
JOHANNESKEPLER
UNIVERSITY LINZ
Altenberger Straße 69
4040 Linz, Austria
jku.at

Author
Cintia Maja Bódi, BSc
12322483

Submission
Institute of
Networks and Security

First Supervisor
Univ.-Prof. DI Dr.
RenéMayrhofer

Second Supervisor
Dr.Gergely Kovásznai

Assistant Thesis
Supervisor
Dr. Philipp Hofer

December 2024

Privacy-Preserving
BiometricMatching via
Secure Two-Party
Computation

Master’s Thesis
to confer the academic degree of

Diplom-Ingenieurin
in the Master’s Program

Computer Science

https://jku.at/

Abstract

This thesis presents a detailed exploration of Funshade, a framework designed
to enable secure biometric authentication through privacy-preserving proto-
cols. With biometric data increasingly used for security, protecting this sensi-
tive information is cardinal. Funshade provides a method for comparing bio-
metric data between parties without revealing the actual data itself, ensuring
privacy and security.

As a particular example, the Digidow project uses biometric authentication to
determine if the access canbegiven to the individual detectedby a sensor. Digi-
dow employs a decentralized structure in which each person’s biometric tem-
plate is stored eitherwith a chosen cloud provider or on a personal server. Since
biometric data is stored across potentially untrusted locations, the compari-
son of the stored template with the live data from a sensor requires a secure
and privacy-preserving solution that protects the data even in the presence of
potentially malicious parties. For this task Funshade is viewed as a potential
candidate, as the participants are able to keep the sensitive data private that is
needed for the verification.

A prototype is implemented in Rust, chosen for its strong memory-safety
and performance features. Throughout the thesis, challenges such as man-
aging Rust’s memory model, and optimizing cryptographic functions were
addressed. Additionally, several areas for future improvement are identified.
These enhancements aim to improve security, usability, and adaptability of the
framework in diverse applications.

ii

Contents

Abstract ii

List of Figures v

Listings vi

1 Introduction 1

2 Background 6
2.1 Biometric Authentication . 6
2.2 Distance Metrics . 7
2.3 Distributed Systems . 8
2.4 Cryptography . 9
2.5 Multi-Party Computation . 13
2.6 Secret Sharing . 15

2.6.1 Additive Secret Sharing . 16
2.6.2 Beaver Triples . 17
2.6.3 Π-Secret Sharing . 19

2.7 Function Secret Sharing (FSS) . 22
2.7.1 Distributed Point Function (DPF) 23
2.7.2 Distributed Comparison Function (DCF) 26
2.7.3 Interval Containment Gate (IC Gate) 28

3 RelatedWork 29

4 Funshade 31
4.1 Roles . 34
4.2 Two-Party Scenario . 37

5 Rust 39
5.1 Basic Concepts . 40
5.2 Ownership and Borrowing . 43
5.3 Custom Types . 44
5.4 Traits . 46
5.5 Function Pointers, ”Delegates” . 46
5.6 Error Handling . 47
5.7 Rust Documentation . 48

6 Rust Implementation 50
6.1 External Crates . 50
6.2 Helpers . 53

6.2.1 Group Data Structure . 53
6.2.2 Funshade Settings Data Structure 53
6.2.3 Bit Operations . 53
6.2.4 Convert Methods . 54
6.2.5 Scaling . 54

6.3 Function Secret Sharing . 55
6.4 Funshade . 57
6.5 Party Structure . 58

iii

Contents iv

6.6 How to Use this Library? . 61

7 Evaluation 63
7.1 Positive Test Run . 63
7.2 Negative Test Run . 64
7.3 Performance . 65
7.4 Unit Tests . 66
7.5 Execution with Party Structures . 69

8 Conclusion and FutureWork 71

Bibliography 72

Appendix A Code Reachability 79

List of Figures

1.1 Stored data sent to the compromised camera. 2
1.2 An office worker’s data sent to the external system. 2
1.3 Central DB example. 4
1.4 Digidow example. 5

2.1 A simple visualization of embeddings. 6
2.2 A simple visualization of biometric authentication. 7
2.3 A simple visualization of distance metric. 7
2.4 Euclidean Distance example. 8
2.5 Encrypted Key Exchange. 12
2.6 Password Authenticated Key Exchange by Juggling. 13
2.7 Introduction to MPC. 14
2.8 Bad scenarios for Alice and Bob. 14
2.9 Alice and Bob’s solution using MPC. 15
2.10 Secret Sharing visualization. 16
2.11 Additive Secret Sharing Example. 17
2.12 Beaver Triples Example. 18
2.13 Π-Secret Sharing. Image is based on [29]. 19
2.14 Π-Secret Sharing Initialization. 19
2.15 Π-Secret Sharing Addition. 20
2.16 Π-Secret Sharing Multiplication. 21
2.17 Function Secret Sharing. Image is based on [63]. 22
2.18 A simple example of FSS. Image is based on [63]. 23
2.19 Practical example of FSS. The image is partially based on [63]. . . 23
2.20DPF Tree. 24
2.21 DPF evaluation trees in off- and on-path. 25
2.22 DCF Tree. Image is based on [64]. 26
2.23 DCF Evaluation phase. Drawn and generated based on the algo-

rithm in [9]. 27
2.24Different cases of Overflow and Interval Containment. Image is

based on [27]. 28

4.1 FSS keys embedded in Funshade key. 32
4.2 Funshade roles and their relations. Image is based on [29]. 35
4.3 Funshade process with third-party setup (left) and 2PC (right). . . 36
4.4 Digidow-inspired example of Funshade. Image is partially based

on [29]. 37

5.1 HTML page generated from documentation. 49

6.1 A Sensor connected to multiple PIA storing keys for each session. 59
6.2 Initialization request. 60
6.3 ThirdPartyPIA and ThirdPartySensor structs and instantiation. 62
6.4 Public trait acting as an interface mapped to method calls. 62

7.1 Biometric data for matching test case. 63
7.2 Biometric data for unmatching test case. 64
7.3 The average time per iteration for this benchmark. 66

v

Listings

5.1 Cargo.toml file in thesis project. 39
5.2 Basic Cargo commands to create, build, run, and test a project. . . 39
5.3 Declaring a variable and attempting to change its value results in

a compile-time error. 40
5.4 Declaring a mutable variable and changing its value. 40
5.5 Declaring a constant value. 41
5.6 The second x declaration shadows the first one. After it dies at the

end of the scope, the value of x becomes 5 again. 41
5.7 The second spacesdeclaration shadows thefirst one’s value and type. 41
5.8 Defining a function that returns with an unsigned value. 41
5.9 Attempt to create a dynamically sized array, resulting in a compile

error. 42
5.10 Conditional assignment with if andmatch expressions. 42
5.11 Range-based and iterator-based for loop examples. 42
5.12 Tuple usage example,with both direct access and destructuring of

elements. 43
5.13 Ownership transfer with Copy and String types. 43
5.14 Ownership transfer when calling functions. 43
5.15 Example of immutable andmutable references. 44
5.16 Basic struct instantiation. 44
5.17 Tuple struct example. 45
5.18 Enum definition with variant data types. 45
5.19 Method and ”constructor” definitions for a struct. 45
5.20 Example of trait definition and implementation. 46
5.21 Defining a closure. 46
5.22 Closure usage. 47
5.23 Struct field types accepting function pointers and closures. 47
5.24 Error handling with the Result type. 48
5.25 Inline documentation for a struct and its fields. See result in Fig-

ure 5.1. 48

6.1 Module hierarchy in Funshade project generated with the tree .
command. 50

6.2 Execute the software with a PIA role. 51
6.3 Args data structure for clap crate. 51
6.4 Dependencies used in Funshade project generated with cargo tree

command. 51
6.5 After optimizations done by the compiler, the two operations will

be the same. 56
6.6 The last line throws an error because the ownership of the value is

transferred in line 2. 56
6.7 DistanceMetric data structure. 57
6.8 Message enum. 59
6.9 Interface of Sensor and PIA input roles. 61

7.1 A positive test run of Funshade. 64
7.2 A negative test run of Funshade. 65
7.3 Test report. 66

vi

Listings vii

7.4 The bit representation unit tests are organized in a small test
module. 66

7.5 Funsahde test generates embeddingswithmore elements in every
iteration and executes the protocol. 68

7.6 Start the Result Party. 69
7.7 Start the Setup Party. 69
7.8 Start the PIA. 69
7.9 Start the Sensor. 69
7.10 Print outs from Result Party. 69
7.11 Print outs from Setup Party. 70
7.12 Print outs from PIA. 70
7.13 Print outs from Sensor. 70

Chapter 1

Introduction

Let’s assume that in a building, there is a very important room (e.g. server
room) into which only a few selected people can enter. It is not the only room
on the same floor, there are a lot of other ones as well, such as regular offices.
Despitemany peoplewalking around this room, there is no security guard pro-
tecting the secrets inside; only a system is in their place. This system is re-
sponsible for allowing only the members of the selected group to enter. It op-
erates with a camera, a lock, and an external third-party system that handles
the group’s biometric data. When the camera detects someone in the corridor,
it uses biometric authentication to verify their identity. Based on the verifica-
tion, it signals to the lock to either open or remain closed.

Biometric authentication is amethodused toverify aperson’s identitybasedon
their physical or behavioural characteristics, which can include fingerprints,
facial features, iris pattern, voice, or any other unique aspects of a person [44].
These traits are turned intodataknownasbiometricdataor embeddings,which
are like digital versions of the characteristics, generated using mathematical
formulas and stored as a collection of numerical values.

Biometric authentication relies heavily on this kind of data for verification to
check if someone is who they claim to be. Typically, the process consists of
comparing two sets of these embeddings, the stored one and the individual’s
who seeks access to something at the time. This comparison is performed by
algorithms that check how closely the two sets of numbers match, and if they
are similar enough, access will be granted. The same way as a security guard
would.

In theory, this method ensures a high level of accuracy and security, as the
chances of two people having the same biometric representation are very un-
likely. This whole thing seems nice and simple at first, it is just a trivial com-
parison. But, where is your data stored? To grant access, a comparison needs
to happen between two embeddings, namely the detected and stored. Where
should this happen?

Let’s analyze the above-mentioned scenario in more detail. The camera is
placed on the corridor in a way that anyone’s face who gets close to the door
is visible. There are no obstacles that can prevent it to read their face. When-
ever a person comes into the sight of the camera, it calculates their biometric
data. This data needs to be comparedwith another that is accessible through an
external third-party system,not operated by theparty towhomthe camera be-
longs to. Since the camera, the lock and the external system are not physically
connected they need to communicate over a network in order to exchange data
during the authentication process. Neither of them can do the same things as
the other: the camera can not open the door, the lock can; the external system
can not detect a person, the camera can; they need to collaboratively perform
their part in order to fulfill their bigger purpose. When systems have this type
of architecture or relationship between each other they are called distributed
systems.

1

1 Introduction 2

Now that everything is set, for the first scenario assume that the comparison
happens on the camera side (cf. Figure 1.1). In this system it means that when
the camera detects somebody and calculates the data, it will receive the other
set of embeddings from the external system through a secure encrypted chan-
nel. This data needs to be decrypted in order to handle it, but this also means
that the data becomes public to this party. In other words, the camera will get
to know every persons’ biometric data and this can cause a security issue. If
the camera is untrustworthy or should become compromised, then amalicious
party could get their hands on the sensitive information of these people.

Camera External Alice
Mallory

Figure 1.1: Stored data sent to the compromised camera.

In the second case, use the external system for the calculation (cf. Figure 1.2).
The problem is similar to the previous one. The external system acquires the
embedding of every person who wants to enter the room and also those one
who are just passing-by. Should it receive or potentially store the data which it
has nothing to do with? If the company whom the external system belongs to
want it, they could monitor every person in that floor.

Camera External Alice

Carol

Figure 1.2: An office worker’s data sent to the external system.

For this problem, secure multi-party computation (SMPC) offers promising
solutions. It is an important and emerging area within cryptography that ad-
dresses the difficulty of performing collaborative calculations, while still en-
suring the privacy of each party’s inputs. This is especially valuable when sen-
sitive data needs to be processed without exposing it to all of the involved par-

1 Introduction 3

ties. The goal is to enable this kind of computation without revealing the input
— the actual data— to one another.

Within this area, many solutions have already been developed [28] that deal
with biometric matching based on various cryptographic techniques that al-
low computation over sensitive data. While these methods ensure privacy and
security, in most cases it comes with some trade-offs. Some of them are
communication-intensive, meaning they require a large volume of data to be
exchanged, or they call for high number of communication rounds between the
parties, increasing the complexity and latency of the interactions. Others are
computation-insensitive and rely on such algorithms that demand significant
processing power or time to perform,making them less convenient in applica-
tions where efficiency is an important aspect.

This thesis focuses on Funshade [29], a cryptographic solution that aims to
strike a balance between security and efficiency. Funshade is designed to be
computation-friendly and highly optimized for the evaluation phase of the
process, where it achieves only a single round of communication between the
two involved parties. This featuremakes Funshade appealing for practical use,
as it reduces the communication overhead while still maintaining the neces-
sary level of security and privacy.

This thesis will explore the implementation of Funshade using Rust, a pro-
gramming language well-know for its emphasis on safety, concurrency, and
performance. By the application of Funshade and leveraging Rust’s features—
such as its strict memory management and type safety — this work aims to
enhance the security of Digidow [41]. It will not only detail the mechanics and
underlying principles of Funshade but also inspects key design and develop-
ment choices, taking different use case scenarios into account.

By providing a secure and efficient implementation of Funshade, this thesis
aims to contribute to the broader field of cryptographic research and offer a
practical solution for privacy-preserving computations.

The structure of the thesis is as follows. Chapter 2 provides an introduction
to the topic and the necessary background information for understanding the
protocol and implementation. Chapter 3 offers a review of the other solutions
focusing on secure biometric matching. Chapter 4 introduces the theoreti-
cal background of Funshade, explaining the cryptographic principles it relies
on. In Chapter 5, the Rust programming language is explored, including an
overview of its features relevant to the project. Chapter 6 delves into the actual
implementation of Funshade using Rust, including the reasons behind the de-
sign choicesmade. Chapter 7 evaluates Funshade’s performance through pos-
itive and negative test runswith concrete values, run-time benchmarking, and
summaries of implemented unit tests. Finally, Chapter 8 concludes the thesis
by summarizing the keyfindings, describes future improvements and suggests
potential directions for future research.

1.1 Digidow

In recent years, the use of biometric data for various purposes has become
increasingly widespread. In some countries, governments have implemented
systems that monitor and track individuals using facial recognition and other
technologies, while in others, people can pay for their bus ticket using biomet-
ric authentication.

These methods of identification provide the possibility to use them in pub-
lic transport, payment and ticketing applications, or to cross country borders

1 Introduction 4

without any physical identification or valet [41]. Aside from that, they are all
using biometric authentication, there is a significant similarity between the
previous examples, which is that all of themuse a centralized database that re-
sides in one hand (cf. Figure 1.3). Therefore, sensitive data controlled by a sin-
gle entity carries the possibility of governmental overreach, potential misuse,
or in the case of hacking, the attacker can gain all of them. In such scenarios,
individuals have no control over how their data is used, collected, and stored,
leading to a loss of privacy.

Central
Database

IndividualIndividualIndividual
Sensor

Digital
World

Physical
World

Verifier

Figure 1.3: Individuals’ data resides ina single, central database. Image isbased
on [42].

In this context, Digidow addresses the risk posed by centralized biomet-
ric storage. It offers a decentralized model for digital identity management,
rather than relying on single institutions to store and manage the data. This
is achieved by associating each individual with so-called Personal Identity
Agents (PIA), a “digital shadow of the person” that makes it possible for them
to interact with different services. By allowing the users to control their own
agent, letting them decide where to install or host their agent, monitor and
turning it off, it prevents single entities from being in direct charge of every
person’s data.

In addition to the PIA, there are two other participants in the process (cf. Fig-
ure 1.4): the Sensor and the Verifier. The Verifier checks the information pro-
vided by the PIA and ensures that a trusted sensor was used, but it can be also
a physical component, such as a lock that opens the door. It also plays a crucial
role in interacting with the physical world and executing actions based on the
verification results. The Sensor is responsible for detecting characteristics of a
person and translating it to a biometric template.

Unlike traditional systems that depend on centralized databases or physical ID
documents, Digidow ensures that sensitive information remains under user
control. This approach not only enhances privacy but also reduces the risk of
data breaches and misuse by distributing trust across multiple parties rather
than a single entity.

1 Introduction 5

Personal
Identity Agent

IndividualIndividualIndividual
Sensor

Digital
World

Physical
World

Verifier

Figure 1.4: Individuals’ data resides in their own Personal Identity Agent. Im-
age is based on [42].

Chapter 2

Background

2.1 Biometric Authentication

Even though this work’s main focus is not the biometric data itself or evaluat-
ing different face recognition and embedding calculation techniques, it needs
to be mentioned for a deeper understanding of the topic.

Biometrics aremeasurable traits, that, due to their unique nature, can uniquely
identify a person. These traits can be separated into two categories [44]: bi-
ological and behavioural. Biological traits include DNA, dental patterns, vein
patterns, andperhaps themostwell-known,fingerprints.Thebehavioural cat-
egory involves aspects related to how individuals conduct themselves, such as
speaking style, handwriting, and gait, the pattern of how an individual walks.

Using different mathematical formulas, neural networks, and techniques, the
process of digitalizing these physical traits creates embeddings (cf. Figure 2.1).
In most cases, this data represented as numerical vectors that can be used for
calculations, allowing software and other systems to perform operations on
them.

Traditional heuristic methods in biometric recognition relied on manually
selected features, such as measuring the distance between the eyes or nose
width [21].However,modernneural networks learnmore complex andabstract
patterns directly from the data. The embeddings generated by them, capture
even smaller details and are less dependent on predefined features [26].

[0.31 ; 0.14 ; 0.007 ; ... ; 0.4]

Figure 2.1: A simple visualization of embeddings.

Duringbiometric authentication, twoembeddings areneeded to verifywhether
someone is who they claim to be. The process consists of a comparison of these
vectors through computation that rates their similarity (cf. Figure 2.2). In sim-
ple terms, they assess how they relate to each other. This calculation is done by
calculatingdistances (usingdistancemetrics) or correlations [67].Theanalysis
allows the software or system to determine if there is a match or not, ensuring
a reliable authentication process.

6

2 Background 7

[0.31 ; 0.14 ; 0.007 ; ... ; 0.4][0.098 ; 0.5 ; 0.002 ; ... ; 0.3146]

Figure 2.2: A simple visualization of biometric authentication.

2.2 DistanceMetrics

Distance metrics, or also known as distance functions, are mathematical for-
mulas used to quantify the dissimilarity between object points in a given space.
Inmachine learning, datamining, and pattern recognition, distancemeasure-
ment is a crucial part of different tasks, such as classification, clustering, and
regression [60].

In most cases, a distance metric takes two data points—which in our case are
vectors— and returns a single numerical value representing “how close” they
are (cf. Figure 2.3). If this value is above a pre-defined threshold then the result
will be a match [29], meaning the similarity between the two vectors consid-
ered high enough. Based on the dataset structure and the algorithmbeing used,
the type of distance metric chosen will significantly affect the results [30].

0 0.25 0.5 0.75 1

x R

if x > θ x < θelse
First data point set
Second data point set

Figure 2.3: A simple visualization of distance metric.

2 Background 8

Commonly used vector distance metrics are:

Euclidean Distance [40]

The Euclidean distance function measures the straight-line distance be-
tween two points (cf. Figure 2.4). The shortest possible path. It’s not only
usable in a 2D or 3D plane, but can be generalized to higher dimensions.

fED(x, y) =

⎷

n

j=1

(xj − yj)2

A

B
d

A(2;3)
B(8;10)

d = d = (x - x) + (y - y)a

d = (2-8)+(10-3) = 36+49 = 9.215

b b a
2 2

2 2

Figure 2.4: Euclidean Distance example.

Squared Euclidean Distance [29]

This is a slight optimization of the Euclidean Distance, achieved by drop-
ping the calculation of the computationally intensive square root. It is used
in many machine learning application, mostly in the context of clustering
and face recognition.

fSED(x, y) =
n

j=1

(xj − yj)2

Hamming Distance [7, 29]

It was first used in information theory for error detection and error-
correction codes to measure the error introduced by noise, but generally
it is used to measure the distance between two bit-strings. The result is
theminimumnumber of symbol changes needed to change from one to the
other.

fHD =
n

j=1

(xj ⊕ yj)

2.3 Distributed Systems

As computer networks began to arise around 1960-70s, the concept of dis-
tributed systems started to take shape. Organizations grew, the computing
needs increased, making it evident that these computational tasks needed to
be divided and let different machines handle these pieces. This arising chal-
lenge paved the way for the development of Local-Area Networks (LANs) and
Wide-Area Networks (WANs). In addition, other developments and events are

2 Background 9

contributed to the evolution of distributed systems, such as the usage of per-
sonal computers became more general, the introduction of handheld devices
and small computers with network connections, and the emergence of the In-
ternet [66].

By definition “a distributed system is a collection of autonomous computing ele-
ments that appears to its users as a single coherent system” [66]. In a distributed
system the participating computing elements, called nodes, are/can be ge-
ographically separated. Although they operate independently, they work to-
gether to achieve a common goal. This network of computers is easily scalable,
meaning that when a new device connects to this system, the overall architec-
ture or the software does not need to be changed [32].

One challenging part of any definition about distributed systems is the phrase
“it appears as a single coherent system to the user”. This statement seems sub-
jective, as it depends on the user’s knowledge and perspective. More precisely,
the system only hides the complexity of coordination from the user and man-
ages the resources across the network without the direct involvement of the
user [66].

Before looking at an example, it is important to mention another key aspect:
fault-tolerance [32]. In a distributed system, many computers are connected
to each other and any one could run into a problem. However, such problems
should not halt the operation of the entire system. For instance, it would be a
major issue if a student encountered an error while registering for courses and
consequently the whole university system suddenly stops working. Therefore,
it is the system’s responsibility to handle these errors locally without impact-
ing the other nodes.

As an example on how to deal with failures, we look at file sharing. In a torrent
network, data is shared acrossmultiple devices,with each device acting as both
a client and a server. When somebody decides to download large files through
this, like Linux distributions, they start a communication with multiple com-
puters. The user retrieves chunks—small pieces of data— from these devices,
ultimately each of them contributing to the final file. In this scenario, the user
only needs to open a .torrentfile in their preferred torrent client, while the pro-
cess of acquiring and assembling the data happens automatically, without any
further user interaction. Torrent exhibits the fault-tolerance characteristics of
distributed systems: if one participant drops out from the process, the datawill
still be retrieved from someone else without an issue.

2.4 Cryptography

By definition “Cryptography is the study ofmathematical techniques related to as-
pects of information security such as confidentiality, data integrity, entity authenti-
cation, and data origin authentication” [43].

Cryptography focus on securing communication in the presence of adversaries.
It ensures that information can be transmitted in a way that allows the in-
tended recipient to easily interpret it, while others face significant computa-
tional or time-based challenges in decoding themessage. In short, cryptogra-
phy provides the tools to guarantee the confidentiality and integrity of infor-
mation [37].

The origins of cryptography can trace back to thousands of years to civiliza-
tions like Egypt, Greece, and Rome [59]. These initial methods often involved
substituting letters tomakemessages unreadable andmeaninglesswithout the

2 Background 10

right knowledge. One simplemethod is the“Caesar cipher”, usedby JuliusCae-
sar, which shifts the alphabet by a fixed number,making it simple but effective
at that time. Fast-forward to World War II, a famous example is the Germans’
Enigmamachine, which was broken by Alan Turing.

Over the centuries, cryptographic methods evolved, particularly driven by
technological advances, these methods quickly shifted from “witty ideas” to
complex mathematical algorithms [37]. One suchmathematical algorithm is a
public-key cryptographic technique, the RSA [53], named after its inventors,
Rivest, Shamir and Adleman. RSA relies on the computational difficulty of fac-
toring large prime numbers—around 100 digit—whichmakes the decryption
extremely hard for unauthorized parties [43, 59].

For the further part of this thesis, we use a few key terms:

Hash Function

A hash function is a cryptographic primitive that transforms input data of
arbitrary size into a fixed-size output, typically called a hash [37, 43]. It’s
used to verify data integrity since even a small change in the input cre-
ates completely different outputs. These functions are typically designed to
work one-way, making it difficult to reverse original input from the hash.
They are widely used in password storage, among other uses in integrity
verification.

Offline and Online Phase

In secure multi-party computation protocols, computations are often split
into two distinct phases [49]: the offline phase and the online phase. This
separation allows computations to be made more efficient by preparing
certain operations in advance.

The offline phase is more like a preparation phase where no actual input
data is processed yet, or it is not available at all. Its main purpose is to pre-
compute certain values to speed up the subsequent online phase (e.g. gen-
erating Beaver triples in secret sharing, which is further discussed in Sec-
tion 2.6.2).

Theonlinephase takesplace after theofflinephase andbeginswhen the ac-
tual input data is available. Themain point of the separation is tominimize
the delay during the actual computation on the information. In the context
of the example mentioned in Chapter 1, this is akin to standing at a door,
waiting to be authenticated for entry. The quicker the process, the sooner
access is granted.

Semi-Honest Party

There are different adversarymodels for describinghowdifferent so-called
parties (e.g. nodes in a distributed system) behave. In secure multi-party
computation, the term semi-honest describes parties that follow the pro-
tocol faithfully but attempt to extract asmuch information as possible from
the computation [29]. These parties, also known as Honest-but-Curious,
are not malicious in the sense of threatening integrity but still pose signif-
icant risks.

2 Background 11

2.4.1 Password Authenticated Key Exchange (PAKE)

Password-authenticated key exchange (PAKE) is a major area of research in
cryptographic protocols [5, 8, 25]. While user-chosen passwords are widely
used, the users often pick weak ones, especially compared to cryptographic
keys, making them vulnerable to theft, guessing, and brute-force attacks. Al-
thoughmeasures canbe implemented to limit online trial-and-error attempts,
offline attacks remain a considerable threat. For instance, if an attacker gains
access to the server, they can perform Rainbow Table attacks to crack the
hashes.

PAKE protocols facilitate an interactive process between two parties (or a
group) to establish cryptographic keys based on a shared password or its hash,
while ensuring protection againstmalicious actors, even ifmessages are inter-
cepted. The original work in this area, Encrypted Key Exchange (EKE) [5], was
the first protocol that did not require each party’s public key or digital certifi-
cates for authentication. Due to its simplicity, EKE paved the way for subse-
quent PAKE proposals over the following decades, many of which built on the
original concept and some adapted it for client-server scenarios. EKE’s con-
sideration of users relying on short, easilymemorable passwords alsomakes it
advantageous in contexts where an additional cryptographic device for storing
secret keys is unavailable [24].

Commonly, PAKEprotocols canbe categorized into two types: thebalanced and
the augmented schemes [24]. Balanced schemes assume the two communicat-
ing parties possess the same password information. This type is applicable for
both client-client and client-server scenarios. However, in client-server situ-
ations, if the password from the server is stolen, it can be used to impersonate
the client. To mitigate the risk, when the server is compromised, augmented
schemes are tailored for client-server interactions. In these protocols, even if
the attacker obtains verification files from the server, they cannot know the
password without cracking it [8, 25].

