
JOHANNESKEPLER
UNIVERSITY LINZ
Altenberger Straße 69
4040 Linz, Austria
jku.at

Stefan Kempinger
Institute of
Networks and Security

kempinger@ins.jku.at
https://www.digidow.eu/

April 2024

Implementing a
Digidow-compatible
Sensor for UWB Indoor
Positioning

Technical Report

Christian Doppler Laboratory for
Private Digital Authentication in the Physical World

This work has been carried out within the scope of Digidow, the Christian Doppler Laboratory for Private
Digital Authentication in the Physical World. We gratefully acknowledge financial support by the Aus-
trian Federal Ministry of Labour and Economy, the National Foundation for Research, Technology and
Development, the Christian Doppler Research Association, 3 Banken IT GmbH, ekey biometric systems
GmbH, Kepler Universitätsklinikum GmbH, NXP Semiconductors Austria GmbH & Co KG, and Österre-
ichische Staatsdruckerei GmbH.

https://jku.at/
mailto:kempinger@ins.jku.at
https://www.digidow.eu/

Implementing a Digidow-compatible Sensor for UWB Indoor Positioning 2

Contents

Abstract 3

1. Introduction 4

2. Background 4
2.1 Ultra Wideband . 4

2.1.1 UWB Anchors by MobileKnowledge 4
2.1.2 UWB Tags/Android App . 4

2.2 W3C Verifiable Credentials . 4
2.3 TOR . 5
2.4 Digidow . 5

3. Implementation 5
3.1 Hardware Setup . 5
3.2 Communication Protocols . 7

3.2.1 Between UWB tags and UWB anchors 7
3.2.2 From UWB anchors to Jetson Nano 7
3.2.3 Between Jetson Nano and PIA 8

3.3 Software Setup . 8
3.3.1 Anchor Firmware . 8
3.3.2 UWB Sensor . 8

4. Conclusion 12

References 13

Implementing a Digidow-compatible Sensor for UWB Indoor Positioning 3

Abstract

The Digidow project aims to research solutions for privacy-preserving decen-
tralized digital identity authentication in the realworld. The project uses a Per-
sonal Identity Agent (PIA) tomanage the user’s identity and credentials, and a
sensor to determine the usermovement and intentions. These sensors register
real world events and send the data to the PIA, which then processes the data
and sends it to a verifier. Therewas an existing sensor implementation for a fa-
cial recognition sensor, a generic sensor library that can be used to implement
other sensors, and somewhat working UWB anchors. This report describes the
implementation of a UWB sensor that detects the door a user is standing in
front of, and which integrates seamlessly with the exiting components.

Implementing a Digidow-compatible Sensor for UWB Indoor Positioning 4

1. Introduction

The Digidow project aims to research solutions for privacy-preserving decen-
tralized digital identity authentication in the real world.

In the scope of this project multiple UWB anchors were acquired for research
into indoor positioning. This report describes the implementation of a UWB
sensor that is compatible with the Digidow system.

The sensor is responsible for detecting the door a user is standing in front of,
and for sending the data to the PIA.

2. Background

2.1 UltraWideband

Ultra Wideband (UWB) is a wireless communication technology that uses a
large portion of the radio spectrum. In the context of indoor positioning, UWB
is used to measure the time of flight of a signal between two devices.

UWB is defined by the standard IEEE 802.15.4. The standard defines a set of
channels, each with a specific frequency and always a 500MHz bandwidth per
channel [4]. Since channel 9 (at 7987.2MHz) is themost commonly supported
channel in UWB devices, it is the channel we use for our UWB anchors [1].

2.1.1 UWBAnchors byMobileKnowledge

TheUWBanchors used in this project are fromMobileKnowledge and are based
on theNXPUWBTrimension SR150 chip. The anchors are capable ofmeasuring
the time of flight of a signal between two devices, and can be used to determine
the distance between the two devices. The accuracy of the anchors for distance
is around ±10 cm, which is sufficient for our use case, but the azimuth and el-
evation angles are too inaccurate with too strong fluctuations for our use case.
The anchors are connected to aNvidia JetsonNanoviaUSB, and this connection
is used to power the anchors and to receive the UWB data from the anchors.

