain. However, the public key of this usermight be needed
to do so. This is the case because PIAs have to discover the account chain first.
This would alsomeanwhen following the account chain updates of sensors are
found much faster because the blockchain is much shorter. If a malicious user
wants to DoS the system by adding sensors the costs of such an attack add up
very quickly because this user would have to solve the PoW. The system itself
would not have lots of work to do but the attacker has, whichmeans this attack
vector is mitigated.

The systemwould be run by different nodes, some could even be powerful PIAs
which choose to participate in the system. This would add lots of complexity to
those PIAs and would not match their intended purpose. All PIAs would query
the systemusing anynodes. Because there is only one system, PIAs could easily
search in all chains for sensors. But this alsomeans all data is public and there-
fore can be searched easily. That allows malicious users to scan the system for
potential targets (section 2.2.4), as well as gain additional information (sec-
tion 2.2.5). Because Nano is using a blockchain for each account, this means
the storage is immutable and verifiable. In addition to that, only the account
owner can add data. If PIAs are running the system they do have direct access
to the storage and could search for data. If theydonothost the systemby them-
selves they could send queries to the nodes running the system. It would be an
option for those nodes to filter the data. Itmight also be an option to only allow
searches for sensor providers and always return the whole account chain with
all their sensors. This would also easily allow PIAs to verify the chain due to the
fact it is a blockchain. PIAs could also analyze one account chain after another
and receive the whole data set.

There is no trust except the trust in the account owner. It is also not possible
to add a trust system. At least not using any structure Nano is providing. This
is the case because only the sensor provider canmanipulate the account chain.
This means it is not possible to add data to a sensor in the same account chain.
Therefore, if the owner is trusted, itmight be possible to trust the sensor.How-
ever, if the owner is not trusted, there is no way of knowing whether or not a
sensor is trustworthy. It might be an option for other users to create blocks in
their chains and show their trust in several sensors, but PIAswouldhave to dis-
cover these blocks and trust them. This could be done by scanning all blocks in
the system however this would lose the advantage to several other technolo-
gies. Ingeneral, no trust systemcouldbe implemented that solves theproblems
of trust in section 1.2. Also, each user can add data to their chains without the
data being verified. This means the data can contain malicious data. It would
be possible for nodes running the system to check sensors before those are in-
serted into the system.However,Nanoonly requires votes ifmalicious transac-
tions are discovered. If those nodes would have to check for the validity of sen-
sors before they are inserted votingwould be required each time anewsensor is
included. Another option would be to add CAs which verify sensors before they

4 Technologies 104

Table 4.37: Requirements fulfilled by a Nano approach

Technology A
n
on

ym
ity

Q
ueriable

Equality

Im
m
utable

V
erifi

able

W
hom

to
T
rust

T
rustSystem

R
edun

dan
cy/

D
istributed

Prun
e
Q
ueries

Prun
e
Sets

In
putV

alidation

R
epeated

V
alidation

Storage
R
equirem

en
t

O
w
n
er

can
chan

ge
data

Nano X X X X X X X X

Table 4.38: Mitigated attack vectors by a Nano approach

Technology Attack Vectors Mitigated

2.2.1

2.2.3

2.2.4

2.2.6

2.2.7

2.2.9

2.2.11

2.2.12

2.2.12

2.2.12

2.2.13

2.2.13

2.2.5

2.2.14

2.2.15

2.2.17

Nano X X X X

are inserted into the system. This wouldmean the data is verified and nodes of
the systemonlyhave to check if a signature is available. PIAswould then choose
themselves if they trust this CA. An overview of all requirements which can be
fulfilled when using Nano can be seen in Table 4.37. Also, the mitigated attack
vectors are summarized in Table 4.38.

4.20 Byteball

Byteball is a distributed ledger using a DAG (section 3.4). That means a block
can referencemultiple previous blocks to verify them and could also get refer-
encedmultiple times. Byteball is described next, the information is taken from
[29]. InByteball, everyone can store everything, as long as theypay for theused
disk space their block needs. To pay the fee for the storage, Byteball has a cryp-
tocurrency bound to the technology named bytes. Meaning, that everyone who
has enough bytes, can store whatever they want. This means it is possible to
transfer any cryptocurrency, including, but not limited to bytes, and also store
other data. Toprevent users fromexploiting the structure of theDAGbyplacing
malicious blocks in different parts of the DAG, for example, to perform double
spending, there is a way of selecting a main chain. A main chain is one chain
within the DAG which is then used to decide which blocks came first and re-
solve problems in the DAG if they occur. In order to determine the main chain,
there is a need for so-called witnesses. Those witnesses are known users who
are supposed to act like regular users. As long as the majority of the witnesses
are honest, all problems can be solved. Each block consists of three different
parts:

Messages
There can be multiple messages which are included in one block. Those

4 Technologies 105

messages contain thewhole data. There is also a sub-type ofmessage called
payment. This sub-type is used to send bytes or other cryptocurrencies.

Signatures
The users are identified by their keys, which is the case in most ledgers.
Those keys are used to sign the blocks.

References
Each block can reference multiple blocks. It may reference as many as the
user wants it to. This is done similarly to other technologies by including
their hashes, however each block has to reference at least one other block.

Blocks are supposed to reference only blocks that are not referenced transi-
tively already from any other block. This means they are expected to use the
last blocks they know,which are not yet referred to. Each block is also supposed
to transitively reference all blocks created by the same user. This is important
to avoid attack vectors like double-spending. All nodes may construct blocks
whenever theywant to. Theymay even create blocks in parallel while others do
the same. By doing so, many joints and forks are created and therefore a DAG
is formed. This means there are nearly no latencies.

The currency nested in Byteball is called bytes. It is strongly interconnected to
the storage of the system. A user who wants to add a block has to pay more
if their block is bigger. This should require users to think about which data is
worth storing and how to manage their data. To encourage users to still refer-
ence asmany blocks as possible the references are not used for size calculation
and it is assumed each block references two blocks, even if they refer to many
more. A part of the fee is given to the first user who creates a referencing block
on the main chain. But bytes cannot only be used to pay for storage in the sys-
tem it is also a real cryptocurrency. Therefore, it could be used to pay for ev-
erything else as well. Themost important reason for bytes to exist is to prevent
users from spamming the system. This works because users need the currency
to post blocks. Therefore, spamming has a very high cost for the attacker.

Creating order within the blocks is an essential task (see section 3.4 for more
information). Creating order is very easy if there is a direct or transitive con-
nection between two blocks. This is the case because there is already a link
ordering the transactions. If two contradicting malicious blocks are detected,
they both get included in the DAG, but the system will take care of them later.
As already explained, a new block has to refer to all previous blocks created
by the same user. Blocks of the same user not referencing each other are ex-
pected to be malicious. By including all non-referred blocks when creating a
new block, a node proves it has seen all blocks directly and indirectly refer-
enced. This means the node proves its view to all other nodes. If blocks do not
have a direct link between them it is hard to figure out which block came first.
To solve this riddle the main chain is developed. This main chain is one chain
chosen fromtheDAG, fromacertainpoint in theDAG,back to thegenesis block.
This means a blockchain is selected inside the DAG. To be able to create such a
chain, a function is needed which selects for each block the best parent. This
function has only access to blocks that are created before the block, the best
parent should be found for. For each non-referred block, a chain is created fol-
lowing themainparentsbackuntil thegenesis block is reached.Theestablished
chains are the different main chains for the distinct end blocks. Such a chain
can never change, which means once the main chain for a block is known, this
chain will always stay the same. It is also important if those chains intersect at
any point, they follow the same path until they reach the genesis block. Once
the main chain is established, one can create an order for all blocks. This is
easy for all elements on the chain because those refer to each other anyways,
therefore it is known which one was first. All blocks on the main chain get a

4 Technologies 106

G 1 2 3 4 5 6

2

2

4

3

4

5

6

6

Figure 4.11: Example for the main chain in Byteball

number assigned to them, so everyone knows how far they are from the gene-
sis block. For all blocks, that are not directly on the main chain, the first block
of the main chain referring to the block is selected. These blocks get assigned
the lowest number of the first block of the main chain they get referred by di-
rectly or indirectly. If there is theneed todeterminewhichof the twoblockswas
first, it is only necessary to compare their assigned numbers and decide in fa-
vor of the block with the lower number. This procedure is shown in figure 4.11.
If both blocks still have the same number assigned, the block with the lower
hash is selected as the first. Blocks that are suspected to be malicious are not
removed from the DAG because they are still valuable information about the
DAGs structure. Instead, the data of malicious blocks is replaced by their hash,
and therefore, the data is lost. This is necessary to reduce the required storage.
The best parent of a malicious block is expected to be malicious as well. Thus,
they may not be trusted either, because they could have been created by an at-
tacker as well. To find the best parents for each block a test is required, for this
test witnesses are needed.

Witnesses are users, which are not anonymous, but rather known as individual
companies or persons, which are expected to be honest and to post regularly.
They also have a personal interest in keeping the system healthy and are more
trusted than other users, but it is not reasonable to blindly trust them. If only
the majority of witnesses are honest, this is enough for the system to work. To
find the best parent for each block, the main chains of the blocks before is fol-
lowed. In this process, each distinct witness is counted. When the majority of
witnesses is discovered the remaining length of the chain is calculated and is
called thewitness level. Parents with a better witness level are considered to be
more real and therefore considered amore suitable parent. This process gravi-
tates themain chain to blocks the witnesses have created, but because they are
more trusted this is expected. This procedure also eliminates scenarios where
attackers create whole chains withmalicious content entirely on their own and
then post the complete chain into the DAG. Because nowitnesswas able to post
in such a shadow chain, it cannot evolve to the main chain. Therefore, the im-
pact of such an action is limited, and it is easy tofindmalicious blocks. This also
shows why amajority of honest witnesses is required. Serious problems would
arise if they would post on the shadow chain and therefore make the shadow
chain the main chain. A witness’s job consists of regularly posting blocks and
referring to blocks they think aremore real than others, but they are not safe by
all means. Witnesses can be easily swapped by the system’s users if they think
this is a good idea. Each block may store the trusted witnesses of the creating
user if theydiffer fromthoseof the referencedblocks. Bydoing so thewitnesses

4 Technologies 107

Table 4.39: Mitigated attack vectors by a Byteball approach

Technology Attack Vectors Mitigated

2.2.1

2.2.3

2.2.4

2.2.6

2.2.7

2.2.9

2.2.11

2.2.12

2.2.12

2.2.12

2.2.13

2.2.13

2.2.5

2.2.14

2.2.15

2.2.17

Byteball X X ∼ X X ∼ ∼ ∼ ∼ ∼ X X

can change over time. If there are a lot of changes in the witnesses, this block
is excluded from being the best parent of the next block. The best parent is ex-
pected to only change the witnesses from his child by one, which means they
have to agree on most of the witnesses. This means over time, it is possible to
change all witnesses slowly but steadily. There are always exactly 12 witnesses
in Byteball. Those witnesses are rewarded for posting regularly with some of
the fees collected from users posting into the DAG.

4.20.1 Byteball for the Sensor Directory

Byteball can be used to build the sensor directory. However, it might not be the
best option because it requires its users to pay for used storage with the cryp-
tocurrency bytes. It is also not possible to remove the cryptocurrency from the
system.However, there are lots of useful concepts inByteball that couldbeused
to build a DAG-based ledger for the sensor directory. Because Byteball is a DLT
consisting of many nodes similar advantages and disadvantages emerge like
those explained in Algorand (section 4.18). While in Algorand a subset of nodes
could be used to verify content before this is included in the data structure, this
is not possible in Byteball. If a similar approachwould be implemented inByte-
ball each nodewould have to check the data on its own.While itmight be possi-
ble to do so, it would create lots of costs for the system. The system itself could
be either run by PIAs which would allow them to search in the data, or it could
be run by separate devices which allow queries. Both approaches allow for the
anonymity of the PIAs. Because Byteball is an open ledger, everyone can see
the data and get every information included. This means everyone can search
the system for potential targets (section 2.2.4) as well as gain additional infor-
mation about users (section 2.2.5). Because a DAG is used the impact of many
sensors getting inserted at the same time creating a DoS (section 2.2.1) is de-
creased. However, if enough sensors are added the system can still be downed
for a certain timeand cannot beused, evenmore, if PIAs are running the system
this would potentially also impact them. However, because bytes are required
to add data such an attack would be very costly. See Table 4.39 for an overview
of which attack vectors a system based on Byteball canmitigate.

The ledger would be a DAG, including the main chain, which is selected based
on the best parent function. Byteball requireswitnesses tofind the best parents
for all blocks. Thosewitnesses are expected to post regularly to keep the system
secure. Thiswould not be realistic because blockswould contain sensors or up-
dates for sensors. However, it is not reasonable to expect those witnesses will
add or update sensors in a regular fashion. Therefore, witnesses would have to
add empty blocks or blocks with random content to allow the system to estab-
lish themain chain. This wastes lots of resources and therefore another way to
find thebest parentmight beneeded.However,witnesses couldbeused tobuild
a trust system. To do so theymay reference sensors they trustmore, thismight

4 Technologies 108

Table 4.40: Requirements fulfilled by a Byteball approach

Technology A
n
on

ym
ity

Q
ueriable

Equality

Im
m
utable

V
erifi

able

W
hom

to
T
rust

T
rustSystem

R
edun

dan
cy/

D
istributed

Prun
e
Q
ueries

Prun
e
Sets

In
putV

alidation

R
epeated

V
alidation

Storage
R
equirem

en
t

O
w
n
er

can
chan

ge
data

Byteball X X X X X X ∼ X ∼ ∼ X

only be an initial classification. This is because this classificationwould be out-
dated after some time. Witnesses could also verify addresses in the process to
prevent attacksusing thisfield (section2.2.12). They could also check forwrong
sensor data (section 2.2.11) as well as malicious sensors (section 2.2.6) that are
set up.However, this is not only anoption forwitnesses but for all users.When-
ever a user adds a block they may choose the most trustworthy sensors they
find to refer to. They may also check transitively and therefore older sensors.
By doing so sensors would be checked regularly after some time. Regardless,
this leads to a problem, if there is a lot of data the verification step for inserting
new sensors increases each time. Also, because this is not done on insertion of
thedatabutwhennewblocks chooseblocks to refer to,newblocks startwithout
any trust assignment. Additionally, if a sensor is corrupted the branch includ-
ing the sensor will not grow anymore. Destroying not only its reputation but
also the reputation of those referring to it. All met requirements can be seen in
Table 4.40.

Byteball would also allow saving data in already established systems. This
means it would also be an option to use the already established Byteball sys-
tem to store the sensor data. This is possible because Byteball allows users to
store whatever data they want. However, users require bytes to do so. If some-
one chooses to do so, the witnesses of the system would automatically create
trust in the blocks. Yet, problems with the data could not be mitigated or de-
tected. This would also have additional advantages, if users ever lose trust in
the witnesses they could be swapped.

4.21 IOTA

IOTA is adistributed ledger and isdesigned tobeusedas a cryptocurrencywith-
out any fees. The core benefits are being lightweight, and supporting devices
from the Internet of Things (IoT), while keeping energy consumption very low
[39]. IOTA uses a blockless DAG (section 3.4) which means each transaction is
represented by its individual block [84]. In IOTA, each new transaction veri-
fies twoprevious transactions by referencing themusing their hashes [39]. The
selection of these referred transactions is essential and therefore explained in
the next paragraph. Because the establishment of new entries takes some time,
it can be assumed a selected block is already cited by another block. However,
this does not pose a problem because a DAG is used, and a block could be re-
ferred to by multiple other blocks. Before a block gets appended, a PoW has to
be solved, this PoW is the reason why this step is time-consuming. The PoW

4 Technologies 109

is designed to be very simple, so even IoT devices or smartphones can solve
them in a reasonable time [39]. The PoW is needed to protect the system from
malicious users trying to spam the system with new blocks [39]. By adding a
PoW costs are added to each transaction and therefore spamming gets cost-
intensive. A similar system is used in Nano (section 4.19).

The selection process of which blocks are referenced, by a newly created block
can differ. If a block is selected and an issue is detected in any directly or indi-
rectly verified block, the selection process has to be repeated. This is important
to prevent double-spending and similar problematic actions [39]. This means
the selection process has to be constructed in a way only one part of the DAG
grows while the other ones are left behind, and no transactions are added to
those parts [39]. However, all correct parts should end up in the growing part.
There are twomain possibilities for such a process [39]:

Random selection or

Monte Carlo Markov Chain (MCMC).