After the participants agreed on a password, the process of Encrypted Key Ex-
change is as follows (cf. Figure 2.5) [5]:

1. One participant, A, generates a random number a and encrypts it using a
symmetric cipher with the common password as a key, then sends it to the
other party, B.

2. B decrypts the message using the same password.

3. Afterdecryption,Bgeneratesa randomvalue r,whichservesas the common
session key. They encrypt the value similarly to howA did, but first they use
the value a and then the common password as keys, before sending it back
to A.

4. A receives themessage, then decrypts it. Now both of them knows the ses-
sion key r.

If anattackerhas control over the communicationchannel, theymayresendold
or stale messages. To prevent this, the protocol must implement safeguards,
typically in the form of random challenges.

Despite its weaknesses, Encrypted Key Exchange, as the first PAKE protocol,
demonstrated that the problem is solvable [24]. One of these protocols—and a
more interestingone tomention in this thesis—is thePasswordAuthenticated
Key Exchange by Juggling, J-PAKE [25], where the two parties learn only 1-bit
of information indicatingwhether the supplied passwordsmatch (1) or not (0).

2 Background 12

Alice Bob

password: s

random: a

E (a)

D (D (E (E (r)))) ≡ r

D (E (a)) ≡ a

random: r

E (E (r))

s

ss

s

s s

a

aa

knows a

knows r
knows: s, a, r

Figure 2.5: Encrypted Key Exchange.

In J-PAKE, participants Alice and Bob agree on a subgroup G of ℤq with order
q, where q is the power of a prime number p, ℤq contains q number of elements
andG is a subgroup of this field (e.g. 32-bit integer field: q = pm = 28 = 32) [47].
They both know the (potentially weak) password s ∈ [1, q − 1] and a generator g
that is able to generate a subgroup of G (cf. Figure 2.6).

Each party generates two random values: one from ℤq,which may include 0,
x1 and x3, and one from ℤ∗q, x2 and x4, where neither can be zero. Along with a
knowledge proof (KP) [23] for the random values, they send gx to the other.
Using the knowledge proof, the parties verify that the other possesses the ran-
dom values without learning the exact values. Following this verification, each
party then compute:

𝒜 = g(x1+x3+x4)·x2·s and ℬ = g(x1+x2+x3)·x4·s

For instance, in Alice side this can be expressed as:

𝒜 = (gx1 ⋅ gx3 ⋅ gx4)x2·s = (gx1+x3+x4)x2·s = g(x1+x3+x4)·x2·s

They exchange this data and calculate the common value,𝒦:

𝒦 = ⒧ ℬ
gx2x4s⒭

x2
= g(x1+x2+x3)x4s

gx2x4s = g(x1+x2+x3)x4s−x2x4s = g(x1+x3)x2·x4·s

A similar computation occurs on the side of Bob.With the samematerials, they
can derive a key using a hash function. The simplest way to verify that they
share the samekey is to encrypt a knownvalue andexchange it, or use a random
challenge [25].

This descriptionmight suggest that J-PAKE is suitable for biometric authenti-
cation. However, biometric templates are inherently variable, capturing slight
differences each time due to environmental factors, changes in the individ-
ual (such as moisture on a finger), or differences in scanning devices. Conse-
quently, biometric templates are never exactly the same, which makes algo-
rithms that rely on exact matching unsuitable for biometric authentication. In

2 Background 13

summary, thedynamicnatureofbiometric templates renders J-PAKE inappro-
priate for such purposes.

Alice Bob

password: s

random: x , x

g , g , KP

generator in G: g
subgroup over: G ∈Zq

*

1 2 random: x , x

g , g , KP

3 4

x1 x2 x3 x4

a b

knows g , gx3 x4 knows g , gx1 x2

A, KPA B, KPB
knows B knows A

K K
knows: s, g, G, K

Figure 2.6: Password Authenticated Key Exchange by Juggling.

2.5 Multi-Party Computation

Secure Multi-Party Computation (MPC or SMPC) is a subfield of cryptogra-
phy that enablesmultiple entities to collaboratively computeanymathematical
function over their individual inputs, without revealing anything about them.
This technique is especially valuable when sensitive informationmust be pro-
cessed to compute a shared result, while no party discloses its data to the oth-
ers. MPC finds applications in industries like finance, healthcare, government,
and whenever confidentiality and data privacy are paramount [29].

The main idea behind MPC is to establish a protocol that allows the computa-
tion of a function, denoted as f(x0, x1, … xn−1) = y, using n inputs from different
participants. These participants, labelled P0, P1, … Pn−1, each holds a piece of in-
formation xi, which they want to keep secret [15]. However, their inputs are
necessary for the computation. Most of the time this is not easy to do due to
legal and ethical constraints. For instance, when companies or official institu-
tions are involved, they are boundby regulations that prohibit themfromshar-
ing sensitive data with an external party (PTP) without explicit consent. From
the point of reception the data will be in other hands, that can result in losing
control over how it is used or further distributed (cf. Figure 2.7(a)).

MPC in this sense is different, in the end, it enables computation in a manner
that prevents any party from learning (at most) more than the output (cf. Fig-
ure2.7(b)). Inotherwords,while the collaborative computationoccurs, nopar-
ticipants gains access to any additional information about the others’ input be-
yond the final result [15]. This ensures the protection of the data from any in-
volved parties seeking to act maliciously or not.

2 Background 14

f(x , x , ... , x)0 1 n-1

y

P

x

0

0

P

x

1

1

P

x

n-1

n-1

PTP

Third Party Calculates

(a) A third party receives the data and calcu-
lates the result.

Multi-Party Computation

f(x , x , ... , x)0 1 n-1

P

x

0

0

P

x

1

1

P

x

n-1

n-1

MPC

y
(b) Theparticipants calculate the result using
MPC.

Figure 2.7: Introduction to MPC.

Yao’s Millionaire Problem [68] is a frequently mentioned example of what
multi-party computation can solve. Let’s assume that Alice and Bob are both
millionaires, and theywish to compare theirwealthwithout revealing their ex-
act amounts to one another. At the time theymeet, Alice has x = 10M€ and Bob
has y = 4M€. They want to know who is wealthier, but they are afraid in the
case they are significantly “poorer”, they will be laughed at. The problem can
bemodelled by the function f(x, y) = x ≤ ywhich determines whether Alice has
more or equal wealth compared to Bob.

Alice Bob

x: 10M € y: 4M €

x
y

send

send

(a) Alice andBob send the value to eachother.

Alice Bob

x: 10M € y: 4M €

send send

f(x; y) = x < y

Mallory

(b) Alice andBobsend their values toMallory.

Figure 2.8: Bad scenarios for Alice and Bob.

For a start, they can send their values to each other, but then both of the se-
crets will be publicly known to them, and they would rather keep it as a se-
cret (cf. Figure 2.8(a)). Another solution could be to involve a third party, Mal-
lory, who could compute the result for them. Alice and Bob would be happy,

2 Background 15

they would know the answer from Mallory that Alice is richer, but neither of
themwould know by howmuch. However, this introduces a new issue:Mallory
now possesses both secrets, which she could potentially misuse for her bene-
fit (cf. Figure 2.8(b)).

Alice and Bob drop these solutions as they neither want to let the other know
their secret nor want to let another third person take advantage of it. Fortu-
nately, Alice learnt cryptography in school and suggests an alternative: Multi-
Party Computation (cf. Figure 2.9). Alice only needs to choose a technique she
likes, such as Homomorphic Encryption [22, 54] — that allows computations
on encrypted data — or Secret Sharing that will be explained in the following
sections.

Alice Bob

x: 10M € y: 4M €

f(x; y) = x < y MPC

y = 0 if x > y
1 if x < y

Mallory

Figure 2.9: Alice and Bob’s solution using MPC.

In a real world scenario, one example where Multi-Party Computation can be
applied is when multiple companies want to compare performance metrics to
gain industry insights, but without revealing their own numbers to competi-
tors [15]. With this technology, companies can securely compute benchmarks
while keeping their individual data confidential.

2.6 Secret Sharing

Secret Sharing is a cryptographicmethod used to split (sensitive) information,
referred to as secret s, into multiple n pieces or shares. These shares are dis-
tributed among a group of participants in such away that only authorized par-
ties, upon collaboration, can reconstruct the secret, but nobody from outside.
Importantly, no participant can access the complete secret or even other in-
dividual shares on their own. The shares in isolation hold no meaningful in-
formation about the secret, ensuring that if one party is compromised, the at-
tacker gains no knowledge of the actual value [34].

The shares are distributed in a way that a specific number of participants, de-
noted as k ≤ n, must cooperate to reconstruct the secret [16]. This design en-
sures that while the secret remains protected, it can still be recovered if some
shares are lost or compromised. In the special casewhere k = n, all participants
are required to reveal the secrets (cf. Figure 2.10).

In a situation where information must be protected and not trusted to a single
individual or entity, Secret Sharing methods are essential. Without collabora-
tion among authorized parties, the secret remains inaccessible—with the ex-

2 Background 16

Dealer

Shareholder2

Shareholder1

Shareholder0

Shareholder3

Combiner0

secret: s
Combiner1

Combiner2

n = 4 k = 2

s

s

s

s

0

1

2

3

s

s

s

Figure 2.10: Secret Sharing visualization.

ception of the dealerwho distributes the shares. Thesemethods serve as build-
ing blocks for several cryptographic protocols, including Multi-Party Compu-
tation, ByzantineAgreement, Access Control, Attribute-BasedEncryption, and
Generalized Oblivious Transfer [34].

The following sections describes Additive Secret Sharing, which is a basic
building-block for the more advanced schemes in question. Such schemes are
Π-Secret Sharing and what it build on, the Beaver Triples.

2.6.1 Additive Secret Sharing

AdditiveSecretSharing isoneof the simplest formsof secret sharing, especially
when the number of required participants equals the total number of parties
(k = n). In this scheme, the dealer selects n − 1 random numbers uniformly
froma predefinedfield. These randomnumbers serve as the shares for the first
n − 1 participants [36]:

si = ri i ∈ [0; n − 1), ri ∼ 𝒰

The share for the n-th participant is computed by subtracting the sum of the
n − 1 random values from the original secret:

sn−1 = s −
n−2

0

si

The dealer, who initially holds the secret, distributes the shares to each partic-
ipant. To reconstruct the secret, an authorized and trusted party can combine
the values. In this additivemethod, the secret is recovered by summing the in-
dividual shares, thereby obtaining the original value (cf. Figure 2.11).

2 Background 17

Dealer

Shareholder2

Shareholder1

Shareholder0

secret: s = 7
Combiner

n = 3 k = 3

s = 6

s = 4

s = -3

0

1

2

Reconstructed secret s = 6 + 4 + (-3) = 7

Figure 2.11: Additive Secret Sharing Example.

2.6.2 Beaver Triples

Beaver Triples, or Beaver Multiplication Triples [4], are a set of pre-computed
values that enable securemultiplication over secret-shared inputs. The triples
can be computed before the actual input is known, avoiding the real-time ran-
domizationduring theonlinephase. These triples act ashelper values, preserv-
ing the privacy of individual inputs while the parties collaboratively compute a
product, requiring only one round of communication.

Beaver Triples consists of two random values, a and b, which are used to mask
the secret-shared inputs x and y, respectively. To reconstruct the true result
of the multiplication, an additional value c = ab is required [50]. In the of-
fline phase, before the inputs are available, the parties receive additive shares
of these three values (a, b, and c). The actual computation begins onlywhen the
input shares (x and y) are provided or requested.
The process starts with each party computing masked versions of their input
shares. Specifically, each party computes:

dj = xj − aj and ej = yj − bj

Next, the parties exchange their values to separately calculate the masked in-
puts d and e. After this exchange, they can compute their respective shares of
the multiplication result, zj:

zj = d ⋅ bj + e ⋅ aj + cj + j ⋅ d ⋅ e

The final result is obtained by summing the result shares from all parties.

2 Background 18

Why can this work? To understand why Beaver Triples work, consider adding
the shares togetherwhile recalling the definitions c = ab, d = x−a and e = y−b.
The resulting expression simplifies as follows:

z = d ⋅ b0 + e ⋅ a0 + c0 + 0 ⋅ d ⋅ e + d ⋅ b1 + e ⋅ a1 + c1 + 1 ⋅ d ⋅ e
= b0(x − a) + a0(y − b) + c0 + b1(x − a) + a1(y − b) + c1 + (x − a)(y − b)
= xb0 − ab0 + ya0 − a0b + c0 + xb1 − ab1 + ya1 − a1b + c1 + xy − xb − ya + ab
= xb0 + xb1 − ab0 − ab1 + ya0 + ya1 − a0b − a1b + c0 + c1 + xy − xb − ya + ab
= x(b0 + b1) − a(b0 + b1) + y(a0 + a1) − b(a0 + a1) + c0 + c1 + xy − xb − ya + ab
= xb − ab + ya − ab + c + xy − xb − ya + ab
= xb − ab + ya − ab + ab + xy − xb − ya + ab
= xy

Figure 2.12 summarizes this in an example. Suppose that Carol has two values,
x = 5 and y = 7. She would like to calculate z = xy, but she lacks the neces-
sary computation power to do it. She seeks help from Alice and Bob, but wants
to keep her values secret from them. Using Beaver Triples, Carol sends input
shares and the pre-computed triples to Alice and Bob. After both of them go
through the computation process and send their results back to Carol, she can
simply add their results together to obtain the correct answer.

Alice Bob

Carol
z = xy = ?x = 5

x = 3 x = 20 1+

y = 7
y = 4 y = 30 1+

a = 3
a = 2 a = 10 1+

b = 4
b = 3 b = 10 1+

c = a ⋅ b = 12
c = 8 c = 40 1+

Generate Beaver Triples

x y a b c0 0 0 0 0 x y a b c1 1 1 1 1

d = x - a = 10 0 0

e = y - b = 10 0 0

d = x - a = 11 1 1

e = y - b = 21 1 1

d = d + d = 2
e = e + e = 3

0 1

0 1

z = j ⋅ de + db + ea + c = 200 0 0 0

j = 0 j = 1

z = j ⋅ de + db + ea + c = 151 1 1 1

Carol

z = z + z = 350 1

Figure 2.12: Beaver Triples Example.

2 Background 19

2.6.3 Π-Secret Sharing

This secret sharing method was introduced in ABY2.0 [48], inspired by Beaver
Triples toperformadditive secret sharing in two-party computation (2PC). The
Funshade team, in their paper, referred to it as Π-Secret Sharing to simplify
their explanation (cf. Figure 2.13) andmake it easier to reference [29].

Π-Secret Sharing

P0 P1x
δx0

δx1

x = - (+)x δx0
δx1

x

Figure 2.13: Π-Secret Sharing. Image is based on [29].

During the first phase, the parties prepare for the actual operations by gener-
ating additive shares of the input values in order to keep it a secret from each
other (cf.Figure 2.14). Each party, Pi, generates a uniformly random value δvi,
and together, they sample the other party’s share, δv1−i . These values behave as
the additive share of the mask δv = δvi + δv1−i for each v ∈ {a, b}, i ∈ {0, 1}, assum-
ing the twoparties can securely compute it. The parties then calculate amasked
version of the input:

Δv = v + δv

Themasked input is stored locally and shared with the other party [29].

Alice Bob
a = 5 b = 3

δ = 2a0
δ = 1a1

δ = 3a δ = 4b0
δ = 2b1

δ = 6b

a= a + δ = 5 + 3 = 8

b= b + δ = 3 + 6 = 9
a

b

+

+

Figure 2.14: Π-Secret Sharing Initialization.

So how does this work when two numbers from two parties should be added?
Let’s assume Alice has a value a = 5 and Bob has the value b = 3. After they are
finishing the first phase and calculating the shares, they exchange themasked

2 Background 20

inputs Δa and Δb as visualized in Figure 2.14. Alice ends up with the shares δa0
and δb0, while Bob has δa1 and δb1 [48, 65].

The original values can be reconstructed by subtracting the mask from the
maskedvalue: v = Δv − δv. Therefore, to computea+b, the following expression
is evaluated:

a + b = (Δa − δa) + (Δb − δb)

The calculation of the result in this case is simple, both compute the sum of
their local shares:

δzi = δai + δbi

Finally, the result of the addition is reconstructed by subtracting the resulting
shares from the sum of the masked inputs (cf. Figure 2.15):

z = a + b = Δz − δz = Δa + Δb − δz = Δa + Δb − δz0 − δz1

z

Alice Bob

a b = 8 + 9 = 17+= z a b = 8 + 9 = 17+=

δa0
δb0

= + = 2 + 4 = 6 δa1
δb1

= + = 1 + 2 = 3

Carol

z0
z1

zz = - (z + z) = 80 1

a + b = 8

Figure 2.15: Π-Secret Sharing Addition.

Whenmultiplying, theprocess followsa similar structure (cf. Figure2.16). Sup-
pose Alice and Bob want to multiply their values, a and b. Themultiplication is
computed as follows:

z = ab = (Δa − δa)(Δb − δb) = ΔaΔb − Δaδb − Δbδa + δaδb

2 Background 21

Since Δv = v + δv, the input value can be substituted accordingly with Δv − δv,
but each party only knows their own δvi additive share of δv, not the other part,
δv1−i . After expanding the expression, the result, unlike its previous form, can
be broken down further to more separable pieces:

z = ΔaΔb − Δaδb − Δbδa + δaδb
= ΔaΔb − Δa(δb0 + δb1) − Δb(δa0 + δa1) + δaδb
= ΔaΔb − Δaδb0 − Δaδb1 − Δbδa0 − Δbδa1 + δaδb

Both of the parties know both Δ values, and they can locally compute the mul-
tiplication with the δ -values. The challenging part arises with δaδb and within
this only the two cross-party product of δa0δb1 and δa1δb0, since they both belong
to different parties.

δaδb = (δa0 + δa1)(δb0 + δb1) = δa0δb0 + δa0δb1 + δa1δb0 + δa1δb1

To calculate the product of the masked inputs, the cross-terms must be
handled securely. Assuming secure computation techniques — like Oblivious
Transfer [51] or Homomorphic Encryption [22, 54]— are used to compute the
additive shares of δaδb, the additive share of thefinal result, zj, canbe calculated
by both parties and summed together [48]. It is important to note that based on
the full expression, only one party needs to compute the multiplication of the
masked input values (ΔaΔb), as performing this step on both sides would yield
incorrect results due to ΔaΔb is present once in the equation.

Alice Bob

Carol

zz = - δ = 29 - 14

= j - - + = -40z0 a b aδb0 bδb0
δab0

= j - - + = 55z1 a b aδb1 bδb1
δab1

(δ , δ) = δ δ = (δ + δ)(δ + δ)ab0 ab1 a a ab b b0 0 1 1

δ = 10ab0
δ = 8ab1

z0
= z + δ = -40 + 5 = -350

δ = 5z0
δ = 9z1

z0
z1

= z + δ = 55 + 9 = 641 z1

z

Figure 2.16: Π-Secret Sharing Multiplication.

2 Background 22

2.7 Function Secret Sharing (FSS)

Function Secret Sharing [10] is designed to securely split a function into mul-
tiple components, or shares, in such a way that no individual share reveals any
information about the original function. Only when all shares are combined
can the original function be reconstructed. Similarly to other Secret Sharing
methods, if enough participants are compromised, then an attacker could po-
tentially recover the original formula. This method is useful in scenarios when
multiple parties are needed to collaboratively perform a computation without
any of them having access to the entire function (cf. Figure 2.17).

Thebasic ideabehindFSS is todividea function, f(x), into twoormultiple seem-
ingly meaningless shares, each assigned to different participants [64]. These
shares, when evaluated on the same input value x, generate outputs that, when
combined, yield the result of the original function. The key distinction here is
that it is not the input that is kept secret, but the function itself, which remains
hidden fromall parties except theDealer. Thefinal result, computed after com-
bining the partial outputs, will match the output of the original function.

f
f0

f1

y0

y1

Gen
Eval for x

= f(x)+

Figure 2.17: Function Secret Sharing. Image is based on [63].

We break down the method in a sense of two parties [9, 29]:

Key Generation: Gen(1λ, f) → (k0, k1) is the key generation algorithm. It
takes the given security parameter λ and the description of a function
f ∶ 𝔾in → 𝔾out, producing a pair of function keys (k0, k1). The security param-
eter defines how long the bit-string generated by a pseudo-randomgener-
ator (PRNG)will be, and the key length partially depends on this. The larger
the value, the harder for the attacker to break the scheme. 𝔾in and 𝔾out rep-
resents the input and outputs domain of the function.

Evaluation: Eval(j, kj, x) → zj is the evaluation phase of the process. As in-
puts, it takes a party identifier j ∈ {0; 1}, the party’s key kj, and a public input
value x ∈ 𝔾in. The output of the fj(x) function, zj ∈ 𝔾out, is an additive share
of the final result such that f(x) = z = z0 + z1.

By splitting the function into shares (for example a polynomial as visualized
in Figure 2.18) and using these steps, each party only evaluates their part of
the function and holds an additive share of the final result, without learning
anything about the original function itself.

We use an example use case to describe the process. Assume that there is a
database containing sensitive patient information — such as names, date of
birth, phone number, medical record, etc. Alice is working for a company and
for research purposes she would like to know how many (registered) persons
have a specific illness.

2 Background 23

f(x) = x + x +

a0

Gen
Eval for x

= f(x)+a b c2

b0
c0

a1 b1
c1

a0 b0
c0x +2 x +

a1 b1
c1x +2 x +

Figure 2.18: A simple example of FSS. Image is based on [63].

One simple solution would be to give Alice direct access to the database and let
her calculate whatever she is curious about. However, this would expose sen-
sitive patient data to a third party (Alice and her company), potentially leading
to privacy breaches.

Alice could also perform the calculation through a server connected to the
database. She gets her results and is happy that she could do her job, but the
same is not true for the company. While this keeps the data away from her, it
raises another problem: the server operator might learn about the company’s
research queries, which could lead to competitive disadvantages if leaked to ri-
vals.

It would be advantageous to both participants to use Function Secret Shar-
ing. In this approach, Alice generates function shares and distributes them to
multiple non-colluding servers, all connected to the same database as shown
in Figure 2.19.

These servers collaboratively handle the evaluation of the function on the pa-
tients’ data without learning what Alice is querying. Once the evaluation is
complete, Alice receives the additive shares of the result, and calculates the
sums to get the final output — without any server or party knowing the full
query or result [63].

Alice

f(x)

Server0

Server1

Database

f0

f1

z0

z1
f(x) = z + z0 1

Figure 2.19: Practical example of FSS. The image is partially based on [63].

2.7.1 Distributed Point Function (DPF)

In the previous example, Alice used Function Secret Sharing (FSS) to count the
patientswith a specific criteria, she performedFSS over the class of point func-
tions. Another important use case is querying a specific item from a database.

2 Background 24

A point function is defined as follows:

fα ∶ {0; 1}n → {0; 1} fα(x) =
⎧
⎨
⎩

1 if α = x
0 else

Alternatively, it can be defined to output a value β:

fα,β ∶ {0; 1}n → {0; β} fα,β(x) =
⎧
⎨
⎩

β if α = x
0 else

This fundamental construction is called the Distributed Point Function (DPF)
and forms the basis for amore interesting concept discussed in this thesis, the
Distributed Comparison Function (DCF) [64].

The core idea behind DPF is to create binary trees for each participant of the
computation [10]. These trees are structured such that there’s only one unique
path that leads to a non-zero result, and this path corresponds to the bitwise
representation of the input. Specifically, at each level of the tree, if the corre-
sponding bit of the input α[i] = 1, the path continues to the right; if α[i] = 0, it
goes to the left.

Consider the case where there are two parties, i.e., m = 2. Let zkj represent the
values at the leaves along all possible paths, where j ∈ {0, 1} is the party identi-
fier, and k ∈ [0, 2n) is the index of the leaf (cf. Figure 2.20). The correct result is
only produced by summing the values at the correct leaf (indexed by correct).
The result is given by:

z = zcorrect0 + zcorrect1

For every other path, the sum of the values yields zero. Because of this design,
the computing parties only see random values, and only the party that receives
the final result from all participants can derive the true outcome [10, 64].

sj0

zj4,0 zj4,1 zj4,2 zj4,10

Figure 2.20: In this example, the correct path corresponds to the bit string
α = 1010, and only z100 + z101 can reveal the correct result. Image is
based on [64].

The process beginswith a random seed, s∈j 1λ, which serves as the basis for gen-
erating the trees. At each step i, a pseudo-randomgenerator uses a seed to gen-
erate two leaves: Left and Right, each containing a new seed sij and a boolean

2 Background 25

value tij. In thefirst iteration, the algorithmuses the initial seed, but subsequent
steps use the newly generated ones, ensuring that randomness is maintained
throughout the process [10, 64].

At the end of each step, so called correction words (CWi) are created based on
the random values and the n long bit-string input α ∈ {0; 1}n. The words guide
the correct x ∈ {0; 1}n input’s path towards the appropriate leaf during the eval-
uation phase. Correctionwords adjust the randomness in the process, allowing
the correct path to be traversed [10, 64].

However, the evaluation algorithm uses these correction words only condi-
tionally, strongly depending on the x known to both parties— in a similar way
to α—and the generated random boolean values. This ensures that neither of
the parties can independently figure out the original value of α [64]. They only
know a kind of guideline, but not the exact path.

Imagine it as a game where a person is navigating out from amaze and at each
crossroad, they calculate their direction based on a random value. If their cal-
culation results in some good values, but their hunch leads themoff the correct
path, the guide (i.e., the correction word) steers them to the correct way, how-
ever, if their intuition says otherwise, the guide won’t tell a thing.

Correctionwords are also essential formaintaining consistencywhen the input
value is incorrect (cf. Figure 2.21). If the next bit of the input does not match
the expected bit, the algorithm ensures that the values on both sides of the tree
remain equal by calculating the same tuples. Since the same seed is used for the
remaining part of the computation, the values cancel out due to the properties
of exclusive or (XOR), resulting in a zero-sum [10].

Figure 2.21: Correction words adjust DPF evaluation trees in off- and on-path.
Image is based on [64].

In conclusion, correctionwords are the cornerstone of Distributed Point Func-
tions. They guide the algorithm toward the correct leaf based on the input
while ensuring that any incorrect paths cancel out, preventing erroneous out-
puts (cf. Figure 2.23). DPFs are crucial in enabling secure, privacy-preserving
queries,where only the correct result is revealedwithout leaking additional in-
formation.

2 Background 26

2.7.2 Distributed Comparison Function (DCF)

As mentioned in the previous chapter, the Distributed Comparison Func-
tion (DCF) [9] builds upon the fundamental principles of DPF. DCF enables the
comparison of a value x against a threshold α:

f ∶ {0; 1}n → {0; 1} f<α (x) =
⎧
⎨
⎩

1 if 0 ≤ x and x < α
0 else

or alternatively,

f ∶ {0; 1}n → {0; β} f<α,β(x) =
⎧
⎨
⎩

β if 0 ≤ x and x < α
0 else

The idea remains the same, the generation algorithm creates a “binary” tree
structure that serves as a guide for the participants. UnlikeDPF, however,more
leaves in the tree produce correct results. Specifically, all leaves to the left of the
leaf representing the input value α correspond to valid paths, returning a non-
zero result (cf.Figure 2.22) [64].

Figure 2.22: DCF Tree. Image is based on [64].