2.1.2 UWB Tags/Android App

Since the official UWB tags need specific hardware to flash a custom firmware,
we decided to use an Android app to simulate the UWB tags. The app uses a
modified version of an existing implementation of an out-of-band setup pro-
tocol, in this case using Bluetooth as medium, and the androidx.core.uwb [5]
library to do the ranging with the anchors, which both were provided by Mo-
bileKnowledge in theirMK UWB Kit Mobile edition 2.0 [2].

2.2 W3CVerifiable Credentials

The W3C Verifiable Credentials standard is a standard for creating and ex-
changing credentials in a privacy-preserving way [8].

Implementing a Digidow-compatible Sensor for UWB Indoor Positioning 5

A Verifiable Credential is a tamper-evident credential that has a set of claims
about a subject, which are signed by the issuer. The credential can then be pre-
sented to a verifier, who can verify the signature and the claims.

In our case, the PIA sends a registration request to the sensor, which contains
a Verifiable Credential with the necessary data to identify the user. If the sen-
sor gets a reading that matches the data in the registration credential, it sends
whatever data it has about that user back to the PIA in aVerifiable Presentation,
which might contain multiple Verifiable Credentials.

2.3 TOR

The Onion Router (TOR) is a privacy network that allows for anonymous com-
munication over the internet [6].

TOR onion services, formerly known as hidden services, are services that can
only be accessed through the TOR network. They are used to provide a secure
and privateway to communicatewith a service, as the service is only accessible
through the TOR network and the traffic is end-to-end encrypted. In practice,
thismeans the server providing the servicemaps an onion address to a specific
local network socket, and the client connects to the onion address using their
own TOR SOCKS proxy, which then forwards the traffic to the server.

In our case, both the sensor and the PIA use TOR onion services to commu-
nicate with each other. The sensor uses an onion service to receive registration
requests from the PIA, and the PIA uses an onion service as a callback to receive
data from the sensor.

2.4 Digidow

Digidow is a project that aims to research solutions for privacy-preserving de-
centralized digital identity authentication in the real world [3].

In the scope of this implementation the Digidow system uses a Personal Iden-
tity Agent (PIA) to manage the user’s identity and credentials, and sensors to
determine the users movement and intentions. These two components com-
municate with each other using a custom protocol, which is based on the W3C
Verifiable Credentials standard.

There is an existing sensor implementation for a facial recognition sensor, and
a generic sensor library that can be used to implement other sensors.

3. Implementation

3.1 Hardware Setup

The hardware setup consists of a Jetson Nano and two MobileKnowledge UWB
anchors, both utilizing NXP‘s UWB Trimension SR150 chip, as seen in Figure 1.

The Jetson Nano is connected to the UWB anchors via USB.

The important part of the hardware setup is the anchor placement, as the an-
chors need to be sufficiently far apart to allow for accurate positioning (Fig-
ure 3). The calculation of the necessary distance is done by adding up themax-
imum error of the anchors, in our case 20 cm each, and then multiplying it by

Implementing a Digidow-compatible Sensor for UWB Indoor Positioning 6

UWB
Anchor

(SR150)

UWB
Anchor

(SR150)

Potentially
additional
Anchors

Nvidia
Jetson Nano

Bluetooth during
Setup, then UWB

USB

Digidow PIA

TOR
Network

Potentially on-device,
potentially remote

Figure 1: Setup

Figure 2: Anchor installation

a factor of 2 for eventualities. This results in aminimum distance of 80 cm be-
tween the two anchors. This calculation comes down to the fact that we have
to calculate the error as the volume of the hull of two intersecting spheres. The
thickness of the hull is the maximum error of the anchors, and the distance
between each anchor and the UWB tag is the radius of each sphere. The volume
should be as small as possible to minimize the error, so the distance between
the anchors should be as large as possible.

Note: At some point the anchorswill always generate almost-fully overlapping
hulls, but since we assume the ranging is only viable up to 50m, we can some-
what safely ignore this case.

Note: A moving 3D model to represent the hull of the spheres intersecting
would be a good addition to this report, but movement is classically hard to
print on paper.

Each anchor is mounted in its own plastic case, which is magnetically held to
the metal cable tray on the ceiling, as seen in Figure 2.