The first technique is random selection. In this technique, two (or more, de-
pending on the technology) randomly yet not referenced blocks of the DAG are
selected. The problem with this technique is the system may generate issues
regarding double-spending [38, 39]. Whenever two contradicting blocks exist
thismeans those, or those referring to them can never be selected by one block
as references [38]. Whenever such a situation occurs the process has to be re-
peated. However each block is allowed to refer to one of those blocks but never
both, doing someans therewill emerge twodistinct parts of theDAGwhichwill
never merge again [38]. Another option to select blocks to reference is MCMC
[39].When using this technique the user starts at the genesis block and follows
each reference to the next block with a certain probability [39]. The probability
depends on the cumulative weight of the blocks [39]. The cumulative weight
describes how many other blocks refer to the next block directly or indirectly.
If a not yet cited block is reached, this block is one of the selected options. The
problem with this technique is some blocks may never be reached and there-
fore never get referred. Ifmalicious users create their ownpart of theDAG, they
need comparable computational power to the honest users, or their part of the
DAGwill not grow fast enough for honest users to also create blocks in this part
of the DAG [39]. To circumvent the growth of only one part of the DAG and also
give other parts a chance, the algorithm should not always follow the highest
cumulative weight. This is the case because other parts need to be referred to
be valid. This means each block has a certain probability of being selected. To
allow that, a random factor is included in the probability calculations. If the
factor that determines the randomness is chosen too low, the block is always
set according to the cumulative weight. Whereas many parts of the DAG never
get approved. If the value is selected too high, the same problems of random
selection rise, and the possibility of double-spending increases. Therefore it is
essential to find a compromise between those two thresholds. Hybrid Selection
is the third example [39]. It tries to solve the problem of the MCMC andmakes
it easier to choose a random factor. It does so byworking in two stepswhich are
conducted sequentially [39]:

Security Step and

Swipe Step.

In the security step, an MCMC with a low random distribution is performed,
which leads to longer chains getting selected more frequently. Subsequently,
the second step is initiated, the so-called swipe step. In this stage, a method
with a much higher random distribution is applied. Such a method would be a
random selection or anMCMCwith amuch higher random factor. By doing so,

4 Technologies 110

the first stepmakes sure no double-spending is possible, while the second step
ensures no valid blocks are left behind.

The problem is, that the developers of IOTA mentioned IOTA is not yet able to
maintain its own [84]. To prevent unfavorable events, centralization is still re-
quired in the form of a so-called Coordinator node, which ismaintained by the
developers themselves. This node is used to generate milestones in the DAG.
These milestones are regular blocks, but each transaction validated by a mile-
stone is expected to be confirmed and can be seen as legit and persistent [84].
There are three other types of nodes in the IOTA system [84]:

Full Nodes
These nodes are standard nodes that distribute transactions. However they
do not store the whole history of the DAG, instead they only store the state
of the DAG [84].

Perma Nodes
Permanodes store thewhole transaction history. They additionallywork as
full nodes [84].

Light Nodes
Light nodes do not distribute transactions or store any data. Data is solely
delivered by the other two types [84]. Light nodes requests information
from the other two node types [84].

4.21.1 IOTA for the Sensor Directory

If IOTA is used to implement the sensor directory the structure would be sim-
ilar to the structure Byteball and Nano would provide. This is the case because
also IOTA is a public permissionless DLT and therefore has all the advantages
anddisadvantages that arise from that. Thismeansmanynodes are storing and
distributing thedata. Everyone is allowed to create additionalnodesandpartic-
ipate in the system.Also, every sensorprovider can create sensors in the system
using their ownnodes or nodes providing APIs. The sameholds true for queries
sent by PIAs. Nodes participating could be additional nodes, PIAs themselves,
or amixture of both. Itmight also be a possibility for them to be different types
of nodes, for example for PIAs to be light nodes sending requests and therefore
being part of the systembut not storing thewhole information or participating
in the distribution of sensors.

To decrease stress on perma nodes storing the whole DAG, it might be an op-
tion not to store the whole sensor data but rather store hashes of those sensors
instead. Such an approach would require some additional servers to store the
complete sensor data. This verification approach is similar to those explained
in the chapters before andwould have the same advantages and disadvantages.
SeeTable4.41 for anoverviewofall selectedattackvectors that canbemitigated
by this approach. Table 4.42 shows the requirementsmet by an approach using
IOTA.

Byusing IOTA the sensor directory could implement a completely different sort
of trust system by using a different approach by selecting the referred blocks.
Sensor providers can create malicious sensors (section 2.2.6) as well as wrong
sensor data (section 2.2.11). In this trust system, the selected blocks which are
referred to are those a user trusts. Therefore, if a user creates a new block, this
block refers to trusted sensors directly and indirectly. This may create a much
shorter DAG because users may not trust the last blocks added to the DAG but
the previous ones. This means blocks may not only refer to not yet referred
blocks. Because IOTA is a DAG, it is possible to refer to many different blocks,

4 Technologies 111

Table 4.41: Mitigated attack vectors by a IOTA approach

Technology Attack Vectors Mitigated

2.2.1

2.2.3

2.2.4

2.2.6

2.2.7

2.2.9

2.2.11

2.2.12

2.2.12

2.2.12

2.2.13

2.2.13

2.2.5

2.2.14

2.2.15

2.2.17

IOTA
standalone

X X ∼ ∼ X ∼ ∼ ∼ ∼ X X X

IOTA
verification

X X X X X

and it is also not a problem if there aremultiple blocks without any references.
However, for such a selectionmethod to work users need the ability to read the
content of the block. Therefore this is not an option if hashes are stored in the
system. The system could also include dos and don’ts as is the case in Byteball.
Examples of this might be a block that has to refer to all trusted sensors di-
rectly or indirectly, and also all blocks of the same sensor provider ahead. This
trust system allows users to showwhich parts of the DAG they trust and which
parts they disagree with. However, once a block is included, this block is im-
mutable, and there is no option to revoke the trust. This means if a sensor is
compromised (section 2.2.7) the trust is outdated (section 2.2.13). However, if
a timestamp is embedded ineachblock, itmaybepossible to check ifnewblocks
are verifying a sensor. This situation however creates a much more problem-
atic situation, if users are required to refer to all of their old blocks when in-
serting a new one because compromised sensorswould still gain trust. Because
only positive trust could be shown it is not possible to destroy someone‘s trust
(section 2.2.13). Also if a sensor is compromised new sensors do not verify this
sensor anymore. The problem is also those sensors that have already verified
the sensor would not be verified anymore because by doing so a new sensor
would also verify the old compromised one. This means compromised sensors
would decrease the trust in honest sensors as well. It is still possible to im-
plement every other trust system by adding blocks containing the information
required. However, blocks showing trust information to a sensor should refer
to the sensor and all other trust entities regarding this sensor to allow for faster
discovery.

Milestones might not be required for the sensor directory. This could be the
case because there is no truth in the system,which has to bemaintained. There
is also no risk of double spending because there is no cryptocurrency involved
which could be spent multiple times. Sensor providers would be able to cre-
ate sensors in different branches of the DAG contradicting each other, how-
ever, if those are required to refer to each other this is not possible. Also if each
sensor has its own reputation malicious ones would still be detected and re-
jected. Furthermore, each user is using and trusting different sensors, which
means amilestonemight support thewrong sensors for someusers. Therefore,
there is no need for a coordinator nodemaintained by the system‘s developers.
However,milestonesmight still be useful to establish time or to verify sensors.
Milestones could be inserted into the DAG referring to all not referred blocks
to show at which time those nodes were open. This would show how fast which
part of the DAG grows. If blocks include a timestamp this would be useless. Co-
ordinator nodesmight also be used to verify sensors are honest and then create
milestones referring to all honest sensors. While this might not happen on in-
sert this could be seen as a notary which does this after some time. However,

4 Technologies 112

Table 4.42: Requirements fulfilled by a IOTA approach

Technology A
n
on

ym
ity

Q
ueriable

Equality

Im
m
utable

V
erifi

able

W
hom

to
T
rust

T
rustSystem

R
edun

dan
cy/

D
istributed

Prun
e
Q
ueries

Prun
e
Sets

In
putV

alidation

R
epeated

V
alidation

Storage
R
equirem

en
t

O
w
n
er

can
chan

ge
data

IOTA
standalone

X X X X X X X X ∼ X

IOTA
verification

X X X X X ∼ X X

this link might not be transitive because this would mean a malicious sensor
would destroy trust in later sensors. Coordinators might also check for older
sensors already referred by amilestone. But thismeans such amilestonewould
have to refer to each block decreasing the effectiveness of thismilestone in the
first place.

4.22 Fabric

Hyperledger Fabric is a blockchain-based approach of a distributed ledger.
Therefore, each nodemaintains a copy of the ledger, and consent has to be dis-
tributed via all nodes. But in difference to many other technologies, Fabric is a
permissioned private Ledger, whichmeans all parties, as well as their possible
actions, are known. Those parties are not expected to trust each other com-
pletely but to work together to reach a common goal. The private structure en-
ables some consensus algorithms a conventional blockchain would not be able
touse [6]. Theprinciples of Fabric are describednext, the information ismostly
taken from [6]. Fabric can include smart contracts in its transactions similar to
other technologies. The difference is nearly all other technologies need con-
tracts written in a specific language. While Fabric supports all programming
languages and is, therefore more or less the first distributed operating system
for permissionedblockchains. Additionally to smart contracts, Fabric also sup-
portsmultiple channels, where each is its individual blockchain which isman-
aged separately by the technology. Channels can run in parallel andmight even
use different nodes.

A Fabric network is divided into different node types, which have to work to-
gether, those node types are [6]:

Client,

Peer,

Membership service,

Ordering service and

Gossip service.

4 Technologies 113

Clients are nodes that request transactions to be executed on a channel. Peers
are those nodes holding the ledger and executing the changes. These should
make up the majority of nodes in the network. Membership services are the
services providing unique identifiers to nodes and also holding them. Ordering
services are applied to bring transactions into absolute order and achieve con-
sensus overall transactions. There might be a few of this type, but the number
should be kept low. It is important to note those nodes do not hold instances
of the ledger. Gossip services are not required for the network, but if there is a
high number of peers and several ordering services, their task is to distribute
the response of the ordering service to all of them. In general, not a single node
in the system trusts any other node, but it is possible to grouppeers in case they
are from the same party. This means those peers trust each other. This option
is not available for order services because those have to be suspicious about all
other nodes.

The ordering services are those nodes deciding which block is included and
when. They could be centralized and represented by just one node, which is
most useful for testing purposes, another option is to distribute the order ser-
vice in a cluster of nodes. These clusters can run consent algorithms like BFT-
SMaRt, which accept up to 1/3 faulty nodes, or others [6, 81]. Some of those are
no options for public ledgers and allow Fabric to be much more efficient. Be-
causeFabric is private only someknownentities can interactwith the system. It
is possible to use the system in a similarway amailing service is used [47]. This
means everyone else who wants to participate in the system who is not known
by the system, sends their transactions to those nodes known and those relay
them into the System [47]. The relaying node is responsible for the data, so it
may check the transaction first or risk getting punished for the content. This is
not given because Fabric has no fixed use case andmay be used for any system.

Most blockchains, regardless if they are permissionless or permissioned, fol-
low the structure order-execute, which means a block’s transactions get or-
dered by a node and then distributed to all network members. These network
members then execute the transactions sequentially where each node has to
conduct them on its own [6]. This structure creates problems, some of which
are listed below [6]:

limited performance,

non-deterministic transactions and

consensus is hard coded.

The performance is limited because each node has to perform the transactions
and smart contracts on its own one after another. This also means attack vec-
tors like DoS (section 2.2.1) are huge threats. Transactions and smart contracts
are provided for most distributed ledgers only in their own programming lan-
guages, which are in most cases specially designed to support deterministic
statements exclusively. This is necessary because order-execute cannot exe-
cute non-deterministic transactions. In Fabric, all programming languages are
supported, this can lead to issues but is also an explicit advantage.

Fabric is not following the same steps and therefore, can overcome some of
the problems. In contrast to the order-execute structure, Fabric uses a struc-
ture of execute-order-validate. By using this structure, a communication sim-
ilar to Figure 4.12 evolves. To support these steps, each peer consists of two
separate parts. The first part is the chaincode, this code runs in the execution
step. Untrusted developers are able to change this part. The other part is the en-
dorsement policy, which acts like a static library for transaction validation, and
is therefore used in the validation step. In the execution step, a transaction is
sent to a few selected peers which simulate the transaction and respond with a

4 Technologies 114

Client (C) Endorsing
Peer (EP1)

Endorsing
Peer (EP2)

Endorsing
Peer (EP3) Orderers

Commiting
Peer (CP1)

O
rderin

g
Service

Figure 4.12: Example of the network communication in Fabric

set includingwhich records were written andwhichwere read. The initial node
sending the transaction collects a minimum of sets and sends it to the order-
ing service. By doing so many transactions can be processed at the same time.
This also means if non-deterministic transactions are encountered only a few
nodes are impacted and if those do not come to a conclusion the transaction
is rejected. Peers are also able to stop the execution if a threshold is exceeded.
Theordering serviceuses the sets to establish anabsolute order between trans-
actions per channel. If the ordering service is a cluster this has to be done via
consensus algorithm, this algorithm can be chosen and depends on the appli-
cation Fabric is used for. The ordering service then creates blocks which are
then distributed to all peers by the ordering service or a gossiping service. In
the validation step all policies are checked. All honest peers should come to the
same conclusion and add correct blocks to the blockchain.

4.22.1 Fabric for the Sensor Directory

If the sensor directory is based on Fabric, there is a need for some selected
known big players who can be expected not to collude. This is the case because
Fabric is private and permissioned and therefore not everyone can participate
easily. Those big players have to set up the nodes of the system. This means
to create the sensor directory lots of big players are required. Everyone else
has to send their sensors and queries to nodes run by the big players. Those
nodes would check sensors and add them into the sensor directory, this means
also those peers and clients would be responsible for them. Therefore the sen-
sors would be checked before insertion. Also, all users could remain anony-
mous because they send their requests to different clients.While big players do
have direct access to the blockchain, no one else has. Thismeans everyone else
has to send queries to nodes of the big players. Consequently, users running

4 Technologies 115

Table 4.43: Mitigated attack vectors by a Fabric approach

Technology Attack Vectors Mitigated

2.2.1

2.2.3

2.2.4

2.2.6

2.2.7

2.2.9

2.2.11

2.2.12

2.2.12

2.2.12

2.2.13

2.2.13

2.2.5

2.2.14

2.2.15

2.2.17

Fabric X X ∼ X X X X X X X X X ∼ X X

nodes, especially peers, would be able to search for vulnerable sensors (sec-
tion 2.2.4) or other vulnerable data (section 2.2.5) directly. All others may still
be able to do so but it is harder for those because they have to do it via queries,
whichmight follow certain rules. Those rules might be part of smart contracts
that are used to query the directory and only allow for pruned sets and queries.
This does not allow for any identification because the smart contract is exe-
cuted by a big player. However, to verify a block, the whole blockchain until
a certain point is required, this means the data is needed by the PIA. Because
the users running nodes are known, it is possible to keep them responsible for
their actions. Because the system is distributed between lots of big players, is-
sues such as fingerprinting (section 2.2.3), the sensor directory tracking peo-
ple (section 2.2.14), or the sensor directory showing different sets to differ-
ent users (section 2.2.17) are mitigated. This is the case because PIAs can dis-
tribute their requests between multiple clients of different big players. How-
ever, anyone still can add lots of sensors and try to track a person using them
(section 2.2.15). Because Fabric is based on blockchain, the data is immutable
and verifiable once the data is included in a channel. However, this also means
the storage will grow indefinitely.