To returnanarbitraryβ, the correctionwordsareextendedwithanewnbit long
value v. This value is constructed such that if the path goes to the left, the cor-
rect term is returned. However, if the path follows the correct input or goes to
the right, the final answer remains zero. This is achieved by introducing a new
variable vα during the key generation phase, which is computed using the ran-
dom ones and in the next iteration, included in the correction words’ v values.
During the evaluation phase, in one side only, each v will be added to the cor-
rection terms. Due to the inclusion of vα, they are effectively cancel each other
out, leaving only a correct, but still seemingly random value behind [9].

To maintain the secrecy of α, both parties play a role in applying the correc-
tion terms and fixing the randomness along the right path. This is achieved by
assigning responsibilities: Party P0 handles the left side, and Party P1 the right
side (cf. Figure 2.23). Since the value x is publicly known, it helps determine
whose turn is next [9].

2 Background 27

x = 0100; CWs = {CW , ... , CW} α = 0101; n = 4 0 3

s = [58; ...] = 580
0

sj
0

R: s: -115
v: -55
t: F

L: s: -101
v: 2
t: T

R: s: -89
v: -6
t: T

L: s: -74
v: -1
t: F

s = [60; ...] = 600
1x[0] = 0

v = 0 - 1 = -1
s = -74
t = F

CW = (42; -1; F; T)0

t = 0 v = 00
0 t = 1 v = 00

1

t 00 t 01

v = 0 - 2 + 1 = -1
s = -101 42 = -79
t = T F = T

s = [-74; ...] = -741
0

R: s: -51
v: 5
t: T

L: s: 124
v: -5
t: T

R: s: -46
v: 3
t: T

L: s: -16
v: -2
t: T

s = [-79; ...] = -791
1x[1] = 1

v = -1 + 3 = 2
s = -46
t = T

CW = (-116; 0; F; T)1
t 10 t 11

v = -1 - 5 - 0 = -6
s = -51 -116= 65
t = T T = F

s = [-46; ...] = -462
0

R: s: -1
v: 2
t: T

L: s: -55
v: 6
t: T

R: s: -89
v: -6
t: T

L: s: -114
v: 3
t: T

s = [65; ...] = 652
1x[2] = 0

v = 2 + 3 + 4 = 9 = -7
s = -114 -98 = 16
t = T T = F

CW = (-98; 4; T; F)2
t 20 t 21

v = -6 - 6 = -12 = 4
s = -55
t = T

s = [16; ...] = 163
0

R: s: -3
v: 0
t: T

L: s: -68
v: 7
t: F

R: s: -68
v: 1
t: T

L: s: -10
v: 7
t: F

s = [-55; ...] = -553
1x[3] = 0

v = -7 + 7 = 0
s = [-10, ...]
t = F

CW = (74; -4; F; T)3
t 30 t3

1

v = 4 - 7 + 4 = 1
s = -68 74 = [-10, ...]
t = F F = F

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

2

2

3

3

4

4
1

1

1

4

4

1

1

1
3

3

1
2

2
1

1

1

1

1
1

1

1

v = 0 + 6 = 6
last = 7

v = 1 - 6 = -50 1

z = 6 - 5 = 1

Figure 2.23: DCF Evaluation phase. Drawn and generated based on the algo-
rithm in [9].

2 Background 28

2.7.3 Interval Containment Gate (IC Gate)

Interval containment computation is a vital building block in secure multi-
party computations, often used in scientific applications like machine learn-
ing. Originally, this was achieved by stacking two DCF constructions: the first
to check whether p ≤ x, and the second to verify if x ≤ q. However, recent
advancements [9] allow this to be done in a single generation phase with two
evaluations, enabling parties to determine if a number falls within a specified
interval [29]. In this thesis, Funshade uses it to compare the result of the dis-
tance metric evaluation to the specified threshold.

f ∶ {0; 1}n → {0; 1} fp,q(x) = 1x∈[p,q] =
⎧
⎨
⎩

1 if p ≤ x and x ≤ q
0 else

Prior to evaluation, the keygeneration algorithmdoesnot know the input value
x and neither should the involved parties. To keep x secret, a masking value r is
introduced [9]. However, adding a mask to x shifts the interval by r, leading
to two potential scenarios (cf. Figure 2.24): the interval either stays within the
specified bounds (e.g. in an i32 space), or it overflows and wraps around [27].

In the casewhere themasked interval stayswithin bounds, the evaluation pro-
ceeds as follows. Let p̂ = p + r represent the masked lower bound. If the eval-
uation on p̂ return −1 (and 0 elsewhere), that indicates that the input value is
below p̂. This means that even in the correct interval this evaluation returns
with 0. However, if the evaluation on the upper bound q̂ = q + r returns 1, the
combined result of the two evaluations will yield 0 + 1 = 1, confirming that x
is within the interval. If ̂x is below p̂, the results cancel out (−1 + 1 = 0), while
above q̂, both evaluations return zero (0 + 0 = 0) [27].
Themore complex case arises when themasked interval overflows the bounds.
In this instance, if the same strategy applies, the final result of 1will only occur
if the masked x value falls within the wrapped-around portion of the interval.

I II III

a b0

0 01

Unmasked Masked without OF

I II III

a b0

0 01

III

DCF for a

DCF for b

0-1

01

01

+

=
0

Masked with OF

I II

ab0

0 01
DCF for a

DCF for b

0-1

01

0-1

+

=

IIIII

0

Figure 2.24: Different cases of Overflow and Interval Containment. Image is
based on [27].

This approach is clearly not suitable when ̂x > p̂. To remedy this problem, cor-
rection terms c are introduced, which account for different overflow scenar-
ios [9]. The dealer, who knows the complete value of r, generates these cor-
rection terms and distributes additive shares of c to the parties, ensuring the
correctness of the final evaluation without revealing the masked x value [27].

Chapter 3

RelatedWork

Before diving into Funshade, it is helpful to look at similar efforts in secure
multi-parti computation. Funshade takes inspiration from and build upon the
strengths of different projects focused on privacy-preserving biometric data
handling [29]. This includes frameworks suchasAriaNN,GSHADE, andABY2.0.

AriaNN [56] is designed for secure neural network computation on sensitive
data, such as private neural network training. It focuses on minimizing the
communication rounds required to securely compute neural network func-
tions. AriaNN by combining Beaver Triples and Additive Secret Sharing with
FSS, achieves two rounds of communication during the online phase. As it is
usingonlya singleDCFevaluation, thatwouldmakeAriaNNmoreefficient than
Funshade. However, the two rounds of communication could create enough
overhead, that in practice, the overall performance may be slower [29].

GSHADE [11] enables the computation of various distance metric for biometric
identification without exposing any private data from the involved parties. To
accomplish this, it breaksdown thedistance function into two local evaluations
and a scalar product. Funshade takes inspiration from GSHADE’s handling of
distance metrics, though it approaches the scalar product calculation differ-
ently. Unlike GSHADE, which uses Oblivious Transfer [51] for the calculation at
a cost of two rounds of communication, Funshade optimizes this process with
a single-round solution.

ABY2.0 [48] introduces the concept of Π-Secret Sharing that is utilized in their
protocol as well as in Funshade. This technique enables parties to generate
shares of their private inputs, which are then used to evaluate the distance
function. ABY2.0 for scalar product evaluation, specifies a small protocol tak-
ing the shares to form a basis. However, while this approach may be compu-
tationally efficient, it does not maintain a constant number of communication
rounds.

The work by Luo et al. introduces an anonymous biometric access control sys-
tem that employs homomorphic encryption [39] to perform computations on
encrypted datawithout the need for decryption. This system verifies themem-
bership status of a user while protecting their privacy from all involved parties.
The Secure Similarity Search module within this system, based on the Ham-
ming Distance, handles the comparison of encrypted biometric data. Although
this system may ensure the privacy of the users, each iteration requires ad-
ditional rounds of communication between the servers along with the com-
putational overhead caused homomorphic encryption. While they may aim to
minimize the cost, homomorphic encryption caused computational overhead
can be observed even in other works, such as Ghostshell [12] and THRIVE [31]
among others.

SEMBA [3], developed by Barni et al., is a secure multi-biometric authentica-
tion protocol that combines multiple biometric inputs to enhance security. It
relies on SPDZ[19], a secure multi-party computation framework to combine

29

3 Related Work 30

multiple templates within a single authentication instance. SPDZ allows sev-
eral parties to perform a computation of a function without revealing the ac-
tual inputs by generatingmultiplicative triples using somewhat homomorphic
encryption to perform secret sharing operations in the online phase. In con-
trast with Funshade’s single-round communication phase, SEMBA’s architec-
ture requires two transmission in each of its iteration.

Lee et al. propose a privacy-preserving biometric authentication scheme fo-
cusing on computing Hamming distance [35]. To preserve privacy, the proto-
col relies onhomomorphic encryption and their proposed primitive, Function-
hiding Inner Product Encryption for Binary strings (FFB-IPE), to compute
Hamming distance on encrypted data. FFB-IPE helps to encrypt and hide the
base biometric template from the server, while their authentication protocol
handles the distance metric evaluation on encrypted data and the verification
of the user in the server-side. This construction prevents exposing the sensi-
tive biometric information during the authentication process.

BioPass [69] and Chun et al. [13] offers constructions similar to that Lee et al.
While these approaches may protect the biometric templates from exposure,
they involve sending encrypted data to a server and use homomorphic encryp-
tion causing a computation overhead, which is not applicable for the Digidow
use case. In Digidow, if either the PIA is or the sensor becomes malicious, one
party could potentially control the result entirely, depending on which task
they perform. This event is less likely to happen in scenarios where a company
operates the server to access its own resources, as described in both referenced
papers.

The signature schemeproposedbyTakahashi et al. introduces a concept known
as the fuzzy private key [61]. Compared to other, traditional cryptographic
keys, this method addresses the challenge of noise and variability in biometric
data when one would like to use it as a private key. Fuzzy extractors typically
require an additional helper string, which the user needs to carry or store on
a server. In this construction, the biometric inputs (the keys) do not need to
match exactly; they allow small variances, while still maintaining secure au-
thentication. However, in this scheme, if the user’s secret key is compromised,
anewkey canbegenerated, but only for a limitednumberof times. This amount
is dependent on the type and the quantities of adopted features.

Some of these protocols contributes to Funshade by showing how to process
and secure data. AriaNN minimizes communication rounds to speed up com-
putations, GSHADE allows multiple parties to contribute to a shared distance
evaluation result without revealing private data, and ABY2.0 provides a way
for two parties to compute jointly while keeping their inputs secret. Funshade
combines these into a single round online communication phase and is there-
fore the best match latency-sensitive use cases such as those envisioned in
Digidow.

Chapter 4

Funshade: Function Secret Sharing for
Two-Party Secure Thresholded
Distance Evaluation

Now that the necessary context is established, this chapter will describe how
Funshade [29] operates as a cryptographic solution that enhances the security
of biometric authentication. Funshade “builds upon recent advances in function
secret sharing and makes use of an optimized version of arithmetic secret sharing”.
This protocol addresses the need for both privacy and efficiency in (sensitive)
biometric data matching applications.

In fields such as biometric authentication or machine learning, a constant
challenge revolves around how to handle highly sensitive data. As previously
mentioned throughout this thesis, biometric data is inherently personal, and
mishandling it could lead to severe privacy violations or legal consequences.
Regulations, such as the EU General Data Protection Regulation (GDPR) [46],
enforce strict guidelines on how personal data should be handled and shared.
However, beyond legal consideration, there are risks that institutions and in-
dividuals face when sensitive data is not secured properly. For example, if an
employee’s biometric data were to be stolen, it could be exploited bymalicious
actors, either by selling it or using it to breach company secrets. Much like the
scenarios depicted in spy movies where fingerprint scanners are bypassed by
using a tape. This is an actual threat in real life scenarios and it should be coun-
tered with liveness checks, such as examining sweat pores or pulse [26].

Tomitigate these risks, Funshade is designed to ensure theprotectionof sensi-
tive data frombeing exposed tomalicious unauthorized entities during the au-
thentication process. Before taking a deep dive into the inner workings of Fun-
shade, we build an example inspired by the Digidow project [41], where Fun-
shade can be applied to enhance biometric authentication.

Based on the three key participants of Digidow we choose a scenario, where
three key components are communicating to authenticate a person’s identity
before granting access to a secure room:

1. Personal Identity Agent (PIA)

The PIA holds the biometric template of the registered user, denoted as y.
This component can be hosted by a trusted provider, such as a cloud-based
service, or on a self-operated server controlled by the user.

2. Sensor: Camera

A Camera sensor is operated by a third-party company and captures a per-
son’s biometric data whenever they approach the door. The captured bio-
metric image is converted to an embedding, referred to as the live data x.

31

4 Funshade 32

3. Verifier: Lock

The Lock component controls the physical access to the room. It commu-
nicates with both the PIA and Camera to determine whether the person at
the door has permission to enter. Based on the biometric comparison, the
door either opens to grant access or remains closed.

The goal of this setup is to authenticate the individual at the door without ex-
posing the biometric data of others to the PIA or the authorized persons’ to
the Camera, while protecting both from the Lock. The key challenge here is se-
curely comparing the live biometric data x with the stored template y without
compromising privacy.

Funshade aims to securely perform biometric authentication under a semi-
honest threat model. As mentioned in Section 2.4, a semi-honest adversary
follows the protocol honestly, but attempts to extract as much information as
possible from the data they handle. We also refer to such adversary as honest-
but-curious. Therefore, the protocol ensures that the biometric templates and
thresholds remain hidden from all participants during the authentication pro-
cess.

Besides ensuring privacy during the process, it is also important to operate ef-
ficiently. Tomeet both requirements, Funshade employsFunctionSecret Shar-
ing (cf. Figure 4.1) combined with Π-Secret Sharing, enabling secure multi-
party computation with only one round of communication during the online
phase. This significantly reduces the computational overhead that is typically
introduced by numerical tricks, while maintaining security and privacy [49],
making Funshade appealing for practical use.

Funshade Key
δ ;x δ ;y δ ; rxy IC Key

c
DCF Key
s ; ⟨cw , ... , cw⟩ ; last1 n

for distance
evaluation

comparison to θ

Figure 4.1: FSS keys embedded in Funshade key.

At the core of Funshade’s secure computation is a threshold comparison ap-
plied to a distance metric evaluation, represented as d(x,y). This function is
crucial for determining whether the live biometric data x matches the stored
template y, subject to a threshold θ. The following is the critical function that
Funshade aims to protect using Function Secret Sharing:

f ∶ 𝔾 × 𝔾 × 𝔾l × 𝔾l → {0; 1} f(d, θ,x,y) = 1d(x,y)≥θ =
⎧
⎨
⎩

1 if d(x,y) ≥ θ
0 else

This function determineswhether the distance between the live biometric data
x and the stored template ymeets a threshold θ. With Function Secret Sharing,
the computation remains hidden, ensuring that neither of the involved parties

4 Funshade 33

learn the actual distance or the threshold. In thisway, amalicious party can not
brute-force different variations of y until it is close enough to the threshold.

During the online phase,whenbothof themalready knows their inputs, the In-
terval Containment gate evaluation requires both parties to possess the same
input for the comparison, referred to as z. Therefore, the distance function
d(x,y) is reformulated to fit the two-party computation (2PC) model, where
each party computes an additive share of the distance evaluation result, de-
noted by zj. This share is the only one that requires a round of communication
in this phase. After the exchange, both parties compute their share of the com-
parison result and send it to the designated party.

z = d(x,y) = dlocal(x) + dlocal(y) + dcp ⋅
l

i=1

(xi ⋅ yi)

The distance function is separated into two local parts, dlocal(x) and dlocal(y),
which can be computed independently by each party that holds an input. The
term dcp represents the constant cross-product factor present in the metric.
This separation allows the secure evaluation of the metric.

To clarify the process, let’s see the reformulation step-by-step through an ex-
ample using the Squared Euclidean Distance:

dED(x, y) =
n

i=1

(xi − yi)2

=
n

i=1

(x2i − 2xiyi + y2
i)

=
n

i=1

x2i −
n

i=1

2xiyi +
n

i=1

y2
i

=
n

i=1

x2i +
n

i=1

y2
i + (−2) ⋅

n

i=1

xiyi

Let dlocal(v) = ∑n
i=1 v2i and dcp = −2. Thus, the Squared Euclidean Distance be-

comes:

dED(x, y) = dlocal(x) + dlocal(y) + dcp ⋅
n

i=1

xiyi

To further protect the sensitive input information, the input holders calculate
the additive shares of the dlocal computation results and sent to the parties.

dlocal(v) = dv0 + dv1

While the distance function is now split into local parts, the final summation
still presents a challenge. Specifically, multiplying the elements and securely
adding the result requires a solution. From the earlier chapter, it became evi-
dent that for secure, privacy-preservingmultiplication and addition of values,
Π-secret shares are good candidates. By applying Π-shares, the sum expres-
sion becomes secure and correct, as the evaluation of Π-shares concludes with
a simple addition. For the scalarproduct, thismeans summing the results of the
shared evaluations ensures that each party’s contributions are correctly com-
bined.

4 Funshade 34

Let pj,i represent the result of the secret sharedmultiplication for party j ∈ {0; 1}
at elements index i (for the computation of pj refer to Section 2.6.3):

l

i=1

xiyi =
l

i=1

p0,i +
l

i=1

p1,i = p0,1 + p1,1 + p0,2 + p1,2 …p0,l + p1,l

=
l

i=1

p0,i + p1,i

In the evaluation phase, the protocol introduces an additional randomized
value rθj to the equation to mask the threshold θ and secure the distance re-
sult. The Interval Containment gate of Function Secret Sharing can work with
masked inputs, so this additionalmasking does not interferewith the protocol:

z = r + dlocal(x) + dlocal(y) + dcp ⋅
l

i=1

(xiyi)

Everything considered, the parties compute the following for the comparison
algorithmmixing Π-Secret Sharing and Function Secret Sharing:

zj = rθj + dxj + dyj + dcp ⋅
l

j=1

(j ⋅ ΔxΔy − Δxδyj − Δyδxj − δxyj)

By securely computing these values, Funshade ensures that biometric authen-
tication is conducted both privately and efficiently.

4.1 Roles

To perform secure biometric authentication, much like other two-party com-
putation techniques, Funshade distributes the computation across several
roles, each responsible for a specific part of the process [29] as visualized
in Figure 4.2:

Rsetup: The party with setup role covers the generation of the necessary val-
ues during the offline phase. It distributes the required keys (cf. Figure 4.1)
and shares to the other parties involved in the computation. These values
used during the evaluation phase to determine the final answer.

Thegenerationmethod requires the followingparameters: the lengthof the
input vector l, that represents the biometric template’s size; a number of
bits n, which determines the value space; the security parameter λ and the
threshold θ.
During thisphase,BeaverTriples and their additive sharesaregenerated for
Π-secret sharing: δx = δx0+δx1, δy = δy0+δy1 and δxyj, all ofwhich are l-length
vectors, one for each element of the inputs. Additionally, the shares of the
masking value, rθ = rθ0 + rθ1, and the key for the Interval Containment gate,
kj, are created. The setup party distributes the δ-shares to the input parties
and the key, which contains the appropriate Beaver Triples, to the evaluat-
ing parties.

4 Funshade 35

RinxRiny: These roles are assigned to the input data holders with access to
input x and y.
Their responsibility is toprepare theΠ-secret shares of their input and send
them to the evaluating parties. Additionally, since they hold the original
data, they compute the local distance function dlocal and they forward ad-
ditive shares of the result along with the Π-shares.
They are preparing the Π-secret shares that they send to the computing
parties. Additionally, the parties are calculating the dlocal function as they
are the ones who own the original input data and send additive shares, dv0
and dv1, to the evaluating parties.

If the input vectors are available during the offline phase, this computation
can takeplace then.Otherwise, it is performedat thebeginningof theonline
phase when the inputs become available.

Px, Py: These parties are responsible for the evaluation part during the on-
line phase. After receiving the remaining part of Π-shares from the input
parties, they use the data contained in the keys to calculate the additive
shares of the distance result zj.
Once they exchange these shares and compute themasked result of the dis-
tance function, they evaluate the Interval Containment gate to determine if
the result is below the secret threshold θ. The output, oj, will be sent to the
designated authorized party.

Rres: This party receives the result shares from the secure computation and
uses them to reconstruct the result.

FUNSHADE.Setup(l, n, λ, θ) ->

Rsetup

⟨δ ⟩ , ⟨δ ⟩ , k , kx y 0 1

FUNSHADE.Result(o , o) ->

Rresult

o

FUNSHADE.Share(y, δ , δ) ->

Riny

Reference biometric
template: y

y y0 1 Δy, d , dy y0 1

FUNSHADE.Share(x, δ , δ) ->

Rinx

Live biometric
template: x

x x0 1 Δx, d , dx x0 1

FUNSHADE.Eval(Δx, Δy, d , d , k) ->

P1

x y1 1
o11

1 roundcommunication

FUNSHADE.Eval(Δx, Δy, d , d , k) ->

P0

x y0 0
o00

Match (1)
No match (0)

10

Figure 4.2: Funshade roles and their relations. Image is based on [29].

Multiple roles can be assigned to the same party, depending on the specific use
case. For instance, the computing parties might also act as the input holders.
Obviously, this does not rule out that every role is performed by different par-
ties.

It is also important to consider the setup phase of Funshade,which can be han-
dled in three different ways (cf. Figure 4.3) [29]:

1. Trusted hardware: “The Rsetup role can be emulated within a trusted execution
environment”, providing secure generation and distribution of values.

2. Semi-honest third-party: A semi-honest third party takes the Rsetup role,
distributing keys and shares to the other participants,while adhering to the
protocol without malicious intent.

4 Funshade 36

3. Pure 2PC: Two parties collaboratively handle the setup, each acting as both
input holders and evaluators. Thismethodmay require additional commu-
nication rounds during the offline phase to complete the setup securely.

TTP ResultP 0 P 1

⟨δ ⟩; kx 0

⟨δ ⟩; ky 1

d ; Δyy
0O

�f
lin

e
O
nl
in
e d ; Δxx1

z z1 0

o
o

1

0

ResultP 0 P 1

d ; Δyy
0

O
�f

lin
e

O
nl
in
e d ; Δxx1

z z1 0

o
o

1

0

Setup

Figure 4.3: Funshade process with third-party setup (left) and 2PC (right).

Funshade can be applied to the Digidow-inspired biometric authentication
scenario. Assume that Alice is the only individual authorized to access a secure
roomguarded by the Lock component, with her PIA storing her biometric tem-
plate y. Additionally, let the PIA and Camera operate in a Pure 2PC way, mean-
ing that they collaboratively perform the setup, both acting as an input holder
and carry out the evaluation. The Lock component will be the designated party
receiving the evaluation results. Figure 4.4 shows the process step by step:

1. In the offline phase, the PIA and Camera collaboratively perform the setup.
Both parties compute the required materials, including the Beaver Triples,
derived from them the δ-shares and keys for Funshade protocol.
After finishing the process, the PIA owns δy and the Funshade key for the
protocol k0 containing the Beaver Triples δx0, δy0 and δxy0 . Similarly, Camera
possess δx and k1 with δx1, δy1 and δxy1 .

2. Since the PIA already possesses Alice’s data, it can pre-compute the out-
standing values of the Π-share, Δy and the additive shares of the local dis-
tance function evaluation dlocal(y). The PIA sends Δy and dy1 to the Camera
and both are waiting for somebody to approach the door…

3. Somebody passes by, therefore the online phase begins. The camera cap-
tures a person’s live biometric data x and generates the corresponding
shares. These shares are sent to the PIA for evaluation.

4. The construction of the additive shares for the distance evaluation begins
as both parties possess the secret shares derived from the inputs x and y. At
this point, they require a round of communication to produce the common
value representing the masked distance calculation result. To conclude the
process, both evaluate the Interval Containment gate and send the values
to the Lock component.

5. TheLock component combines thevalues andeither grants ordenies access
to the person standing at the door.

Through this process, Alice’s biometric template is never revealed to the Cam-
era, and the live biometric data remains unknown to the PIA. For instance, if
Bob just walked down in the corridor, his data never became exposed to Alice’s
PIA. Funshade ensures that privacy is preservedwhilemaintaining a secure and
efficient authentication process.

4 Funshade 37

By utilizing Funshade, a system can be created where sensitive biometric data
remains private during authentication, even when multiple parties are in-
volved.

Alice

PIA Camera

Lock

Reference biometric
template: y

Setup

d ; Δyy
0

1.
⟨δ ⟩; kx 1

d ; Δxx0

⟨δ ⟩; ky 0

Share(y, ⟨δ ⟩)y

2.

d ; Δyy
0

Live biometric
template: x

Share(y, ⟨δ ⟩)y

3.

d ; Δxx1

Eval(0, Δx, Δy, d , d , k)x0 y0 0 Eval(0, Δx, Δy, d , d , k)x1 y1 1

4. 4.z0 z1

o0 o1

Result(o , o)0 1

1

0
5.

Figure 4.4: Digidow-inspired example of Funshade. Image is partially based
on [29].

4.2 Two-Party Scenario

This section outlines the two-party computation (2PC) setup process and ex-
plains why it became a topic for future work during this thesis. To summarize,
the 2PC setup process involves two participants collaboratively and securely
generating the necessary materials for the protocol’s execution.

Ibarrondo et al. [29] provides a guideline for constructing the protocol in a 2PC
setting. Specifically, for distance function evaluation, ABY2.0 [48] describes
the solution for Π-secret shares in 2PC. This can be implemented using Ho-
momorphic Encryption [22, 54], which allows operations to be performed on
encrypted data.

DistributedComparisonFunction [9] also brieflydescribes theprotocol in a se-
cure two-party environment. In Funshade, this method can be applied for the
Function Secret Sharing gate key generation. During this process, a participant
holding parameters α ∈ {0; 1}n and β splits them to additive shares, keeping

4 Funshade 38

the values secret fromboth parties. The algorithmgenerates a pseudo-random
vector with 2i element in each iteration i and relies on the XOR operation to
hide the value. A secure computation method generates correction words that
ensure values in incorrect path cancel each other out.

However, performing this calculation with a 32-bit input parameter may
not be feasible for every machine, especially if communication is required
in every iteration. The storage requirements could become problematic
since the generated values are used in subsequent iterations. When i = 32
and the security parameter λ = 128, the algorithm requires approximately
2i ⋅ (|sij | + |vij | + |tL,ij | + |tR,ij |) = 232 ⋅ (128 + 32 + 8) bits for a single key. Even if this
amount only needed tofinish the generation, this valuemay be kept inmemory
for a longer time than intended due to the communication delays.

Reducing the input size to 16-bits could mitigate these issues. However, de-
pending on the distance metric used in Funshade and on how much precision
one is willing to sacrifice, this approach might not be ideal for all scenarios.
Funshade might produce incorrect results if an overflow happens during the
calculation of themasked distance value, z, meaning that the distance function
and the number of elements highly influence the permitted values in the bio-
metric template. For instance, with a 32-bit limit, l = 512 as the length of the
vectors and using Scalar Product as the distancemetric, themaximum valuem
can be expressed as:

2 ⋅ log2 m+ log2 l ≤ 32 bits
m ≤ 2 32−log2 512

2

m ≤ 211.5

After exchanging messages with one of the authors, it became clear that there
is no definitive, written process for performing the 2PC setup yet. Additionally,
the current work only assumes semi-honest adversaries, not malicious ones.
The protocol is already planned for further research, not only to adapt to 2PC
but also to address potential attacks from malicious actors. This area repre-
sents a promising direction for future research, and I hope to contribute to it in
the near future.

