
Author
Omid Mir

Submitted at
Institute of
Networks and
Security

Supervisor and
First Evaluator
Univ.-Prof.
Renè Mayrhofer

Second Evaluator
Univ.-Prof. Vanessa
Teague

Co-Supervisor
Dr. Daniel Slamanig

August, 2023

JOHANNES KEPLER
UNIVERSITÄT LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

Privacy Preserving
Credentials via Novel
Primitives

Doctoral Thesis
to obtain the academic degree of

Doktor der Technischen Wissenschaften

in the Doctoral Program

Technische Wissenschaften

Abstract

Users or devices regularly need to demonstrate who they are on the Internet to enable
decisions like whether they can access a certain resource such as a service. This often
involves dedicated issuing authorities or identity providers (IdP), like Facebook or Google,
who issue digital credentials for this purpose. Such credentials are important in securing
access to traditional online services such as banking or email. However, they are becoming
increasingly important in other non-digital areas such as travel (digital passports and
driving licenses), physical door access (building or car keys), or digital health/vaccination
credentials. However, in addition to creating single points of failure, relying on large and
centralized identity providers raises concerns about the privacy of user data and the required
trust in those central points. In particular, users lose control over their digital identity and
disclose private data to authorities, which increases the severity of data breaches.
In this thesis, we investigate privacy-enhancing technologies to achieve the benefits of

digital identity while preserving user privacy. By leveraging efficient cryptographic tools,
e.g., signatures, zero-knowledge proofs, commitments, and encryption schemes, we propose
secure protocols that safeguard user privacy while remaining practical. In particular, we
focus on Anonymous Credentials (AC) as a basis for authentication and authorization, which
have emerged as a promising solution for proving possession of credentials and attributes
while preserving user privacy. Additionally, ACs can enable individuals to control their
personal information and limit its collection and use by third parties. We develop and
extend AC schemes regarding various properties while optimizing their efficiency as follows:

Issuer-Hiding Multi-Authority AC: We introduce the concept of Issuer-Hiding Multi-
Authority Anonymous Credentials IhMA, which provides the Multi-Authority (MA) and
Issuer Hiding (IH) critical concerns that have not yet been adequately addressed so far.
MA means proving possession of attributes from multiple independent credential issuers
more efficiently than showing multiple independent credentials. IH allows users to prove
the validity of their credentials by only revealing that they have been issued by some the set
of acceptable issuers but not the exact issuers. This protects the user’s privacy, especially
in decentralized settings where many issuers are involved, as verifying a user’s credential
may require knowledge of the Issuer’s public key, which could inadvertently disclose private
information about the user. Our proposed solution involves the development of two new
primitives which are independent of interest:

• Aggregate Signatures with Randomizable Tags and Public Keys called AtoSa, where
the aggregation and tag are useful for MA, and the latter feature (randomizable public
keys) is essential for realizing the IH feature.

• Aggregate Tag based Mercurial Signatures called ATMS, which extend AtoSa to addi-
tionally support the randomization of messages and achieve equivalence class signatures
(SPSEQ) and thus obtain a version of mercurial signatures that are aggregatable and
have randomizable tags in other to provide the issuing hiding and unlinkability in
multi-authority.

1

Delegatable AC: We present a novel delegatable anonymous credential (DAC) scheme
that allows the owners of credentials to delegate the obtained credential to other users. It
supports attributes, provides anonymity for delegations, allows the delegators to restrict
further delegations, and comes with efficient construction. In particular, our DAC creden-
tials do not grow with delegations, i.e., they are of constant size. Our approach builds on
a new primitive:
• Structure-preserving signatures on equivalence classes on updatable commitments

(SPSEQ-UC). The high-level idea is to use a special signature scheme to sign vectors of
set commitments which can be extended by additional set commitments. Signatures
additionally include a user’s public key, which can be switched. Similar to conventional
SPSEQ signatures, the signatures and messages can be publicly randomized and thus
allow unlinkable showings in the DAC system.