The anchors are placed in the hallway of the Institute of Networks and Security
at the Johannes Kepler University Linz, as seen in Figure 3.

Implementing a Digidow-compatible Sensor for UWB Indoor Positioning 7

Figure 3: Anchor placement

3.2 Communication Protocols

There are three communication protocols used in this setup:

UWB tags↔ UWB anchors

UWB anchors→ Jetson Nano

Jetson Nano↔ PIA

3.2.1 Between UWB tags and UWB anchors

The UWB tags set up their UWB connection to the UWB anchors via Bluetooth.
This is done through an out-of-band protocol provided by MobileKnowledge
thatmimics theNINearbyAccessoryConfiguration fromApple, as the implemen-
tation on Apple devices does not require any custom code. It creates a standard
GATT connection using the Nordic UART Service protocol [7] from the mobile
phone to the UWB Anchor, wherein a 50 byte payload is sent to the anchor,
which then uses the payload to set up the UWB connection. In its original state,
this 50 byte payload only contained the UWB parameters, but we modified it
to also contain the onion address public key of the users PIA. This is done to
identify the user in the further process. More information on this communi-
cation can be found in Apple’s developer resources. After this setup, plain UWB
ranging is used to get the distance between theUWB tags and theUWBanchors.

3.2.2 FromUWB anchors to Jetson Nano

The UWB anchors communicate with the JetsonNano via USB. The UWB data is
sent to the Jetson Nano via a serial connection. On this connection, there is de-
bugging information from the anchors, as well as unformatted UWBmetadata,
and certain lines injected by us to get parsable datawith the anchor’s onion ad-
dress. It is a simple one-way communication, and all of the relevant lines start
with the string “[Parse This]” and are parsable with the following regex:

https://developer.apple.com/documentation/nearbyinteraction/ninearbyaccessoryconfiguration
https://developer.apple.com/nearby-interaction/specification/

Implementing a Digidow-compatible Sensor for UWB Indoor Positioning 8

\[(([^\[]+?)\s*:\s*(.*?))\]

The logs are formatted according to the following format string:

[Parse This] [MAC: %02X:%02X] [Session: %u] @ [Distance: %d cm], [Azimuth: %d],
[Elevation: %d], [Line of Sight: %d] [Onion: %s]\n

The regex is split into multiple capture groups, which are then used to extract
the data. The interesting captures are 1 and 2, which contain the key and value
of the data.

3.2.3 Between Jetson Nano and PIA

The JetsonNano uses a TOR onion service to receive registration requests from
the PIA, and the PIA uses a TOR onion service as a callback to receive data from
the sensor. This callback address is sent to the sensor in the Bluetooth connec-
tion. This communication uses W3C Verifiable Credentials to send data, and is
based on the Digidow protocol.

3.3 Software Setup

The software setup consists of native C code for the anchorfirmware and aRust
program for the Jetson Nano.

The first iteration of the sensor was written in Python. It was later decided to
rewrite the sensor in Rust, as it ismore performant and easier to integratewith
the existing codebases.

3.3.1 Anchor Firmware

The anchor firmware is based on the MobileKnowledge UWB Anchor firmware
andwasmodified to send formattedUWBdata to the JetsonNanoviaUSB.Mod-
ifications include the hijacking of the Bluetooth pairing process to send a byte
sequence containing an onion address public key from the connecting device
to the anchor, which is then used to identify the device in the further process.
The anchor logs all UWB events to the serial console, and if the event is a rang-
ing event, it is formatted properly to be distinguishable fromother events. This
formatted logging is also a modification to the original firmware, as the orig-
inal firmware already logs the UWB events, but was missing information to
identify the producer of the event.

3.3.2 UWBSensor

The UWB sensor is a Rust program that runs on the Jetson Nano and is respon-
sible for receiving theUWBdata from the anchors and sending it to the respon-
sible Digidow PIA.

The program is split into multiple units, each responsible for a specific task.

Implementing a Digidow-compatible Sensor for UWB Indoor Positioning 9

Anchor Communication To read the UWB data from the anchors, the program
uses the serialport crate.