Clients and peers of big players would check sensors they receive from sensor
providers before they insert them into the blockchain because otherwise, they
would be responsible for them. This means the insertion of malicious sensors
(section 2.2.6) or wrong sensor data (section 2.2.11) is mitigated. Also, the ad-
dressfield is checked (section2.2.12). Thenodewouldalso checkonly theowner
is able to update a sensor by checking the keyused to sign the sensor. If the sen-
sor is expected to bemalicious it is rejected. The sensor provider can then try to
use another node of a different big player to add the sensor to the directory. Be-
cause those big players investigate sensors before they get into the system this
also directly protects from DoS by adding lots of sensors (section 2.2.1). This is
the case because only the checking node would be impacted.

Because Fabric is supporting channels, it might be an option to use another
channel to hold trust information. Because a blockchain is used the data is im-
mutable andmight take lots of storage. Because all nodes are known, everyone
voting is responsible for their action. It is also possible to have different users
responsible for different channels whichmeans the users responsible for run-
ning the sensor directorymay not be those running the trust system. This trust
system could be established in lots of different ways. Depending on the applied
trust system, it might be possible to mitigate attack vectors where sensors are
compromised (section2.2.7). The trust systemmayalsomitigateoutdated trust
(section 2.2.13) information or destroy the trust of a sensor (section 2.2.13).

The ordering service can use a wide variety of consent algorithms, for sensors
and the trust system. Because there is no contradicting data for the sensors,
other than address issues, it might be sufficient to gowith a quiteminimalistic
approach for this algorithm. This may allow for an efficient and fast process.
Also because Fabric is a privateDLT somedifferent consensus algorithms could

4 Technologies 116

Table 4.44: Requirements fulfilled by a Fabric approach

Technology A
n
on

ym
ity

Q
ueriable

Equality

Im
m
utable

V
erifi

able

W
hom

to
T
rust

T
rustSystem

R
edun

dan
cy/

D
istributed

Prun
e
Q
ueries

Prun
e
Sets

In
putV

alidation

R
epeated

V
alidation

Storage
R
equirem

en
t

O
w
n
er

can
chan

ge
data

Fabric X X ∼ X X X X X ∼ ∼ X X X

be used. An example of such an algorithm is Raft which is lightweight and fast.
But also, a lot of other algorithmswould be alternatives. For an overview via all
mitigated attack vectors from section 2.3 see Table 4.43. Which requirements
are met when Fabric is used is shown in Table 4.44.

4.23 Ethereum

Ethereum is a distributed ledger maintaining the history and the overall state
within a blockchain [3]. Ethereum can be used as a public or a private version
[93]. Ethereumisnot only capable of storingdatabut also computes smart con-
tracts [3, 36]. Those smart contracts consist of code that defines a specific be-
havior in a specific coding language defined for Ethereum. This contract code is
executed for each transaction and has to run on each node whenever it down-
loads and verifies a transaction [36]. Contracts can be written by anyone and
can be stored on the blockchain [23]. After this, they can be called and can use
blocks stored in the chain to calculate data, or generate new data [23]. In con-
trast to other ledgers, in Ethereum, a cryptocurrency is bound to the technol-
ogy. This currency is called Ether and it is used to pay transaction fees [36].
Under certain conditions, it is possible to disable this cryptocurrency. Ether is
required because Ethereum relies onminers, whowant something to compen-
sate them for their spending. Miners calculate howmuch work they have done
to execute a specific transaction or smart contract. The result of this calcula-
tion is given in gas. The gas value is used to calculate the price for each transac-
tion later [3]. Theworkminers expend is similar to the effort done byminers in
Bitcoin or other blockchain technologies. Miners gather transactions, bundle
them into blocks, then perform a consensus protocol, like PoW (section 3.2.3)
or PoS (section 3.2.4), and then distribute the block to all other nodes [3]. For
private applications, other consensus protocols, like Proof of Authority, can be
used [81]. Those protocols also do not require miners and may therefore allow
disabling Ether. This is possible because such protocols swap currency based
trust by additional trust communication and trust into knownentities. The fees
in the public version, required to trigger a transaction are also used to prevent
users from spamming data into the network and consequently create a DoS. By
adding the fees, the cost for an attack of this type should be high enough to
prevent malicious users from doing so [36]. Because in the private version, all
users are known, there is no need to do so.

In Ethereum, there are two types of accounts able to interact with the system.
First, there are externally owned accounts, which are controlled by whoever

4 Technologies 117

has the private key. Those accounts can be used to interact with the system di-
rectly. Additionally, there are contract accounts maintained by their contract
code, which means those accounts are not maintained by a person. Those two
account types do have different functionalities and abilities. For example, an
externally owned account can send transactions and is not able to send mes-
sages, while a contract account can send messages [36]. Transactions are in-
teractions with the system created by an external account and can be used to
create blocks or interact with contract codes, while contract codes only com-
municate viamessages. Each transaction in Ethereumconsists of the following
parts [36]:

Recipient of the transaction,

Signature of the sender,

Amount of Ether,

Optional data field,

Startgas value and,

Gasprice value.

The recipient, the signature, and the amount of Ether are three pretty ordinary
fields for standard cryptocurrency use. The data field is not applied in stan-
dard transactions, only if smart contracts are required, this field can be used to
fetchadditional informationneeded for these contracts [36]. The startgasvalue
defines the maximum number of computational steps, however that thresh-
old is represented as gas. Each operation has a gas number assigned to it. The
miner has to calculate the used gas andmust not exceed the startgas value. The
gas value estimated is then combined with the gasprice, which is the value the
sender is willing to pay per gas, to calculate the fee the sender has to pay [36].

Messages are the packets created by a contract account, which means they are
created by code running on nodes and are always followed after some kind of
transaction. A message triggers the same steps as a transaction but consists
only of [36]:

Sender of the message (implicit),

Recipient of the message,

Amount of Ether to transfer,

Optional data field and,

Startgas value.

The startgas value here is the gas of the transaction that triggered the contract
code, minus the already used gas by the contract before the message was cre-
ated. Some Ether is subtracted additionally, this is the case to keep reserves for
the contract code to keep running after the message was handled.

Blockchains in general allow for searches from block to block and inspecting
each block’s content [23]. It is also a possibility to have a look into each block
directlywhen the id of those blocks is known [23]. Ethereumdoesnot only sup-
port those options but also has a specific query language which is specifically
designed to allow for SQL-like queries in an Ethereum system [23]. The query
language for Ethereum is called EQL and allows for querying by using smart
contracts [23]. This approach is not the standard for Ethereum and was pro-
posed in 2018. By using the contract code querying the system is possible.

Ethereum’s blockchain while being similar to those of other blockchain tech-
nologies, is still different. While others only store transactions Tx in the chain,

4 Technologies 118

S[0] Apply

Tx[0]

S[1] Apply S[2]

Tx[1]

... Apply S[n]

Tx[n]

Figure 4.13: The structure of the Ethereum blockchain

Ethereum decided to also include the most recent state S [36]. This state con-
tains all blocks in a combined form which means in terms of currency the bal-
ance for eachuser. This decision changes the structure of the blockchain quite a
bit. An example of the structure is shown in Figure 4.13. In order to save storage
space the state is stored in a tree-like structure [36]. For each step, only slight
changes are made to the tree, and the rest is not touched and therefore stays
unchanged. Consequently, the same elements can be used for those parts and
can be referenced from an older version. This approach allows nodes to store
only parts of the blockchain, while still possessing the whole information [36].

4.23.1 Ethereum for the Sensor Directory

If the sensor directory is implemented using Ethereum, the first question that
comes into mind is how to proceed with the cryptocurrency Ether. Because
Ether highly depends on the consensus algorithm, this question is also bound
to which consensus algorithm should be used. If a public version is applied,
the cryptocurrency is essential because the miners require an incentive. This
means it is hard to disable Ether in a public version of Ethereum to use it for
the sensor directory. If it is applied regardless, the miners require some other
motivation. Because there is nothing to offer from the sensor directory, those
would be users who are purely interested in the state of the system itself. How-
ever, those users could also be those running a private version. Using a pri-
vate version of Ethereum also allows additional advantages over a public ver-
sion, besides the option to disable Ether. By doing so, it is possible to runmuch
more efficient consensus algorithms. However, because the system would be
private, the users running the system have to be known. Those users would be
thesameas inotherprivate solutionsandmightbebig countries, companies, or
known users, like Amazon and Google, which are interested in a running sys-
tem. Depending on the consensus technology, those are the users running it,
and therefore the majority has to stay honest. This also means the structure
of the system highly resembles the structure of Fabric. This means everything
following this structure is the same. PIAs and sensor provider would send their
queries and sensors to nodes which verify them and then perform the actions.
On top of that, those nodes are responsible for those actions. Also, all users not
directly running the system would be anonymous. Additionally, the access to
the datawould be similarwhere big players have direct access andotherswould
use those to gain knowledge.

Because Ethereum is using a blockchain all advantages and disadvantages fol-
lowing from that apply to the sensor directory if it is used. This means data
is immutable and verifiable. However, the blockchain of Ethereum is slightly
altered as discussed before. This change may lead to a longer chain due to the

4 Technologies 119

Table 4.45: Mitigated attack vectors by a Ethereum approach

Technology Attack Vectors Mitigated

2.2.1

2.2.3

2.2.4

2.2.6

2.2.7

2.2.9

2.2.11

2.2.12

2.2.12

2.2.12

2.2.13

2.2.13

2.2.5

2.2.14

2.2.15

2.2.17

Ethereum X X ∼ X X X X X X X X ∼ ∼ X X

statebeingstored.This state isused to storea summaryof theblockchainwhich
in the case of the sensor directory could be a summary via all sensors and their
state. If data is requested from the sensor directory, it might be a possibility to
respond with the state and require the PIA to search inside it themselves. This
would decrease the load on the sensor directory while increasing it for PIAs. If
PIAs are interested in a huge amount of sensors anyway there is a storage de-
crease by sending the state instead of the blockchain. This is the case because
only up to date data is included and deprecated data is trimmed. This function
increases its value each time users update their data because the old data is no
longer in the state. The blockchain could then be used to verify information.

As already explained nodes of big players would check sensors at insert and
prevent several malicious actions by doing so. However, it might also be re-
quired to add a trust systemwhere sensors are validated regularly. Because the
systemwould be private, validators would be known entities. Those validators
could crawl through the state and check if those sensors are honest. While it is
not yet decided which trust assessment would be the best, for Ethereum, there
might be some which are much better than others. Each trust assessment that
can be summarized into a single value might be a good choice for Ethereum
because this accumulated value could be shown in the state. An example would
be validators increasing or decreasing a trust value of a sensor each time they
crawl it. This data has to be stored in the blockchain aswell.While the informa-
tionmay be very small, the data still adds up. This also wouldmean to receive a
final trust assessment the whole blockchain starting from the sensor has to be
scanned. However, this task could be relieved by storing the accumulated trust
value in the state. This decreases the work required to find a trust value while
still making the validators accountable. Therefore destroying the trust of any
sensor is not an option for a validator. However, because the data is stored in a
blockchain some trust data might be outdated. Following such a structure the
sensor directory would support a wide range of trust systems.

As for all blockchain technologies, it is required for some nodes to store the
whole blockchain. That should be no problem because the nodes are provided
by big players who have the resources anyway. However, for smaller providers,
it might be sufficient to create partial nodes that store only a part of the
blockchain while still maintaining all information. This is possible because the
state is stored in the blockchain. However, this means such nodes are not able
to verify all blocks while still holding all information. This is not possible for
other blockchain technologies. See Table 4.45 for an overview of all attack vec-
tors and which ones could be mitigated using Ethereum. For an overview via
the requirements of the sensor directory which might be fulfilled by a version
based on Ethereum see Table 4.46.

4 Technologies 120

Table 4.46: Requirements fulfilled by a Ethereum approach

Technology A
n
on

ym
ity

Q
ueriable

Equality

Im
m
utable

V
erifi

able

W
hom

to
T
rust

T
rustSystem

R
edun

dan
cy/

D
istributed

Prun
e
Q
ueries

Prun
e
Sets

In
putV

alidation

R
epeated

V
alidation

Storage
R
equirem

en
t

O
w
n
er

can
chan

ge
data

Ethereum X X ∼ X X X X X ∼ ∼ X X X

Chapter 5

Comparison

In this chapter, all the technologies from chapter 4 are compared with each
other and it is highlighted which are best suited to build the sensor directory.
The technologies are best clusteredby their architecture. There are six different
architectures used by the technologies:

Integrity Server,

Audited Server,

Multiple Servers using a consensus algorithm,

Network of self-maintained Servers,

Distributed Ledger and

Private Distributed Ledger.

Integrity servers (IS) are single servers that do not require other servers to
work except those creating integrity information. Those integrity servers not
only store the data provided but also store additional integrity information to
ensure the data cannot be changed by unauthorized parties. Those servers use
third parties like CAs to create this information and store itwith the data. How-
ever, because those servers are only storing the data and the integrity informa-
tion, there is no link between the entries, therefore the server has the potential
to dropdatawithout leaving a trace. Also, eachkey owner can signnewdata and
replace data because it might not be possible to verify which data is the latest,
except if some kind of time stamp is appended to the data packet. Technolo-
gies that are based on this idea are CAs (section 4.1), web of trust (section 4.2),
DNSSEC (section 4.3), and SUNDR (section 4.4).

Audited servers (AS) are servers, that operate one server using a data structure
that is verifiable and immutable and several auditors are utilized to verify the
server’s honesty. For most of those technologies, everyone can run an audi-
tor. Because auditors verify the server which stores the data, this server cannot
actmaliciously in anyway. However, this architecture requires someone to run
the auditors, which are based purely on volunteers. A PIA receiving data not
only has to contact the audited server but also at least one auditor it trusts to
be honest. This is important to make sure the server is honest. Technologies
using this architecture are transparency logs (section 4.5), AADs (section 4.6),
Merkle2 (section 4.7), Software Distribution Transparency (section 4.8), AKI
(section4.9), ARPKI (section4.10), Coniks (section4.11), Contour (section4.12)
and CHAINIAC (section 4.13).

If multiple servers use a consensus algorithm (MSC), this means multiple
known servers communicate with each other and find a global truth which is
thenprovided by all of them.However, all servers have to be knownbeforehand
and it is hard to change them. PIAsmay choosewhich server they use to receive
data. Candidates using this architecture are the Tor consensus (section 4.14) as
well as distributed state machines (section 4.15).

121

5 Comparison 122

The architecture Network of self maintained servers (NSMS), is used by
IPFS (section 4.16) and DAT (section 4.17). This architecture means all sensor
providers set up their servers. Then each sensor provider provides their indi-
vidual sensors at their servers. Those servers communicate with each other,
and if a request is acquired, the data can be received. However, for those tech-
nologies, the user is required to already know something about the requested
data to send a request. What information is needed, depends on the technol-
ogy. Because this information is used to search the system for the information
this might also allow for tweaks that may better fit certain use cases. This ar-
chitecture allows for many request sinks while the data is stored only on the
minimum number of nodes. This is the case because the request can be sent to
any node and is stored by the sensor provider and potentially additional nodes
that choose to do so.

DistributedLedgersaswell as theirprivatealternativesarealreadyexplained in
section 3.2. Obviously, private solutions cannot support anonymity for all their
users because those running the nodes have to be known. However, only those
can directly interact with the system. Consequently, for this architecture, the
players operating the systemwould act as gatekeepers deciding which sensors
are honest and should be included in the system, and which are not. Because
such technologies trust the majority of their users to be honest, these play-
ers should be widespread between different countries, ethnicities, and politi-
cal understandings. For someDLTsnot themajority of users but themajority of
computational power or coins is important, for those systems those should be
distributed evenly. The distributed structure would allow everyone to partici-
pate by sending their requests and sensors to those big players. If one of them
is against a specific ethnicity, it is possible to choose another party and commit
the request or sensor there. The nodes of those parties then relay the request or
sensor into the systemand respondaccordingly.While those bigplayers arenot
anonymous, this is not a problem because if they are known they can be held
accountable. For the public solution, everyone is allowed to participate, and as
long as the majority is honest a valid state can be achieved. The majority re-
quired depends on the technology chosen, possible majorities are themajority
of users, computational power, or coins. Due to the high distribution of such
systems, much communicationmay be required. Also for such systems, lots of
nodes are required to store the whole data, therefore requiring a huge amount
of storage.