Chapter 5

Rust

Systems programming as an expressionmight sound unfamiliar, but it is used
almost everywhere. Systems programming is resource-oriented, where every
byte andCPU cycle counts [6]. It is used in gamedevelopment, networking, op-
erating systems, cryptography, etc.

Rust [55] is a modern, system-level programming language that emphasizes
safety, performance, and concurrency [33]. It was designed to resolve many
common problems found in older languages like C and C++, such as dan-
gling pointers and null pointer dereferences [6]. This is achieved by the strict
compile-time checks and the unique ownership model. Additionally, the lan-
guage provides memory safety without a garbage collector.

For this thesis, Rust was chosen due to its memory safety features at compile-
time without runtime overhead. Its distinctive ownership system prevents
memory-related errors, that are common sources of bugs in languages like C
andC++. As data cannot be passed around freely, it also ensuresmemory safety
when using parallel threads. Rust is also the language that was used to develop
other components for the Digidow project [41], making it easier to integrate
with the larger system.

Rust’s build system and package manager is called Cargo. It manages Rust
projects, downloads external libraries, builds both the dependencies and
code [33]. Rust libraries, called crates, are listed in the Cargo.toml configu-
ration file, where project details like name, version, and Rust edition are
specified (cf. Listing 5.1).

1 [package]
2 name = "funshade"
3 version = "0.1.0"
4 edition = "2021"
5

6 [dependencies]
7 aes-prng = "0.2.1"

Listing 5.1: Cargo.toml file in thesis project.

Cargocanbeused to create anewproject, buildboth indevelopmentand release
mode, execute, and run tests (cf. Listing 5.2). By applying the run command,
Cargo will automatically build the project.

1 cargo new funshade_rust
2 cargo build
3 cargo build --release
4 cargo run
5 cargo test

Listing 5.2: Basic Cargo commands to create, build, run, and test a project.

39

5 Rust 40

During building the project in --release mode, the compiler will make some
optimizations, therefore the software will be faster than what the developer
works with. One such optimization is allowing overflows during operations
like addition +, which is not available during development in this form. The
developer needs to tell the compiler if the overflow is intentional using the
wrapping_add method, otherwise they receive an error. In the release build the
compile switch the method call to a simple addition.

Cargo automatically calls the Rust compiler, rustc. One of rustc’s uncommon
features is the excellent error reporting. Unlike many compilers that provide
hard to understand error messages, rustc gives detailed feedback and sugges-
tions for fixing issues [33].

Rust supportsmodules that enable toorganizeandseparate code for readability
and easy reuse [6, 33]. Modules can be definedwith the mod keyword, and a cor-
responding .rsfile or a new folderwith a mod.rsfile. By default, every element in
Rust is private, but this structure allows defining flexible protection levels. The
two common levels, pub (public) and private, might be familiar from other pro-
gramming languages. Aside from these, there is pub(super), whichmakes the el-
ement visible only to the parentmodule; pub(crate), visible to thewhole project,
but hidden to the user; and pub(path:to:module) visible to a specific module.

The following sections describe the functionalities provided by Rust used in
this thesis. The official book [33] was the mainly used learning material to get
into Rust and the main inspiration for writing this chapter.

5.1 Basic Concepts

In Rust, variables are designed to help developers write safe and efficient code.
By default, the variables are immutable to prevent unintended changes. While
mutability is allowed, it needs tobe explicitly told to the compiler todenote that
this is an intended behaviour.

Variables are declared using the let keyword. As they are immutable, their val-
ues can not be changed once they are set.

1 let x: i32 = 5;
2 x = 6; // compile error

Listing 5.3: Declaring a variable and attempting to change its value results in a
compile-time error.

To change the value of the variable, it must be declared explicitly as mutable
with the mut keyword:

1 let mut y: i32 = 5;
2 y = 6; // OK

Listing 5.4: Declaring a mutable variable and changing its value.

This is one of Rust’s safety features, forcing the developer to think carefully
about when a value should be changed. Understanding the basics of variables
helps write clean, efficient, and safe Rust code.

Rust also supports constants, which are like immutable variables but are eval-
uated at compile-time, therefore their values can not be changed. It can be de-
clared using the const keyword:

5 Rust 41

1 const SECURITY_PARAM: usize = 128;

Listing 5.5: Declaring a constant value.

Rust allows shadowingvariables:Upondeclaringanewvariablewithanalready
existing name, the new shadows the old one. In the background, it reserves
space for both of the values. Declaring the variable switches the reference to
the second memory address. This also enables to declare the variable with the
same name inside the same or in a new scope, and to transform a variable’s
value without declaring it mutable. In other words, it does not overwrite the
old value, but the placewhere the variable points to is overwritten until the end
of the scope:

1 let x: i32 = 5;
2 {
3 let x: i32 = 6;
4 // Operations with x = 6
5 } // End of scope, x = 6 dies
6 // x is 5 again

Listing 5.6: The second x declaration shadows the first one. After it dies at the
end of the scope, the value of x becomes 5 again.

Shadowingnot only allows a variable’s value to be redefined, but it also enables
changing the its type:

1 // The variable spaces declared as a String with 5x" "
2 let spaces: String = String::from(" ");
3 // The cariable spaces points to the integer with the value 5.
4 let spaces: i32 = spaces.len();

Listing 5.7: The second spaces declaration shadows the first one’s value and
type.

Functions in Rust are defined using the fn keyword followed by the function
name, parameter list, and function body enclosed in curly braces. Parameters
require both a name and type in name: type format. Functions returning values
specify the return type after ->, and the return keyword is only required for early
exits, not for the final returned value.

1 fn calculate_number_of_bytes(bits: usize) -> usize {
2 if bits == 0 {
3 return 0;
4 }
5

6 (bits - 1) / 8 + 1
7 }

Listing 5.8: Defining a function that returns with an unsigned value.

Rust is a statically-typed language, meaning that the compiler needs to know
the type. The most common variables are signed (e.g., i32) and unsigned inte-
gers (e.g., u8), floating-point numbers (e.g., f64) and boolean (bool). Rust allo-
cates variables on the stack by default, therefore variable sizes must be known
at compile-time. Dynamic allocation on the heap is explicitly requested by us-
ing Box. This alsomeans that an arraywith arbitrary length can not be instanti-
ated, as a user specified value can not be known at compile time. For instance,
the code presented in Listing 5.9 will not compile.

5 Rust 42

1 // Compiler error: Doesn't have a size known at compile-time,
2 // consider borrowing
3 fn create_array_with_ones(l: usize) -> [u8; l] {
4 let result: [u8; l] = [0; l];
5 result
6 }

Listing 5.9: Attempt to create a dynamically sized array, resulting in a compile
error.

Rust’s if and else syntax resembles that of C#, while switch cases are imple-
mented as match arms:

1 let t: bool = true;
2

3 let sign: i32 = if t { -1 } else { 1 };
4

5 let sign = match t {
6 true => -1,
7 false => 1
8 };

Listing 5.10: Conditional assignment with if andmatch expressions.

Rust supports loops that in the thesis were used in two ways. First, when
it iterates in a specified range taking the integer values one by one,
e.g., 0..alpha_bits.len() in C# would be int i = 0; 0 < alpha_bits.length; i++.
The second method employs iterators, where each iteration retrieves the next
array element. For example alpha_i at the start of the loop will be the first bit in
alpha_bits:

1 for i in 0..alpha_bits.len() {
2 // content
3 }
4 // or
5 for alpha_i in alpha_bits.iter() {
6 // content
7 }

Listing 5.11: Range-based and iterator-based for loop examples.

InRust andother programming languages, tuples allowgroupingmultiple val-
ues into a single compound type. Each element can be of any type, but once they
have declared their length can not be changed. These elements can be accessed
using a dot notation with the index of the element. Destructuring also allows
extracting the values into separate variables. This makes tuples a good choice
for returning multiple values from a function.

5 Rust 43

1 fn setup(settings: &FunshadeSettings, theta: TYPE) ->
2 (FunshadeKey, FunshadeKey, DeltaShare, DeltaShare) {/*...*/}// ...
3

4 //...
5 let tuple: (FunshadeKey, FunshadeKey, DeltaShare, DeltaShare) = setup(&s, theta)

;
6

7 // Reach elements
8 let key0: &FunshadeKey = &tuple.0;
9 let key1: &FunshadeKey = &tuple.1;
10 let share0: &DeltaShare = &tuple.2;
11 let share1: &DeltaShare = &tuple.3;
12

13 // Destructure elements
14 let (key0, key1, share0, share1) = tuple;
15

Listing 5.12: Tuple usage example, with both direct access and destructuring of
elements.

5.2 Ownership and Borrowing

Rust’s ownership system is one of its most distinctive features. Each value has
a single so-called owner, who owns this value. This value lives until its owner
goes out of scope, ensuring memory is freed when it is no longer needed. The
ownership can be transferred to another variable, thismeans that if the value’s
ownership is given to another variable that is outside the scope, then the value
will live longer than its original owner.

Ownership transfer occurs by default when assigning values, but this does not
apply to all types. Every object whose type implements the Copy trait (see Sec-
tion 5.4) will automatically clone the value and becomes its owner. Every basic
type implements this, integers, boolean, floating point numbers etc., however
the String type does not.

1 let a: i32 = 5;
2 let b: i32 = a; // value of a is copied: b = 5
3 println!("{}", a); // No error
4

5 let hello: String = String::from("Hello!");
6 let hello_again: String = hello; // The ownership of value "Hello" is

transferred
7 println!("{}", hello); // Compile error: value moved

Listing 5.13: Ownership transfer with Copy and String types.

An important thing tomention is that this rule is not only constrained to vari-
ables, but also to parameters and return values:

1 fn main() {
2 let a: String = String::from("Hello!");
3 let b: String = takes_ownership(a); // function takes ownership and gives it

to b
4 println!("{}", a); // Compile error: value moved
5 }
6 fn takes_ownership(s: String) -> String {
7 s
8 }

Listing 5.14: Ownership transfer when calling functions.

5 Rust 44

Requiring ownership transfer for each access would complicate working with
non-Copy types, especially for complex computations and software. Therefore,
Rust allows references to a value without taking ownership with &. However, if
the owner goes out of scope and the value will be destroyed, this variable will
not point to any. To remedy this problem, Rust’s compiler will take care of this
by analyzing lifetimes to avoiddangling reference. If the valuegoesout of scope
before the variable that stores its reference, then the programwill not compile
and write a report about the bug.

Sometimes, it is necessary to modify a value without transferring ownership.
In these cases, Rust allowsmutable references using &mut, making valuemodi-
fication via the reference possible:

1 fn main() {
2 let a: String = String::from("Hello!");
3 let b: &String = takes_reference(&a); // function takes and gives reference to

the value "Hello!"
4 println!("{}", a); // No error
5 takes_mutable_reference(&mut a)
6 }
7 fn takes_reference(s: &String) -> &String {
8 s
9 }
10 fn takes_mutable_reference(s: &mut String) {
11 s = String::from("Hello World!");
12 }

Listing 5.15: Example of immutable andmutable references.

If the code iswell-writtenand thedeveloper tookgreat attention to it, thenRust
could achieve a clean and readable structure. For example, just by looking at a
function, one can tell that the functionwill modify the value or not. If someone
would like to use the takes_mutable_reference function, and reads its signature,
theywould know that thiswill change the given value, while takes_referencewill
not, as it is just a simple reference.

5.3 Custom Types

Most of the time, structsmight be better suited than tuples. Structs havenames
that describe what they group together. Each piece of data is named after what
they represent, in order to knowwhat they should be used for, just like inmost
programming languages. These need to be instantiated to be used. Even if there
are no constructors in the traditional sense, they can be instantiated by speci-
fying the values for each field, or writing a “constructor of our own”.

1 pub(super) struct DcfNode {
2 s: AesSeed,
3 v: i32,
4 t: bool
5 }
6

7 // ...
8 let node = DcfNode {
9 s: AesSeed::new_random(),
10 v: 234,
11 t: false
12 }

Listing 5.16: Basic struct instantiation.

5 Rust 45

Rust provides structs similar to tuples. They have a name, but no addedmean-
ing to their fields. These are useful, when the tuple should have a name to dif-
ferentiate it fromtheother tuples.Their creationstartswith thekeyword struct,
a nameand the types in brackets. They canbeused as struct, the only difference
is how the fields are accessed.

1 struct AesSeed([u8; SEED_BYTES]);

Listing 5.17: Tuple struct example.

Enumerations, or also referred to as enums, give a way to say that a value is
one from a possible set of options. They can be created with the enum keyword,
defining its name and listing the options in curly brackets. They can not only
store single options, but in a formof a tuple struct they can store data, each can
be defined with different length and types.

1 enum Message {
2 Init,
3 Setup,
4 DeltaShare(DeltaShare),
5 OValue(bool, TYPE),
6 // ...
7 }

Listing 5.18: Enum definition with variant data types.

Tuple structs and structs can also be instantiated by usingmethods, which are
all defined in the context of a struct, an enum or a trait object. In the scope of
structs and enums, they must be placed in an impl block. This is Rust’s way to
draw a clean line between the data and the behaviour. They also possess a Self
keyword which refers to the struct’s type. Aside from this, they can also refer
to themselves— like in C#—with &self, explicitly mentioned in the method’s
signature.

1 struct AesSeed([u8; SEED_BYTES]);
2

3 impl AesSeed {
4 // "Constructor"
5 pub fn new_random() -> Self {
6 Self(AesRng::generate_random_seed())
7 }
8

9 // A method with &self
10 pub fn xor(&self, other: &AesSeed) -> AesSeed {
11 let mut result: AesSeed = AesSeed::new_empty();
12

13 for i in 0..SEED_BYTES {
14 result[i] = self[i] ^ other[i];
15 }
16

17 result
18 }
19 }
20

21 //...
22 let seed0: AesSeed = AesSeed::new_random();
23 let seed1: AesSeed = AesSeed::new_random();
24 let xored: AesSeed = seed0.xor(seed1);

Listing 5.19: Method and ”constructor” definitions for a struct.

5 Rust 46

5.4 Traits

Besides using structs and their implementation block, another way to sepa-
rate behaviour from data with the advantage of defining common behaviour,
is traits. They are similar to interfaces and abstract classes in other languages,
like Java or C#, allowing Rust to support a kind of polymorphism.

A trait defines a set of methods that a type can implement, either by provid-
ing a pre-defined behaviour or requiring the type to implement it. Compared
to abstract classes, the difficulty to write traits stems from the fact that they
are completely separated from the data. They should specify the data in the
method’s signature or let the type that already has access to the data imple-
ment it.

Traits can be created with the trait keyword, followed by methods created in a
block defined by curly brackets. A trait can also build upon other traits, speci-
fied by using a : after the trait name. This is called trait inheritance and allows
defining a trait that requires another trait to be implemented.

To implement a trait for a type, Rust uses impl and for keywords, as “implement
the trait for struct”. If anymethods are left unimplemented, then the compiler
will ask to complete the trait’s definition.

1 trait Party : FunshadeSession {
2 fn send_message(stream: &TcpStream, message: &Message) {
3 // do something that uses FunshadeSession's methods
4 }
5

6 fn handle_init_message(&self);
7 }
8

9 // ...
10 struct SetupParty {/* some data */}
11 impl SetupParty {...}
12 impl FunshadeSession {...}
13 impl Party for SetupParty {
14 fn handle_init_message(&self){ /* do something with data */ }
15 }

Listing 5.20: Example of trait definition and implementation.

However, not any trait can be implemented to any type. Due to compatibility
reasons, thedeveloper isnot allowed to implementacrate’s trait for a type from
another one. If the developerwished to use a newcrate that does the same, then
these two implementations at once could cause serious and unexpected bugs.
For instance, the Add trait from the standard library can not be implemented to
String.

5.5 Function Pointers, ”Delegates”

Rust supports anonymous functions behind the alias of closures, which can be
stored in a variable and passed to functions. Closures are allocated on the stack,
providing fast access [6]. They are defined as follows:

1 let add = |x| x + 1; // or |x: i32| -> i32 {x + 1};

Listing 5.21: Defining a closure.

5 Rust 47

In addition to closures, Rust supports function pointers, which were already
mentioned in Section 5.1 under the type fn. Themain difference between func-
tion pointers and closures is that closures can capture their environment. This
means that from the scope they defined, they can use variables and their values
when they are called. Function pointers are not capable to use outside values in
this form.

1 let hello = String::from("Hello");
2

3 let closure = |x| println!("{hello} {x}");
4

5 closure("World!");

Listing 5.22: Closure usage.

Function pointers and closures can be stored in variables and even struct fields.
Since both implements the Fn closure trait, functions that expect closures can
also accept function pointers. However, because the size of closures and func-
tions is not always known, this will cause a compile-time error. Allocating on
the heap by using the Box type, will solve this problem.

To specify that a function only accepts function pointers, the fn type can be
used. This distinction is useful, when handling external code, like C, that only
supports function pointers.

1 // Struct only accepts function pointers
2 struct DistanceMetric {
3 pub(crate) f_local: fn(&[TYPE]) -> TYPE,
4 pub(crate) f_cp: TYPE
5 }
6

7 // Struct accepts both function pointers and closures.
8 struct DistanceMetric {
9 pub(crate) f_local: Box<dyn Fn(&[TYPE]) -> TYPE>,
10 pub(crate) f_cp: TYPE
11 }

Listing 5.23: Struct field types accepting function pointers and closures.

5.6 Error Handling

Errors are inevitable in any software, regardless of the language. Rust catego-
rizes errors into two categories: unrecoverable and recoverable.

For unrecoverable errors, Rust uses panic!which immediately stops execution.
This equals to leaving out a try-catch in C# or Java that would handle the ex-
ception.

For recoverable errors, Rust provides the Result<T, E> enum, that contains two
variants: Ok(T)which holds successful result of type T and an Err(E), which holds
an error type. Themain advantage of this structure is that the function explic-
itly signals to the user that using it could result in an error that needs to be
handled in match arms.

5 Rust 48

1 fn main() {
2 let greeting_file_result = File::open("hello.txt");
3

4 let greeting_file = match greeting_file_result {
5 Ok(file) => file,
6 Err(error) => panic!("Problem opening the file: {error:?}"),
7 };
8 }

Listing 5.24: Error handling with the Result type.

5.7 Rust Documentation

Documentation is essential in any software, serving both developers and users
by explaining functionality, usage, and maintenance. In Rust, documentation
is integrated into code through documentation comments, denoted by ///. It
supports Markdown notation and creates HTML pages upon executing the
cargo doc command.

Documentation can be added to almost any element, including modules, data
types and methods. For each element, the first paragraph should briefly de-
scribe its purpose, followed by amore detailed explanation if needed. In case of
data types, like structs, description can be provided for the entire struct as well
as for individual fields.

For methods and functions, it is recommended to specify conditions under
which the function might panic, along with an example demonstrating its us-
age. These examples are runnable, so even the compiler checks their validity,
which is especially important when a change happens in the codebase.

1 /// A short description.
2 ///
3 /// A detailed description.
4 ///
5 /// # Panics
6 ///
7 /// Cases when the program panics
8 ///
9 /// # Examples
10 ///
11 /// ```rust
12 /// // Some example code
13 /// ```
14 pub(crate) fn bit_representation_with_len(num: usize, number_of_bits: usize,

order: &BitOrder, signed: &Sign) -> Vec<bool> {...}

Listing 5.25: Inline documentation for a struct and its fields. See result
in Figure 5.1.

5 Rust 49

Figure 5.1: HTML page generated from documentation.

Chapter 6

Rust Implementation

This chapter details the implementation of Funshade using the Rust program-
ming language. Building on the theoretical foundations discussed earlier, the
focus here is translating those concept into a functional system. The main in-
spiration was the C implementation created by the original authors [28].

The codebase for this thesis is structured in a way to ensure clarity and main-
tainability. Each module is designed to handle a specific set of specific func-
tionalities, ensuring separation of concerns. The FSS module encapsulates the
capabilities of Function Secret Sharing, while Funshade logic is housed in its
own. In addition, helper functions, data structures and role-specific logic for
different parties are organized in their ownmodules.

The following sections explore these components in detail, highlighting key
design decisions, potential future improvements and the integration of exter-
nal libraries. The attached implementation is available in Appendix A.

1 FUNSHADE-RUST
2 └───src
3 ├───fss
4 │ ├───dcf
5 │ └───ic
6 ├───funshade
7 ├───helper
8 └───sessions
9 └───third_party_session

Listing 6.1: Module hierarchy in Funshade project generated with the tree .
command.

6.1 External Crates

The Funshade implementation uses a few external crates to manage random
number generation, data serialization and command-line interface parsing.
These crates providewell-tested solutions, allowing the focus to remainonde-
veloping the Funshade-specific functionality.

1. aes-prng [1]: This crate provides a pseudo-random number generator [38]
usingAES [18, 62] as theunderlyingmechanism. It depends on the aes crate,
which implements the AES and rand crate for random number utilities. This
crate is used during the key generation phase of Function Secret Sharing,
applying for the function G ∶ {0; 1}λ → {0; 1}2(2λ+1).

2. rand [52]: This crate provides utilities for random number generation. It is
used in Funshade to generate the random mask, Beaver Triples, test bio-
metric templates and general test cases.

50

6 Rust Implementation 51

3. clap [14]: This crate simplifies the process of parsing a command-line ar-
guments through the terminal. In Funshade, clap is used in main.rs to en-
able running and testing the project via the command-line. For example,
the following command can be used to simulate the PIA party:

1 cargo run -- -m 1 --pia

Listing 6.2: Execute the software with a PIA role.

The clap crate works by defining custom command-line arguments within
a Rust data structure. This crate provides an API that supports settings for
both short (-p) and long (--pia) flags, as well as defining default values for
thearguments in thecase theuserdoesnot specify them.Here is anexample
of how it is integrated:

1 #[derive(Parser, Debug)]
2 #[command(version, about, long_about = None)]
3 struct Args {
4 //
5 /// Use PIA
6 #[arg(short, long, default_value_t = false)]
7 pia: bool,
8 //
9 }

Listing 6.3: Args data structure for clap crate.

In this example, the Args struct defines the custom command-line ar-
gument for the --pia flag, which defaults to false if not provided. The
#[command(version, about, long_about = None)] macro, provided by clap, sets
metadata for the CLI such as the version and description. The properties
of the argument (#[arg(short, long, default_value_t = false)]) specifies both
short and long flags for it and ensures a default value is assigned.

Although Funshade is primarily designed as a library, incorporating clap
provides a convenient interface for running the program from the com-
mand line. This functionality is not essential for the core library but is es-
sential for the purposes of this thesis, as it allows for the straightforward
execution of the program and testing of different scenarios.

4. serde [57] and serde_json [58]: These crates form a framework for serializing
anddeserializingRust data structures. In Funshade, they are used to format
messages exchanged between different parties.

These directly used crates pull in a larger dependency tree as depicted in List-
ing 6.4. The clap branch can be avoided when using this implementation only
as a library.

1 funshade v0.1.0
2 ├── aes-prng v0.2.1
3 │ ├── aes v0.8.4
4 │ │ ├── cfg-if v1.0.0
5 │ │ ├── cipher v0.4.4
6 │ │ │ ├── crypto-common v0.1.6
7 │ │ │ │ ├── generic-array v0.14.7
8 │ │ │ │ │ └── typenum v1.17.0
9 │ │ │ │ │ [build-dependencies]
10 │ │ │ │ │ └── version_check v0.9.4
11 │ │ │ │ └── typenum v1.17.0
12 │ │ │ └── inout v0.1.3

6 Rust Implementation 52

13 │ │ │ └── generic-array v0.14.7 (*)
14 │ │ └── cpufeatures v0.2.12
15 │ ├── byteorder v1.5.0
16 │ └── rand v0.8.5
17 │ ├── rand_chacha v0.3.1
18 │ │ ├── ppv-lite86 v0.2.17
19 │ │ └── rand_core v0.6.4
20 │ │ └── getrandom v0.2.12
21 │ │ └── cfg-if v1.0.0
22 │ └── rand_core v0.6.4 (*)
23 ├── clap v4.5.4
24 │ ├── clap_builder v4.5.2
25 │ │ ├── anstream v0.6.13
26 │ │ │ ├── anstyle v1.0.6
27 │ │ │ ├── anstyle-parse v0.2.3
28 │ │ │ │ └── utf8parse v0.2.1
29 │ │ │ ├── anstyle-query v1.0.2
30 │ │ │ │ └── windows-sys v0.52.0
31 │ │ │ │ └── windows-targets v0.52.5
32 │ │ │ │ └── windows_x86_64_msvc v0.52.5
33 │ │ │ ├── anstyle-wincon v3.0.2
34 │ │ │ │ ├── anstyle v1.0.6
35 │ │ │ │ └── windows-sys v0.52.0 (*)
36 │ │ │ ├── colorchoice v1.0.0
37 │ │ │ └── utf8parse v0.2.1
38 │ │ ├── anstyle v1.0.6
39 │ │ ├── clap_lex v0.7.0
40 │ │ └── strsim v0.11.1
41 │ └── clap_derive v4.5.4 (proc-macro)
42 │ ├── heck v0.5.0
43 │ ├── proc-macro2 v1.0.81
44 │ │ └── unicode-ident v1.0.12
45 │ ├── quote v1.0.36
46 │ │ └── proc-macro2 v1.0.81 (*)
47 │ └── syn v2.0.60
48 │ ├── proc-macro2 v1.0.81 (*)
49 │ ├── quote v1.0.36 (*)
50 │ └── unicode-ident v1.0.12
51 ├── rand v0.8.5 (*)
52 ├── serde v1.0.202
53 │ └── serde_derive v1.0.202 (proc-macro)
54 │ ├── proc-macro2 v1.0.81 (*)
55 │ ├── quote v1.0.36 (*)
56 │ └── syn v2.0.60 (*)
57 └── serde_json v1.0.117
58 ├── itoa v1.0.11
59 ├── ryu v1.0.18
60 └── serde v1.0.202 (*)

Listing 6.4: Dependencies used in Funshade project generated with cargo tree
command.

6 Rust Implementation 53

6.2 Helpers

This section details the helper data structures and methods employed in the
Funshade implementation. These components simplify operations such as
data representation, conversions, and scaling, which are fundamental for ex-
ecution. They also provide data structures used consistently throughout the
project.

6.2.1 Group Data Structure

The Group structure addresses the challenge ofmanaging arbitrary bit widths in
computations, particularly in the context of 2PC DCF key generation. This in-
volves hiding input shares and seeds behind 2i random generated values. Sec-
tion 4.2 mentioned the possible reduction in input size, however, it also ad-
dressed a potential precision loss, which may not be ideal depending on the
situation and the chosen distance metric.

For instance, while the computations with 32-bit integersmay be overly time-
consuming, 16-bit integers may lack sufficient precision. The potential need
for intermediate bit sizes between 16 and 32 bits became evident, and as a re-
sult, Funshadewasmodified tobe able tohandle different bit sizes that entailed
a lot of interval calculations.

This gave rise to the Group structure, which encapsulates the desired bit width,
calculating signed maximum and minimum values upon instantiation, along
with a rangemask forwraparoundoperations. Thewrapoperation ensures that
values exceeding the interval, wrap around within the group.

In addition to storing the frequently used values, Group provides basic arith-
metic operations, like addition, subtraction and multiplication, each of which
returns a result that is wrapped around the interval defined by the group.

6.2.2 Funshade Settings Data Structure

The FunshadeSettings manages configuration parameters used throughout the
project. Currently, it stores settings such as bit-length for secure 2PC compu-
tation and the length of accepted input vectors.