Since the anchors are connected via USB, and we do not know the right port(s)
beforehand, the function find_fitting_serial_ports iterates over all available
ports and tries to connect to themwith specific serial port settings. If the con-
nection does not fail, the function stores the port as potential anchor port and
at the end of the iteration returns all ports that did not fail to connect. This way
closed or busy ports are filtered out. In a future version, the function will also
check if the anchor is actually an anchor via the USBmetadata, and not just any
device that is connected via USB.

The functionopen_and_listen_on_port is thenused to read the serial communi-
cation fromtheanchor and listen for incomingdata. It is called for eachport re-
turned by find_fitting_serial_ports and promptly spawns a new thread for each
port. The function then reads the data from the port andfilters out all lines that
do not contain the string “[Parse This]”. The remaining lines are then parsed
using a regex (??) and the resulting data is stored in a HashMap. Also present
in the HashMap is the port the data was received on, which is used to identify
the anchor the data came from, and the timestamp of the received data. Fur-
thermore, the onion address public key, which was sent during the Bluetooth
pairing process, is converted to a proper onion address and also stored in the
HashMap.

The HashMap is then sent to the ranging_event_handlingmodule, which pro-
cesses the data further.

UWB Data Processing The processing of the UWB data is done in the rang-
ing_event_handling.rs file.

The processing currently contains the following steps:

Buffering: The data is stored in a queue, which is UWB_RANGING_BUFFER_
SIZE, currently 4 elements, long.u If the queue is uninitialized, it is initialized with the current reading.u If there is at least one reading in the queue, the new reading is averaged

with the last entry in the queue and the result is added to the back of
the queue. This is done to smooth out the readings and reduce the noise.
This operation has never shown to cause any issues, it just slows down
the reaction time of the sensor.u If the queue is full, the oldest reading is removed from the front of the
queue and the new reading is added to the back.

Door Detection: Now the sensor checks if the user is standing in front of a
door.u The configuration file contains the distances from the UWB anchors to

the doors in the hallway.u Asimple range check is done to see if a user iswithin theupper and lower
range bounds of the door.u If a matching door is found that fulfills the range check for all sensors,
the door name is stored.

Movement Speed Calculation: The movement speed is calculated by com-
paring the current reading with the previous readings.u Currently, we use the latest UWB_RANGING_BUFFER_SIZE - 1 readings,

if that many are available.

https://git.ins.jku.at/proj/digidow/uwb-sensor-rust/-/blob/164a0edf7de0b6781b63e3a0be22796ea4287a1a/Cargo.toml#L37
https://git.ins.jku.at/proj/digidow/uwb-sensor-rust/-/blob/164a0edf7de0b6781b63e3a0be22796ea4287a1a/src/main.rs#L130
https://git.ins.jku.at/proj/digidow/uwb-sensor-rust/-/blob/164a0edf7de0b6781b63e3a0be22796ea4287a1a/src/main.rs#L101
https://git.ins.jku.at/proj/digidow/uwb-sensor-rust/-/blob/164a0edf7de0b6781b63e3a0be22796ea4287a1a/src/ranging_event_handling.rs
https://git.ins.jku.at/proj/digidow/uwb-sensor-rust/-/blob/164a0edf7de0b6781b63e3a0be22796ea4287a1a/src/ranging_event_handling.rs
https://git.ins.jku.at/proj/digidow/uwb-sensor-rust/-/blob/164a0edf7de0b6781b63e3a0be22796ea4287a1a/src/ranging_event_handling.rs
https://git.ins.jku.at/proj/digidow/uwb-sensor-rust/-/blob/164a0edf7de0b6781b63e3a0be22796ea4287a1a/src/ranging_event_handling.rs#L266
https://git.ins.jku.at/proj/digidow/uwb-sensor-rust/-/blob/164a0edf7de0b6781b63e3a0be22796ea4287a1a/src/ranging_event_handling.rs#L31
https://git.ins.jku.at/proj/digidow/uwb-sensor-rust/-/blob/164a0edf7de0b6781b63e3a0be22796ea4287a1a/src/ranging_event_handling.rs#L31
https://git.ins.jku.at/proj/digidow/uwb-sensor-rust/-/blob/164a0edf7de0b6781b63e3a0be22796ea4287a1a/src/ranging_event_handling.rs#L329
https://git.ins.jku.at/proj/digidow/uwb-sensor-rust/-/blob/164a0edf7de0b6781b63e3a0be22796ea4287a1a/src/ranging_event_handling.rs#L288
https://git.ins.jku.at/proj/digidow/uwb-sensor-rust/-/blob/164a0edf7de0b6781b63e3a0be22796ea4287a1a/src/ranging_event_handling.rs#L31

Implementing a Digidow-compatible Sensor for UWB Indoor Positioning 10

u Weuse as little readings as possible to get a good reaction time, asmany
as possible to get a good average.