Threshold Delegatable AC: We present a novel AC system with threshold issuance that
additionally provides credential delegation and thus represents the first decentralized and
delegatable AC. We provide a rigorous formal framework for such threshold delegatable
anonymous credentials (TDAC). Our concrete approach departs from previous delegatable
ACs and is inspired by the concept of predicate encryption and, in particular, functional
credentials and builds upon the following primitive:
• A threshold delegatable subset predicate encryption (TDSPE) scheme, in which partial

decryption keys are issued in a threshold way by multiple authorities and from which
users then can generate decryption keys.

We also show how one can use any existing AC system (not necessarily from the above-
developed AC systems) with login credentials (e.g., password and biometric) to provide
privacy-preserving single sign-on.
Privacy-Preserving Single Sign-On: We construct a novel decentralized privacy-
preserving single sign-on mechanism using a combination of existing AC systems and
OPRF schemes with Multi-Factor Authentication, where the process of user authentication
no longer depends on a single trusted third party (i.e., the IdP) in control of the whole
authentication process. Also, it permits services where authenticating users remain anony-
mous within a group of users. Moreover, our scheme does not require the IdP to be online
during the verification (passive verification).
Recovery of Encrypted Mobile Device Backups (eID): We propose a secure proto-
col for users to recover their electronic identity (eID) data in case of smartphone loss or
malfunction. We leverage biometric authentication and auxiliary devices to allow clients to
recover their secret keys from partially trusted servers using a Fuzzy Extractor.
We formalize all concepts and provide rigorous security definitions for all our proposed
primitives and AC protocols. To validate the efficacy of our proposed solutions, we present
efficient instantiations of the primitives/protocols. We also conduct performance bench-
marking based on a prototype implementation made available as an open source python
package to demonstrate the practical efficiency of our protocols and also primitives.

2

Acknowledgment

I would like to express my deepest appreciation and gratitude to the following individuals
and organizations who have played significant roles in the completion of my Ph.D. thesis:

First and foremost, I am deeply grateful to my supervisor, René Mayrhofer, for believing
in me, and for granting me the freedom to pursue my own research direction. I thank
him for his unwavering support and invaluable guidance. I am happy to have had such a
goodhearted and inspiring supervisor.

I’d also like to express my sincere thanks to my second supervisor, Daniel Slamanig. His
inspiration and expert guidance have been pivotal in improving my research and igniting
my interest in the world of cryptography. I am deeply thankful for the invaluable knowledge
he shared, the myriad of things I learned from him, and for all our fruitful discussions.
I am grateful to my co-authors, Balthazar Bauer, Scott Griffy, Michael Hölzl, Anna

Lysyanskaya, René Mayrhofer, Michael Roland, and Daniel Slamanig, for many interesting
discussions and invaluable contributions, without whom my research would have been far
less productive.
Enjoyable activities, socializing, and coffee-drinking breaks with colleagues have been

integral to my Ph.D. experience. I am deeply grateful to my supportive colleagues, both
past and present, from INS and LIT, for making this journey more enjoyable. The cherished
memories we created together in these beautiful cultures will forever remain unforgettable.
To my dear friends and family, I feel blessed to have such a wonderful support system.

My heartfelt gratitude goes to my parents for their unwavering love and support, which
made all of this possible. I am deeply grateful to them beyond words. To my siblings, your
love and belief in my abilities have been a constant source of inspiration. Thank you all
for everything.

I dedicate this thesis to the memory of my father, whose role in my life remains immense,
and to my mother for her constant encouragement and kindness.
Last, and above all, I’d like to thank you, Elham for being by my side and for all the

efforts you have made to bear with my tendency to constantly talk about crypto stuff :)

3

Contents

1 Introduction 13
1.1 Background . 14

1.1.1 Anonymous Credentials . 14
1.1.1.1 Decentralizing Anonymous Credentials 15
1.1.1.2 Delegatable Anonymous Credentials 16

1.1.2 Human-Factors Authentication . 17
1.1.3 Recovery of Encrypted Mobile Device Backups (IDs) 19

1.2 Related Works . 21
1.2.1 Anonymous Credentials . 21

1.2.1.1 Decentralizing Anonymous Credentials 22
1.2.1.2 Delegatable Anonymous Credentials 23

1.2.2 Human-Factors Authentication . 24
1.2.2.1 Single-Factor (Password) Authentication Key Exchange . . 24
1.2.2.2 Multi-Factor Authentication 25
1.2.2.3 Anonymous Authentication 25