The structure was initially introduced to hold frequently used data pairs, like
bit length, maximum value and vector length, which appeared repeatedly in
method headers. Encapsulating these parameters in a dedicated structure not
onlymade the programmore readable, but also ensures that all necessary set-
tings are readily available for the parties as they rely on these parameters.

Future versions of this structure are expected to manage custom settings
(e.g. PRNG) and store more pre-computed values for processing. These val-
ues might include, but are not limited to, max_el, the maximum value that can
appear in input vectors and other global configurations like the security pa-
rameter λ.

6.2.3 Bit Operations

The bit operations module purely contains methods for bit-level manip-
ulation and calculation. This module contains the functionality for deter-
mining how many bits are required to represent a specific number of bytes

6 Rust Implementation 54

(calculate_number_of_bytes) and to calculating the maximum value that can be
represented in a given number of bits (max_number_in_bit).

Perhaps the most frequently used function is bit_representation_with_len, which
constructs the bit representation of a given number. This is a crucial part for
building the DCF tree both in the generation and in the evaluation algorithm.
The algorithm supports signed and unsigned representation with the help of
a Sign enum. This distinction is necessary because the DCFmethod operates on
signed (i32) integers,while unsigned (u8) representation is needed for byte-to-
bit conversions. Althoughgenerics could improve this, it ismore challenging to
implement in Rust compared to languages like C#. As a result, the Rust com-
munity generally recommends using the num_traits [45] crate for this purpose.

The similar problem for Sign, also stands for BitOrder enum, which differenti-
ates between least significant (LSB) and most significant (MSB) bit ordering.
While LSB ordering is required for the number conversion by definition, the
pre-existing implementationusesMSBordering for input values. Anoptimiza-
tion could be to use consistent ordering in both places, thatwould also open the
possibility for an early termination in case of mismatches during evaluation,
preventing the unnecessary computation of the entire tree [10, 64].

Additionally, the bit representation algorithm does not convert the numbers
blindly, but verifies if the number can be represented with the specified sign
within the given bits, using the can_be_represented_in_bitsmethod.

6.2.4 Convert Methods

The convert helper module includes methods that perform conversion, partic-
ularly for bit and byte-level transformation. While several methods have been
developed over the timeof this thesis for similar purposes, the primarymethod
that is currently utilized by Funshade is convert_bytes_by_bits, which converts a
byte array into a signed integer number.

The implementation is based on the definition provided along with DCF [9].
The method takes an array of bytes and a specified number of bits to extract.
At the start, it calculates the required number of bytes needed to represent the
given bits with the help of calculate_number_of_bytesmethod from the previously
discussedmodule. Then, it iterates over the byte array, combining the relevant
bytes into a final result using SHIFT and OR operations. In the case, when the
number of bits is not divisible by 8, the remaining bits are processed individu-
ally in a separate iteration, ensuring the final result is constructed accurately.

6.2.5 Scaling

Initially, thesemethods were developedwithin testmodules to provide correct
test data. However, as explained in Section 4.2, the values in the input embed-
ding vectors have a defined cap. Additionally, the restrictions imposed by the
number of bits also influences the possible range of values, making it essential
to tailor the input values to align with the protocol requirements.

This module includes methods to scale normalized floating-point inputs, in-
teger inputs, and vectors that already had a cap on them. For integer handling,
bothmethods rely on a general scale_input function to perform the actual scal-
ing, with their primary task being the calculation of the maximum value. The
scaling process is based on the minimum value, meaning that if any array is
constrained, for instance, within the range of [−8; 8) and needs to be scaled

6 Rust Implementation 55

to fit [−16; 16), the boundaries can be divided without losing precision. While
this division may seem straightforward in simple cases such as doubling the
range, the situation becomes more complex when dealing with larger inter-
vals, such as the range of i32 values. Since 232 can not be stored within 32 bits,
even though dividing 232 by 216 produces an integer result, it cannot be accu-
rately represented without extending the bit size. Calculating the ratio by di-
viding the maximum values as negative numbers, as −232 is representable in
32 bits, the division will keep its accuracy.

6.3 Function Secret Sharing

Function Secret Sharing is a crucial component of Funshade. Having laid out
the theoretical foundation in Section 2.7, this part will focus on the concrete
implementation of FSS with the Rust programming language.

Starting from smaller units, Boyle et al. describes various tuples in the al-
gorithm. In the implementation to enhance readability, these are sorted into
small, dedicated data structures instead of tuples. This approach ensures that
each part of the system is decoupled and easy to maintain.

The most straightforward structure is the DcfKey, which stores the initial seed
required for tree generation, the correctionwords for each step, andafinal cor-
rection term. The final correction term is stored separately since it is a single
integer. This structure represents the result of the whole key generation pro-
cess and is sent out to other parties. Notably, the DcfKey is a passive data struc-
ture: it merely stores values and takes no part in computation, as the actual
generation and evaluation functions use it.

The DCF algorithm heavily relies on pseudo-random numbers generated from
a new seed in each iteration. Since these seeds are stored as bytes and require
dedicated operations (e.g., XOR), they are encapsulated in a separate structure,
named AesSeed. This structure holds an array of 16 bytes. Even early in the im-
plementation, it became clear that a seed of constant lengthmay not suit every
possible pseudo-random number generator (PRNG). However, Rust requires
the array size to be known at compile time, making dynamic array sizing im-
possible during instantiation.

Two potential solutions can be considered. One approach would involve creat-
ing a trait that operates on vectors, taking the vector length as a parameter and
implementing themethods for different PRNGs.While this provides flexibility,
it limits the supported PRNGs. A better solution involves using the arrayvec [2]
crate, which allows specifying the array length during runtime. Implementing
this in the future would greatly enhance flexibility and usability.

As described by Boyle et al. [9], the sL||vL||tL||sR||vR||tR ← G(s(i−1)) random tuples,
generated in each iteration, correspond to the DcfNodes structure. From each
seed, two nodes are generated—one for the left branch and one for the right—
each consisting of a seed, an integer value, and a boolean. A private construc-
tor and a method generate these node pairs taking the PRNG instance and the
group as parameters. These form the foundation for generating the correction
words.

The correctionwords tuples are frequently used,making it reasonable to create
a dedicated structure, CorrectionWord. Similar to DcfKey, its responsibility is lim-
ited to storing pre-computed values, which are exclusively used by the evalu-
ation algorithm.

6 Rust Implementation 56

Converting tuples to structured objects made it easier to follow the provided
pseudocode from the paper. However, small changes were unavoidable due to
the nature and variability of the features provided by programming languages.
For example, loops were adjusted to start at index 0, and the list of correction
words was pre-allocated with a defined capacity. Rust’s overflow behaviour,
which causes apaniconoverflow indevelopmentbuild, had tobeaccounted for.
To avoid panics wrapping methods are used instead of regular operators (e.g.,
+, −, ⋅). In the release build, Rust changes them back for performance reasons,
sowrappingmethods like wrapping_addwereused to ensure executionduringde-
velopment, testing and debugging.

1 let a: i32 = 2022;
2 let b: i32 = 2023;
3

4 let unwrapped_result = a + b;
5 let wrapped_result = a.wrapping_add(b); // In release build this = a + b

Listing 6.5: After optimizations done by the compiler, the two operations will
be the same.

An interesting challenge arose when managing the randomized initial seeds
used at the start of the key generation process. These seeds need to persist until
the function ends, but theymust also be used in the first iteration of the gener-
ation process. In Java, references could be stored in variables, and updating the
reference at the end of each iterationwould retain the initial seed values. How-
ever, Rust’s ownershipmodel does not allow this. The simplest solution would
be to handle the first iteration separately, but duplicating code is undesirable.
An option more alike to Java, is to store a reference and update it in each iter-
ation, though Rust’s borrow checker complicates this approach by ending the
variable’s life at the loop’s end. Consequently, the program panics during the
next node generation because the seed variable does not have any value.

1 let s: AesSeed = AesSeed::new_random();
2 let mut s_i = s;
3 for i in 0..10 {
4 // Perform some calculation
5 s_i = // some new value
6 }
7 let key = DcfKey::new(s, cws, last);

Listing 6.6: The last line throws an error because the ownership of the value is
transferred in line 2.

To solve this, the initial seeds are cloned in the first iteration to avoid owner-
ship transfer, allowing them to persist throughout the function. Additionally,
the variables aremademutable to enable changing the values in each iteration.

Unlike seed management, correction words are not in a disadvantage from
Rust’s ownership model. The push method for lists transfers ownership of the
value, ensuring that the values persist beyond the end of each iteration.

A private function, gen_dcf_with_seed, was implemented to reuse the same seeds
for testing and debugging purposes. This function ensures consistent be-
haviour across different test cases. The rest of the implementation is pretty
similar to what’s written in the paper.

The interval containmentmodule builds on themore complexDCFmodule. The
ICKey structure is responsible for encapsulating the necessary data, which in-
cludes the DCF key and a correction term. One notable deviation from the C
implementation is the compare_as_unsignedmethod. While casting signed values

6 Rust Implementation 57

to unsigned is straightforward in C, Rust requires additional handling to avoid
panics. As a result, a customcomparison functionwas implemented to perform
this task safely without type casting or using a bigger type.

6.4 Funshade

This section outlines the concrete steps taken to implement Funshade in Rust.
The implementation relies on several components, such as the Function Secret
Sharingmodule, helper data structures and functions.While these components
have been discussed in prior sections, the focus here is on how they are utilized
by the Funshade module.

As discussed in the theoretical part (cf. Chapter 4), the Funshade protocol is
divided into distinct phases: setup, secret sharing (hiding the input data as
shares), evaluation, and result computation. Each of these roles involves spe-
cific data structures and processes.

As with the FSS module, the outcome of the setup phase is a key, represented
here as FunshadeKey. This key is also a passive data structure that stores pre-
computed values, which are later used during the evaluation phase. Impor-
tantly, this key encapsulates the necessary information generated during the
setup without performing any active operations on it.

The DeltaShare structure is designed to hold the additive shares to hide the input
data from each other. These shares are randomly generated during the setup
phase, removing the need for a dedicated traditional “constructor” or the re-
quirement to prevent unauthorized instantiation. One possible optimization
would be to send a single array — the sum of the two shares — to the input-
holding parties. This approach would reduce the communication cost by half.
The existence of this structure would become debatable as it would hold only
one variable. By deleting this structure, it would transfer the responsibility of
generating the two shares to a different — and a new — structure, such as
BeaverTriples, since the additive shares are the same elements the triples hold.

The DistanceMetric data type contains two values: a function representing the
metric that needs to be evaluated locally and the scalar factor for computing
the scalar product. This structure allows the user to select and apply the dis-
tance metric of their choice. While the type needs to be public for the user to
construct an instance, the fields themselves should not be modifiable by ex-
ternal components. Therefore, to prevent the fields to inherit the protection
levels, they are adjusted to restrict field access.

The somewhat unconventional type signature for the f_local field is a neces-
sity to use and store closures, which implement the Fn trait. These closures are
wrapped in a Box because their size is not known at compile time.

1 pub struct DistanceMetric {
2 pub(crate) f_local: Box<dyn Fn(&[TYPE]) -> TYPE>,
3 pub(crate) f_cp: TYPE
4 }

Listing 6.7: DistanceMetric data structure.

Ibarrondo et al. [29] already provided the reformulation of distance metrics
which are pre-implemented in the project. To provide built-in support for
these, the project includes an enumnamed BuiltInDistanceMetric. The enumalso
provides the instantiation of the pre-defined distance metrics in a dedicated
method. This uses match arms to generate the instances efficiently, minimizing

6 Rust Implementation 58

codeduplication andvisualizing similarities betweenmetrics (e.g., the Squared
Euclidean and Hamming Distance, as shown in [29]).

The Funshade implementation closely follows the protocol definitions pre-
sented in [29], but with some necessary adjustments to adapt the methods for
Rust and to ensure efficiency.

The setupmethod, usedbyRsetup, is responsible for preparing thepre-computed
values for theprotocol. Theessenceof the implementationmirrors theprotocol
steps: generating random values, performing basic operations, and construct-
ing the keys. However, the method’s header deviates slightly from the paper,
as it takes a FunshadeSettings instance to encapsulate the required parameters
except θ.
The input handler invokes the sharemethod to evaluate the distancemetric lo-
cally and hide their input vectors. The method signature has been extended to
include both a FunshadeSetting and a DistanceMetric instance, ensuring that the
necessary configuration and function definitions are readily available.

The evaluation algorithm is divided into two methods [28]: eval_scalar and
eval_sign. The former takes the triples from the FunshadeKey, data from the in-
put handlers and a DistanceMetric instance to compute the additive share of the
distance metric result. This value is exchanged between the parties and given
to the eval_sign algorithm, in which it is used to evaluate the IC gate. Together,
these twomethods perform the core computations required for secure evalua-
tion.

Finally, the result method is invoked by Rresult to reconstruct the final output
based on the results of the previous computations.

6.5 Party Structure

TheFunshade implementation includespre-implementedparty structures de-
signed to provide users with ready-to-use interfaces. These structures offer
users a reliable foundation, allowing them to build on existing methods and
integrate the Funshade protocol with minimal setup effort.

Each party is implemented in the form of a struct rather than as a trait. The
structs are essential for storing party-specific data, such as keys, and they im-
plement various traits to support the necessary functionality (cf. Figure 6.1). A
significant limitation with traits is that they define behaviour only and cannot
store data. Coming fromamostly object-oriented background and the fact that
there’s no traditional inheritance, this restriction caused a lot of problems not
only in this case, but throughout the project.

Additionally, to avoid potential communication issues and enhance thread-
safety, each party operates independently. Rather than a single static instance,
each party maintains individual state and data for every connected party, pre-
venting conflicts in a multi-party setup like the one illustrated in Figure 6.1.

The parties store the role-specific data in dedicated structures, except for a
shared configuration data structure. Early in the development, the configu-
ration information was handled by ConfigData struct to ensure that all parties
possess the same parameters. However, this structure’s role eventually over-
lapped with the FunshadeSettings, making it redundant in the end. The data, it
stored, was queried from the instance and passed onto the Funshademethods.

The SetupData struct contains necessary setup-phase information, such as the θ
value. This structure is exclusive to the third party. The other two participants

6 Rust Implementation 59

Sensor

PIA

k0
0

k0
1

k0
2

k1
0

k1
1

k1
2

PIA

PIA

Figure 6.1: A Sensor connected to multiple PIA storing keys for each session.

have a dedicated structure for the input data and δ-shares, while in a different
one they store data for the evaluation phase, such as keys, shares and the re-
sult from the scalar_eval function. The latter is needed to ensure every value is
available for the IC gate evaluation, aswhen the two of themhave delays—due
to communication or performance — they need to wait for each other’s value
to progress further.

The parties not only store the necessary data, but alsomanage communication
via references to TcpStream instances, which they use to forward messages. The
messages are sent in a form of Message enums (see Listing 6.8), that contains
the appropriate command, some of them even contain values. For example,
Message:Start will tell the other party that it’s time to start the protocol, while
Message:Key(key) encloses the Funshade key to be sent.

In order to send messages, the write_all method can be used provided by the
stream. This accepts a byte array, therefore to deliver the messages, they need
to be converted to one. The serde library already provides a solution by using
their two traits, the Serialize and Deserialize to convert them back and forth.
However, because not all incoming datamight belong to Funshade, the deseri-
alization process is not initiated by the library, but the user. The project offers
a handling function to manage the messages, which accepts the user’s already
deserialized instances.

1 #[derive(Serialize, Deserialize, Debug)]
2 pub enum Message {
3 Init,
4 Setup,
5 Config(ConfigData),
6 Abort,
7 DeltaShare(DeltaShare),
8 Key(FunshadeKey),
9 Start,
10 DShare(bool, Vec<i32>, i32),
11 Eval,
12 ZValue(i32),
13 OValue(bool, i32)
14 }

Listing 6.8: Message enum.

To organize functionality, Funshade defines two main traits: a public
FunshadeSession and a private one, called Party. This distinction needed be-
cause Rust does not allow the method’s protection level to differ from the

6 Rust Implementation 60

trait’s. In this way, the software can still provide an interface to handle the
processes and prevents the user to invoke internal methods.

The FunshadeSession provides the user with structured methods to manage the
protocol. It includes init_protocol, which initialize the protocol to agree on pa-
rameters, and setup_protocol, which begins the setup phase. If an error occurs
during any method, abort_protocol can be used to terminate the process. Addi-
tionally, handle_funshade_message is available to interpret and manage incoming
Funshade messages effectively.

The Party trait includes internal methods for sending a message to a given ad-
dress, and handle specific requests, such as initialization.

In other terms, the FunshadeSession provides the interface for the user to tell the
partieswhat todoanda command to interpret themessage, but to actually per-
formthe tasks, it usesprivate functions shown inFigure6.2(b). Themethod in-
voked by the user does not perform the logic itself, rather it forwards the com-
mand to theappropriate element. For instance, if the called interfacewouldalso
perform the logic itself then the init_protocolwould send amessage to the other
party, by interpreting the message it would also invoke init_protocol, which
would start a loop sending the samemessage back and forth (cf. Figure 6.2(a)).

FunshadeSession

+ init_protocol(&self): Result<(), Box<dyn Error>>

+ setup_protocol(&mut self): Result<(), Box<dyn Error>>

+ abort_protocol(&self): Result<(), Box<dyn Error>>

+ handle_funshade_message(&mut self, message: Message):
 Result<(), Box<dyn Error>>;

sendinvoke

Start

(a) Without calling another unit for help the algorithm
runs into an infinite loop.

FunshadeSession

+ init_protocol(&self): Result<(), Box<dyn Error>>

+ setup_protocol(&mut self): Result<(), Box<dyn Error>>

+ abort_protocol(&self): Result<(), Box<dyn Error>>

+ handle_funshade_message(&mut self, message: Message):
 Result<(), Box<dyn Error>>;

Party

~ send_message(stream: &Arc<Mutex<TcpStream>>,
 message: &Message: Result<(), Box<dyn Error>>

~ handle_init_message(&self): Result<(), Box<dyn Error>>

~ handle_config_message(&self, data: ConfigData):
 Result<(), Box<dyn Error>>;

~ handle_abort_message(&self): Result<(), Box<dyn Error>>

Party0
Party1

sen
d

invoke

invoke

invok
e

+ public
~ public for parent

(b) Theinit_protocolmethodcalledby theuserwill send themessageand invoke the samemethod
that the receiver to handle the initialization tasks.

Figure 6.2: Initialization request.

Since each party has a distinct role, Funshade also includes specialized traits
acting as an interface, such as SensorInput and PIAInput shown in Listing 6.9. As
the protocol can not be started until the sensor receives the data, it possesses
a start_matching command to start the process, meanwhile the PIA has the op-
portunity to update its input and calculate shares in advance.

6 Rust Implementation 61

1 pub trait SensorInput<'a>{
2 fn start_matching(&mut self, input: &'a Vec<TYPE>) -> Result<(), Box<dyn Error

>>;
3 }
4

5 pub trait PiaInput<'a> {
6 fn change_input(&mut self, input_vec: Vec<&'a Vec<TYPE>>);
7 fn calculate_shares(&mut self) -> Result<(), Box<dyn Error>>;
8 }

Listing 6.9: Interface of Sensor and PIA input roles.

To perform role-specific tasks, the parties needs to implement the specific
traits, such as the trait Compute for the evaluator parties. It contains methods
for managing the state of the struct and to perform the appropriate computa-
tions, such as eval. This role-oriented structuring enables focused, clean code
that reflects each party’s responsibilities within the protocol.

It is worth noting, that the naming of these parties is somewhat specific to the
Digidow project [41], especially PIA, which is not very descriptive in a broader
context. The name has been retained here for clarity and consistency with
the thesis and for other teammembers. However, as development progresses,
these names will likely change. In future versions, the party structure is ex-
pected to be refactored and undergo significant changes, additionally choosing
more expressive and appropriate names to better reflect the roles each party
represents in the protocol.

The software was developed early in the learning curve, and with hindsight,
there are aspects that could be significantly improved. Several elements would
benefit from refinement, and specific recommendations for these improve-
ments are detailed in Chapter 8.

6.6 How to Use this Library?

The project is designed as a library to support integration into distributed sys-
tems, such as the Digidow project [41], facilitating secure multiparty compu-
tation. The goal is to provide a flexible yet efficient implementation that can be
adapted to a range of scenarios where secure data processing is required.

Currently, the library provides several pre-implemented parties tailored for
the third-party scenario, where a neutral entity helps facilitate the compu-
tation. These include ThirdPartySetup, responsible for distributing the keys and
shares, ThirdPartyPIA, the party who knows their input data beforehand, and
ThirdPartySensor, which activates the protocol when live data becomes available.

As discussed in the previous section, these parties are implemented as struc-
tures that hold necessary data, such as communication streams used to mes-
sage other parties. The user’s task is to instantiate these structures in their
project (see Figure 6.3). This makes it simple to integrate the Funshade proto-
col into larger systems without needing to understand its internal complexity.

Each of these objects offers various functionalities (see Figure 6.4), including:

Protocol initialization (init_protocol): This method is responsible for ex-
changing configuration data between the parties, such as the embedding_size,
ensuring that all participantsworkwith the parameters. This is an optional,
but not mandatory step.

Protocol setup (setup_protocol): Perform the setup phase of the protocol.

6 Rust Implementation 62

Figure 6.3: ThirdPartyPIA and ThirdPartySensor structs and instantiation.

Abort protocol (abort_protocol): In caseswhere the computation cannot con-
tinue, or an error is detected, the abort_protocol method can be invoked to
halt the process.

Handling messages (handle_funshade_message): Any message received from
another party can be passed directly to the object, which will automatically
process the message based on its type and role in the protocol.

The Sensor party has an essential role in initiating the execution. The
start_matching method allows to trigger the protocol’s execution, when live
data becomes available. This ensures that the computation does not begin
until all the necessary conditions are met.

The PIA stores its input data, the long-term biometric embedding, which can
be updated as needed using the change_input method. Additionally, the PIA can
use the calculate_shares method to pre-compute its shares before the protocol
begins, reducing the overhead during the online phase.

Figure 6.4: Public trait acting as an interface mapped to method calls.

Chapter 7

Evaluation

This chapter covers a successful and a negative match runs with concrete val-
ues, run-time measurements over multiple randomized inputs, and a brief
summary of the unit tests implemented for this thesis. The test data are gener-
ated randomly, but for concrete cases the Labeled Faces in theWild [20] dataset
is used.

The tests andbenchmarks are executed on an 11thGen Intel®Core™ i5-1135G7
× 8 processor with 8GB ofmemory, using Ubuntu 24.04.1 LTS 64-bit operation
system.

7.1 Positive Test Run

In a successful match run, the implementation correctly identifies a user by
comparing the provided biometric data (x) with the stored reference (y). Fig-
ure 7.1 shows the matching faces that the test embeddings are based on.

Figure 7.1: Biometric data for matching test case.

Bits: 32 bits

Distance metric: Scalar Product

Input Values: x and y are vectors with 512 elements.

Output: Match successful (1).

63

7 Evaluation 64

In this case, the input and stored referencematch, demonstrating that the im-
plementation validates users:

1 running 1 test
2 test funshade::simple_funshade_test::funshade_positive_case ... ok
3

4 successes:
5

6 ---- funshade::simple_funshade_test::funshade_positive_case stdout ----
7 Number of bits used: 32 bits
8 The selected distance metric is Scalar Product
9 The length of the embeddings is 512 and the maximum value of each element is

2896
10 The treshold is 0.81 which converted to the integer range is 6793321
11 The expected result of the distance metric evaluation is 6866520
12 Therefore the expected result is z >= theta: true
13 The keys are generated and correct!
14 The input shares are generated and correct!
15 The masked result of the distance metric evaluation is: 621409186
16 The result is 1671688461+-1671688460=true
17

18

19 successes:
20 funshade::simple_funshade_test::funshade_positive_case
21

22 test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 175 filtered out;
finished in 0.01s

Listing 7.1: A positive test run of Funshade.

7.2 Negative Test Run

In an unsuccessful match run, the implementation recognizes that the person
is not authorized to access the requested resource, by comparing the provided
biometric data x with the stored reference y. Figure 7.2 shows the unmatching
faces that the test embeddings are based on.

Figure 7.2: Biometric data for unmatching test case.

Bits: 32 bits

Distance metric: Scalar Product

Input Values: x and y are arrays with 512 elements.

Output: Match successful (0).

7 Evaluation 65

In this case, the input and stored reference does notmatch, demonstrating that
the implementation determines correctly that the person is not authorized:

1 running 1 test
2 test funshade::simple_funshade_test::funshade_negative_case ... ok
3

4 successes:
5

6 ---- funshade::simple_funshade_test::funshade_negative_case stdout ----
7 Number of bits used: 32 bits
8 The selected distance metric is Scalar Product
9 The length of the embeddings is 512 and the maximum value of each element is

2896
10 The treshold is 0.81 which converted to the integer range is 6793321
11 The expected result of the distance metric evaluation is -188360
12 Therefore the expected result is z >= theta: false
13 The keys are generated and correct!
14 The input shares are generated and correct!
15 The masked result of the distance metric evaluation is: 61989206
16 The result is -287013062+287013062=false
17

18

19 successes:
20 funshade::simple_funshade_test::funshade_negative_case
21

22 test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 175 filtered out;
finished in 0.00s

Listing 7.2: A negative test run of Funshade.

7.3 Performance

For performance measurement the criterion [17] crate is used. Criterion is a
micro-benchmarking library used for measuring performance and detecting
improvements.

At the start of the benchmark, configurations are defined for themeasurement
phase. The iter_batched function of Criterion allows setup operations to be per-
formed before each iteration. In the form of a closure, the generation of the
input vectors are occurs without getting them involved in the measurement.
The output is passed as a parameter for the next closure that defines the ac-
tual commands to be measured. The average run-time of the protocol without
taking communication costs into account is around 120μs as visualized in Fig-
ure 7.3.

7 Evaluation 66

funshade

It
e
ra

ti
o
n
s

Average Time (µs)

0

100

200

300

400

500

600

700

800

105 110 115 120 125 130 135 140

D
e
n
sity

 (a
.u

.)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

PDF

Mean

"Clean" sample

Mild outliers

Severe outliers

Figure 7.3: The average time per iteration for this benchmark.

7.4 Unit Tests

Along the implementation, various unit tests are also created for each module
andmethod:

1 test fss::ic::ic_tests::ic_random_n ... ok
2 test funshade::simple_funshade_test::arbitrary_bit_single_funshade ... ok
3 test funshade::simple_funshade_test::arbitrary_theta_funshade ... ok
4

5 test result: ok. 174 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out;
finished in 14.53s

Listing 7.3: Test report.