InTable 5.1 all technologies aremapped to their belonging architectures. In ad-
dition, Table 5.1 also shows howmany nodes actually store the provided sensor
data. For many technologies this is obvious. If the data is stored on one server
and is audited by others or provides integrity information, the data is obvi-
ously only stored on one server. If the data is distributed via a lot of nodes, as
is the case for DLTs, all nodes have to store the sensor information. However,
there are technologies that fall out of line, those are IPFS and DAT. This is the
case because in general the information is stored on one node but each node
can choose to store the data as well. Obviously, this also highly impacts the
memory consumption required by the whole system distributed via all nodes.
If only one server has to store the sensor data n, this leads to a storage con-
sumption of n via all nodes of the sensor directory. This is for example always
the case for technologies using IS or AS as their architecture. However, sensor
providers may choose to use multiple servers to provide their data when using
those technologies, therefore the storage consumption for the whole system is
in fact higher than n. All technologies require some sort of metadata, an ex-
ample of this is the hash values needed to build a merkle tree or a blockchain.
Because this metadata is significantly smaller than the actual sensor data this
data is neglected. IPFS, as well as DAT, allow nodes to additionally store data

5 Comparison 123

T
ab
le
5.
1:
Co

m
pa
ri
so
n
of

al
lt
ec
hn

ol
og
ie
s
fr
om

ch
ap
te
r
4

T
ec
h
n
ol
og
y

A
rc
h
it
ec
tu
re

St
or
ag
e

lo
ca
ti
on

M
em

or
y

Co
n
su
m
pt
io
n

W
h
ol
e
Sy
st
em

M
em

or
y

Co
n
su
m
pt
io
n

Ea
ch

N
od
e

M
em

or
y

Co
n
su
m
pt
io
n

PI
A

T
ru
st

R
eq
ue
st

Si
n
ks

In
te
gr
it
y

R
eq
ue
st

R
eq
ui
re
m
en
ts

Se
tu
p

R
eq
ui
re
m
en
ts

D
is
tr
ib
ut
io
n

Ce
rt
ifi
ca
te
A
ut
ho

ri
ty

IS
si
n
gl
e
n
od
e

n
n

1+
I(
1)

CA
s

1
Si
gn

at
ur
e

-
CA

s
T
ru
st

W
eb

of
T
ru
st

IS
si
n
gl
e
n
od
e

n
n

1+
I(
1)

Se
le
ct
ed

U
se
rs

1
Si
gn

at
ur
e

-
-

T
ru
st

D
N
SS
EC

IS
si
n
gl
e
n
od
e

n
n

1+
I(
1)

Se
rv
er

O
w
n
er

1
Si
gn

at
ur
e

D
om

ai
n

R
oo
tS

er
ve
rs

T
ru
st

SU
N
D
R

IS
si
n
gl
e
n
od
e

n
n

1+
I(
1)

D
at
a
ow

n
er

1
B
lo
ck
ch
ai
n

us
er

se
rv
er

-

T
ra
n
sp
ar
en
cy

lo
gs

A
S

si
n
gl
e
n
od
e

n
n

1+
lo
g(
n
)

A
ud

it
or
s

1
M
er
kl
e
T
re
e

-
-

T
ru
st

A
A
D

A
S

si
n
gl
e
n
od
e

n
n

1+
lo
g(
n
)

A
ud

it
or
s

1
A
A
D

-
pu

bl
ic

pa
ra
m
et
er
s

T
ru
st

M
er
kl
e2

A
S

si
n
gl
e
n
od
e

n
n

1+
lo
g(
n
)

A
ud

it
or
s

1
M
er
kl
e
T
re
e

-
-

T
ru
st

So
ft
w
ar
e
D
is
tr
ib
ut
io
n
T
ra
n
sp
ar
en
cy

A
S

si
n
gl
e
n
od
e

n
n

1+
lo
g(
n
)

A
ud

it
or
s

1
M
er
kl
e
T
re
e

-
A
PT

se
rv
er

T
ru
st

A
K
I

A
S

si
n
gl
e
n
od
e

n
n

1+
lo
g(
n
)

A
ud

it
or
s

1
M
er
kl
e
T
re
e

-
-

T
ru
st

A
R
PK

I
A
S

si
n
gl
e
n
od
e

n
n

1+
lo
g(
n
)

A
ud

it
or
s(
CA

s)
1

M
er
kl
e
T
re
e

-
-

T
ru
st

Co
n
ik
s

A
S

si
n
gl
e
n
od
e

n
n

1+
lo
g(
n
)

Se
n
so
r
Pr
ov
id
er

1
M
er
kl
e
T
re
e

-
-

T
ru
st

Co
n
to
ur

A
S

si
n
gl
e
n
od
e

n
n

1+
lo
g(
n
)

D
LT

1
M
er
kl
e
T
re
e

-
D
LT

T
ru
st

CH
A
IN
IA
C

A
S

si
n
gl
e
n
od
e

n
n

1+
lo
g(
n
)

M
aj
or
it
y

1
Sk
ip
ch
ai
n

-
-

T
ru
st
&
St
or
ag
e

T
or

co
n
se
n
su
s

M
SC

al
ln
od
es

n
*N

n
n
+I
(n
)

M
aj
or
it
y

N
Si
gn

at
ur
e

-
B
ig
pl
ay
er
s

St
or
ag
e

D
is
tr
ib
ut
ed

St
at
e
M
ac
hi
n
e

M
SC

al
ln
od
es

n
*N

n
n

M
aj
or
it
y

N
-

-
B
ig
Pl
ay
er
s

St
or
ag
e

IP
FS

N
SM

S
si
n
gl
e
|

se
ve
ra
ln
od
es

n
-
n
*N

pr
ov
id
er

se
n
so
rs
-

n
1

H
as
h

N
H
as
h

H
as
h

Lo
ca
ti
on

In
fo
rm

at
io
n

D
A
T

N
SM

S
si
n
gl
e
|

se
ve
ra
ln
od
es

n
-
n
*N

pr
ov
id
er
s
se
n
so
rs
-

n
1

Se
n
so
r
Pr
ov
id
er

N
En

cr
yp
ti
on

Pu
bl
ic
K
ey

Lo
ca
ti
on

In
fo
rm

at
io
n

A
lg
or
an
d

D
LT

al
ln
od
es

n
*N

n
n

M
aj
or
it
y

N
B
lo
ck
ch
ai
n

-
-

St
or
ag
e

N
an
o

D
LT

al
ln
od
es

n
*N

n
n

M
aj
or
it
y

N
B
lo
ck
ch
ai
n

-
|S

en
so
r
Pr
ov
id
er

-
St
or
ag
e

B
yt
eb
al
l

D
LT

al
ln
od
es

n
*N

n
n

W
it
n
es
se
s

N
D
A
G

-
St
ar
tW

it
n
es
se
s

St
or
ag
e

IO
T
A

D
LT

al
ln
od
es

n
*N

n
n

M
aj
or
it
y

N
D
A
G

-
-

St
or
ag
e

Fa
br
ic

PD
LT

al
ln
od
es

n
*N

n
n

M
aj
or
it
y

N
B
lo
ck
ch
ai
n

-
B
ig
Pl
ay
er
s

St
or
ag
e

Et
he
re
um

PD
LT

al
ln
od
es

n
*N

n
n

M
aj
or
it
y

N
B
lo
ck
ch
ai
n

-
B
ig
Pl
ay
er
s

St
or
ag
e

|.
..
se
m
an
ti
c
or
,e
it
he
r
th
e
on

e
si
de

or
th
e
ot
he
r

5 Comparison 124

from other nodes. However, it cannot be grasped how often this feature is ap-
plied. That means it is guaranteed, that the data is stored once by the sensor
providers node, but theoretically, the system can store the data on each node.
For DLTs, as well as for MSC, all servers (N) have to store the data, and it is re-
quired for a majority to hold the same data. Nevertheless, while technologies
using the architecture MSC only store actual data, those using blockchains or
DAGs also have to store deprecated data. Some DLTs also support the ability to
store a smaller part of the data, this is not represented by the data in Table 5.1
due to the fact it cannot be estimated howmuch of those nodes would exist.

The persistent storage required on a single node also depends on the technol-
ogy, this is also shown in Table 5.1. In this context, a node is the server or node
storing the data. For IS and AS systems those are the servers storing the data
while for technologies using an architecture of MSC, NSMS, or DLT those are
the nodes communicating and storing the data. While all DLTs, private and
public, have to store all data on all nodes this might not be true for all other
technologies. Itmight not even be true for all DLTs, this is the case because, for
some of them, there are nodes that support trimmed datasets. However, those
are not themainnodes of the systemand are therefore not those represented in
Table 5.1. BecauseDLTs are based on immutable data structures this doesmean
also all deprecated data has to be stored for all nodes storing all data. Also, Tor
requires its nodes to store all data because the data is the same on all servers.
However, the stored data can change for each iteration. For IPFS and DAT the
required storage varies a lot, it may be as few as the sensor data of the sensor
provider setting themup, or thewhole data of the system if they choose tomir-
ror thewhole system.For all other systems, tobemore specific thosehaving the
architecture of integrity servers or audited servers, the required storage highly
dependson their reputation, their trust, and theparty running them.This isdue
to the fact sensor providers have to choose which servers they choose to dis-
tribute their data and therefore those servers would gather more users. Sensor
providers are most likely to do this on multiple servers which means the con-
sumption overall might be higher but one single server might never hold all
data. This also means it is hard for PIAs to discover the whole data set because
it is never known by one server. Sensor providers will most likely choose those
servers they know to be trustful, are run by known entities, or have earned
a good reputation. This means those servers will hold much more data than
servers not knownby asmanyusers. However, this also increases the relevance
of those servers. Yet, PIAs are also able tofinddatamucheasier. Therefore, data
in those systems centers around such servers.

Also the storage required on PIAs might vary depending on the chosen tech-
nology. This is especially the case if the PIAs do not only require data but also
have to verify this data.While for some technologies the sensor data and the in-
tegrity information should be sufficient, others can require PIAs to hold nearly
all data if they want to verify the information. For integrity servers, the re-
quested sensor data and the integrity data are required. The requested data is
of fixed size and therefore represented by 1 in Table 5.1. The additional integrity
information required is represented by I(1). Audited servers do allow for mul-
tiple steps of verification. Because many of them use merkle trees, it is pos-
sible to validate the data by using additional log(n) data from the tree. How-
ever, because those are also audited it is possible to compare the root of the
merkle tree with the data of an auditor as well. AADs do support very fast ver-
ification because the whole data set is stored in their root, nevertheless, this
means if the root is transmitted the whole data has to be stored on the PIA.
Blockchains also allow verification but to do so it might be required to hold a
huge part of the blockchain. This means it might be possible nearly the whole
blockchain is required to verify a sensor. However, itmight also be sufficient to

5 Comparison 125

send the same request tomultiple nodes and compare the responses due to the
distributed nature of such systems. Such an approach is possible for all tech-
nologies where servers hold the same data. Skip chains are compared in a sim-
ilar way blockchains are, yet, it is much more efficient to compare and there-
fore validate those. IPFS uses a hash function which means it is easy to verify
the data. For IPFS the sensor provider should include a signature to allow for
validation of the data as well.

Obviously, it is also important whom a user has to trust to be certain that the
sensor directory can be expected to be honest. This is highly dependent on
the technology itself. Generally, for integrity servers, it is required to trust the
entity providing the integrity for the sensor data. For the majority of audited
servers, there should be some auditors which are trusted by the users and are
used to verify the response from the server. However, these auditors may vary
from user to user. This concept is not the same for all audited servers but in
most cases, there is some auditing entity that can be used to verify this infor-
mation.Whenmultiple servers use a consensus algorithmtofindaglobal truth,
which and how many nodes have to be trusted is dependent on the consensus
algorithm. The same holds true for DLTs which are highly dependent on the
used consensus algorithm. Again IPFS and DAT are a little bit special due to
themusing content addressing. In IPFS it is not possible to change the data due
to the fact a hash is used to address the data. Because the content is addressed
using the public key in DAT, only the sensor provider may be able to change
data and therefore has to be trusted.

The technologies also vary in the number of potential request sinks. A node is
described as a request sink if a request can be sent to it, and a valid and correct
response is sentback. Formostof the technologies, thenumberof request sinks
and the number of nodes storing the data are the same. This means all nodes
storing the data can respond to a request. However, some technologies require
an API extension to allow for such responses. However, because IPFS and DAT
are using another structure this does not hold for those technologies. In those
technologies, the data is at least stored once but can be requested at each node
because those nodes are able to communicate with each other.

Furthermore, the way those different technologies achieve integrity, or for
some immutability differs a lot. See Table 5.3 for which technology can achieve
which. For integrity servers, immutability is ensured by storing the integrity
information (mostly a signature) with the data. Most audited servers count
on the concept of merkle trees, this is the case because the overhead is only
marginal while the information can be easily verified. Most DLTs are based on
blockchain and therefore changing the stored data is not possible. IPFS makes
sure integrity is ensured by addressing it via the hash. The same holds true for
DAT but instead of the hash the integrity is ensured by encryption and a signa-
ture. How technologies achieve integrity is shown in the according sections in
chapter 4.

For each technology, it is required to know at least one request sink as well as
whom to trust. It might also be possible for the PIA to be part of the system
and therefore be its own request sink. If the request sinks and whom to trust is
known it should be possible for PIAs to send requests and receive information.
Some technologies require query data and respond only with the sensors ful-
filling the query others might respond with the whole data and require the PIA
to search the data. Formost technologies, it is also possible to receive verifica-
tion information for the data. However, some technologies require additional
knowledgesoauser canquerydata. For example, IPFS requires theuser toknow
the hash of the data, to be able to create a request. In Nano, each user has their
own blockchain, while it is possible to search blockchain after blockchain. If

5 Comparison 126

the sensor provider is known it might be an option to only search in this spe-
cific blockchain increasing speed and decreasing the required computational
power.

In a similar way some technologies require specific knowledge, not during the
request step, butwhen the system is initialized thefirst time. Thismaybe tech-
nology dependent and the meaning is not that specific. In a CA based concept,
the CAs have to be known to the users to be able to verify their signatures.
DNSSEC also requires the knowledge of the root server so a user is able to verify
its signatures and therefore the data. While a request sink has to be known for
all technologies, for SUNDR a specific server and an associated user have to be
known. Both of these details have to be created and transmitted by the sensor
provider. While this information has to be known by the users using the tech-
nologies, some things have to be available so the system itself can be set up.
This holds true for all private technologies because some big players have to
be known beforehand. For some technologies, those can be changed over time
but this is not true for all. The same applies to the witnesses of Byteball which
can be changed by the users of the system over an extended period of time. It is
important to know which data is required to set up the sensor directory. Also,
some information is required when the PIAs are set up, this informationmight
even be hard coded and require software updates when data is changed.

Last but not least, for the sensor directory to stay honest some parts have to
be distributed. This comes from the requirement of no powerful entity able to
drop data, manipulate data, or decline information. To achieve this, some part
of the system has to be distributed. First of all, it is possible for the trust to be
distributed. Thismeans trust is createdbymultiple cooperating entities. Anex-
ample of this is a CA based systemwhere the data is stored on one server while
a CA creates signatures verifying the data. In theory, also SUNDR supports dis-
tributed trust but only if different users work on the data or communicate with
each other. Because PIAs only query data it might be a possibility to split views
for them if they do not communicate with each other. Another way of distri-
bution is to distribute storage. This means the same storage is spread via a lot
of nodes and the version supported by themajority of nodes is considered true.
Thismeans themajority of such a system has to stay honest or there is the po-
tential for data to bemanipulated. For those systems, a consensus algorithm is
typically used to find this global truth stored by all nodes. Also, the malicious
part of the network, has to work together to change the data, because also for
them themajority is required to enforce their data. Last but not least a network
of self-maintained servers distributesmetadata viamultiplenodes. Thismeta-
data stores where the data is stored. Because everyone has their servers han-
dling data, themost important feature is to find the correct server. Integrity for
those servers is created by using hashes and signatures.