1.2.3 Recovery of Encrypted Mobile Device Backups (IDs) 26
1.3 Contribution . 27

1.3.1 Chapter 3: Issuer-Hiding Multi-Authority Credentials 28
1.3.2 Chapter 4: Efficient Delegatable Anonymous Credentials 30
1.3.3 Chapter 5: Threshold Delegatable Anonymous Credentials 32
1.3.4 Chapter 6: Privacy-Preserving Single Sign-On 33
1.3.5 Chapter 7: Recovery of Encrypted Mobile Device Backups (IDs) . . 34
1.3.6 Chapter 8: Practical Realization (Implementation) 35
1.3.7 Publication History . 35
1.3.8 Other Contribution . 36

1.4 Structure of this Thesis . 36

2 Preliminaries 39
2.1 Notation . 39
2.2 Computational Assumptions . 39
2.3 Bilinear Pairing . 40
2.4 Basic Cryptographic Primitives . 41

2.4.1 Digital Signature Schemes . 42
2.4.1.1 Pointcheval-Sanders (PS) Signatures 42
2.4.1.2 Ghadafi SPS . 43

5

2.4.1.3 Message-Indexed Ghadafi SPS 44
2.4.1.4 Signatures on Equivalence Classes 44
2.4.1.5 Mercurial Signatures . 46

2.4.2 Public-Key Encryption Schemes . 46
2.4.2.1 Predicate Encryption . 47

2.4.3 Commitment Schemes . 48
2.4.3.1 Equivocable and Extractable Commitments 49
2.4.3.2 Pedersen Commitments . 50
2.4.3.3 Set Commitment . 50

2.4.4 Zero-Knowledge Proofs of Knowledge 51
2.4.5 Secret Sharing . 52

2.5 Computational Models. 52

3 Issuer-Hiding Multi-Authority Credentials 53
3.1 Comparison of IhMA with Previous Work 53
3.2 Aggregate Signatures with Randomizable Keys and Tags 55

3.2.1 Formal Definitions . 55
3.2.2 Security Definitions . 57
3.2.3 Construction . 59

3.3 Aggregate Mercurial Signatures With Randomizable Tags 67
3.3.1 Formal Definitions . 67
3.3.2 Security Definitions . 70
3.3.3 Construction . 72

3.4 Application to AC . 75
3.4.1 Formal Definition . 75
3.4.2 Security Definitions . 76
3.4.3 Constructions . 79

3.4.3.1 AtoSa based IhMA Construction in Fig. 3.6. 80
3.4.3.2 ATMS based IhMA Construction in Fig. 3.7. 81

3.4.4 Additional Properties . 90
3.5 Implementation and Evaluation . 92

3.5.1 Bandwidth Analysis of our IhMA Schemes 94
3.6 Summary . 95

4 Delegatable Anonymous Credentials 97
4.1 High Level Idea of Our Approach . 97
4.2 Practical Example Application . 98
4.3 Comparison with Previous Work . 99
4.4 SPSEQ on Updatable Commitments . 101

4.4.1 Formal Definitions . 102
4.4.2 Security Definitions . 104
4.4.3 Construction . 107

6

4.5 Cross-Set Commitment Aggregation . 113
4.6 Delegatable Anonymous Credentials . 115

4.6.1 Security of DAC . 117
4.6.2 Construction of DAC . 119

4.7 Implementation and Evaluation . 126
4.7.1 Theoretical Analysis and Comparison 128

4.7.1.1 Computational Complexity 129
4.7.1.2 Communication Complexity 130

4.8 Summary . 131

5 Threshold Delegatable Anonymous Credentials 133
5.1 High Level Idea of Our Approach . 133
5.2 Practical Application Scenarios . 135
5.3 Threshold Delegatable Subset Predicate Encryption 137

5.3.1 Formal Definitions . 137
5.3.2 Security Definition . 139
5.3.3 TDSPE Construction . 140

5.4 Threshold Delegatable Anonymous Credentials 147
5.4.1 Formal Definition . 147
5.4.2 Security Definition . 148
5.4.3 Construction . 150
5.4.4 Potential Extensions . 158