Unit tests cover various functions, including bit representation, smaller bit-
related calculations, scaling, and convertmethods. Similar tests are created for
dcf, ic, and funshademodules to validate the protocols. Each test is organized in a
separate functionality_name_test submodule, to group the related ones together.
For instance, Listing 7.4 shows a part of the unit tests implemented to validate
bit representation methods:

1 #[cfg(test)]
2 mod bit_rep_tests {
3 ...
4

5 #[test]
6 fn five_bit_len_representation_msb() {
7 let length= 4;
8 let num = 5;
9

10 let actual: Vec<bool> = bit_representation_with_len(num, length, &BitOrder::
Msb, &Sign::Signed);

11

12 let mut expected: Vec<bool> = Vec::new();
13 expected.push(false);
14 expected.push(true);
15 expected.push(false);
16 expected.push(true);
17

18 assert_eq!(actual, expected);
19 }

7 Evaluation 67

20

21 #[test]
22 fn five_bit_len_representation_lsb() {
23 let length= 4;
24 let num = 5;
25

26 let actual: Vec<bool> = bit_representation_with_len(num, length, &BitOrder::
Lsb, &Sign::Signed);

27

28 let mut expected: Vec<bool> = Vec::new();
29 expected.push(false);
30 expected.push(true);
31 expected.push(false);
32 expected.push(true);
33 expected.reverse();
34

35 assert_eq!(actual, expected);
36 }
37

38 #[test]
39 fn big_number_len_representation() { ... }
40

41 #[test]
42 fn negative_number_len_representation_msb() { ... }
43

44 #[test]
45 fn negative_number_len_representation_lsb() { ... }
46

47 #[test]
48 fn large_number_len_representation() { ... }
49

50 ...
51 }

Listing 7.4: The bit representation unit tests are organized in a small test
module.

One of these tests for funshademodule, presented in Listing 7.5, happens in the
followingway (theexecutionorder is the sameas forListing7.1 andListing7.2):

1. Generate the necessary data for the protocol, such as the threshold (θ), the
number of bits used (n), the length of the input vectors (l), the distance
metric used (dm) and the maximum value of the input elements (maxel).

2. Begin a loop from 0 until a specified number (e.g. 1000), determining the
number of protocol executions.

3. At the start of each iteration, generate twonewrandominput vectorswithin
the valid interval. Following this operation, calculate the expected result
based on the distance metric and the threshold.

4. Generate keys and delta-shares using the setupmethod.

5. Calling two sharemethod on the input vectors and delta-shares, generates
the shares of the masked inputs.

6. Perform the first part of the evaluation method using eval_scalar. The re-
sults are then used in the eval_sign to evaluate the IC gate and acquire the
result the two party would have in the end.

7. Summing both values reveals the protocols’ outcome which can be com-
pared with the expected value.

8. Jump to the next iteration.

7 Evaluation 68

1 #[test]
2 fn funshade_more_embedding() {
3 let mut rng: ThreadRng = rand::thread_rng();
4 let number_of_test_inputs = 1000;
5

6 let n: usize = TYPE_BITS;
7 let l: usize = 512;
8

9 let settings: FunshadeSettings = FunshadeSettings::new(l, n);
10

11 let max_el: f32 = calculate_max_el(&settings);
12

13 let theta_real: f32 = 0.8;
14 let theta = theta_real * max_el * max_el;
15 let theta = theta.floor() as TYPE;
16

17 let dm_type: BuiltInDistMetrics = BuiltInDistMetrics::Scalar;
18 let dm: DistanceMetric = BuiltInDistMetrics::create(&dm_type);
19

20 for _ in 0..number_of_test_inputs {
21

22 let x_float: Vec<f32> = sample_biometric_template(&mut rng, 1, l).remove(0);
23 let y_float: Vec<f32> = sample_biometric_template(&mut rng, 1, l).remove(0);
24

25 let x: Vec<TYPE> = scale_normalized_input(&x_float, &settings);
26 let y: Vec<TYPE> = scale_normalized_input(&y_float, &settings);
27

28 let mut z: TYPE = 0;
29 for i in 0..l {
30 z = z.wrapping_add(x[i].wrapping_mul(y[i]));
31 }
32

33 let (k0, k1, delta_x, delta_y): (FunshadeKey, FunshadeKey, DeltaShare,
DeltaShare)

34 = setup(&settings, theta);
35

36 assert_key(&settings, &k0, &delta_x);
37 assert_key(&settings, &k1, &delta_y);
38

39 let (in_x0, in_x1) = share(&delta_x, &x, &dm, &settings);
40 let (in_y0, in_y1) = share(&delta_y, &y, &dm, &settings);
41

42 assert_share_result(&settings, &in_x0);
43 assert_share_result(&settings, &in_x1);
44 assert_share_result(&settings, &in_y0);
45 assert_share_result(&settings, &in_y1);
46

47 let z0: TYPE = eval_scalar(false, &k0,
48 &in_x0, &in_y0, &dm, &settings);
49 let z1: TYPE = eval_scalar(true, &k1,
50 &in_x1, &in_y1, &dm, &settings);
51

52 let o0: TYPE = eval_sign(false, &k0.key, z0, z1, &settings.g);
53 let o1: TYPE = eval_sign(true, &k1.key, z0, z1, &settings.g);
54

55 let expected: bool = z >= theta;
56 let actual: bool = res(o0, o1, &settings.g);
57

58 assert_eq!(actual, expected);
59 }
60 }

Listing 7.5: Funsahde test generates embeddings with more elements in every
iteration and executes the protocol.

7 Evaluation 69

7.5 Execution with Party Structures

For the purpose of testing theTCP communication between the parties, the main
performs a session with random values. The program realizes the scenario us-
ing a third-party for setup and an additional one, who receives the results.

The program can be executed from command line with custom parameters for
which the clap crate [14] was used (cf. Section 6.1). In the parameters it needs to
be specified that which party’s task should performed: --sensor, pia, setup, and
result. The scenario can be selectedwith the -mflag, setting 1 for the third-party
scenario and 3 for the 2PC.
The process happens as follows:

Initiate the process with the Result party. This will wait for incoming con-
nections.

1 cargo run -- --result -m 1
2

Listing 7.6: Start the Result Party.

Start the third, the setup party. It connects to the Result party and wait for
incoming connections.

1 cargo run -- --setup -m 1
2

Listing 7.7: Start the Setup Party.

Launch the PIA that connects to the third and the result party and wait for
incoming connection from the sensor.

1 cargo run -- --pia -m 1
2

Listing 7.8: Start the PIA.

Finally, start the sensor.
1 cargo run -- --sensor -m 1
2

Listing 7.9: Start the Sensor.

After all participants are present, the protocol starts automatically. The re-
sults are the followings:

1 Listening on 127.0.0.1:6868!
2 Setup Party Connected!
3 PIA Connected!
4 Sensor Connected!
5 Creating Result Party...
6 Waiting for o0 and o1...
7 One received!
8 Other received!
9 o0: 1499305535
10 o1: -1499305535
11 result: 0 - false
12 Expected result (z >= theta): false
13 Done!

Listing 7.10: Print outs from Result Party.

7 Evaluation 70

1 Listening on 127.0.0.1:4848!
2 Connected to Result Party!
3 PIA connected!
4 Sensor connected!
5 Creating Setup Party...
6 Waiting for init request...
7 Received
8 Waiting for config data...
9 First config data received
10 Other config data received
11 Waiting for setup request...
12 Received
13 Done!

Listing 7.11: Print outs from Setup Party.

1 Listening on 127.0.0.1:3838!
2 Connected to Setup Party!
3 Connected to Result Party!
4 Sensor connected!
5 Creating PIA...
6 Waiting for init request...
7 Received
8 Waiting for config data....
9 First config data received
10 Other config data received
11 Waiting for key...
12 Key received
13 Waiting for Delta-share...
14 DeltaShare received
15 Calculate D-shares beforehand.... and send it
16 Waiting for Start message...
17 Received Start message
18 Waiting for Dshare
19 Received Dshare from Sensor
20 Waiting for sensor's z value...
21 Sensor's z value received
22 Done!

Listing 7.12: Print outs from PIA.

1 Connected to Setup Party!
2 Connected to PIA!
3 Connected to Result Party!
4 Creating Sensor ...
5 Initialize Protocol...
6 Waiting for config data...
7 Config data received
8 Other config data received
9 Setup the protocol!
10 Waiting for key....
11 Key received
12 Waiting for Delta-share
13 DeltaShare received
14 Waiting for dshare from PIA...
15 Dshare received
16 Start matching...
17 Waiting for PIA's z value...
18 Z received
19 Done!

Listing 7.13: Print outs from Sensor.

Chapter 8

Conclusion and FutureWork

In conclusion, this thesis presents an in-depth explanation and implementa-
tion of Funshade. This work established the theoretical foundation, covering
FSS, DCF and interval containment, along with other secret-sharing schemes.
By leveraging Rust’s memory safety and concurrency capabilities, Funshade
wasbuilt to securely compare biometric data betweenpartieswithout revealing
sensitive information to any individual party. Several optimizations anddesign
decisions—such as using structs for data storage and pre-configured traits for
specific functionality—helped balance usability and flexibility with hiding the
private parts from the user.

While this implementation of Funshade achieves its primary goals, numerous
areas for future improvement have been identified during the creation of this
thesis to enhance security, adaptability, and efficiency further. As Section 4.2
described, amajor opportunity lies in refining the setup phase, where the par-
ties collaboratively compute the outputs and to address potential attacks from
compromised parties. Hopefully, this development will happen in the form of
a collaboration with the original authors of the Funshade paper.

A minor addition would be to allow the user to choose their own PRNG or use a
default one. For this purpose developing an AES-based PRNG using aes crate
would be advantageous, as the current PRNG relies on a third-party crate,
without any confirmation about how secure it is.

From the implementation perspective, parties should receive a more refined
and flexible structure. This is planned to achieve by overcoming the difficulty
of the separated data and behaviour aspects of Rust and pre-implement func-
tion in traits that handles data, but behaves the same in every situation. Taking
advantage of the fact that Funshade has clearly separable phases (e.g., setup,
share, eval), implementing a state machine would be an efficient addition.

Finally, a formal verification of the implementation and refining communi-
cation structure, whether through a fully user-controlled or library-managed
approach, would increase Funshade’s flexibility across various use cases. A
custom writer could also make Funshade adaptable to diverse communication
protocols, ensuring a broader application range without sacrificing reliability.

71

Bibliography

[1] 2024. aes-prng - crates.io: Rust Package Registry. en. (February 2024).
Retrieved 10/21/2024 from https://crates.io/crates/aes-prng.

[2] 2024. arrayvec - crates.io: Rust Package Registry. en. (August 2024). Re-
trieved 10/24/2024 from https://crates.io/crates/arrayvec.

[3] Mauro Barni, Giulia Droandi, Riccardo Lazzeretti, and Tommaso Pig-
nata. 2019. SEMBA: secure multi-biometric authentication. en. IET Bio-
metrics, 8,6,411–421._eprint:https://onlinelibrary.wiley.com/doi/pdf/10.1049/iet-
bmt.2018.5138. ISSN: 2047-4946. DOI: 10 . 1049 / iet - bmt . 2018 . 5138.
Retrieved 11/11/2024 from https://onlinelibrary.wiley.com/doi/abs/10.1
049/iet-bmt.2018.5138.

[4] Donald Beaver. 1992. Efficient Multiparty Protocols Using Circuit Ran-
domization. en. In Advances in Cryptology — CRYPTO ’91. Joan Feigen-
baum, (Ed.) Springer, Berlin, Heidelberg, pp. 420–432. ISBN: 978-3-
540-46766-3. DOI: 10.1007/3-540-46766-1_34.

[5] S.M. Bellovin and M. Merritt. 1992. Encrypted key exchange: password-
based protocols secure against dictionary attacks. In Proceedings 1992
IEEEComputer Society SymposiumonResearch in Security andPrivacy. (May
1992), pp. 72–84. DOI: 10.1109/RISP.1992.213269. Retrieved 10/14/2024
from https://ieeexplore.ieee.org/document/213269.

[6] J. Blandy, J. Orendorff, L. Tindall, and an O’ReillyMedia Company Safari.
2021. Programming Rust, 2nd Edition. O’ReillyMedia, Incorporated. https
://books.google.at/books?id=BU1YzQEACAAJ.

[7] AbrahamBookstein, Vladimir A. Kulyukin, andTimoRaita. 2002. Gener-
alizedHammingDistance. en. InformationRetrieval, 5, 4, (October 2002),
353–375. ISSN: 1573-7659. DOI: 10 . 1023/A : 1020499411651. Retrieved
10/03/2024 from https://doi.org/10.1023/A:1020499411651.

[8] Victor Boyko, PhilipMacKenzie, and Sarvar Patel. 2000. Provably Secure
Password-Authenticated Key Exchange Using Diffie-Hellman. en. In
Advances in Cryptology— EUROCRYPT 2000. Bart Preneel, (Ed.) Springer,
Berlin, Heidelberg, pp. 156–171. ISBN: 978-3-540-45539-4. DOI: 10.10
07/3-540-45539-6_12.

[9] Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval Ishai,
Nishant Kumar, and Mayank Rathee. 2020. Function Secret Sharing for
Mixed-Mode and Fixed-Point Secure Computation. Publication info:
Preprint. MINOR revision. (2020). Retrieved 10/03/2024 from https://ep
rint.iacr.org/2020/1392.

[10] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2018. Function Secret Sharing:
Improvements and Extensions. Publication info: Published elsewhere.
Major revision. ACM CCS 2016. (2018). Retrieved 10/08/2024 from http
s://eprint.iacr.org/2018/707.

72

https://crates.io/crates/aes-prng
https://crates.io/crates/arrayvec
https://doi.org/10.1049/iet-bmt.2018.5138
https://onlinelibrary.wiley.com/doi/abs/10.1049/iet-bmt.2018.5138
https://onlinelibrary.wiley.com/doi/abs/10.1049/iet-bmt.2018.5138
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1109/RISP.1992.213269
https://ieeexplore.ieee.org/document/213269
https://books.google.at/books?id=BU1YzQEACAAJ
https://books.google.at/books?id=BU1YzQEACAAJ
https://doi.org/10.1023/A:1020499411651
https://doi.org/10.1023/A:1020499411651
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/3-540-45539-6_12
https://eprint.iacr.org/2020/1392
https://eprint.iacr.org/2020/1392
https://eprint.iacr.org/2018/707
https://eprint.iacr.org/2018/707

Bibliography 73

[11] Julien Bringer, Herve Chabanne, Melanie Favre, Alain Patey, Thomas
Schneider, and Michael Zohner. 2014. GSHADE: faster privacy-
preserving distance computation and biometric identification. In Pro-
ceedings of the 2nd ACM workshop on Information hiding and multimedia
security (IH&MMSec ’14). Association for Computing Machinery,
New York, NY, USA, (June 2014), pp. 187–198. ISBN: 978-1-4503-
2647-6. DOI: 10 . 1145 / 2600918 . 2600922. Retrieved 10/30/2024 from
https://dl.acm.org/doi/10.1145/2600918.2600922.

[12] Jung Hee Cheon, HeeWon Chung, Myungsun Kim, and Kang-Won Lee.
2016. Ghostshell: Secure Biometric Authentication using Integrity-
based Homomorphic Evaluations. Publication info: Preprint. MINOR
revision. (2016). Retrieved 11/17/2024 from https://eprint.iacr.org/2016
/484.

[13] HuChun, Yousef Elmehdwi, Feng Li, Prabir Bhattacharya, andWei Jiang.
2014. Outsourceable two-party privacy-preserving biometric authenti-
cation. In Proceedings of the 9th ACM symposium on Information, computer
and communications security (ASIA CCS ’14). Association for Computing
Machinery, New York, NY, USA, (June 2014), pp. 401–412. ISBN: 978-
1-4503-2800-5. DOI: 10.1145/2590296.2590343. Retrieved 11/13/2024
from https://dl.acm.org/doi/10.1145/2590296.2590343.

[14] 2024. clap - crates.io: Rust Package Registry. en. (October 2024). Re-
trieved 10/21/2024 from https://crates.io/crates/clap.

[15] Ronald Cramer and Ivan Damgård. 2005. Multiparty Computation, an
Introduction. en. In Contemporary Cryptology. Dario Catalano, Ronald
Cramer, Giovanni Di Crescenzo, Ivan Darmgård, David Pointcheval, and
Tsuyoshi Takagi, (Eds.) Birkhäuser, Basel, pp. 41–87. ISBN: 978-3-
7643-7394-8. DOI: 10.1007/3-7643-7394-6_2. Retrieved 10/03/2024
from https://doi.org/10.1007/3-7643-7394-6_2.

[16] Ronald Cramer, Ivan Bjerre Damgård, and Jesper Buus Nielsen. 2015.
Secure Multiparty Computation and Secret Sharing. Cambridge University
Press, Cambridge. ISBN: 978-1-107-04305-3. DOI: 10.1017/CBO9781107
337756. Retrieved 10/03/2024 from https://www.cambridge.org/core/b
ooks/secure-multiparty-computation-and-secret-sharing/4C2480B2
02905CE5370B2609F0C2A67A.

[17] 2023. criterion - crates.io: Rust Package Registry. en. (May 2023). Re-
trieved 11/12/2024 from https://crates.io/crates/criterion#features.

[18] Joan Daemen and Vincent Rijmen. 2002. The Design of Rijndael. Ueli
Maurer, Ronald L. Rivest, Martin Abadi, Ross Anderson, Mihir Bellare,
Oded Goldreich, Tatsuaki Okamoto, Paul Van Oorschot, Birgit Pfitz-
mann, Aviel D. Rubin, and Jacques Stern, (Eds.) Information Security and
Cryptography. Springer, Berlin, Heidelberg. ISBN: 978-3-662-04722-4.
DOI: 10.1007/978-3-662-04722-4. Retrieved 10/21/2024 from http://li
nk.springer.com/10.1007/978-3-662-04722-4.

[19] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. 2012.
Multiparty Computation from Somewhat Homomorphic Encryption. en.
InAdvances in Cryptology – CRYPTO 2012. Reihaneh Safavi-Naini andRan
Canetti, (Eds.) Springer, Berlin, Heidelberg, pp. 643–662. ISBN: 978-3-
642-32009-5. DOI: 10.1007/978-3-642-32009-5_38.

[20] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller.
2007. Labeled Faces in the Wild: A Database for Studying Face Recog-
nition in Unconstrained Environments. University of Massachusetts,
Amherst. http://vis-www.cs.umass.edu/lfw/lfw.tgz, (October 2007).
Retrieved 11/14/2024 from https://vis-www.cs.umass.edu/lfw/.

https://doi.org/10.1145/2600918.2600922
https://dl.acm.org/doi/10.1145/2600918.2600922
https://eprint.iacr.org/2016/484
https://eprint.iacr.org/2016/484
https://doi.org/10.1145/2590296.2590343
https://dl.acm.org/doi/10.1145/2590296.2590343
https://crates.io/crates/clap
https://doi.org/10.1007/3-7643-7394-6_2
https://doi.org/10.1007/3-7643-7394-6_2
https://doi.org/10.1017/CBO9781107337756
https://doi.org/10.1017/CBO9781107337756
https://www.cambridge.org/core/books/secure-multiparty-computation-and-secret-sharing/4C2480B202905CE5370B2609F0C2A67A
https://www.cambridge.org/core/books/secure-multiparty-computation-and-secret-sharing/4C2480B202905CE5370B2609F0C2A67A
https://www.cambridge.org/core/books/secure-multiparty-computation-and-secret-sharing/4C2480B202905CE5370B2609F0C2A67A
https://crates.io/crates/criterion#features
https://doi.org/10.1007/978-3-662-04722-4
http://link.springer.com/10.1007/978-3-662-04722-4
http://link.springer.com/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-642-32009-5_38
https://vis-www.cs.umass.edu/lfw/

Bibliography 74

[21] Shweta Gaur, V. A. Shah, and Manish Thakker. 2012. Biometric recog-
nition techniques: a review. International journal of advanced research
in electrical, electronics and instrumentation engineering, 1, 4, 282–290.
Retrieved 10/31/2024 from https://d1wqtxts1xzle7.cloudfront.net/8108
9243/biometric-recognition-techniques-a-review-libre.pdf?1645370
827=&response-content-disposition=inline%3B+filename%3DBiome
tric_Recognition_Techniques_A_Revie.pdf&Expires=1730384760&Si
gnature=Bza7~S67OpU0qUAmI1CTw5d8YTpHq1s03yVT6zzLhi79wN5X
5n3dpKkRFRaIHwciNJWPxq3~sGAZX7ZHfcYrhLvy7a70PPUc7q9v9cp6
1hd9ElG2n23FDt~tpoV0A6ewlVl4w6VPgzBXyvIEHZrQON~IyU0E - qQlj
-dE9eXjXMckb3bXkRfdvuMnN-AmYqhzTa5GSJcwRm4iUxV-sHeVpKp
A3XN0tJN-ZeXOrsA4N790dqTMdTDCfi8QTPMKzbvpttpIeNnzKjL6q4O
iZ - ybuBvXScBS33Nv2rPQsNfnEX8Knl8~ZP~TpygyT6eUCPIVrT8x9GQ
QC1yqxFaWblqX-A__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA.

[22] CraigGentry. 2009.A fully homomorphic encryption scheme. phd. Stanford
University, Stanford, CA, USA. AAI3382729 ISBN-13: 9781109444506.

[23] S. Goldwasser, S.Micali, andC. Rackoff. 1989. The knowledge complexity
of interactiveproof systems. SIAMJ. Comput., 18, 1, (February 1989), 186–
208. ISSN: 0097-5397. DOI: 10.1137/0218012. Retrieved 11/04/2024 from
https://doi.org/10.1137/0218012.

[24] Feng Hao and Paul C. van Oorschot. 2021. SoK: Password-Authenticated
Key Exchange – Theory, Practice, Standardization and Real-World
Lessons. Publication info: Published elsewhere. AsiaCCS 2022. (2021).
Retrieved 10/15/2024 from https://eprint.iacr.org/2021/1492.

[25] Feng Hao and Peter Y. A. Ryan. 2011. Password Authenticated Key Ex-
change by Juggling. en. In Security Protocols XVI. Bruce Christianson,
James A. Malcolm, Vashek Matyas, and Michael Roe, (Eds.) Springer,
Berlin, Heidelberg, pp. 159–171. ISBN: 978-3-642-22137-8. DOI: 10.10
07/978-3-642-22137-8_23.

[26] Philipp Hofer. 2024. Enhancing Privacy-Preserving Biometric Authentica-
tion through Decentralization. eng. PhD thesis. Linz. Retrieved 10/31/2024
from https : / / resolver . obvsg . at /urn :nbn :at : at- ubl : 1- 79283. Book
Title: Enhancing Privacy-Preserving Biometric Authentication through
Decentralization.

[27] IACR. 2021. Function Secret Sharing for Mixed-Mode and Fixed-Point
Secure Computation. (October 2021). Retrieved 10/08/2024 from https:
//www.youtube.com/watch?v=22BfFkP_Hbk.

[28] Alberto Ibarrondo. 2024. ibarrond/funshade. original-date: 2023-01-
19T20:00:44Z. (September 2024). Retrieved 10/22/2024 from https://gi
thub.com/ibarrond/funshade.

[29] Alberto Ibarrondo, Hervé Chabanne, and Melek Önen. 2022. Funshade:
Function Secret Sharing for Two-Party Secure Thresholded Distance
Evaluation. Publication info: Published elsewhere. Minor revision.
PETS23. (2022). Retrieved 10/03/2024 from https : / / eprint . iacr . org
/2022/1688.

[30] A.K. Jain, A. Ross, and S. Prabhakar. 2004. An introduction to biometric
recognition. IEEE Transactions on Circuits and Systems for Video Technol-
ogy, 14, 1, (January 2004), 4–20. Conference Name: IEEE Transactions
on Circuits and Systems for Video Technology. ISSN: 1558-2205. DOI: 10
.1109/TCSVT.2003.818349. Retrieved 10/11/2024 from https://ieeexplor
e.ieee.org/abstract/document/1262027.