The movement speed is calculated as follows:

1. We subtract each queue entry from the previous entry.

2. We sumup all the differences for a single sensor and divide by the num-
ber of readings.

3. We sum up all the absolute differences for all sensors and divide by the
number of sensors.

Is Moving In Front Of Door Detection: The movement speed is then com-
pared to a threshold, which is currently set to 0.5 m/reading.u If the movement speed is above the threshold, the sensor assumes that

the user ismoving in the hallway, so only the current location data with
the movement vector is sent to the PIA.u If the movement speed is below the threshold, the sensor assumes that
the user is standing. If the user is standing in front of a door, the door
name is sent as an extra credential to the PIA.

Note: There is an added check to see if the user is standing in front of a
door for a longer time, in our case 5 seconds, to prevent the sensor from
sending the door name multiple times. This means a new door name is
sent at most once every 5 seconds. Since we cannot expect the system
to always be able to immediately recognize when a user is moving away
fromadoor,wecannot just sendan indication that theuser isnot stand-
ing in front of a door anymore.

Digidow Sensor Library The interaction with the Digidow PIA is done via the
digidow_sensor_library module. Using that library, the sensor doesn’t have to
worry about the specifics of the Digidow protocol, but can instead use the pro-
vided functions to send the UWB data to the PIA.

The only needed implementations are in the digidow_sensor_code.rsfile, which
defines the Verifiable Credential that will be sent, and the registration object
that is sent from the PIA and matched against the embedding of the user, in
our case just the onion address.

The UwbSensorRegistration struct looks like the following:

1 #[derive(Clone, Deserialize, Serialize, Debug, PartialEq)]
2 pub struct UwbSensorRegistration {
3 pub identity: String,
4 }

This registration struct can be this simple because the sensor only needs to
match the onion address of the user to the onion address in the registration
object, and all member variables of the struct (so just the String identity) im-
plement the required traits for the required functionality.

There is another struct, UwbSensorDataPush, which contains the data that
is sent to the PIA. It has to implement a trait that allows it to be implic-
itly converted to a Vec<VerifiableCredential>, which is packed up by the digi-
dow_sensor_library into aneatVerifiablePresentation, signedandsent to thePIA.
In the case of the UWB sensor, the data is converted to a VerifiableCredential
containing the UWB data and movement vector, and optionally an additional
VerifiableCredential containing the door name a person is in front of.

https://git.ins.jku.at/proj/digidow/uwb-sensor-rust/-/blob/164a0edf7de0b6781b63e3a0be22796ea4287a1a/src/ranging_event_handling.rs#L205
https://git.ins.jku.at/proj/digidow/uwb-sensor-rust/-/blob/164a0edf7de0b6781b63e3a0be22796ea4287a1a/src/digidow_sensor_code.rs
https://git.ins.jku.at/proj/digidow/uwb-sensor-rust/-/blob/164a0edf7de0b6781b63e3a0be22796ea4287a1a/Cargo.toml#L17
https://git.ins.jku.at/proj/digidow/uwb-sensor-rust/-/blob/164a0edf7de0b6781b63e3a0be22796ea4287a1a/src/digidow_sensor_code.rs
https://git.ins.jku.at/proj/digidow/uwb-sensor-rust/-/blob/164a0edf7de0b6781b63e3a0be22796ea4287a1a/src/digidow_sensor_code.rs#L38

Implementing a Digidow-compatible Sensor for UWB Indoor Positioning 11

The credentials contain the following data:

uwb-tracking-data:

anchor_distances: A BTreeMap containing the latest distances from the
anchors to the user.

anchor_az_angles: ABTreeMapcontaining the latest azimuthangles from
the anchors to the user.

anchor_el_angles: A BTreeMap containing the latest elevation angles
from the anchors to the user.

anchor_mac_address: The MAC address of the latest anchor that updated
data.

movement_vector: The movement vector of the user.

datetime: The timestamp of the data.

proposed_verifiers: The onion addresses of the proposed verifiers.

identity: The onion address of the user.

uwb-door-detection-data (only sent if the user is in front of a door):

has_stopped_in_front_of_door: A boolean that is true if the user has
stopped in front of a door.

identified_door: The door name the user has stopped in front of.

movement_vector: The movement vector of the user.

datetime: The timestamp of the data.

proposed_verifiers: The onion addresses of the proposed verifiers.

identity: The onion address of the user.