5.5 Performance Evaluation . 159
5.5.1 Experimental Results . 159
5.5.2 Theoretical Analysis and Comparison 161

5.5.2.1 Computational Complexity 161
5.5.2.2 Communication Complexity 161

5.5.3 Comparison . 164

6 Privacy-Preserving, Single Sign-On 167
6.1 Building blocks . 167

6.1.1 Oblivious Pseudo-random Function (OPRF) 167
6.1.2 Public Append-Only Ledger . 168
6.1.3 Dynamic Accumulators . 169

6.2 Decentralized Anonymous Multi-Factor Authentication (DAMFA) 170
6.2.1 System Model . 171
6.2.2 Threat Model . 172
6.2.3 High-Level View . 172
6.2.4 The DAMFA Functionality . 174
6.2.5 Our Construction . 175

6.3 Implementation . 182
6.3.1 Namecoin implemention . 182

7

6.3.2 Ethereum . 184
6.3.3 Performance of the Authentication System 185
6.3.4 Computational and Communication complexity 186
6.3.5 Comparison . 187

6.4 Summary . 188

7 Recovery of Encrypted Mobile Device Backups (IDs) 189
7.1 Introduction . 189
7.2 Building block and Notations . 192

7.2.1 Mathematical Problems . 192
7.2.2 Fuzzy Extractor . 192

7.3 System Model . 193
7.3.1 Network Model . 193
7.3.2 Threat Model . 194

7.4 The Proposed Scheme . 194
7.4.1 Assumptions . 195
7.4.2 System Setup Phase . 195
7.4.3 Initialization . 195
7.4.4 Reconstruction Phase . 196

7.5 Security Analysis . 198
7.5.1 Security Model . 199
7.5.2 Security Proof of the Protocol . 200
7.5.3 Discussion . 202

7.6 Performance . 203
7.6.1 Analysis . 204

7.7 Summary . 205

8 Practical Realization (Implementation) 207
8.1 Introduction . 207
8.2 Architecture . 208
8.3 Dependencies . 209
8.4 AC Interfaces (APIs) . 209
8.5 Summary . 210

9 Conclusion 211

8

List of Figures

1.1 The generic flow diagram shows the authentication phase of a password-
based token method. The figure does not include the registration phase
where the user stores their username (usr) and hashed password (h) with
the identity provider. 19

2.1 Existential Unforgeability under a Chosen-Message Attack (EUF-CMA) . . 42
2.2 IND-CPA Security . 47

3.1 Experiment ExpUnfAtoSa,A(λ) . 58
3.2 Tag based Diffie-Hellman message space in ROM 68
3.3 Experiment ExpUnfATMS,A(λ) . 71
3.4 Experiment ExpUnf IhMA,A(λ) . 78
3.5 Experiment ExpAnoIhMA,A(λ) . 79
3.6 Our IhMA scheme (Σ1 and Σ2 denote AtoSa and SPSEQ [FHS19], respectively) 82
3.7 Our IhMA scheme (Σ1 and Σ2 denote ATMS and SPSEQ [FHS19], respectively) 90
3.8 Adaptative game for the uber assumption relatively to the bilinear group G

and adversary A. 91
3.9 Running times of VerifyAggr in ATMS & AtoSa (ms) 93
3.10 Running times of IhMAATMS . 94
3.11 Running times of IhMAAtoSa . 94

4.1 Experiment ExpUnfSPSEQ-UC,A(λ, `, t) . 105
4.2 Experiments ExpAnoDAC,A(λ, `, t) and ExpUnfDAC,A(λ, `, t). 119
4.3 Our DAC scheme (Σ denotes our SPSEQ-UC scheme from Section 4.4.3). . . 121
4.4 The running times of SPSEQ-UC (ms) . 127
4.5 The running times of DAC (ms) . 128
4.6 Comparison between our DAC and CDD (n = 4) 128

5.1 High-level overview of our approach. 134
5.2 Experiment ExpCPA−b

TDSPE,A(1λ) . 140
5.3 Experiments ExpAnoTDAC,A(k, n, t) and ExpUnfTDAC,A(k, n, t). 148
5.4 Our threshold delegatable anonymous credentials scheme. 151
5.5 The running times of TDAC in DNF version and Coconut 161
5.6 The running times of KeyGen (i.e., issuing credentials in TDAC) and other

algorithms (ms) . 162
5.7 The transaction size of the verification and the issuing algorithm (bytes) . . 163