5.1 Attack Vector Comparison

Already in section 2.7.1 each attack vector is assigned a category and a relevance
factor. Those values were:

Critical:u 8 - Insert many sensors with the same address (2.2.12)u 7 - Splitting views (2.2.17)u 7 - Data integrity (2.2.9)u 7 - Fingerprinting (2.2.3)

5 Comparison 127

u 6 - Override sensor (2.2.12)u 6 - Preregister expected sensors (2.2.12)

High:u 4 -Malicious sensors are set up (2.2.6)u 4 - Sensor is compromised (2.2.7)u 3 - Destroy the reputation of sensors (2.2.13)u 3 - Reputation being outdated (2.2.13)

Low:u 2 - DoS by adding sensors to the directory(2.2.1)u 2 - People tracking (Sensor Directory) (2.2.14)u 2 - People tracking (Sensors) (2.2.15)u 1 - Insert wrong sensor data (2.2.11)u 1 - Target discovery (2.2.4)u 1 - Data gathering (2.2.5)

Those relevance factors and categories are used to figure out which technolo-
gies can match the needs of the sensor directory best and are therefore best
suited to build it. To be able to do this the tables shown in chapter 4 are used. If a
technology canmitigate an attack vector the corresponding relevance factor is
assigned to the technology. This is done for all attack vectors and technologies.
Last but not least, for each technology the achieved factors are added, and a fi-
nal score is calculated.Whena technology is partially able tomitigate an attack,
only half of the points are assigned. Additionally, all technologies are ordered
according to their final score, but they are still grouped by their architecture.
An overview of technologies which attack vectors they are able to mitigate and
the final score for each technology regarding the attack vectors can be seen in
Table 5.2.

For integrity servers the best score is reached by web of trust in a distributed
version. This means a technology to distribute data is used which allowsmany
additional security features but also requires many more nodes to participate
so the system can be operated. If certain distribution methods are used, even
further attack vectors could be mitigated, for example by using a DLT it would
not be further possible for the system to split views and therefore reach an even
higher score.Webof trust in this configuration is also able tomitigate all critical
attack vectors and is therefore a valid candidate for the sensor directory.

The best scoring audited server isMerkle2. Muchmore audited servers are able
to mitigate all critical attack vectors. This means several technologies would
be possible options, while Merkle2 comes out on top. For the sensor directory
to work however many users operating Merkle2 servers, as well as auditors,
are needed. Also, several other technologies are valid candidates to construct a
suitable base for the sensor directory.

Formultiple servers using a consensus algorithmTor comes out on top. While,
it could be used in multiple ways, using the servers directly as a sensor direc-
tory can mitigate much more attack vectors, while using it as a discovery tool
createsmuchmore flexibility. The final score of the standalone option ismuch
higher and it alsomitigates all critical attack vectorswhichmeans it is a suitable
candidate for the sensor directory.

5 Comparison 128

IPFS comes out on top for the architecture network of self-maintained servers.
This is the case because the hash of the data is required to search for the data
and therefore it is not possible to split views. In theory in DAT, the sensor
provider could do so. That is why for the attack vectors, IPFS comes out on top
for this architecture. DATmight still be a candidate for the sensor directory due
to the fact only the sensor provider can perform such attacks.

Algorand comes out on top for DLTs, it does also mitigates all critical attack
vectors and is therefore a possible candidate for the sensor directory. How-
ever, DLTs do require lots of nodes to operate. This is not the case for private
DLTswhere only a limited number of nodes is allowed. For private DLTs, Fabric
comes up on top with its huge flexibility. Also, Fabric mitigates all attack vec-
tors which are critical as well as all which are in the category high. However, for
such a technology to work several known entities have to be chosen which are
most likely not collude. Most of the technologies are still possible candidates
for the sensor directory after this evaluation.

5.2 Requirements Comparison

Similar to attack vectors also for requirements relevance factors, aswell as cat-
egories, were assigned. This was done in section 2.7.2.

Critical:u 10 - Queriability of the sensor directoryu 9 - Equality for everyoneu 8 - Verifiabilityu 8 - Anonymity of all usersu 8 - Only the owner can change datau 7 - Redundancy/distribution

Low:u 6 - Storage requirements

High:u 4 - Repeated validationu 4 - Input validationu 4 - Trust systemu 4 - Know whom to trust

Low:u 2 - Immutabilityu 1 - Prune setsu 1 - Prune queriesu 0 - PIAs cache sensor data

Similar to the attack vector mitigations, also the requirements are compared.
This is done by using the relevance factors and categories as well as the tables
established in chapter 4. For each technology, it is checked if the requirement
is fulfilled, and if this is the case the factor is added to the final score of the

5 Comparison 129

Table 5.2: Mitigated attack vectors

Technology Attack Vectors Mitigated sum

2.2.12
(8)

2.2.17
(7)

2.2.9
(7)

2.2.3
(7)

2.2.12
(6
)

2.2.12
(6
)

2.2.6
(4)

2.2.7
(4)

2.2.13
(3)

2.2.13
(3)

2.2.1
(2)

2.2.14
(2)

2.2.15
(2)

2.2.11
(1)

2.2.4
(1)

2.2.5
(1)

Web of Trust
distributed

1 1/2 1 1 1 1 1 1 1 0 1 1/2 1 0 0 0 56.5

Web of Trust
standalone

1 1/2 1 1/2 1 1 1 1/2 1 0 1/2 1/2 1 0 0 0 41.0

SUNDR 1 0 1 0 1 1 1 0 1 1 0 0 1 1 1 1 41.0
CA 0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0 32.0
DNSSEC 0 0 1 1/2 0 0 0 0 0 0 1/2 1/2 0 0 0 0 12.5

Merkle2 standalone 1 1 1 1 1 1 1 1 1 0 1 1/2 1 0 0 0 56.0
ARPKI
standalone

1 1 1 1 1 1 1 1 0 0 1 1 0 1 0 0 52.0

AKI standalone 1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 51.0
CHAINIAC 1 1 1 1/2 1 1 1 0 1 0 1/2 1/2 0 1 0 0 41.5
Software Distribution
Transparency

1/2 1 1 1 1/2 1/2 0 1 0 0 1/2 1 0 0 0 0 31.0

CONIKS standalone 0 1 1 1 0 0 0 1 0 0 1 1 0 0 1/2 1/2 30.0
Contour 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 1 30.0
Transparency Logs
standalone

0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 25.0

Transparency Logs
verification

0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 25.0

Merkle2 verification 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 25.0
AKI verification 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 25.0
ARPKI
verification

0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 25.0

CONIKS verification 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 25.0
AAD standalone 0 1 1 1 0 0 0 0 0 0 1/2 1 0 0 0 0 24.0
AAD verification 0 1 1 1 0 0 0 0 0 0 1/2 1 0 0 0 0 24.0

Tor consensus
standalone

1 1 1 1 1 1 1 1 1 1 1/2 1 0 1 0 0 59.0

Distributed State Machine 1/2 1 0 1 1/2 1/2 1/2 0 0 0 1/2 1 0 1/2 1 0 30.5
Tor consensus
discovery

0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 9.0

IPFS 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 60.0
DAT 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 51.0

Algorand 1 1 1 1 1 1 1/2 1/2 1/2 0 0 1 0 1 0 0 49.5
Byteball 1/2 1 1 1 1/2 1/2 1/2 1 1/2 0 1 1 0 1 0 0 43.5
IOTA
standalone

1/2 1 1 1 1/2 1/2 1/2 1/2 1 0 1 1 0 1/2 0 0 42.5

Nano 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 23.0
IOTA
verification

0 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 21.0

Fabric 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1/2 1/2 61.0
Ethereum 1 1 1 1 1 1 1 1 1 1/2 1 1 0 1 1/2 1/2 59.5

5 Comparison 130

technology. If a technology fulfills a requirement only partly, it is assigned half
of the points. Also, here the architecture is ordered within each other using the
final scores of the technologies to enable a better overview. The final score for
each technology can be seen in Table 5.3.

For integrity servers the best scoring technology and the only one able to fulfill
all critical requirements is Certificate Authorities. Thismeans this is still a valid
candidate for the sensor directory.

For audited servers all can fulfill the critical requirements. The highest scores
are achieved by AKI and ARPKIwhen used to verify the content of an additional
server. This is the case because this allows them to solve the storage require-
ments and gain additional points to their standalone counterpart.

The Tor consensus system is the best scoring system formultiple servers using
a consensus protocol. Because it does not support continuous storage and re-
places data instead updates are not considered as such. However, because the
data is validated only the owner can create such data.

DAT aswell as IPFS can fulfill critical requirements.While DAT does straight up
fulfill the critical requirements, this is only partially true for IPFS. The sensor
provider would be required to perform lots of actions to update data stored in
the system. Also, the systemwould not support a discovery function andwould
rather work as a storage extension to PIAs. After all, the hash and the actual
data could be substituted because the hash only matches those sensors. This
means DATmatches the requirements for the sensor directory much better.

Also all DLT approaches can fulfill critical requirements. Algorand is the top
scorer because it also allows for a trust system. Private DLTs all have a simi-
lar problem because they are all run by known parties and no one else can in-
teract with the system directly, those parties could prefer their nodes and data
over those of other users. Thismight not be a problem becausemany nodes are
working together and it is only a small improvement in time if theydo so. Fabric
as well as Ethereum are quite capable andmight be used.

5.3 Final Comparison

When having a look at Table 5.3 and Table 5.2 one sees there is no integrity
server left mitigating all critical attack vectors and fulfill all critical require-
ments. The best option might be a web of trust systems. This system could be
one using a DLT to further increase security and synchronization. In a web of
trust, certain usersmight bemore trusted than others and therefore gainmore
power. This may be a desired feature because honest users could create even
morepowerful trust assessments, however, this is also true formalicioususers.
If this inequality betweenusers is not a reason todropwebof trust from thepo-
tential candidate list there is no reasonwhy it cannot be used to implement the
sensor directory. It is also possible to create the sensor directory by using any
other technology but using a web of trust as a trust assessment system inside
this technology. Using CAs on their own is not an option because it is not possi-
ble tomeet all critical requirementswhenusing them.HoweverCAsdoprovide a
way of validating sensors before they are inserted into the systemwhich could
be needed for the final implementation. This means while a system based on
CAs does not meet the requirements, the final implementation could include
CAs to increase trust into sensors.

Many audited servers mitigate the critical attack vectors and fulfill all critical
requirements. This means those should be compared by their score. AKI and

5 Comparison 131

Table 5.3: Fulfilled requirements

Requirement Q
ueriable

(10)

Equality
(9)

V
erifi

able
(8)

A
n
on

ym
ity

(8)

O
w
n
er

can
chan

ge
data

(8)

R
edun

dan
cy/

D
istributed

(7)

R
epeated

V
alidation

(4)

In
putV

alidation
(4)

T
rustSystem

(4)

W
hom

to
T
rust(4)

Storage
R
equirem

en
t(6

)

Im
m
utable

(2)

Prun
e
Q
ueries

(1)

Prun
e
Sets

(1)

Sum

CA 1 1 1 1 1 1 1/2 1/2 1 1 1 0 0 0 68.0
Web of Trust
standalone

1 0 1 1 1/2 1 1 1 1 1 1 0 0 0 59.0

Web of Trust
distributed

1 0 1 1 1/2 1 1 1 1 1 0 1 0 0 55.0

DNSSEC 1 1/2 1 1/2 1 1 0 0 0 1 1 0 0 1 49.0
SUNDR 1 0 1 0 1 0 0 0 0 1 1 1 1 1 40.0

AKI
verification

1 1 1 1 1 1 1 1 1 1 1 0 0 0 72.0

ARPKI
verification

1 1 1 1 1 1 1 1 1 1 1 0 0 0 72.0

Software Distribution
Transparency

1 1 1 1 1 1 1 1 1 1 1/2 1 0 0 71.0

Contour 1 1 1 1 1 1 1 0 1 1 1 1 0 0 70.0
AKI
standalone

1/2 1 1 1 1 1 1 1 1 1 0 1 0 0 63.0

CHAINIAC 1 1 1 1 1 1 0 1 1/2 1 1 1 0 0 68.0
Transparency Logs
verification

1 1 1 1 1 1 1 0 0 1 1 0 0 0 64.0

ARPKI
standalone

1/2 1 1 1 1 1 1 1 1 1 0 1 0 0 63.0

CONIKS verification 1 1 1 1 1 1 0 0 0 1 1 0 1/2 1/2 61.0
AAD verification 1 1 1 1 1 1 0 0 0 1 1 0 0 0 60.0
Merkle2 verification 1 1 1 1 1 1 0 0 0 1 1 0 0 0 60.0
Transparency Logs
standalone

1/2 1 1 1 1 1 1 0 0 1 0 1 0 0 55.0

CONIKS standalone 1/2 1 1 1 1 1 0 0 0 1 0 1 1/2 1/2 52.0
AAD standalone 1/2 1 1 1 1 1 0 0 0 1 0 1 0 0 51.0
Merkle2 standalone 1/2 1 1 1 1 1 0 0 0 1 0 1 0 0 51.0

Tor consensus
standalone

0 1 1 1 0 1 1 1 1/2 1 1 0 0 0 52.0

Distributed
State Machine

1 1/2 0 1/2 1/2 1 0 1/2 0 1 0 0 0 0 35.5

Tor consensus
discovery

1/2 1 0 1 0 1 0 0 0 0 1 0 0 0 35.0

DAT 1 1 1 1 1 1 0 0 1/2 1 1 0 1 1 64.0
IPFS 0 1 1 1 1/2 1 0 0 1/2 1 1 1 1 1 52.0

Algorand 1 1 1 1 1 1 1/2 1 1/2 1 0 1 0 0 64.0
IOTA
standalone

1 1 1 1 1 1 1/2 0 1 1 0 1 0 0 62.0

Byteball 1 1 1 1 1 1 1/2 1/2 1/2 1 0 1 0 0 62.0
Nano 1 1 1 1 1 1 0 0 0 1 0 1 0 0 56.0
IOTA
verification

1 1 1 1 1 0 1/2 0 0 1 1 0 0 0 55.0

Fabric 1 1/2 1 1 1 1 1 1 1 1 0 1 1/2 1/2 65.5
Ethereum 1 1/2 1 1 1 1 1 1 1 1 0 1 1/2 1/2 65.5

5 Comparison 132

ARPKI gather the highest score and therefore seem to be the bestmatch for the
sensor directory. However, theworkflow for both has to be altered tomatch the
workflow of the sensor directory. This is because initially they are used to issue
certificates and validate them but not to search the database. Software distri-
bution transparency on the other hand is already a distribution software with a
similar purpose and also fulfills the criticalmeasurements. A key feature shared
by all audited servers is the auditor, such an auditor is used to scan servers and
make sure they stay honest. If the sensor directory is not created using an au-
dited server, it might be an option to still use auditors as additional network
participants scanning servers and making sure they cannot get malicious. By
doing so they also make sure it is not possible to split views between different
users. However, the system is required to use an easy verifiable data structure
to allow for auditors.

Tor consensus in its standalone form gains the highest score for multiple
servers using a consensus algorithm.However, those servers arefixed andhard
to swap. Thismeans the parties running themshould be selected carefully. This
is the case because replacing one server requires updates to all PIAs so they all
know the updated list. Due to servers only holding the recent data, there is no
storage problem when using such a system. It is also easily possible to verify
sensors regularly and therefore findmalicious actions. The duration of one pe-
riod has to be selected carefully due to the fact new sensors are only available
after this time.

If a network of self maintained servers is employed to create the sensor direc-
tory, everyone stores their own data. Due to the fact that IPFS cannot be used
to discover anything, DAT is the best option to create the sensor directory. DAT
allows sensor providers to create and update their data easily. Also, nodes are
allowed to mirror the data of other nodes, and therefore sensors that are used
more frequently are also discovered much faster. There might also be no need
for additional trust due to the fact the sensor providers are all known. How-
ever, there might be an additional server so also public servers can be found.
This server could be one of the other technologies and might require trust as-
sessments. If IPFSwere used it would be the same as transferring all sensors of
a user to the PIA and storing it there. IPFSwould only reduce the required stor-
age space. However, this means for every system where storage is a problem
it might be an option to use IPFS to decrease the required storage. A network
of self maintained servers always requires trusted sensor providers to provide
some sort of search key to PIAs which should find their sensors. In the same
form, itwouldbepossible to store the sensorsof those sensorprovidersdirectly
inside the PIAs and allow them to search the data themselves. While updating
themwould be harder than in a distributed system the network load would de-
crease. However, therewould still be the need for a sensor directory to discover
public sensors. Thismeans storing sensors of trusted sensor providers on PIAs
might be an addition to every possible solution.