Settings The settings module is responsible for loading the configuration
from the config file and providing it to the other modules.

It reads the config file and parses it into a struct, with missing values being
replaced by default values. The struct is then returned as a variable, which is
used by the other modules to access the configuration.

The config file is a JSON file and contains the following values:

ia_public_keys: The public key(s) of the Issuing Authority, used to verify
the signature of the data sent by the PIA.

door_distances: A HashMap containing the distances from the UWB an-
chors to the doors in the building.

bbs_secret_key: [Optional] The secret key of the BBS+ signature scheme,
used to sign the data sent by the sensor. If not present the sensorwill create
a new keypair and store it in the config file.

bbs_public_key: [Optional] The public key of the BBS+ signature scheme,
used to verify the signature of the data sent by the sensor. If not present the
sensor will create a new keypair and store it in the config file.

onion_key: [Optional] The onion address private key, used to create the
onion address of the sensor. If not present the sensor will create a new key-
pair using the zwuevi crate and store it in the config file.

https://git.ins.jku.at/proj/digidow/uwb-sensor-rust/-/blob/164a0edf7de0b6781b63e3a0be22796ea4287a1a/src/digidow_sensor_code.rs#L138
https://git.ins.jku.at/proj/digidow/uwb-sensor-rust/-/blob/164a0edf7de0b6781b63e3a0be22796ea4287a1a/src/digidow_sensor_code.rs#L101
https://git.ins.jku.at/proj/digidow/uwb-sensor-rust/-/blob/164a0edf7de0b6781b63e3a0be22796ea4287a1a/src/settings.rs#L83
https://git.ins.jku.at/proj/digidow/uwb-sensor-rust/-/blob/164a0edf7de0b6781b63e3a0be22796ea4287a1a/Cargo.toml#L18

Implementing a Digidow-compatible Sensor for UWB Indoor Positioning 12

tor_control_port: [Optional] The port the Tor control port is listening on.
If not present the sensor will use the default port 9051.

proposed_verifiers: [Optional] A list of onion addresses of the proposed
verifiers. If not present the sensor will not propose any verifiers.

serial_port_settings: [Optional] The serial port settings used to commu-
nicate with the anchors. If not present the sensor will use the default set-
tings. The default settings are: 115200 baud, 8 data bits, 1 stop bit, no parity,
1 second timeout.

Main Function Themain function ties all the other functions together.

It initially loads the configuration from the config file. Then it calls
find_fitting_serial_ports to find the ports anchors might be connected to. If
there are no ports, the program will exit with an error, as it cannot function
without anchors. If there are ports, the program will continue running by
constructing an object Sensor of the sensor library using the provided Sensor-
Builder. The SensorBuilder takes several arguments, such as the trusted issuing
authority public keys, the onion service private key and the BBS+ keypair. We
then wrap the Sensor object in an Arc<Mutex<Sensor» to allow for concurrent
access to the sensor object. This is necessary because the Sensor object is ac-
cessed by multiple threads, specifically one thread for each used USB port
(each anchor). These threads are then spawned and the main program enters
a sleeping state, where it awaits all threads to finish, which technically should
never happen, as the threads of open_and_listen_on_port are infinite loops.

4. Conclusion

The UWB sensor is now fully functional and can be used to send UWB data to
the Digidow PIA.

The implementationof thesensor libraryallows for easy integrationof the sen-
sor into the Digidow system by abstracting away the specifics of the Digidow
protocol. The only exposed parts are for initializing the sensor, the structs that
contain the relevant data, and the function that does thematching and sending
the data to the PIA.