https://d1wqtxts1xzle7.cloudfront.net/81089243/biometric-recognition-techniques-a-review-libre.pdf?1645370827=&response-content-disposition=inline%3B+filename%3DBiometric_Recognition_Techniques_A_Revie.pdf&Expires=1730384760&Signature=Bza7~S67OpU0qUAmI1CTw5d8YTpHq1s03yVT6zzLhi79wN5X5n3dpKkRFRaIHwciNJWPxq3~sGAZX7ZHfcYrhLvy7a70PPUc7q9v9cp61hd9ElG2n23FDt~tpoV0A6ewlVl4w6VPgzBXyvIEHZrQON~IyU0E-qQlj-dE9eXjXMckb3bXkRfdvuMnN-AmYqhzTa5GSJcwRm4iUxV-sHeVpKpA3XN0tJN-ZeXOrsA4N790dqTMdTDCfi8QTPMKzbvpttpIeNnzKjL6q4OiZ-ybuBvXScBS33Nv2rPQsNfnEX8Knl8~ZP~TpygyT6eUCPIVrT8x9GQQC1yqxFaWblqX-A__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/81089243/biometric-recognition-techniques-a-review-libre.pdf?1645370827=&response-content-disposition=inline%3B+filename%3DBiometric_Recognition_Techniques_A_Revie.pdf&Expires=1730384760&Signature=Bza7~S67OpU0qUAmI1CTw5d8YTpHq1s03yVT6zzLhi79wN5X5n3dpKkRFRaIHwciNJWPxq3~sGAZX7ZHfcYrhLvy7a70PPUc7q9v9cp61hd9ElG2n23FDt~tpoV0A6ewlVl4w6VPgzBXyvIEHZrQON~IyU0E-qQlj-dE9eXjXMckb3bXkRfdvuMnN-AmYqhzTa5GSJcwRm4iUxV-sHeVpKpA3XN0tJN-ZeXOrsA4N790dqTMdTDCfi8QTPMKzbvpttpIeNnzKjL6q4OiZ-ybuBvXScBS33Nv2rPQsNfnEX8Knl8~ZP~TpygyT6eUCPIVrT8x9GQQC1yqxFaWblqX-A__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/81089243/biometric-recognition-techniques-a-review-libre.pdf?1645370827=&response-content-disposition=inline%3B+filename%3DBiometric_Recognition_Techniques_A_Revie.pdf&Expires=1730384760&Signature=Bza7~S67OpU0qUAmI1CTw5d8YTpHq1s03yVT6zzLhi79wN5X5n3dpKkRFRaIHwciNJWPxq3~sGAZX7ZHfcYrhLvy7a70PPUc7q9v9cp61hd9ElG2n23FDt~tpoV0A6ewlVl4w6VPgzBXyvIEHZrQON~IyU0E-qQlj-dE9eXjXMckb3bXkRfdvuMnN-AmYqhzTa5GSJcwRm4iUxV-sHeVpKpA3XN0tJN-ZeXOrsA4N790dqTMdTDCfi8QTPMKzbvpttpIeNnzKjL6q4OiZ-ybuBvXScBS33Nv2rPQsNfnEX8Knl8~ZP~TpygyT6eUCPIVrT8x9GQQC1yqxFaWblqX-A__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/81089243/biometric-recognition-techniques-a-review-libre.pdf?1645370827=&response-content-disposition=inline%3B+filename%3DBiometric_Recognition_Techniques_A_Revie.pdf&Expires=1730384760&Signature=Bza7~S67OpU0qUAmI1CTw5d8YTpHq1s03yVT6zzLhi79wN5X5n3dpKkRFRaIHwciNJWPxq3~sGAZX7ZHfcYrhLvy7a70PPUc7q9v9cp61hd9ElG2n23FDt~tpoV0A6ewlVl4w6VPgzBXyvIEHZrQON~IyU0E-qQlj-dE9eXjXMckb3bXkRfdvuMnN-AmYqhzTa5GSJcwRm4iUxV-sHeVpKpA3XN0tJN-ZeXOrsA4N790dqTMdTDCfi8QTPMKzbvpttpIeNnzKjL6q4OiZ-ybuBvXScBS33Nv2rPQsNfnEX8Knl8~ZP~TpygyT6eUCPIVrT8x9GQQC1yqxFaWblqX-A__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/81089243/biometric-recognition-techniques-a-review-libre.pdf?1645370827=&response-content-disposition=inline%3B+filename%3DBiometric_Recognition_Techniques_A_Revie.pdf&Expires=1730384760&Signature=Bza7~S67OpU0qUAmI1CTw5d8YTpHq1s03yVT6zzLhi79wN5X5n3dpKkRFRaIHwciNJWPxq3~sGAZX7ZHfcYrhLvy7a70PPUc7q9v9cp61hd9ElG2n23FDt~tpoV0A6ewlVl4w6VPgzBXyvIEHZrQON~IyU0E-qQlj-dE9eXjXMckb3bXkRfdvuMnN-AmYqhzTa5GSJcwRm4iUxV-sHeVpKpA3XN0tJN-ZeXOrsA4N790dqTMdTDCfi8QTPMKzbvpttpIeNnzKjL6q4OiZ-ybuBvXScBS33Nv2rPQsNfnEX8Knl8~ZP~TpygyT6eUCPIVrT8x9GQQC1yqxFaWblqX-A__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/81089243/biometric-recognition-techniques-a-review-libre.pdf?1645370827=&response-content-disposition=inline%3B+filename%3DBiometric_Recognition_Techniques_A_Revie.pdf&Expires=1730384760&Signature=Bza7~S67OpU0qUAmI1CTw5d8YTpHq1s03yVT6zzLhi79wN5X5n3dpKkRFRaIHwciNJWPxq3~sGAZX7ZHfcYrhLvy7a70PPUc7q9v9cp61hd9ElG2n23FDt~tpoV0A6ewlVl4w6VPgzBXyvIEHZrQON~IyU0E-qQlj-dE9eXjXMckb3bXkRfdvuMnN-AmYqhzTa5GSJcwRm4iUxV-sHeVpKpA3XN0tJN-ZeXOrsA4N790dqTMdTDCfi8QTPMKzbvpttpIeNnzKjL6q4OiZ-ybuBvXScBS33Nv2rPQsNfnEX8Knl8~ZP~TpygyT6eUCPIVrT8x9GQQC1yqxFaWblqX-A__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/81089243/biometric-recognition-techniques-a-review-libre.pdf?1645370827=&response-content-disposition=inline%3B+filename%3DBiometric_Recognition_Techniques_A_Revie.pdf&Expires=1730384760&Signature=Bza7~S67OpU0qUAmI1CTw5d8YTpHq1s03yVT6zzLhi79wN5X5n3dpKkRFRaIHwciNJWPxq3~sGAZX7ZHfcYrhLvy7a70PPUc7q9v9cp61hd9ElG2n23FDt~tpoV0A6ewlVl4w6VPgzBXyvIEHZrQON~IyU0E-qQlj-dE9eXjXMckb3bXkRfdvuMnN-AmYqhzTa5GSJcwRm4iUxV-sHeVpKpA3XN0tJN-ZeXOrsA4N790dqTMdTDCfi8QTPMKzbvpttpIeNnzKjL6q4OiZ-ybuBvXScBS33Nv2rPQsNfnEX8Knl8~ZP~TpygyT6eUCPIVrT8x9GQQC1yqxFaWblqX-A__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/81089243/biometric-recognition-techniques-a-review-libre.pdf?1645370827=&response-content-disposition=inline%3B+filename%3DBiometric_Recognition_Techniques_A_Revie.pdf&Expires=1730384760&Signature=Bza7~S67OpU0qUAmI1CTw5d8YTpHq1s03yVT6zzLhi79wN5X5n3dpKkRFRaIHwciNJWPxq3~sGAZX7ZHfcYrhLvy7a70PPUc7q9v9cp61hd9ElG2n23FDt~tpoV0A6ewlVl4w6VPgzBXyvIEHZrQON~IyU0E-qQlj-dE9eXjXMckb3bXkRfdvuMnN-AmYqhzTa5GSJcwRm4iUxV-sHeVpKpA3XN0tJN-ZeXOrsA4N790dqTMdTDCfi8QTPMKzbvpttpIeNnzKjL6q4OiZ-ybuBvXScBS33Nv2rPQsNfnEX8Knl8~ZP~TpygyT6eUCPIVrT8x9GQQC1yqxFaWblqX-A__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/81089243/biometric-recognition-techniques-a-review-libre.pdf?1645370827=&response-content-disposition=inline%3B+filename%3DBiometric_Recognition_Techniques_A_Revie.pdf&Expires=1730384760&Signature=Bza7~S67OpU0qUAmI1CTw5d8YTpHq1s03yVT6zzLhi79wN5X5n3dpKkRFRaIHwciNJWPxq3~sGAZX7ZHfcYrhLvy7a70PPUc7q9v9cp61hd9ElG2n23FDt~tpoV0A6ewlVl4w6VPgzBXyvIEHZrQON~IyU0E-qQlj-dE9eXjXMckb3bXkRfdvuMnN-AmYqhzTa5GSJcwRm4iUxV-sHeVpKpA3XN0tJN-ZeXOrsA4N790dqTMdTDCfi8QTPMKzbvpttpIeNnzKjL6q4OiZ-ybuBvXScBS33Nv2rPQsNfnEX8Knl8~ZP~TpygyT6eUCPIVrT8x9GQQC1yqxFaWblqX-A__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/81089243/biometric-recognition-techniques-a-review-libre.pdf?1645370827=&response-content-disposition=inline%3B+filename%3DBiometric_Recognition_Techniques_A_Revie.pdf&Expires=1730384760&Signature=Bza7~S67OpU0qUAmI1CTw5d8YTpHq1s03yVT6zzLhi79wN5X5n3dpKkRFRaIHwciNJWPxq3~sGAZX7ZHfcYrhLvy7a70PPUc7q9v9cp61hd9ElG2n23FDt~tpoV0A6ewlVl4w6VPgzBXyvIEHZrQON~IyU0E-qQlj-dE9eXjXMckb3bXkRfdvuMnN-AmYqhzTa5GSJcwRm4iUxV-sHeVpKpA3XN0tJN-ZeXOrsA4N790dqTMdTDCfi8QTPMKzbvpttpIeNnzKjL6q4OiZ-ybuBvXScBS33Nv2rPQsNfnEX8Knl8~ZP~TpygyT6eUCPIVrT8x9GQQC1yqxFaWblqX-A__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://d1wqtxts1xzle7.cloudfront.net/81089243/biometric-recognition-techniques-a-review-libre.pdf?1645370827=&response-content-disposition=inline%3B+filename%3DBiometric_Recognition_Techniques_A_Revie.pdf&Expires=1730384760&Signature=Bza7~S67OpU0qUAmI1CTw5d8YTpHq1s03yVT6zzLhi79wN5X5n3dpKkRFRaIHwciNJWPxq3~sGAZX7ZHfcYrhLvy7a70PPUc7q9v9cp61hd9ElG2n23FDt~tpoV0A6ewlVl4w6VPgzBXyvIEHZrQON~IyU0E-qQlj-dE9eXjXMckb3bXkRfdvuMnN-AmYqhzTa5GSJcwRm4iUxV-sHeVpKpA3XN0tJN-ZeXOrsA4N790dqTMdTDCfi8QTPMKzbvpttpIeNnzKjL6q4OiZ-ybuBvXScBS33Nv2rPQsNfnEX8Knl8~ZP~TpygyT6eUCPIVrT8x9GQQC1yqxFaWblqX-A__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://eprint.iacr.org/2021/1492
https://doi.org/10.1007/978-3-642-22137-8_23
https://doi.org/10.1007/978-3-642-22137-8_23
https://resolver.obvsg.at/urn:nbn:at:at-ubl:1-79283
https://www.youtube.com/watch?v=22BfFkP_Hbk
https://www.youtube.com/watch?v=22BfFkP_Hbk
https://github.com/ibarrond/funshade
https://github.com/ibarrond/funshade
https://eprint.iacr.org/2022/1688
https://eprint.iacr.org/2022/1688
https://doi.org/10.1109/TCSVT.2003.818349
https://doi.org/10.1109/TCSVT.2003.818349
https://ieeexplore.ieee.org/abstract/document/1262027
https://ieeexplore.ieee.org/abstract/document/1262027

Bibliography 75

[31] Cagatay Karabat, Mehmet Sabir Kiraz, Hakan Erdogan, and Erkay Savas.
2015. THRIVE: threshold homomorphic encryption based secure and
privacy preserving biometric verification system. en. EURASIP Journal on
Advances in Signal Processing, 2015, 1, (August 2015), 71. ISSN: 1687-6180.
DOI: 10.1186/s13634-015-0255-5. Retrieved 11/17/2024 from https://do
i.org/10.1186/s13634-015-0255-5.

[32] Sándor Király. 2020. Szolgáltatás-orientált programozás. Hungarian.
Eger, Eszterházy Károly University, (2020).

[33] S. Klabnik and C. Nichols. 2024. The Rust Programming Language - The
Rust Programming Language. (2024). Retrieved 10/28/2024 from https:
//doc.rust-lang.org/book/title-page.html.

[34] S. Krenn and T. Lorünser. 2023. An Introduction to Secret Sharing: A Sys-
tematic Overview and Guide for Protocol Selection. SpringerBriefs in In-
formation Security and Cryptography. Springer International Publishing.
ISBN: 978-3-031-28161-7. https://books.google.at/books?id=RRi2EAA
AQBAJ.

[35] Joohee Lee, DongwooKim, DuhyeongKim, Yongsoo Song, JunbumShin,
and Jung Hee Cheon. 2018. Instant Privacy-Preserving Biometric Au-
thentication for Hamming Distance. Publication info: Preprint. MINOR
revision. (2018). Retrieved 11/11/2024 from https://eprint.iacr.org/2018
/1214.

[36] Qiongxiu Li, Ignacio Cascudo, and Mads Graesbøll Christensen. 2019.
Privacy-Preserving Distributed Average Consensus based on Additive
Secret Sharing. In 2019 27th European Signal Processing Conference (EU-
SIPCO). ISSN: 2076-1465. (September 2019), pp. 1–5. DOI: 10.23919/EUS
IPCO.2019.8902577. Retrieved 10/03/2024 from https://ieeexplore.ieee
.org/abstract/document/8902577.

[37] Kálmán Liptai. 2023. Kriptográfia. Hungarian. Lecture. Eger, Eszterházy
Károly University, (2023). Retrieved 10/16/2024 fromhttp://liptai.ektf.h
u/uploads/2011/12/Kriptografia.pdf.

[38] Elena Almaraz Luengo. 2022. A brief and understandable guide to
pseudo-random number generators and specific models for secu-
rity. Statistics Surveys, 16, none, (January 2022), 137–181. Publisher:
Amer. Statist. Assoc., the Bernoulli Soc., the Inst. Math. Statist., and the
Statist. Soc. Canada. ISSN: 1935-7516. DOI: 10.1214/22-SS136. Retrieved
10/21/2024 from https://projecteuclid.org/journals/statistics-surveys
/volume-16/issue-none/A-brief-and-understandable-guide-to-pseu
do-random-number-generators/10.1214/22-SS136.full.

[39] Ying Luo, Sen-ching Cheung, and Shuiming Ye. 2009. Anonymous Bio-
metric Access Control based on homomorphic encryption. In (June
2009), pp. 1046–1049. DOI: 10.1109/ICME.2009.5202677.

[40] T. Soni Madhulatha. 2012. An Overview on Clustering Methods.
arXiv:1205.1117 [cs]. (May 2012). DOI: 10 . 48550 / arXiv . 1205 . 1117. Re-
trieved 10/03/2024 from http://arxiv.org/abs/1205.1117.

[41] René Mayrhofer, Michael Roland, Tobias Höller, and Mario Lins. 2024.
An Architecture for Distributed Digital Identities in the Physical World.

[42] René Mayrhofer, Michael Roland, Tobias Höller, and Mario Lins. [n. d.]
Digidow. en-us. (). Retrieved 10/03/2024 fromhttps://www.digidow.eu/.

[43] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. 2020.
Handbook of Applied Cryptography. CRC Press, Boca Raton, (May 2020).
ISBN: 978-0-429-46633-5. DOI: 10.1201/9780429466335.

https://doi.org/10.1186/s13634-015-0255-5
https://doi.org/10.1186/s13634-015-0255-5
https://doi.org/10.1186/s13634-015-0255-5
https://doc.rust-lang.org/book/title-page.html
https://doc.rust-lang.org/book/title-page.html
https://books.google.at/books?id=RRi2EAAAQBAJ
https://books.google.at/books?id=RRi2EAAAQBAJ
https://eprint.iacr.org/2018/1214
https://eprint.iacr.org/2018/1214
https://doi.org/10.23919/EUSIPCO.2019.8902577
https://doi.org/10.23919/EUSIPCO.2019.8902577
https://ieeexplore.ieee.org/abstract/document/8902577
https://ieeexplore.ieee.org/abstract/document/8902577
http://liptai.ektf.hu/uploads/2011/12/Kriptografia.pdf
http://liptai.ektf.hu/uploads/2011/12/Kriptografia.pdf
https://doi.org/10.1214/22-SS136
https://projecteuclid.org/journals/statistics-surveys/volume-16/issue-none/A-brief-and-understandable-guide-to-pseudo-random-number-generators/10.1214/22-SS136.full
https://projecteuclid.org/journals/statistics-surveys/volume-16/issue-none/A-brief-and-understandable-guide-to-pseudo-random-number-generators/10.1214/22-SS136.full
https://projecteuclid.org/journals/statistics-surveys/volume-16/issue-none/A-brief-and-understandable-guide-to-pseudo-random-number-generators/10.1214/22-SS136.full
https://doi.org/10.1109/ICME.2009.5202677
https://doi.org/10.48550/arXiv.1205.1117
http://arxiv.org/abs/1205.1117
https://www.digidow.eu/
https://doi.org/10.1201/9780429466335

Bibliography 76

[44] CPP Nelson Joseph. 2013. Chapter 12 - Biometrics Characteristics. In
Effective Physical Security (Fourth Edition). Lawrence J. Fennelly, (Ed.)
Butterworth-Heinemann, (January 2013), pp. 255–256. ISBN: 978-0-
12-415892-4. DOI: 10.1016/B978-0-12-415892-4.00012-2. Retrieved
10/03/2024 from https://www.sciencedirect.com/science/article/pii/B9
780124158924000122.

[45] 2024. num-traits - crates.io: Rust Package Registry. en. (May 2024). Re-
trieved 10/22/2024 from https://crates.io/crates/num-traits.

[46] European Parliament and Council of the European Union. 2016. Regu-
lation - 2016/679 - EN - gdpr - EUR-Lex. en. Doc ID: 32016R0679 Doc
Sector: 3 Doc Title: Regulation (EU) 2016/679 of the European Parlia-
ment and of the Council of 27 April 2016 on the protection of natural
persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC (General Data
Protection Regulation) (Text with EEA relevance) Doc Type: R Usr_lan:
en. (May 2016). Retrieved 10/15/2024 from https://eur-lex.europa.eu/el
i/reg/2016/679/oj.

[47] Christof Paar, Jan Pelzl, and Tim Güneysu. 2024. Understanding Cryp-
tography: From Established Symmetric and Asymmetric Ciphers to Post-
QuantumAlgorithms. en. Springer, Berlin,Heidelberg. ISBN:978-3-662-
69007-9. DOI: 10.1007/978-3-662-69007-9. Retrieved 11/04/2024
from https://link.springer.com/10.1007/978-3-662-69007-9.

[48] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame.
2020. ABY2.0: Improved Mixed-Protocol Secure Two-Party Compu-
tation. Publication info: Published elsewhere. Major revision. 30th
USENIX Security Symposium (USENIX Security ’21). (2020). Retrieved
10/03/2024 from https://eprint.iacr.org/2020/1225.

[49] Privacy Enhancing Technologies Symposium. 2023. [5A] Funshade:
Function Secret Sharing for Two-Party Secure Thresholded Distance
Evaluation. (November 2023). Retrieved 10/11/2024 from https://www.y
outube.com/watch?v=eFJPZMxzdpQ.

[50] Pille Pullonen. 2013. Actively Secure Two-Party Computation: Efficient
Beaver Triple Generation. In Retrieved 10/10/2024 from https://www.s
emanticscholar.org/paper/Actively-Secure-Two-Party-Computation
%3A-Efficient-Pullonen/4694fe38d28985cd36fab42d5f22a3e6f8e673
36.

[51] Michael O. Rabin. 2005. HowTo Exchange Secrets with Oblivious Trans-
fer. Publication info: Published elsewhere. Harvard University Technical
Report 81. (2005). Retrieved 11/01/2024 from https://eprint.iacr.org/20
05/187.

[52] 2022. rand - crates.io: Rust Package Registry. en. (February 2022). Re-
trieved 10/21/2024 from https://crates.io/crates/rand.

[53] R. L. Rivest, A. Shamir, and L. Adleman. 1978. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM, 21, 2,
(February 1978), 120–126. ISSN: 0001-0782. DOI: 10.1145/359340.3593
42. Retrieved 10/16/2024 from https://dl.acm.org/doi/10.1145/359340.3
59342.

[54] Ronald L. Rivest andM. Dertouzos. 1978. ONDATABANKSANDPRIVACY
HOMOMORPHISMS. In Retrieved 11/01/2024 from https://www.semant
icscholar.org/paper/ON-DATA-BANKS-AND-PRIVACY-HOMOMORPH
ISMS-Rivest-Dertouzos/c365f01d330b2211e74069120e88cff37eacbcf5.

[55] [n. d.] Rust Programming Language. en-US. (). Retrieved 10/28/2024
from https://www.rust-lang.org/.

https://doi.org/10.1016/B978-0-12-415892-4.00012-2
https://www.sciencedirect.com/science/article/pii/B9780124158924000122
https://www.sciencedirect.com/science/article/pii/B9780124158924000122
https://crates.io/crates/num-traits
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://doi.org/10.1007/978-3-662-69007-9
https://link.springer.com/10.1007/978-3-662-69007-9
https://eprint.iacr.org/2020/1225
https://www.youtube.com/watch?v=eFJPZMxzdpQ
https://www.youtube.com/watch?v=eFJPZMxzdpQ
https://www.semanticscholar.org/paper/Actively-Secure-Two-Party-Computation%3A-Efficient-Pullonen/4694fe38d28985cd36fab42d5f22a3e6f8e67336
https://www.semanticscholar.org/paper/Actively-Secure-Two-Party-Computation%3A-Efficient-Pullonen/4694fe38d28985cd36fab42d5f22a3e6f8e67336
https://www.semanticscholar.org/paper/Actively-Secure-Two-Party-Computation%3A-Efficient-Pullonen/4694fe38d28985cd36fab42d5f22a3e6f8e67336
https://www.semanticscholar.org/paper/Actively-Secure-Two-Party-Computation%3A-Efficient-Pullonen/4694fe38d28985cd36fab42d5f22a3e6f8e67336
https://eprint.iacr.org/2005/187
https://eprint.iacr.org/2005/187
https://crates.io/crates/rand
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://dl.acm.org/doi/10.1145/359340.359342
https://dl.acm.org/doi/10.1145/359340.359342
https://www.semanticscholar.org/paper/ON-DATA-BANKS-AND-PRIVACY-HOMOMORPHISMS-Rivest-Dertouzos/c365f01d330b2211e74069120e88cff37eacbcf5
https://www.semanticscholar.org/paper/ON-DATA-BANKS-AND-PRIVACY-HOMOMORPHISMS-Rivest-Dertouzos/c365f01d330b2211e74069120e88cff37eacbcf5
https://www.semanticscholar.org/paper/ON-DATA-BANKS-AND-PRIVACY-HOMOMORPHISMS-Rivest-Dertouzos/c365f01d330b2211e74069120e88cff37eacbcf5
https://www.rust-lang.org/

Bibliography 77

[56] Théo Ryffel, Pierre Tholoniat, David Pointcheval, and Francis Bach.
2022. AriaNN: Low-Interaction Privacy-Preserving Deep Learning via
Function Secret Sharing. Proceedings on Privacy Enhancing Technologies,
2022, (January 2022), 291–316. DOI: 10.2478/popets-2022-0015.

[57] 2024. serde- crates.io: RustPackageRegistry. en. (September2024). Re-
trieved 10/21/2024 from https://crates.io/crates/serde.

[58] 2024. serde_json - crates.io: Rust Package Registry. en. (October 2024).
Retrieved 10/21/2024 from https://crates.io/crates/serde_json.

[59] S. Singh. 2000. The Code Book: The Science of Secrecy from Ancient Egypt to
Quantum Cryptography. Knopf Doubleday Publishing Group. ISBN: 978-
0-385-49532-5. https://books.google.at/books?id=skt7TrLK5uYC.

[60] Juan Luis Suárez-Díaz, Salvador García, and Francisco Herrera. 2020. A
Tutorial onDistanceMetric Learning:Mathematical Foundations, Algo-
rithms, Experimental Analysis, Prospects and Challenges (with Appen-
dices on Mathematical Background and Detailed Algorithms Explana-
tion). arXiv:1812.05944. (August 2020). DOI: 10.48550/arXiv.1812.0594
4. Retrieved 10/11/2024 from http://arxiv.org/abs/1812.05944.

[61] Kenta Takahashi, Takahiro Matsuda, Takao Murakami, Goichiro
Hanaoka, and Masakatsu Nishigaki. 2019. Signature schemes with a
fuzzy private key. en. International Journal of Information Security, 18, 5,
(October 2019), 581–617. ISSN: 1615-5270. DOI: 10.1007/s10207-019-0
0428-z. Retrieved 11/11/2024 from https://doi.org/10.1007/s10207-019
-00428-z.

[62] National Institute of Standards Technology (NIST), Morris J. Dworkin,
Elaine Barker, James R. Nechvatal, James Foti, Lawrence E. Bassham, E.
Roback, and JamesF.Dray Jr. 2001. AdvancedEncryptionStandard (AES).
en. NIST, (November 2001). Last Modified: 2024-07-25T12:07-04:00
Publisher: National Institute of Standards and Technology (NIST),Mor-
ris J. Dworkin, Elaine Barker, James R. Nechvatal, James Foti, Lawrence
E. Bassham, E. Roback, James F. Dray Jr. Retrieved 10/21/2024 from http
s://www.nist.gov/publications/advanced-encryption-standard-aes.

[63] The BIU Research Center on Applied Cryptography and Cyber Security.
2022. FSS Part 1 - Elette Boyle. (January 2022). Retrieved 10/03/2024
from https://www.youtube.com/watch?v=fAXlOOs2t88.

[64] The BIU Research Center on Applied Cryptography and Cyber Security.
2022. FSS Part 2 - Elette Boyle. (January 2022). Retrieved 10/03/2024
from https://www.youtube.com/watch?v=Zm-MUVve2_w.

[65] USENIX. 2021. USENIX Security ’21 - ABY2.0: Improved Mixed-
Protocol Secure Two-Party Computation. (September 2021). Retrieved
10/03/2024 from https://www.youtube.com/watch?v=X7IKSQyNEto.

[66] Maarten van Steen and Andrew S. Tanenbaum. 2016. A brief introduc-
tion to distributed systems. en. Computing, 98, 10, (October 2016), 967–
1009. ISSN: 1436-5057. DOI: 10.1007/s00607-016-0508-7. Retrieved
10/03/2024 from https://doi.org/10.1007/s00607-016-0508-7.

[67] A.C. Weaver. 2006. Biometric authentication. Computer, 39, 2, (February
2006), 96–97. Conference Name: Computer. ISSN: 1558-0814. DOI: 10.1
109/MC.2006.47. Retrieved 10/03/2024 from https://ieeexplore.ieee.org
/abstract/document/1597098.

[68] Andrew C. Yao. 1982. Protocols for secure computations. English. In
ISSN: 0272-5428. IEEE Computer Society, (November 1982), pp. 160–
164. DOI: 10.1109/SFCS.1982.88. Retrieved 10/03/2024 from https://ww
w.computer.org/csdl/proceedings-article/focs/1982/542800160/12Om
NyUnEJP.

https://doi.org/10.2478/popets-2022-0015
https://crates.io/crates/serde
https://crates.io/crates/serde_json
https://books.google.at/books?id=skt7TrLK5uYC
https://doi.org/10.48550/arXiv.1812.05944
https://doi.org/10.48550/arXiv.1812.05944
http://arxiv.org/abs/1812.05944
https://doi.org/10.1007/s10207-019-00428-z
https://doi.org/10.1007/s10207-019-00428-z
https://doi.org/10.1007/s10207-019-00428-z
https://doi.org/10.1007/s10207-019-00428-z
https://www.nist.gov/publications/advanced-encryption-standard-aes
https://www.nist.gov/publications/advanced-encryption-standard-aes
https://www.youtube.com/watch?v=fAXlOOs2t88
https://www.youtube.com/watch?v=Zm-MUVve2_w
https://www.youtube.com/watch?v=X7IKSQyNEto
https://doi.org/10.1007/s00607-016-0508-7
https://doi.org/10.1007/s00607-016-0508-7
https://doi.org/10.1109/MC.2006.47
https://doi.org/10.1109/MC.2006.47
https://ieeexplore.ieee.org/abstract/document/1597098
https://ieeexplore.ieee.org/abstract/document/1597098
https://doi.org/10.1109/SFCS.1982.88
https://www.computer.org/csdl/proceedings-article/focs/1982/542800160/12OmNyUnEJP
https://www.computer.org/csdl/proceedings-article/focs/1982/542800160/12OmNyUnEJP
https://www.computer.org/csdl/proceedings-article/focs/1982/542800160/12OmNyUnEJP

Bibliography 78

[69] Kai Zhou and Jian Ren. 2018. PassBio: Privacy-Preserving User-Centric
Biometric Authentication. IEEE Transactions on Information Forensics and
Security, 13, 12, (December 2018), 3050–3063. Conference Name: IEEE
Transactions on Information Forensics and Security. ISSN: 1556-6021.
DOI: 10.1109/TIFS.2018.2838540. Retrieved 11/13/2024 from https://ieee
xplore.ieee.org/abstract/document/8361432.

https://doi.org/10.1109/TIFS.2018.2838540
https://ieeexplore.ieee.org/abstract/document/8361432
https://ieeexplore.ieee.org/abstract/document/8361432

Appendix A

Code Reachability

The description aligns with the implementation that is attached to this PDF
and can be downloaded by clicking on the following icon: . Alternatively
it can be found in the GitLab repository: https://git.ins.jku.at/proj/digidow/
funshade-rust.