Also most DLTs are able to mitigate critical attack vectors and fulfill critical re-
quirements. Algorand is able to reach thehighest scorewithin this group. Algo-
rand also has the advantage of only a small part of the systembeing required to
find consensus, those nodes could also be required to perform additional tasks
which decreases the load on the whole system compared to other DLTs where
all nodes would have to perform such actions. IOTA would allow for some ad-
justments in the referencing algorithm to allow for a sort of web of trust where
sensors refer to sensors they trust. The referencing algorithm could be further
tweaked to implement witnesses similar to those of Byteball if such a system is
thought to be more advantageous. Nano would also bring a whole new feature
set to the table, by creating account chains it would be possible to find sensors
created by specific sensor providers much more easily. However, this struc-

5 Comparison 133

ture alsomakes it difficult to create a trust system in the system apart from the
known sensor provider provided the key is known.

Last but not least private distributed ledgers are options to build the sensor
directory. Fabric is a little bit more flexible and does allow for easy swapping
of consensus algorithms as well as adding contract code. Ethereum might re-
quire a little more work before it could be employed. This is the case because
Ethereum can be used public and private and therefore has additional fea-
tures. One of those is for example the cryptocurrency byte which should be
disabled for the private application. Ethereum also supports a different kind
of blockchain which could come in handy after some time. This is due to the
fact it also stores states which allows for some nodes to trim the blockchain.
However, those states already could consume lots of storage whichmight lead
to problems. Both technologies support contract codes which could be used to
verify data in the system.

Chapter 6

Conclusion and FutureWork

As shown in the previous sections finding the best technology is hard, or even
impossible. This is the case due to the fact all technologies do things a little
bit differently and come with different advantages and disadvantages. For this
reason, it needs to be tried which approaches work best and which additional
requirements should be met. Therefore, a look at the other parts of Digidow is
required. Consequently, one technology for each architecture is chosen. Hence,
the following technologies are the top candidates for the sensor directory:

Web of trust

AKI

ARPKI

Tor consensus

DAT

Algorand

Fabric

Web of trust should be used in a distributed fashion to allow for several ad-
ditional attack vectors to be mitigated. Maybe using a web of trust systems
based on aDLT could also bring additional advantages. Inweb of trust systems,
some users might build a very good reputation and gain additional power. If
this is a problem, a different technology should be used. However, if those ac-
quire enough trust they may act similarly to CAs and sign lots of sensors. It is
also possible to use web of trust as a trust system for other technologies. While
CAs are not an option on their own to build the sensor directory, it is possible
to extend each technology using CAs. This means those would verify sensors
and sign them if they are trustworthy and valid. The sensor directory would
then only accept signed sensors, whichwould decrease thework required. PIAs
would then be able to choose themselves if they trust the CA that signed the
sensor.

For AKI as well as ARPKI additional servers holding the datamight be required.
Doing so allows a significant reduction of required storage. It also fits the orig-
inal use case for those technologies much better and would therefore be much
easier to implement. It would be an option to use IPFS as such a storage so-
lution. This would allow each sensor provider to run their nodes storing their
data reducing their dependency on others.

Before Tor consensus can be used, a pre-selection of big players needs to be
conducted. The same holds if Fabric is used to implement the sensor directory,
however, if Fabric is chosen a consensus algorithm has to be selected and con-
tract code has to be written. This contract code could be used to verify sensors
as well as query the system. Tor however could also be used to discover servers
used to distribute sensors, while this approach on its own does not achieve a

134

6 Conclusion and Future Work 135

very high score such an approach could be usedwhenever PIAs have to discover
additional servers providing data.

DAT does only allow PIAs to find sensors of known sensor providers, however,
there might be ways to make additional sensor providers known. PIAs might
need keys beforehand to be able to search for sensors. Yet, if this is used, it
might be easy to distribute sensors. This also allows for additional data to be
distributed because everything encrypted with the key would be discovered. By
using this technology, the required storage on all devices would be minimal.

While some of the technologies can be used out of the box this does not hold
for all of them. For some, the actual system has to be planned and built, for
others, it might be possible to use already established systems and just adapt
them a little bit. It might also be an option to use only parts of the shown tech-
nologies and combine them into a completely new technology that perfectly
matches the needs of the sensor directory. Also, the communication between
all parts of Digidow and the sensor directory is not yet exactly specified which
has to be done so it is possible to build the sensor directory. It was stated early
on that storage requirementswill be part of futurework, while some technolo-
gies might not even have the problem of storage exhaustion some, like Algo-
rand and Fabric, could run into such problems. This means some further in-
vestigations into these problems would be required if those technologies are
used. If a web of trust based on a DLT is employed, such problemsmight occur
and should be analyzed. To further investigate which technology works best to
build the sensor directory, it is required to test several approaches. This might
be done in a small test setup, which only supports limited nodes providing the
sensor directory as well as limited sensors and PIAs.

Bibliography

[1] Josh Aas, Richard Barnes, Benton Case, Zakir Durumeric, Peter Ecker-
sley, Alan Flores-López, J Alex Halderman, Jacob Hoffman-Andrews,
JamesKasten, andEric Rescorla. 2019. Let’s Encrypt: an automated cer-
tificate authority to encrypt the entire web. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security. ACM,
London, United Kingdom, pp. 2473–2487. DOI: 10.1145/3319535.33631
92.

[2] Kiayias Aggelos, Alexander Russel, Bernardo Davir, and Roman
Oliynykov. 2017. Ouroboros: A Provably Secure Proof-of-Stake
Blockchain Protocol. In Advances in Cryptology – CRYPTO 2017 (LNCS,
volume 10401). Springer, pp. 357–388. DOI: 10.1007/978-3-319-6368
8-7_12.

[3] Amjad Aldweesh, Maher Alharby, Maryam Mehrnezhad, and Aad Van
Moorsel. 2019. OpBench: A CPU performance benchmark for Ethereum
smart contract operation code. In 2019 IEEE International Conference on
Blockchain (Blockchain). IEEE, Atlanta, USA, pp. 274–281. DOI: 10.1109/B
lockchain.2019.00043.

[4] Carrillo Alexandra. 2018. An Introduction to the BlockDAG Paradigm.
(2018). Retrieved 12/22/2023 from https://ancapalex.medium.com/a
n-introduction-to-the-blockdag-paradigm-50027f44facb.

[5] alyakubov. 2019. blockpgp. (2019). https://github.com/alyakubov/bloc
kpgp.

[6] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Kon-
stantinos Christidis, Angelo De Caro, David Enyeart, Christopher Fer-
ris, Gennady Laventman, and Yacov Manevich. 2018. Hyperledger Fab-
ric: A Distributed Operating System for Permissioned Blockchains. In
Proceedings of the Thirteenth EuroSys Conference. ACM, Porto, Portugal,
pp. 1–15. DOI: 10.1145/3190508.3190538.

[7] Stefano De Angelis, Leonardo Aniello, Roberto Baldoni, Federico Lom-
bardi, Andrea Margheri, and Vladimiro Sassone. 2018. PBFT vs proof-
of-authority: Applying the CAP theorem topermissioned blockchain. In
Italian Conference on Cybersecurity. Volume 2058. Rome, Italy, pp. 1–11.
https://ceur-ws.org/Vol-2058/paper-06.pdf.

[8] Olha Anurina. 2023. HowPWAsWork Offline: Technologies & Solutions.
(2023). Retrieved 12/22/2023 from https://www.gomage.com/blog/pw
a-offline/.

[9] Suranjith Ariyapperuma and Chris J Mitchell. 2007. Security vulner-
abilities in DNS and DNSSEC. In The Second International Conference
on Availability, Reliability and Security (ARES’07). IEEE, Vienna, Austria,
pp. 335–342. DOI: 10.1109/ARES.2007.139.

[10] NArun, RMathiyalagan, and Suchithra. 2021. Authentication and Iden-
tity Validation Blockchain Application. Journal of Physics: Conference Se-
ries, 1979, 1, (August 2021), 012017. DOI: 10.1088/1742-6596/1979/1/01
2017.

136

https://doi.org/10.1145/3319535.3363192
https://doi.org/10.1145/3319535.3363192
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1109/Blockchain.2019.00043
https://doi.org/10.1109/Blockchain.2019.00043
https://ancapalex.medium.com/an-introduction-to-the-blockdag-paradigm-50027f44facb
https://ancapalex.medium.com/an-introduction-to-the-blockdag-paradigm-50027f44facb
https://github.com/alyakubov/blockpgp
https://github.com/alyakubov/blockpgp
https://doi.org/10.1145/3190508.3190538
https://ceur-ws.org/Vol-2058/paper-06.pdf
https://www.gomage.com/blog/pwa-offline/
https://www.gomage.com/blog/pwa-offline/
https://doi.org/10.1109/ARES.2007.139
https://doi.org/10.1088/1742-6596/1979/1/012017
https://doi.org/10.1088/1742-6596/1979/1/012017

Bibliography 137

[11] Giuseppe Ateniese and Stefan Mangard. 2001. A New Approach to DNS
Security (DNSSEC). InProceedings of the 8thACMConference onComputer
and Communications Security. ACM, Philadelphia, PA, USA, pp. 86–95.
DOI: 10.1145/501983.501996.

[12] Raphael Auer, Cyril Monnet, and Hyun Song Shin. 2021. Permissioned
distributed ledgers and the governance ofmoney. SSRN, (January 2021),
71 pages. DOI: 10.2139/ssrn.3770075.

[13] Abigael Okikijesu Bada, Amalia Damianou, Constantinos Marios An-
gelopoulos, and Vasilios Katos. 2021. Towards a green blockchain: A re-
view of consensus mechanisms and their energy consumption. In 2021
17th International Conference on Distributed Computing in Sensor Systems
(DCOSS). IEEE, Pafos, Cyprus, pp. 503–511. DOI: 10.1109/DCOSS52077.2
021.00083.

[14] David Basin, Cas Cremers, TiffanyHKim, Adrian Perrig, Ralf Sasse, and
Pawel Szalachowski. 2014. ARPKI: Attack resilient public-key infras-
tructure. In Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security. ACM, Scottsdale, Arizona, USA, pp. 382–
393. DOI: 10.1145/2660267.2660298.

[15] Mustafa Al-Bassam and Sarah Meiklejohn. 2018. Contour: A practi-
cal system for binary transparency. In Data Privacy Management, Cryp-
tocurrencies and Blockchain Technology (LNCS, volume 11025). Springer,
Cham, pp. 94–110. DOI: 10.1007/978-3-030-00305-0_8.

[16] Michael Baumer, Marcel Waldvogel, Nathalie Weiler, and Bernhard
Plattner. 1998. Distributed server for PGP keys synchronized by mul-
ticast. Semesterarbeit, ETH Zurich. https://www.researchgate.net/profi
le/Marcel-Waldvogel/publication/2378362_Distributed_Server_for
_PGP_Keys_Synchronized_by_Multicast/links/0deec5285c01b004a
4000000/Distributed-Server-for-PGP-Keys-Synchronized-by-Mult
icast.pdf.

[17] Marianna Belotti, Nikola Božić, Guy Pujolle, and Stefano Secci. 2019. A
vademecum on blockchain technologies: When, which, and how. IEEE
Communications Surveys & Tutorials, 21, 4, 3796–3838. DOI: 10.1109/CO
MST.2019.2928178.

[18] Federico M Benčić and Ivana P Žarko. 2018. Distributed ledger tech-
nology: Blockchain compared to directed acyclic graph. In 2018 IEEE
38th International Conference on Distributed Computing Systems (ICDCS),
pp. 1569–1570. DOI: 10.1109/ICDCS.2018.00171.

[19] Juan Benet. 2014. IPFS-content addressed, versioned, P2P file system
(DRAFT 3). arXiv preprint arXiv:1407.3561, (July 2014). DOI: 10.48550/ar
Xiv.1407.3561.

[20] IddoBentov, Charles Lee, AlexMizrahi, andMeniRosenfeld. 2014. Proof
of Activity: Extending Bitcoin’s Proof of Work via Proof of Stake [Ex-
tended Abstract]y. In SIGMETRICS Perform. Eval. Rev. Number 3. Vol-
ume 42. ACM, New York, NY, USA, (December 2014), pp. 34–37. DOI:
10.1145/2695533.2695545.

[21] Hanno Böck. 2015. A look at the PGP ecosystem through the key server
data. Cryptology ePrint Archive, Paper 2015/262. (2015). https://eprint
.iacr.org/2015/262.

[22] Maria Borge, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus
Gasser, Nicolas Gailly, and Bryan Ford. 2017. Proof-of-Personhood:
Redemocratizing Permissionless Cryptocurrencies. In 2017 IEEE Euro-
pean Symposium on Security and Privacy Workshops (EuroS&PW). IEEE,
Paris, France, pp. 23–26. DOI: 10.1109/EuroSPW.2017.46.

https://doi.org/10.1145/501983.501996
https://doi.org/10.2139/ssrn.3770075
https://doi.org/10.1109/DCOSS52077.2021.00083
https://doi.org/10.1109/DCOSS52077.2021.00083
https://doi.org/10.1145/2660267.2660298
https://doi.org/10.1007/978-3-030-00305-0_8
https://www.researchgate.net/profile/Marcel-Waldvogel/publication/2378362_Distributed_Server_for_PGP_Keys_Synchronized_by_Multicast/links/0deec5285c01b004a4000000/Distributed-Server-for-PGP-Keys-Synchronized-by-Multicast.pdf
https://www.researchgate.net/profile/Marcel-Waldvogel/publication/2378362_Distributed_Server_for_PGP_Keys_Synchronized_by_Multicast/links/0deec5285c01b004a4000000/Distributed-Server-for-PGP-Keys-Synchronized-by-Multicast.pdf
https://www.researchgate.net/profile/Marcel-Waldvogel/publication/2378362_Distributed_Server_for_PGP_Keys_Synchronized_by_Multicast/links/0deec5285c01b004a4000000/Distributed-Server-for-PGP-Keys-Synchronized-by-Multicast.pdf
https://www.researchgate.net/profile/Marcel-Waldvogel/publication/2378362_Distributed_Server_for_PGP_Keys_Synchronized_by_Multicast/links/0deec5285c01b004a4000000/Distributed-Server-for-PGP-Keys-Synchronized-by-Multicast.pdf
https://www.researchgate.net/profile/Marcel-Waldvogel/publication/2378362_Distributed_Server_for_PGP_Keys_Synchronized_by_Multicast/links/0deec5285c01b004a4000000/Distributed-Server-for-PGP-Keys-Synchronized-by-Multicast.pdf
https://doi.org/10.1109/COMST.2019.2928178
https://doi.org/10.1109/COMST.2019.2928178
https://doi.org/10.1109/ICDCS.2018.00171
https://doi.org/10.48550/arXiv.1407.3561
https://doi.org/10.48550/arXiv.1407.3561
https://doi.org/10.1145/2695533.2695545
https://eprint.iacr.org/2015/262
https://eprint.iacr.org/2015/262
https://doi.org/10.1109/EuroSPW.2017.46

Bibliography 138

[23] Santiago Bragagnolo, Henrique Rocha, Marcus Denker, and Stéphane
Ducasse. 2018. Ethereum query language. In 2018 IEEE/ACM 1st In-
ternational Workshop on Emerging Trends in Software Engineering for
Blockchain (WETSEB). ACM, pp. 1–8. DOI: 10.1145/3194113.3194114.

[24] Eric Brewer. 2000. Towards robust distributed systems. In Proceedings
of theNineteenthAnnualACMSymposiumonPrinciples ofDistributedCom-
puting. ACM, Portland, Oregon, USA, (July 2000), p. 7. DOI: 10.1145/343
477.343502.

[25] Daniel Burkhardt, Maximilian Werling, and Heiner Lasi. 2018. Dis-
tributed Ledger. In 2018 IEEE International Conference on Engineering,
Technology and Innovation (ICE/ITMC). IEEE, Stuttgart, Germany, pp. 1–
9. DOI: 10.1109/ICE.2018.8436299.

[26] Germano Caronni. 2000. Walking the web of trust. In Proceedings IEEE
9th International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WET ICE 2000). IEEE, Gaithersburg, MD, USA,
pp. 153–158. DOI: 10.1109/ENABL.2000.883720.