This allows the implementer to focus on the specifics of the sensor and not
worry about the specifics of the Digidow system. In the case of the UWB sensor,
this meant dealing with the receival of UWB data from the anchors and pro-
cessing it in exactly the way we needed it.

https://git.ins.jku.at/proj/digidow/uwb-sensor-rust/-/blob/164a0edf7de0b6781b63e3a0be22796ea4287a1a/src/main.rs#L52
https://git.ins.jku.at/proj/digidow/uwb-sensor-rust/-/blob/164a0edf7de0b6781b63e3a0be22796ea4287a1a/src/main.rs#L101
https://git.ins.jku.at/proj/digidow/uwb-sensor-rust/-/blob/164a0edf7de0b6781b63e3a0be22796ea4287a1a/src/main.rs#L130

Implementing a Digidow-compatible Sensor for UWB Indoor Positioning 13

References

[1] FiRa Consortium, Inc. 2023. HowUWBWorks. Retrieved 02/08/2024 from
https://www.firaconsortium.org/discover/how-uwb-works.

[2] MobileKnowledge. 2024. MK UWB Kit Mobile edition 2.0. Retrieved
02/08/2024 from https : / / www . themobileknowledge . com / product
/mk-uwb-kit-mobile-edition-2-0/.

[3] Institute ofNetworks andSecurity. 2024. PrivateDigital Authentication in
the Physical World. Retrieved 02/08/2024 from https://digidow.eu/.

[4] Hans-Juergen Pirch and Frank Leong. 2020. Introduction to Impulse Ra-
dio UWB Seamless Access Systems. White Paper. FiRa Consortium. https:
//www.firaconsortium.org/sites/default/files/2020-10/introduction-to
-impulse-radio-uwb-seamless-access-systems-102820.pdf.

[5] Android Open Source Project. 2024. androidx.core.uwb. Retrieved
02/08/2024 from https : / / developer . android . com/ reference /kotlin / a
ndroidx/core/uwb/package-summary.

[6] The Tor Project. 2024. Browse Privately. Explore Freely. Retrieved
02/08/2024 from https://www.torproject.org/.

[7] Nordic Semiconductor. 2024. UART/Serial Port Emulation over BLE. Re-
trieved 04/17/2024 from https://infocenter.nordicsemi.com/topic/com.n
ordic.infocenter.sdk5.v14.0.0/ble_sdk_app_nus_eval.html.

[8] W3C. 2022. Verifiable Credentials Data Model 1.1. Retrieved 02/08/2024
from https://www.w3.org/TR/vc-data-model/.

https://www.firaconsortium.org/discover/how-uwb-works
https://www.themobileknowledge.com/product/mk-uwb-kit-mobile-edition-2-0/
https://www.themobileknowledge.com/product/mk-uwb-kit-mobile-edition-2-0/
https://digidow.eu/
https://www.firaconsortium.org/sites/default/files/2020-10/introduction-to-impulse-radio-uwb-seamless-access-systems-102820.pdf
https://www.firaconsortium.org/sites/default/files/2020-10/introduction-to-impulse-radio-uwb-seamless-access-systems-102820.pdf
https://www.firaconsortium.org/sites/default/files/2020-10/introduction-to-impulse-radio-uwb-seamless-access-systems-102820.pdf
https://developer.android.com/reference/kotlin/androidx/core/uwb/package-summary
https://developer.android.com/reference/kotlin/androidx/core/uwb/package-summary
https://www.torproject.org/
https://infocenter.nordicsemi.com/topic/com.nordic.infocenter.sdk5.v14.0.0/ble_sdk_app_nus_eval.html
https://infocenter.nordicsemi.com/topic/com.nordic.infocenter.sdk5.v14.0.0/ble_sdk_app_nus_eval.html
https://www.w3.org/TR/vc-data-model/

	Contents
	Abstract
	Introduction
	Background
	Ultra Wideband
	UWB Anchors by MobileKnowledge
	UWB Tags/Android App

	W3C Verifiable Credentials
	TOR
	Digidow

	Implementation
	Hardware Setup
	Communication Protocols
	Between UWB tags and UWB anchors
	From UWB anchors to Jetson Nano
	Between Jetson Nano and PIA

	Software Setup
	Anchor Firmware
	UWB Sensor

	Conclusion
	References