79

funshade-rust-arbitrary_bits/.gitignore

/target
.vscode/

funshade-rust-arbitrary_bits/Cargo.lock

This file is automatically @generated by Cargo.
It is not intended for manual editing.
version = 3

[[package]]
name = "aes"
version = "0.8.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b169f7a6d4742236a0a00c541b845991d0ac43e546831af1249753ab4c3aa3a0"
dependencies = [
 "cfg-if",
 "cipher",
 "cpufeatures",
]

[[package]]
name = "aes-prng"
version = "0.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "49cccd49cb7034d6ee7db9ac3549bb3fb38ff17179d93b726efb974cc9ddafa9"
dependencies = [
 "aes",
 "byteorder",
 "rand",
]

[[package]]
name = "anstream"
version = "0.6.13"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d96bd03f33fe50a863e394ee9718a706f988b9079b20c3784fb726e7678b62fb"
dependencies = [
 "anstyle",
 "anstyle-parse",
 "anstyle-query",
 "anstyle-wincon",
 "colorchoice",
 "utf8parse",
]

[[package]]
name = "anstyle"
version = "1.0.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8901269c6307e8d93993578286ac0edf7f195079ffff5ebdeea6a59ffb7e36bc"

[[package]]
name = "anstyle-parse"
version = "0.2.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c75ac65da39e5fe5ab759307499ddad880d724eed2f6ce5b5e8a26f4f387928c"
dependencies = [
 "utf8parse",
]

[[package]]
name = "anstyle-query"
version = "1.0.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e28923312444cdd728e4738b3f9c9cac739500909bb3d3c94b43551b16517648"
dependencies = [
 "windows-sys",
]

[[package]]
name = "anstyle-wincon"
version = "3.0.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1cd54b81ec8d6180e24654d0b371ad22fc3dd083b6ff8ba325b72e00c87660a7"
dependencies = [
 "anstyle",
 "windows-sys",
]

[[package]]
name = "byteorder"
version = "1.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1fd0f2584146f6f2ef48085050886acf353beff7305ebd1ae69500e27c67f64b"

[[package]]
name = "cfg-if"
version = "1.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "baf1de4339761588bc0619e3cbc0120ee582ebb74b53b4efbf79117bd2da40fd"

[[package]]
name = "cipher"
version = "0.4.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "773f3b9af64447d2ce9850330c473515014aa235e6a783b02db81ff39e4a3dad"
dependencies = [
 "crypto-common",
 "inout",
]

[[package]]
name = "clap"
version = "4.5.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "90bc066a67923782aa8515dbaea16946c5bcc5addbd668bb80af688e53e548a0"
dependencies = [
 "clap_builder",
 "clap_derive",
]

[[package]]
name = "clap_builder"
version = "4.5.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ae129e2e766ae0ec03484e609954119f123cc1fe650337e155d03b022f24f7b4"
dependencies = [
 "anstream",
 "anstyle",
 "clap_lex",
 "strsim",
]

[[package]]
name = "clap_derive"
version = "4.5.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "528131438037fd55894f62d6e9f068b8f45ac57ffa77517819645d10aed04f64"
dependencies = [
 "heck",
 "proc-macro2",
 "quote",
 "syn",
]

[[package]]
name = "clap_lex"
version = "0.7.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "98cc8fbded0c607b7ba9dd60cd98df59af97e84d24e49c8557331cfc26d301ce"

[[package]]
name = "colorchoice"
version = "1.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "acbf1af155f9b9ef647e42cdc158db4b64a1b61f743629225fde6f3e0be2a7c7"

[[package]]
name = "cpufeatures"
version = "0.2.12"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "53fe5e26ff1b7aef8bca9c6080520cfb8d9333c7568e1829cef191a9723e5504"
dependencies = [
 "libc",
]

[[package]]
name = "crypto-common"
version = "0.1.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1bfb12502f3fc46cca1bb51ac28df9d618d813cdc3d2f25b9fe775a34af26bb3"
dependencies = [
 "generic-array",
 "typenum",
]

[[package]]
name = "funshade"
version = "0.1.0"
dependencies = [
 "aes-prng",
 "clap",
 "rand",
 "serde",
 "serde_json",
]

[[package]]
name = "generic-array"
version = "0.14.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "85649ca51fd72272d7821adaf274ad91c288277713d9c18820d8499a7ff69e9a"
dependencies = [
 "typenum",
 "version_check",
]

[[package]]
name = "getrandom"
version = "0.2.12"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "190092ea657667030ac6a35e305e62fc4dd69fd98ac98631e5d3a2b1575a12b5"
dependencies = [
 "cfg-if",
 "libc",
 "wasi",
]

[[package]]
name = "heck"
version = "0.5.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2304e00983f87ffb38b55b444b5e3b60a884b5d30c0fca7d82fe33449bbe55ea"

[[package]]
name = "inout"
version = "0.1.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a0c10553d664a4d0bcff9f4215d0aac67a639cc68ef660840afe309b807bc9f5"
dependencies = [
 "generic-array",
]

[[package]]
name = "itoa"
version = "1.0.11"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "49f1f14873335454500d59611f1cf4a4b0f786f9ac11f4312a78e4cf2566695b"

[[package]]
name = "libc"
version = "0.2.153"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9c198f91728a82281a64e1f4f9eeb25d82cb32a5de251c6bd1b5154d63a8e7bd"

[[package]]
name = "ppv-lite86"
version = "0.2.17"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5b40af805b3121feab8a3c29f04d8ad262fa8e0561883e7653e024ae4479e6de"

[[package]]
name = "proc-macro2"
version = "1.0.81"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3d1597b0c024618f09a9c3b8655b7e430397a36d23fdafec26d6965e9eec3eba"
dependencies = [
 "unicode-ident",
]

[[package]]
name = "quote"
version = "1.0.36"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0fa76aaf39101c457836aec0ce2316dbdc3ab723cdda1c6bd4e6ad4208acaca7"
dependencies = [
 "proc-macro2",
]

[[package]]
name = "rand"
version = "0.8.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "34af8d1a0e25924bc5b7c43c079c942339d8f0a8b57c39049bef581b46327404"
dependencies = [
 "libc",
 "rand_chacha",
 "rand_core",
]

[[package]]
name = "rand_chacha"
version = "0.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e6c10a63a0fa32252be49d21e7709d4d4baf8d231c2dbce1eaa8141b9b127d88"
dependencies = [
 "ppv-lite86",
 "rand_core",
]

[[package]]
name = "rand_core"
version = "0.6.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ec0be4795e2f6a28069bec0b5ff3e2ac9bafc99e6a9a7dc3547996c5c816922c"
dependencies = [
 "getrandom",
]

[[package]]
name = "ryu"
version = "1.0.18"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f3cb5ba0dc43242ce17de99c180e96db90b235b8a9fdc9543c96d2209116bd9f"

[[package]]
name = "serde"
version = "1.0.202"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "226b61a0d411b2ba5ff6d7f73a476ac4f8bb900373459cd00fab8512828ba395"
dependencies = [
 "serde_derive",
]

[[package]]
name = "serde_derive"
version = "1.0.202"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6048858004bcff69094cd972ed40a32500f153bd3be9f716b2eed2e8217c4838"
dependencies = [
 "proc-macro2",
 "quote",
 "syn",
]

[[package]]
name = "serde_json"
version = "1.0.117"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "455182ea6142b14f93f4bc5320a2b31c1f266b66a4a5c858b013302a5d8cbfc3"
dependencies = [
 "itoa",
 "ryu",
 "serde",
]

[[package]]
name = "strsim"
version = "0.11.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7da8b5736845d9f2fcb837ea5d9e2628564b3b043a70948a3f0b778838c5fb4f"

[[package]]
name = "syn"
version = "2.0.60"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "909518bc7b1c9b779f1bbf07f2929d35af9f0f37e47c6e9ef7f9dddc1e1821f3"
dependencies = [
 "proc-macro2",
 "quote",
 "unicode-ident",
]

[[package]]
name = "typenum"
version = "1.17.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "42ff0bf0c66b8238c6f3b578df37d0b7848e55df8577b3f74f92a69acceeb825"

[[package]]
name = "unicode-ident"
version = "1.0.12"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3354b9ac3fae1ff6755cb6db53683adb661634f67557942dea4facebec0fee4b"

[[package]]
name = "utf8parse"
version = "0.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "711b9620af191e0cdc7468a8d14e709c3dcdb115b36f838e601583af800a370a"

[[package]]
name = "version_check"
version = "0.9.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "49874b5167b65d7193b8aba1567f5c7d93d001cafc34600cee003eda787e483f"

[[package]]
name = "wasi"
version = "0.11.0+wasi-snapshot-preview1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9c8d87e72b64a3b4db28d11ce29237c246188f4f51057d65a7eab63b7987e423"

[[package]]
name = "windows-sys"
version = "0.52.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "282be5f36a8ce781fad8c8ae18fa3f9beff57ec1b52cb3de0789201425d9a33d"
dependencies = [
 "windows-targets",
]

[[package]]
name = "windows-targets"
version = "0.52.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6f0713a46559409d202e70e28227288446bf7841d3211583a4b53e3f6d96e7eb"
dependencies = [
 "windows_aarch64_gnullvm",
 "windows_aarch64_msvc",
 "windows_i686_gnu",
 "windows_i686_gnullvm",
 "windows_i686_msvc",
 "windows_x86_64_gnu",
 "windows_x86_64_gnullvm",
 "windows_x86_64_msvc",
]

[[package]]
name = "windows_aarch64_gnullvm"
version = "0.52.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7088eed71e8b8dda258ecc8bac5fb1153c5cffaf2578fc8ff5d61e23578d3263"

[[package]]
name = "windows_aarch64_msvc"
version = "0.52.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9985fd1504e250c615ca5f281c3f7a6da76213ebd5ccc9561496568a2752afb6"

[[package]]
name = "windows_i686_gnu"
version = "0.52.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "88ba073cf16d5372720ec942a8ccbf61626074c6d4dd2e745299726ce8b89670"

[[package]]
name = "windows_i686_gnullvm"
version = "0.52.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "87f4261229030a858f36b459e748ae97545d6f1ec60e5e0d6a3d32e0dc232ee9"

[[package]]
name = "windows_i686_msvc"
version = "0.52.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "db3c2bf3d13d5b658be73463284eaf12830ac9a26a90c717b7f771dfe97487bf"

[[package]]
name = "windows_x86_64_gnu"
version = "0.52.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4e4246f76bdeff09eb48875a0fd3e2af6aada79d409d33011886d3e1581517d9"

[[package]]
name = "windows_x86_64_gnullvm"
version = "0.52.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "852298e482cd67c356ddd9570386e2862b5673c85bd5f88df9ab6802b334c596"

[[package]]
name = "windows_x86_64_msvc"
version = "0.52.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bec47e5bfd1bff0eeaf6d8b485cc1074891a197ab4225d504cb7a1ab88b02bf0"

funshade-rust-arbitrary_bits/Cargo.toml

[package]
name = "funshade"
version = "0.1.0"
edition = "2021"

See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html

[dependencies]
aes-prng = "0.2.1"
rand = "0.8.5"
clap = { version = "4.5.4", features = ["derive"] }
serde = {version = "1.0.202", features = ["derive"] }
serde_json = "1.0.117"

To build locally use
RUSTDOCFLAGS="--html-in-header katex-header.html" cargo doc --no-deps --open
Include private: RUSTDOCFLAGS="--html-in-header katex-header.html" cargo doc --no-deps --open --document-private-items
[package.metadata.docs.rs]
rustdoc-args = ["--html-in-header", "katex-header.html"]

funshade-rust-arbitrary_bits/LICENSE

 EUROPEAN UNION PUBLIC LICENCE v. 1.2
 EUPL © the European Union 2007, 2016

This European Union Public Licence (the ‘EUPL’) applies to the Work (as defined
below) which is provided under the terms of this Licence. Any use of the Work,
other than as authorised under this Licence is prohibited (to the extent such
use is covered by a right of the copyright holder of the Work).

The Work is provided under the terms of this Licence when the Licensor (as
defined below) has placed the following notice immediately following the
copyright notice for the Work:

 Licensed under the EUPL

or has expressed by any other means his willingness to license under the EUPL.

1. Definitions

In this Licence, the following terms have the following meaning:

- ‘The Licence’: this Licence.

- ‘The Original Work’: the work or software distributed or communicated by the
 Licensor under this Licence, available as Source Code and also as Executable
 Code as the case may be.

- ‘Derivative Works’: the works or software that could be created by the
 Licensee, based upon the Original Work or modifications thereof. This Licence
 does not define the extent of modification or dependence on the Original Work
 required in order to classify a work as a Derivative Work; this extent is
 determined by copyright law applicable in the country mentioned in Article 15.

- ‘The Work’: the Original Work or its Derivative Works.

- ‘The Source Code’: the human-readable form of the Work which is the most
 convenient for people to study and modify.

- ‘The Executable Code’: any code which has generally been compiled and which is
 meant to be interpreted by a computer as a program.

- ‘The Licensor’: the natural or legal person that distributes or communicates
 the Work under the Licence.

- ‘Contributor(s)’: any natural or legal person who modifies the Work under the
 Licence, or otherwise contributes to the creation of a Derivative Work.

- ‘The Licensee’ or ‘You’: any natural or legal person who makes any usage of
 the Work under the terms of the Licence.

- ‘Distribution’ or ‘Communication’: any act of selling, giving, lending,
 renting, distributing, communicating, transmitting, or otherwise making
 available, online or offline, copies of the Work or providing access to its
 essential functionalities at the disposal of any other natural or legal
 person.

2. Scope of the rights granted by the Licence

The Licensor hereby grants You a worldwide, royalty-free, non-exclusive,
sublicensable licence to do the following, for the duration of copyright vested
in the Original Work:

- use the Work in any circumstance and for all usage,
- reproduce the Work,
- modify the Work, and make Derivative Works based upon the Work,
- communicate to the public, including the right to make available or display
 the Work or copies thereof to the public and perform publicly, as the case may
 be, the Work,
- distribute the Work or copies thereof,
- lend and rent the Work or copies thereof,
- sublicense rights in the Work or copies thereof.

Those rights can be exercised on any media, supports and formats, whether now
known or later invented, as far as the applicable law permits so.

In the countries where moral rights apply, the Licensor waives his right to
exercise his moral right to the extent allowed by law in order to make effective
the licence of the economic rights here above listed.

The Licensor grants to the Licensee royalty-free, non-exclusive usage rights to
any patents held by the Licensor, to the extent necessary to make use of the
rights granted on the Work under this Licence.

3. Communication of the Source Code

The Licensor may provide the Work either in its Source Code form, or as
Executable Code. If the Work is provided as Executable Code, the Licensor
provides in addition a machine-readable copy of the Source Code of the Work
along with each copy of the Work that the Licensor distributes or indicates, in
a notice following the copyright notice attached to the Work, a repository where
the Source Code is easily and freely accessible for as long as the Licensor
continues to distribute or communicate the Work.

4. Limitations on copyright

Nothing in this Licence is intended to deprive the Licensee of the benefits from
any exception or limitation to the exclusive rights of the rights owners in the
Work, of the exhaustion of those rights or of other applicable limitations
thereto.

5. Obligations of the Licensee

The grant of the rights mentioned above is subject to some restrictions and
obligations imposed on the Licensee. Those obligations are the following:

Attribution right: The Licensee shall keep intact all copyright, patent or
trademarks notices and all notices that refer to the Licence and to the
disclaimer of warranties. The Licensee must include a copy of such notices and a
copy of the Licence with every copy of the Work he/she distributes or
communicates. The Licensee must cause any Derivative Work to carry prominent
notices stating that the Work has been modified and the date of modification.

Copyleft clause: If the Licensee distributes or communicates copies of the
Original Works or Derivative Works, this Distribution or Communication will be
done under the terms of this Licence or of a later version of this Licence
unless the Original Work is expressly distributed only under this version of the
Licence — for example by communicating ‘EUPL v. 1.2 only’. The Licensee
(becoming Licensor) cannot offer or impose any additional terms or conditions on
the Work or Derivative Work that alter or restrict the terms of the Licence.

Compatibility clause: If the Licensee Distributes or Communicates Derivative
Works or copies thereof based upon both the Work and another work licensed under
a Compatible Licence, this Distribution or Communication can be done under the
terms of this Compatible Licence. For the sake of this clause, ‘Compatible
Licence’ refers to the licences listed in the appendix attached to this Licence.
Should the Licensee's obligations under the Compatible Licence conflict with
his/her obligations under this Licence, the obligations of the Compatible
Licence shall prevail.

Provision of Source Code: When distributing or communicating copies of the Work,
the Licensee will provide a machine-readable copy of the Source Code or indicate
a repository where this Source will be easily and freely available for as long
as the Licensee continues to distribute or communicate the Work.

Legal Protection: This Licence does not grant permission to use the trade names,
trademarks, service marks, or names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and
reproducing the content of the copyright notice.

6. Chain of Authorship

The original Licensor warrants that the copyright in the Original Work granted
hereunder is owned by him/her or licensed to him/her and that he/she has the
power and authority to grant the Licence.

Each Contributor warrants that the copyright in the modifications he/she brings
to the Work are owned by him/her or licensed to him/her and that he/she has the
power and authority to grant the Licence.

Each time You accept the Licence, the original Licensor and subsequent
Contributors grant You a licence to their contributions to the Work, under the
terms of this Licence.

7. Disclaimer of Warranty

The Work is a work in progress, which is continuously improved by numerous
Contributors. It is not a finished work and may therefore contain defects or
‘bugs’ inherent to this type of development.

For the above reason, the Work is provided under the Licence on an ‘as is’ basis
and without warranties of any kind concerning the Work, including without
limitation merchantability, fitness for a particular purpose, absence of defects
or errors, accuracy, non-infringement of intellectual property rights other than
copyright as stated in Article 6 of this Licence.

This disclaimer of warranty is an essential part of the Licence and a condition
for the grant of any rights to the Work.

8. Disclaimer of Liability

Except in the cases of wilful misconduct or damages directly caused to natural
persons, the Licensor will in no event be liable for any direct or indirect,
material or moral, damages of any kind, arising out of the Licence or of the use
of the Work, including without limitation, damages for loss of goodwill, work
stoppage, computer failure or malfunction, loss of data or any commercial
damage, even if the Licensor has been advised of the possibility of such damage.
However, the Licensor will be liable under statutory product liability laws as
far such laws apply to the Work.

9. Additional agreements

While distributing the Work, You may choose to conclude an additional agreement,
defining obligations or services consistent with this Licence. However, if
accepting obligations, You may act only on your own behalf and on your sole
responsibility, not on behalf of the original Licensor or any other Contributor,
and only if You agree to indemnify, defend, and hold each Contributor harmless
for any liability incurred by, or claims asserted against such Contributor by
the fact You have accepted any warranty or additional liability.

10. Acceptance of the Licence

The provisions of this Licence can be accepted by clicking on an icon ‘I agree’
placed under the bottom of a window displaying the text of this Licence or by
affirming consent in any other similar way, in accordance with the rules of
applicable law. Clicking on that icon indicates your clear and irrevocable
acceptance of this Licence and all of its terms and conditions.

Similarly, you irrevocably accept this Licence and all of its terms and
conditions by exercising any rights granted to You by Article 2 of this Licence,
such as the use of the Work, the creation by You of a Derivative Work or the
Distribution or Communication by You of the Work or copies thereof.

11. Information to the public

In case of any Distribution or Communication of the Work by means of electronic
communication by You (for example, by offering to download the Work from a
remote location) the distribution channel or media (for example, a website) must
at least provide to the public the information requested by the applicable law
regarding the Licensor, the Licence and the way it may be accessible, concluded,
stored and reproduced by the Licensee.

12. Termination of the Licence

The Licence and the rights granted hereunder will terminate automatically upon
any breach by the Licensee of the terms of the Licence.

Such a termination will not terminate the licences of any person who has
received the Work from the Licensee under the Licence, provided such persons
remain in full compliance with the Licence.

13. Miscellaneous

Without prejudice of Article 9 above, the Licence represents the complete
agreement between the Parties as to the Work.

If any provision of the Licence is invalid or unenforceable under applicable
law, this will not affect the validity or enforceability of the Licence as a
whole. Such provision will be construed or reformed so as necessary to make it
valid and enforceable.

The European Commission may publish other linguistic versions or new versions of
this Licence or updated versions of the Appendix, so far this is required and
reasonable, without reducing the scope of the rights granted by the Licence. New
versions of the Licence will be published with a unique version number.

All linguistic versions of this Licence, approved by the European Commission,
have identical value. Parties can take advantage of the linguistic version of
their choice.

14. Jurisdiction

Without prejudice to specific agreement between parties,

- any litigation resulting from the interpretation of this License, arising
 between the European Union institutions, bodies, offices or agencies, as a
 Licensor, and any Licensee, will be subject to the jurisdiction of the Court
 of Justice of the European Union, as laid down in article 272 of the Treaty on
 the Functioning of the European Union,

- any litigation arising between other parties and resulting from the
 interpretation of this License, will be subject to the exclusive jurisdiction
 of the competent court where the Licensor resides or conducts its primary
 business.

15. Applicable Law

Without prejudice to specific agreement between parties,

- this Licence shall be governed by the law of the European Union Member State
 where the Licensor has his seat, resides or has his registered office,

- this licence shall be governed by Belgian law if the Licensor has no seat,
 residence or registered office inside a European Union Member State.

Appendix

‘Compatible Licences’ according to Article 5 EUPL are:

- GNU General Public License (GPL) v. 2, v. 3
- GNU Affero General Public License (AGPL) v. 3
- Open Software License (OSL) v. 2.1, v. 3.0
- Eclipse Public License (EPL) v. 1.0
- CeCILL v. 2.0, v. 2.1
- Mozilla Public Licence (MPL) v. 2
- GNU Lesser General Public Licence (LGPL) v. 2.1, v. 3
- Creative Commons Attribution-ShareAlike v. 3.0 Unported (CC BY-SA 3.0) for
 works other than software
- European Union Public Licence (EUPL) v. 1.1, v. 1.2
- Québec Free and Open-Source Licence — Reciprocity (LiLiQ-R) or Strong
 Reciprocity (LiLiQ-R+).

The European Commission may update this Appendix to later versions of the above
licences without producing a new version of the EUPL, as long as they provide
the rights granted in Article 2 of this Licence and protect the covered Source
Code from exclusive appropriation.

All other changes or additions to this Appendix require the production of a new
EUPL version.

funshade-rust-arbitrary_bits/README.md

Funshade Rust Implementation

This an experimental prototype! The code is subject to change!

The implementation is based on Funshade: Function Secret Sharing for Two-Party Secure Thresholded Distance Evaluation paper written by Alberto Ibarrondo, Hervé Chabanne and Melek Önen (https://eprint.iacr.org/2022/1688) and their implementation (https://github.com/ibarrond/funshade/tree/main).

Prerequisites
- Rust
- Cargo

Execute the Project
This project contains a simple example for the usage of the library (this will randomly generate data for testing purposes). To test this first the project need to be built with:
```
cargo build
```

Start the party which receives the result:
```
cargo run -- -m 1 --result
```
Start the party executing the setup:
```
cargo run -- -m 1 --setup
```
And now the two parties who owns the data:
```
cargo run -- -m 1 --pia
```
```
cargo run -- -m 1 --sensor
```
After all four parties are set, the execution of Funshade will automatically happen.

Usage of the library
The library for now provides pre-implemented parties:
- `ThirdPartySetup`
- `ThirdPartyPIA`
- `ThirdPartySensor`

In the code these needs to be created. The following is an example for the creation of the "sensor" object:
``` rust
let mut sensor_session = ThirdPartySensor::new(
    embedding_size,
    setup_stream.clone(),
    pia_stream.clone(),
    result_stream.clone()
);
```
Through this object different functionalities are available:
- `init_protocol`: Exchange configuration data (e.g. embedding_size).
- `setup_protocol`: Execute the setup phrase.
- `abort_protocol`: Aborts the process.
- `handle_funshade_message`: The received message from any of the parties should be handed to the object and it will automatically handles the message.

The "Sensor" has a `start_matching` method, which means only this party can initiate the execution of the process (after setup).

The "PIA" already stores data which can be changed with `change_input` and their shares can be pre-computed with `calculate_shares` method.

LICENSE
Licensed under the EUPL, Version 1.2 or – as soon they will be approved by
the European Commission - subsequent versions of the EUPL (the "Licence").
You may not use this work except in compliance with the Licence.

License: [European Union Public License v1.2](https://joinup.ec.europa.eu/software/page/eupl)

funshade-rust-arbitrary_bits/katex-header.html

funshade-rust-arbitrary_bits/src/fss/dcf/correction_word.rs

funshade-rust-arbitrary_bits/src/fss/dcf/dcf_key.rs

funshade-rust-arbitrary_bits/src/fss/dcf/dcf_node.rs

funshade-rust-arbitrary_bits/src/fss/dcf/mod.rs

funshade-rust-arbitrary_bits/src/fss/dcf/seed.rs

funshade-rust-arbitrary_bits/src/fss/ic/ic_key.rs

funshade-rust-arbitrary_bits/src/fss/ic/mod.rs

funshade-rust-arbitrary_bits/src/fss/mod.rs

funshade-rust-arbitrary_bits/src/funshade/delta_share.rs

funshade-rust-arbitrary_bits/src/funshade/dist_metric.rs

funshade-rust-arbitrary_bits/src/funshade/funshade_key.rs

funshade-rust-arbitrary_bits/src/funshade/mod.rs

funshade-rust-arbitrary_bits/src/funshade/pi_share.rs

funshade-rust-arbitrary_bits/src/helper/bit_operations.rs

funshade-rust-arbitrary_bits/src/helper/config.rs

funshade-rust-arbitrary_bits/src/helper/convert.rs

funshade-rust-arbitrary_bits/src/helper/group.rs

funshade-rust-arbitrary_bits/src/helper/mod.rs

funshade-rust-arbitrary_bits/src/helper/scale.rs

funshade-rust-arbitrary_bits/src/lib.rs

funshade-rust-arbitrary_bits/src/main.rs

funshade-rust-arbitrary_bits/src/sessions/data.rs

funshade-rust-arbitrary_bits/src/sessions/gerald_solution/g_pia.rs

funshade-rust-arbitrary_bits/src/sessions/gerald_solution/g_sensor.rs

funshade-rust-arbitrary_bits/src/sessions/gerald_solution/g_third_party.rs

funshade-rust-arbitrary_bits/src/sessions/gerald_solution/mod.rs

funshade-rust-arbitrary_bits/src/sessions/message.rs

funshade-rust-arbitrary_bits/src/sessions/mod.rs

funshade-rust-arbitrary_bits/src/sessions/result_party.rs

funshade-rust-arbitrary_bits/src/sessions/roles.rs

funshade-rust-arbitrary_bits/src/sessions/third_party_session/mod.rs

funshade-rust-arbitrary_bits/src/sessions/third_party_session/third_pia.rs

funshade-rust-arbitrary_bits/src/sessions/third_party_session/third_sensor.rs

funshade-rust-arbitrary_bits/src/sessions/third_party_session/third_setup.rs

https://git.ins.jku.at/proj/digidow/funshade-rust
https://git.ins.jku.at/proj/digidow/funshade-rust

	Abstract
	Contents
	List of Figures
	Listings
	Introduction
	Digidow

	Background
	Biometric Authentication
	Distance Metrics
	Distributed Systems
	Cryptography
	PAKE

	Multi-Party Computation
	Secret Sharing
	Additive Secret Sharing
	Beaver Triples
	Pi-Secret Sharing

	Function Secret Sharing (FSS)
	Distributed Point Function (DPF)
	Distributed Comparison Function (DCF)
	Interval Containment Gate (IC Gate)

	Related Work
	Funshade
	Roles
	Two-Party Scenario

	Rust
	Basic Concepts
	Ownership and Borrowing
	Custom Types
	Traits
	Function Pointers, "Delegates"
	Error Handling
	Rust Documentation

	Rust Implementation
	External Crates
	Helpers
	Group Data Structure
	Funshade Settings Data Structure
	Bit Operations
	Convert Methods
	Scaling

	Function Secret Sharing
	Funshade
	Party Structure
	How to Use this Library?

	Evaluation
	Positive Test Run
	Negative Test Run
	Performance
	Unit Tests
	Execution with Party Structures

	Conclusion and Future Work
	Bibliography
	Code Reachability