[27] Miguel Castro and Barbara Liskov. 1999. Practical byzantine fault tol-
erance. In 3rd Symposium on Operating Systems Design and Implementa-
tion (OSDI 99). USENIX Association, New Orleans, LA, (February 1999),
pp. 173–186. https://www.usenix.org/conference/osdi-99/practical-b
yzantine-fault-tolerance.

[28] Jing Chen and Silvio Micali. 2019. Algorand: A secure and efficient dis-
tributed ledger. Theoretical Computer Science, 777, 155–183. DOI: 10.101
6/j.tcs.2019.02.001.

[29] Anton Churyumov. 2016. Byteball: A decentralized system for storage
and transfer of value. Retrieved 12/22/2023 from https://byteball.org/B
yteball.pdf.

[30] Cloudflare. 2023. DNS DNSKEY und DS-Einträge. (2023). Retrieved
12/22/2023 from https://www.cloudflare .com/de-de/learning/dns
/dns-records/dnskey-ds-records/.

[31] Deqode. 2019. S-Trilogy, Part Three: Direct Acyclic Graph, IOTA and
Byteball. (2019). Retrieved 12/22/2023 from https://deqode .com/blo
g/s-trilogy-part-three-direct-acyclic-graph-iota-and-byteball.

[32] Ongaro Diego and Ousterhout John. 2023. The Raft Consensus Algo-
rithm. (2023). Retrieved 12/22/2023 from https://raft.github.io/.

[33] DigiCert. 2023. Scaling CT Logs: temporal sharding. (2023). Retrieved
12/22/2023 from https://www.digicert.com/blog/scaling-certificate-t
ransparency-logs-temporal-sharding.

[34] Raphaël Dunant. 2018. Implementation of a robust and scalable con-
sensus protocol for blockchain. Technical report. École Polytech-
nique Fédérale de Lausanne, Lausanne …, (January 2018). Retrieved
12/22/2023 from https://www.epfl.ch/labs/dedis/wp-content/uploads
/2020/01/report-2017-2-raphael_dunant-certificate.pdf.

[35] Let‘s Encrypt. 2023. Challenge Types. (2023). Retrieved 12/22/2023
from https://letsencrypt.org/docs/challenge-types/.

[36] Ethereum. 2023. Ethereum Whitepaper. (2023). Retrieved 12/22/2023
from https://ethereum.org/en/whitepaper/.

[37] Sergio Ferragut. 2023. Real-time Analytics Database uses partitioning
and pruning to achieve its legendary performance. (2023). Retrieved
12/22/2023 from https://imply.io/blog/real-time-analytics-databa
se-uses-partitioning-and-pruning-to-achieve-its-legendary-perfo
rmance.

https://doi.org/10.1145/3194113.3194114
https://doi.org/10.1145/343477.343502
https://doi.org/10.1145/343477.343502
https://doi.org/10.1109/ICE.2018.8436299
https://doi.org/10.1109/ENABL.2000.883720
https://www.usenix.org/conference/osdi-99/practical-byzantine-fault-tolerance
https://www.usenix.org/conference/osdi-99/practical-byzantine-fault-tolerance
https://doi.org/10.1016/j.tcs.2019.02.001
https://doi.org/10.1016/j.tcs.2019.02.001
https://byteball.org/Byteball.pdf
https://byteball.org/Byteball.pdf
https://www.cloudflare.com/de-de/learning/dns/dns-records/dnskey-ds-records/
https://www.cloudflare.com/de-de/learning/dns/dns-records/dnskey-ds-records/
https://deqode.com/blog/s-trilogy-part-three-direct-acyclic-graph-iota-and-byteball
https://deqode.com/blog/s-trilogy-part-three-direct-acyclic-graph-iota-and-byteball
https://raft.github.io/
https://www.digicert.com/blog/scaling-certificate-transparency-logs-temporal-sharding
https://www.digicert.com/blog/scaling-certificate-transparency-logs-temporal-sharding
https://www.epfl.ch/labs/dedis/wp-content/uploads/2020/01/report-2017-2-raphael_dunant-certificate.pdf
https://www.epfl.ch/labs/dedis/wp-content/uploads/2020/01/report-2017-2-raphael_dunant-certificate.pdf
https://letsencrypt.org/docs/challenge-types/
https://ethereum.org/en/whitepaper/
https://imply.io/blog/real-time-analytics-database-uses-partitioning-and-pruning-to-achieve-its-legendary-performance
https://imply.io/blog/real-time-analytics-database-uses-partitioning-and-pruning-to-achieve-its-legendary-performance
https://imply.io/blog/real-time-analytics-database-uses-partitioning-and-pruning-to-achieve-its-legendary-performance

Bibliography 139

[38] Pietro Ferraro, Christopher King, and Robert Shorten. 2018. Distributed
Ledger Technology for Smart Cities, the Sharing Economy, and Social
Compliance. IEEE Access, 6, 62728–62746. DOI: 10.1109/access.2018.28
76766.

[39] PietroFerraro,ChristopherKing, andRobert Shorten. 2018. IOTA-based
directedacyclic graphswithout orphans.arXiv preprint arXiv:1901.07302,
(December 2018). DOI: 10.48550/arXiv.1901.07302.

[40] Simson Garfinkel. 2003. Pretty Good Privacy (PGP). John Wiley and Sons
Ltd., pp. 1421–1422. ISBN: 0470864125.

[41] Peter Gaži, Aggelos Kiayias, and Alexander Russell. 2018. Stake-
bleeding attacks on proof-of-stake blockchains. In 2018 Crypto Valley
Conference on Blockchain Technology (CVCBT). IEEE, Zug, Switzerland,
pp. 85–92. DOI: 10.1109/CVCBT.2018.00015.

[42] Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios Glykantzis,
Hubert Ritzdorf, and Srdjan Capkun. 2016. On the security and perfor-
mance of proof of work blockchains. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security. ACM, Vi-
enna, Austria, pp. 3–16. DOI: 10.1145/2976749.2978341.

[43] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nicko-
lai Zeldovich. 2017. Algorand: Scaling Byzantine Agreements for Cryp-
tocurrencies. In Proceedings of the 26th Symposium on Operating Systems
Principles (SOSP ’17). ACM, Shanghai, China, pp. 51–68. DOI: 10.1145/313
2747.3132757.

[44] Derric Gilling. 2020. Top 10API Security Threats EveryAPI TeamShould
Know. (2020). Retrieved 12/22/2023 from https://dzone.com/articles/t
op-10-api-security-threats-every-api-team-should.

[45] AlejandroGómez-Boix, Pierre Laperdrix, andBenoit Baudry. 2018.Hid-
ing in the crowd: an analysis of the effectiveness of browser finger-
printing at large scale. In Proceedings of the 2018WorldWideWeb Confer-
ence. International World Wide Web Conferences Steering Committee,
Lyon, France, pp. 309–318. DOI: 10.1145/3178876.3186097.

[46] Josef Gustafsson, Gustaf Overier, Martin Arlitt, and Niklas Carlsson.
2017. A first look at the CT landscape: Certificate Transparency logs in
practice. In Passive and Active Measurement (LNCS, volume 10176). Mo-
hamed Ali Kaafar, Steve Uhlig, and Johanna Amann, (Eds.) Springer,
Cham, pp. 87–99. DOI: 10.1007/978-3-319-54328-4_7.

[47] Mike Hearn and Richard Gendal Brown. 2019. Corda: A distributed
ledger. Corda Technical White Paper, 2019. Retrieved 12/22/2023 from ht
tps://www.r3.com/wp-content/uploads/2019/08/corda-technical-wh
itepaper-August-29-2019.pdf.

[48] Benjamin Hof and Georg Carle. 2017. Software distribution trans-
parency and auditability. arXiv preprint arXiv:1711.07278, (November
2017). DOI: 10.48550/arXiv.1711.07278.

[49] Tobias Höller. 2019. Towards establishing the link between a person’s
real-world interactions and their decentralized, self-managed digi-
tal identity in the Digidow architecture. In IDIMT-2019: Innovation and
Transformation inaDigitalWorld. TraunerVerlag,KutnáHora, CzechRe-
public, (September 2019), pp. 327–332. ISBN: 978-3-99062-590-3.

[50] Tobias Höller, Michael Roland, and René Mayrhofer. 2021. Analyzing
inconsistencies in the Tor consensus. In The 23rd International Confer-
ence on Information Integration andWeb Intelligence. ACM, pp. 485–494.
DOI: 10.1145/3487664.3487793.

https://doi.org/10.1109/access.2018.2876766
https://doi.org/10.1109/access.2018.2876766
https://doi.org/10.48550/arXiv.1901.07302
https://doi.org/10.1109/CVCBT.2018.00015
https://doi.org/10.1145/2976749.2978341
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1145/3132747.3132757
https://dzone.com/articles/top-10-api-security-threats-every-api-team-should
https://dzone.com/articles/top-10-api-security-threats-every-api-team-should
https://doi.org/10.1145/3178876.3186097
https://doi.org/10.1007/978-3-319-54328-4_7
https://www.r3.com/wp-content/uploads/2019/08/corda-technical-whitepaper-August-29-2019.pdf
https://www.r3.com/wp-content/uploads/2019/08/corda-technical-whitepaper-August-29-2019.pdf
https://www.r3.com/wp-content/uploads/2019/08/corda-technical-whitepaper-August-29-2019.pdf
https://doi.org/10.48550/arXiv.1711.07278
https://doi.org/10.1145/3487664.3487793

Bibliography 140

[51] Yuncong Hu, Kian Hooshmand, Harika Kalidhindi, Seung J Yang, and
Raluca A Popa. 2021. Merkle 2: A Low-Latency Transparency Log Sys-
tem. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE, San
Francisco, CA, USA, pp. 285–303. DOI: 10.1109/SP40001.2021.00088.

[52] IPFS. 2023. How IPFS works. (2023). Retrieved 12/22/2023 from https:
//docs.ipfs.io/concepts/how-ipfs-works.

[53] Jan. 2014. Answer to “What is a package index file”. (2014). Retrieved
12/22/2023 from https://askubuntu.com/a/550397.

[54] Rob Jansen, Kevin S Bauer, Nicholas Hopper, and Roger Dingledine.
2012. Methodically Modeling the Tor Network. In Proceedings of the 5th
USENIX Conference on Cyber Security Experimentation and Test. USENIX
Association, Bellevue, WA, pp. 1–8. Retrieved 12/22/2023 from https :
//www.usenix.org/conference/cset12/workshop-program/presentatio
n/Jansen.

[55] Sara Jelen. 2023. What Are Certificate Transparency Logs? (2023). Re-
trieved 12/22/2023 from https://securitytrails.com/blog/what-are-cer
tificate-transparency-logs.

[56] Krish K. 2023. Query pruning. (2023). Retrieved 12/22/2023 from https:
//answers.sap.com/questions/3047281/query-pruning.html.

[57] TiffanyHyun-JinKim,Lin-ShungHuang,AdrianPerrig,Collin Jackson,
and Virgil Gligor. 2013. Accountable key infrastructure (AKI) a proposal
for a public-key validation infrastructure. In Proceedings of the 22nd in-
ternational conference on World Wide Web. ACM, Rio de Janeiro, Brazil,
pp. 679–690. DOI: 10.1145/2488388.2488448.

[58] Sunny King and Scott Nadal. 2012. Ppcoin: Peer-to-peer crypto-
currency with proof-of-stake, (August 2012). Retrieved 12/22/2023
from https://bitcoin.peryaudo.org/vendor/peercoin-paper.pdf.

[59] Ramakrishna Kotla andMichael Dahlin. 2004. High throughput Byzan-
tine fault tolerance. In International Conference on Dependable Systems
and Networks, 2004. IEEE, Florence, Italy, pp. 575–584. DOI: 10.1109/D
SN.2004.1311928.

[60] Hyun Kwon, Yongchul Kim, Hyunsoo Yoon, and Daeseon Choi. 2017.
OptimalClusterExpansion-Based IntrusionTolerant SystemtoPrevent
Denial of Service Attacks. Applied Sciences, 7, 11. DOI: 10.3390/app711118
6.

[61] Chris Lamb and Stefano Zacchiroli. 2021. Reproducible builds: Increas-
ing the integrity of software supply chains. IEEE Software, 39, 2, 62–70,
2. DOI: 10.1109/MS.2021.3073045.

[62] Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine.
2020. Browser fingerprinting: A survey. ACM Transactions on the Web
(TWEB), 14, Article 8, 1–33, 2. DOI: 10.1145/3386040.

[63] Felix Lau, Stuart H Rubin, Michael H Smith, and Ljiljana Trajkovic.
2000. Distributed denial of service attacks. In Smc 2000 conference pro-
ceedings. 2000 ieee international conferenceon systems,manand cybernet-
ics.’cybernetics evolving to systems, humans, organizations, and their com-
plex interactions’(cat. no. 0. Volume 3. IEEE, Nashville, TN, USA, (March
2000), pp. 2275–2280. DOI: 10.1109/ICSMC.2000.886455.

[64] Dimitrios Lekkas and Dimitris Gritzalis. 2007. Long-term verifiability
of the electronic healthcare records’ authenticity. International Journal
of Medical Informatics, 76, 5, 442–448. DOI: 10.1016/j.ijmedinf.2006.09
.010.

https://doi.org/10.1109/SP40001.2021.00088
https://docs.ipfs.io/concepts/how-ipfs-works
https://docs.ipfs.io/concepts/how-ipfs-works
https://askubuntu.com/a/550397
https://www.usenix.org/conference/cset12/workshop-program/presentation/Jansen
https://www.usenix.org/conference/cset12/workshop-program/presentation/Jansen
https://www.usenix.org/conference/cset12/workshop-program/presentation/Jansen
https://securitytrails.com/blog/what-are-certificate-transparency-logs
https://securitytrails.com/blog/what-are-certificate-transparency-logs
https://answers.sap.com/questions/3047281/query-pruning.html
https://answers.sap.com/questions/3047281/query-pruning.html
https://doi.org/10.1145/2488388.2488448
https://bitcoin.peryaudo.org/vendor/peercoin-paper.pdf
https://doi.org/10.1109/DSN.2004.1311928
https://doi.org/10.1109/DSN.2004.1311928
https://doi.org/10.3390/app7111186
https://doi.org/10.3390/app7111186
https://doi.org/10.1109/MS.2021.3073045
https://doi.org/10.1145/3386040
https://doi.org/10.1109/ICSMC.2000.886455
https://doi.org/10.1016/j.ijmedinf.2006.09.010
https://doi.org/10.1016/j.ijmedinf.2006.09.010

Bibliography 141

[65] Colin LeMahieu. 2018. Nano: A feeless distributed cryptocurrency net-
work. 16, 17. Retrieved 12/22/2023 from https://content.nano.org/whit
epaper/Nano_Whitepaper_en.pdf.

[66] Jinyuan Li, Maxwell N Krohn, David Mazieres, and Dennis E Shasha.
2004. Secure Untrusted Data Repository (SUNDR). In 6th Symposium on
Operating Systems Design & Implementation (OSDI 04). USENIX Associa-
tion, San Francisco, CA, pp. 121–136. https://www.usenix.org/conferen
ce/osdi-04/secure-untrusted-data-repository-sundr.

[67] Lindner Mark. 2023. cbase – A C Foundation Library. (2023). Retrieved
12/22/2023 from https://www.hyperrealm.com/oss_cbase.shtml.

[68] Ueli Maurer. 1996. Modelling a public-key infrastructure. In Computer
Security — ESORICS 96 (LNCS, volume 1146). Springer, Berlin, Heidel-
berg, pp. 325–350. DOI: 10.1007/3-540-61770-1_45.

[69] MDNContributors. 2023.Making PWAswork offlinewith Servicework-
ers. (2023). Retrieved 12/22/2023 from https://developer.mozilla.org/e
n-US/docs/Web/Progressive_web_apps/Tutorials/js13kGames/Offlin
e_Service_workers.

[70] Apeksha Mehta. 2022. The top API security risks and how to mitigate
them. (2022). Retrieved 12/22/2023 from https://appinventiv.com/blo
g/how-to-mitigate-api-security-risks/.

[71] Marcela S Melara, Aaron Blankstein, Joseph Bonneau, Edward W Fel-
ten, andMichael J Freedman. 2015. CONIKS: BringingKeyTransparency
to End Users. In 24th USENIX Security Symposium (USENIX Security 15).
USENIX Association, Washington, D.C., (August 2015), pp. 383–398. ht
tps://www.usenix.org/conference/usenixsecurity15/technical-session
s/presentation/melara.

[72] PaulMockapetris andKevin J Dunlap. 1988. Development of the domain
name system. In Symposium Proceedings on Communications Architec-
tures and Protocols. ACM, Stanford, California, USA, pp. 123–133. DOI: 10
.1145/52324.52338.

[73] RogerMNeedham. 1994. Denial of service: an example.Communications
of the ACM, 37, 11, (November 1994), 42–46. DOI: 10.1145/188280.1882
94.

[74] Sullivan Nick. 2018. Introducing Certificate Transparency and Nimbus.
(2018). Retrieved 12/22/2023 from https://blog.cloudflare.com/introdu
cing-certificate-transparency-and-nimbus/.

[75] Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas
Gailly, LinusGasser, Ismail Khoffi, Justin Cappos, andBryan Ford. 2017.
CHAINIAC: Proactive Software-Update Transparency via Collectively
Signed Skipchains and Verified Builds. In 26th USENIX Security Sympo-
sium (USENIX Security 17). USENIX Association, Vancouver, BC, (August
2017), pp. 1271–1287. https://www.usenix.org/conference/usenixsecur
ity17/technical-sessions/presentation/nikitin.

[76] Michael Nofer, Peter Gomber, Oliver Hinz, and Dirk Schiereck. 2017.
Blockchain. Business & Information Systems Engineering, 59, 183–187, 3.
DOI: 10.1007/s12599-017-0467-3.

[77] Institute of Networks and Security at Johannes Kepler University Linz.
2023. Private Digital Authentication in the Physical World. (2023). Re-
trieved 12/22/2023 from https://www.digidow.eu/.

[78] Maxwell Ogden, Karissa McKelvey, and Mathias Buus Madsen. 2017.
Dat-distributed dataset synchronization and versioning. Open Science
Framework, (January 2017). DOI: 10.31219/osf.io/nsv2c.

https://content.nano.org/whitepaper/Nano_Whitepaper_en.pdf
https://content.nano.org/whitepaper/Nano_Whitepaper_en.pdf
https://www.usenix.org/conference/osdi-04/secure-untrusted-data-repository-sundr
https://www.usenix.org/conference/osdi-04/secure-untrusted-data-repository-sundr
https://www.hyperrealm.com/oss_cbase.shtml
https://doi.org/10.1007/3-540-61770-1_45
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Tutorials/js13kGames/Offline_Service_workers
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Tutorials/js13kGames/Offline_Service_workers
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Tutorials/js13kGames/Offline_Service_workers
https://appinventiv.com/blog/how-to-mitigate-api-security-risks/
https://appinventiv.com/blog/how-to-mitigate-api-security-risks/
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/melara
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/melara
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/melara
https://doi.org/10.1145/52324.52338
https://doi.org/10.1145/52324.52338
https://doi.org/10.1145/188280.188294
https://doi.org/10.1145/188280.188294
https://blog.cloudflare.com/introducing-certificate-transparency-and-nimbus/
https://blog.cloudflare.com/introducing-certificate-transparency-and-nimbus/
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/nikitin
https://doi.org/10.1007/s12599-017-0467-3
https://www.digidow.eu/
https://doi.org/10.31219/osf.io/nsv2c

Bibliography 142

[79] Diego Ongaro and John Ousterhout. 2013. In Search of an Understand-
able Consensus Algorithm. In Proceedings of the 2014 USENIX Conference
on USENIX Annual Technical Conference. USENIX Association, Philadel-
phia, PA, pp. 305–320. Retrieved 12/22/2023 from https://www.usenix
.org/conference/atc14/technical-sessions/presentation/ongaro.

[80] The Tor Project. 2023. Relay Search. (2023). Retrieved 12/22/2023 from
https://metrics.torproject.org/rs.html#search/flag:authority.

[81] Benedikt Putz and Günther Pernul. 2019. Trust factors and insider
threats in permissioned distributed ledgers. In Transactions on Large-
Scale Data- and Knowledge-Centered Systems XLII. LNCS. Volume 11860.
Springer, Berlin, Heidelberg, pp. 25–50. DOI: 10.1007/978-3-662-605
31-8_2.

[82] Radix Publishing Ltd. 2018. Primer on Merkle Trees. (2018). Retrieved
12/22/2023 from https://www.radixdlt.com/post/primer-on-merkle-
trees.

[83] Roya. 2014. Answer to “Howmany directory servers are there in the Tor
networks?” (2014). Retrieved 12/22/2023 from https://tor.stackexchan
ge.com/a/4853.

[84] Cornelius Schätz. 2018. How IOTA solves Blockchains scalability prob-
lem. (2018). Retrieved 12/22/2023 from https://hackernoon.com/how-
iota-solves-blockchains-scalability-problem-12e5cae05531.

[85] Patrick Schöppl. 2019. Personal Agent Prototype in Rust. Master’s the-
sis. JohannesKeplerUniversityLinz, InstituteofNetworksandSecurity,
Linz, Austria, (November 2019), 88 pages.

[86] SmallStep Labs. 2023. ACME Basics. (2023). Retrieved 12/22/2023 from
https://smallstep.com/docs/step-ca/acme-basics/.

[87] Jordi Subira-Nieto. 2021. Security of Proof-of-Personhood: Idena. Re-
trieved 12/22/2023 from https://www.epfl.ch/labs/dedis/wp-content
/uploads/2021/07/report-2021-1-jordi-idena_report.pdf.

[88] Michael Szydlo. 2004. Merkle Tree Traversal in Log Space and Time.
In Advances in Cryptology - EUROCRYPT 2004 (LNCS, volume 3027).
Springer, Berlin, Heidelberg, pp. 541–554. DOI: 10 . 1007/978- 3-540
-24676-3_32.

[89] tdjsnelling. 2019. dat-keyserver. (2019). Retrieved 12/22/2023 from htt
ps://github.com/tdjsnelling/dat-keyserver.

[90] The DNS Institute. 2023. Proof of Non-Existence (NSEC and NSEC3).
(2023). Retrieved 12/22/2023 from https://dnsinstitute.com/docume
ntation/dnssec-guide/ch06s02.html.

[91] Alin Tomescu, Vivek Bhupatiraju, Dimitrios Papadopoulos, Charalam-
pos Papamanthou, Nikos Triandopoulos, and Srinivas Devadas. 2019.
Transparency logs via append-only authenticated dictionaries. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Commu-
nications Security. ACM, London, United Kingdom, pp. 1299–1316. DOI:
10.1145/3319535.3345652.

[92] Jon Truby. 2018. Decarbonizing Bitcoin: Law and policy choices for re-
ducing the energy consumption of Blockchain technologies and digital
currencies. Energy research & social science, 44, 399–410. DOI: 10.1016/j
.erss.2018.06.009.

https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://metrics.torproject.org/rs.html#search/flag:authority
https://doi.org/10.1007/978-3-662-60531-8_2
https://doi.org/10.1007/978-3-662-60531-8_2
https://www.radixdlt.com/post/primer-on-merkle-trees
https://www.radixdlt.com/post/primer-on-merkle-trees
https://tor.stackexchange.com/a/4853
https://tor.stackexchange.com/a/4853
https://hackernoon.com/how-iota-solves-blockchains-scalability-problem-12e5cae05531
https://hackernoon.com/how-iota-solves-blockchains-scalability-problem-12e5cae05531
https://smallstep.com/docs/step-ca/acme-basics/
https://www.epfl.ch/labs/dedis/wp-content/uploads/2021/07/report-2021-1-jordi-idena_report.pdf
https://www.epfl.ch/labs/dedis/wp-content/uploads/2021/07/report-2021-1-jordi-idena_report.pdf
https://doi.org/10.1007/978-3-540-24676-3_32
https://doi.org/10.1007/978-3-540-24676-3_32
https://github.com/tdjsnelling/dat-keyserver
https://github.com/tdjsnelling/dat-keyserver
https://dnsinstitute.com/documentation/dnssec-guide/ch06s02.html
https://dnsinstitute.com/documentation/dnssec-guide/ch06s02.html
https://doi.org/10.1145/3319535.3345652
https://doi.org/10.1016/j.erss.2018.06.009
https://doi.org/10.1016/j.erss.2018.06.009

Bibliography 143

[93] Martin Valenta and Philipp Sandner. 2017. Comparison of ethereum,
hyperledger fabric and corda. FSBC Working Paper. Frankfurt School,
Blockchain Center, (July 2017), pp. 1–8. Retrieved 12/22/2023 fromhttp
s://www.smallake.kr/wp-content/uploads/2017/07/2017_Compariso
n-of-Ethereum-Hyperledger-Corda.pdf.

[94] Gene Vayngrib. 2020. Hypercore universe FAQ. (2020). Retrieved
12/22/2023 from https : / / github . com / tradle /why- hypercore / blob
/master/FAQ.md#how-is-hypercore-different-from-ipfs.

[95] Martín A G Vigil, Cristian T Moecke, Ricardo F Custódio, and Melanie
Volkamer. 2013. The Notary Based PKI. In Public Key Infrastructures, Ser-
vices and Applications (LNCS, volume 7868). Springer, Berlin, Heidel-
berg, pp. 85–97. DOI: 10.1007/978-3-642-40012-4_6.

[96] Marko Vukolic. 2015. The Quest for Scalable Blockchain Fabric: Proof-
of-Work vs. BFT Replication. In Open Problems in Network Security
(LNCS, volume 9591). Springer, pp. 112–125. DOI: 10 . 1007/978- 3- 31
9-39028-4_9.

[97] TaoWang and Ian Goldberg. 2013. ImprovedWebsite Fingerprinting on
Tor. In Proceedings of the 12th ACM Workshop on Workshop on Privacy in
the Electronic Society. ACM, Berlin, Germany, pp. 201–212. DOI: 10.1145
/2517840.2517851.

[98] Tao Wang and Ian Goldberg. 2016. On Realistically Attacking Tor with
Website Fingerprinting. Proceedings on Privacy Enhancing Technologies,
2016, 4, (February 2016), 21–36. DOI: 10.1515/popets-2016-0027.

[99] WIN-ACME. 2023. TLS-ALPN validation. (2023). Retrieved 12/22/2023
from https://www.win-acme.com/reference/plugins/validation/tls-al
pn/.

[100] Erik Wittern, Alan Cha, James C Davis, Guillaume Baudart, and Louis
Mandel. 2019. An Empirical Study of GraphQL Schemas. In Service-
Oriented Computing (LNCS, volume 11895). Springer, Cham, pp. 3–19.
DOI: 10.1007/978-3-030-33702-5_1.

[101] AnthonyDWood and JohnA Stankovic. 2002. Denial of service in sensor
networks. Computer, 35, 10, 54–62. DOI: 10.1109/MC.2002.1039518.

[102] Alexander Yakubov, Wazen Shbair, and Radu State. 2018. BlockPGP: A
blockchain-based framework for PGP key servers. In 2018 Sixth Interna-
tional Symposium on Computing and Networking Workshops (CANDARW).
IEEE, Takayama, Japan, pp. 316–322. DOI: 10.1109/CANDARW.2018.000
65.

[103] Yury Zhauniarovich, Issa Khalil, Ting Yu, andMarc Dacier. 2018. A Sur-
vey on Malicious Domains Detection through DNS Data Analysis. ACM
Computing Surveys (CSUR), 51, 4, (July 2018), 1–36. DOI: 10.1145/319132
9.

[104] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Xiangping Chen, and
Huaimin Wang. 2018. Blockchain challenges and opportunities: A
survey. International Journal of Web and Grid Services, 14, 4, (October
2018), 352–375. DOI: 10.1504/IJWGS.2018.095647.

https://www.smallake.kr/wp-content/uploads/2017/07/2017_Comparison-of-Ethereum-Hyperledger-Corda.pdf
https://www.smallake.kr/wp-content/uploads/2017/07/2017_Comparison-of-Ethereum-Hyperledger-Corda.pdf
https://www.smallake.kr/wp-content/uploads/2017/07/2017_Comparison-of-Ethereum-Hyperledger-Corda.pdf
https://github.com/tradle/why-hypercore/blob/master/FAQ.md#how-is-hypercore-different-from-ipfs
https://github.com/tradle/why-hypercore/blob/master/FAQ.md#how-is-hypercore-different-from-ipfs
https://doi.org/10.1007/978-3-642-40012-4_6
https://doi.org/10.1007/978-3-319-39028-4_9
https://doi.org/10.1007/978-3-319-39028-4_9
https://doi.org/10.1145/2517840.2517851
https://doi.org/10.1145/2517840.2517851
https://doi.org/10.1515/popets-2016-0027
https://www.win-acme.com/reference/plugins/validation/tls-alpn/
https://www.win-acme.com/reference/plugins/validation/tls-alpn/
https://doi.org/10.1007/978-3-030-33702-5_1
https://doi.org/10.1109/MC.2002.1039518
https://doi.org/10.1109/CANDARW.2018.00065
https://doi.org/10.1109/CANDARW.2018.00065
https://doi.org/10.1145/3191329
https://doi.org/10.1145/3191329
https://doi.org/10.1504/IJWGS.2018.095647

	Abstract
	Kurzfassung
	Acknowledgements
	Contents
	Introduction
	Digidow
	Sensor Directory
	Trust System
	Objectives
	Outline

	Threat Model
	System
	Attack Vectors
	Denial of Service
	Network Sniffing
	Fingerprinting
	Target Discovery
	Data Collection
	Malicious Sensor
	Compromised Sensors
	Compromised Sensor Directory
	Data Integrity
	Manipulation of Data on the Wire
	Data Validity
	Address Problems
	Sensor Trust Problems
	People Tracking (Sensor Directory)
	People Tracking (Sensors)
	PIA Identification
	Split Views

	Selected Attack Vectors
	Attack Vector Mitigation
	Transaction Cost
	Sensor Verification
	Notaries
	Redundant Sensor Directories
	Cache Sensors
	Distributed Sensor Directory
	Onion Routing
	Pruned Sets and Queries
	Validators
	Immutable Data
	Owner Changeable Data

	Threat Model Analysis
	Requirements
	Comparison
	Attack Vectors
	Requirements

	Background
	Byzantine Fault-Tolerance
	Distributed Ledger Technologies
	Smart Contracts
	Permission
	Proof of Work
	Proof of Stake
	Delegated Proof of Stake
	Proof of Activity
	Proof of Personhood
	Proof of Authority
	Raft

	Blockchain
	Directed Acyclic Graph
	Merkle Tree

	Technologies
	Certificate Authorities
	CAs for the Sensor Directory

	Web of Trust
	Web of trust for the Sensor Directory

	Domain Name System
	Domain Name System Security Extensions (DNSSEC)
	DNS for the Sensor Directory

	Secure Untrusted Data Repository
	SUNDR for the Sensor Directory

	Transparency Logs
	Transparency Logs for the Sensor Directory

	Append-Only Authenticated Dictionaries
	AAD for the Sensor Directory

	Merkle^2
	Merkle^2 for the Sensor Directory

	Software Distribution Transparency and Auditability
	Software Distribution Transparency for the Sensor Directory

	Accountable Key Infrastructure
	AKI for the Sensor Directory

	Attack Resilient PKI
	ARPKI for the Sensor Directory

	CONIKS
	CONIKS for the Sensor Directory

	Contour
	Contour for the Sensor Directory

	CHAINIAC
	CHAINIAC for the Sensor Directory

	The Onion Routing
	Tor for the Sensor Directory

	Distributed State Machine
	Distributed State Machines for the Sensor Directory

	InterPlanetary File System
	IPFS for the Sensor Directory

	DAT
	DAT for the Sensor Directory

	Algorand
	Algorand for the Sensor Directory

	Nano
	Nano for the Sensor Directory

	Byteball
	Byteball for the Sensor Directory

	IOTA
	IOTA for the Sensor Directory

	Fabric
	Fabric for the Sensor Directory

	Ethereum
	Ethereum for the Sensor Directory

	Comparison
	Attack Vector Comparison
	Requirements Comparison
	Final Comparison

	Conclusion and Future Work
	Bibliography