9

6.1 (n, t)-threshold computation in a TOPRF protocol [JKKX17] 168
6.2 Functionality FTOPRF [JKKX17] . 169
6.3 Functionality FB [YAXY19] . 170
6.4 A system model of the DAMFA scheme . 171

7.1 Initialization Phase . 196
7.2 Reconstruction Phase . 198
7.3 False match rate (FMR) and False non match rate (FNMR) evaluation using

fuzzy extractor and fingerprint on FVC2000 1a database [AJH07]. 200
7.4 User’s runtime of various protocols (ms) . 205

10

List of Tables

3.1 Comparison of AC schemes in MA setting (n: Attributes; k: Disclosed
attributes, u: Undisclosed attributes, N : Total issuers in policy, K: issuers
in showing) . 54

3.2 Running times for ATMS and AtoSa (ms) 92
3.3 Communication complexity of our IhMA schemes (N : total issuers and K:

issuers in showing). 94

4.1 Comparison of practical DAC schemes (L: Delegation chain depth; n:
Attributes; u: Undisclosed attributes). 100

4.2 Running times for SPSEQ-UC and DAC (ms) 126
4.3 Computational complexity . 130
4.4 Communication Complexity . 131

5.1 Execution times for TDSPE and TDAC protocols in milliseconds. 160
5.2 Computational complexity . 162
5.3 Communication complexity in bytes (t = 2 and q = 5) 163
5.4 Comparison of some popular credential schemes (q is the number of attributes).164

6.1 Comparison of Public Ledger Instantiations 182
6.2 Performance of the authentication protocol 186
6.3 Comparison of single sing-on schemes. 186
6.4 DAMFA computation and communication complexity 187

7.1 The notions . 193
7.2 Comparison between our protocol and PPSS schemes 204
7.3 Computation costs comparison (millisecond) 206

8.1 Comparison of our AC schemes . 207

11

1 Introduction

The digital world has brought tremendous benefits that have made our daily lives more
comfortable than ever before. We can now perform a wide range of tasks online, from
reading news on websites and socializing with friends on social media platforms to shopping,
banking, and renewing our driver’s licenses, among many others. However, for these
activities to be secure, robust authentication is essential. It ensures that we buy products
from genuine manufacturers, communicate with intended recipients, transfer money to the
valid individuals, etc.

Authentication can be broadly categorized into two types: (human-factors) identity
based and attributes based authentication. 1) The former involves traditional methods that
require users to enter a combination of login credentials (using a password or biometric) or
authenticate through a third party using a single sign-on (SSO) authentication protocol.
The first option requires the user to maintain authentication credentials (e.g., password)
for all services, while in the second case, the third party can track the user’s activities.
Meanwhile, attributes-based authentication uses a digital identity as a central concept,
which can be seen as a collection of attributes (e.g., name, age, nationality, gender, etc.)
representing a (real-world) entity in the digital realm. Instead of authenticating through a
password (or biometric), one typically uses signatures as credentials, which certified the
attributes. In a traditional sense, signatures allow a holder of a secret key to sign messages
(attributes). Meanwhile, the resulting signature can be verified the related public key and
all messages (attributes). These signatures are often issued by identity providers (IdP). On
the Internet, a widely adopted practice is to have a centralized IdP, e.g., Google or Meta,
to maintain the digital identity of users.
From a privacy perspective, however, the use of centralized identity providers poses

significant challenges as users lose control over their digital identity (all their attributes
reside at the IdP), and the IdP learns all the services a user consumes on the Internet
(and data related to the use). Moreover, during the verification, users are often required
to disclose more information than necessary, which can be problematic from a privacy
standpoint. Such disclosures can lead to users’ privacy being significantly compromised,
and attackers may misuse or benefit from any personal data they can obtain.

Privacy-preserving technologies can overcome these privacy issues and offer private access
control. More precisely, privacy-preserving technologies provide the protection of private
data (that means not disclosing any privacy-sensitive information beyond what is required
to be disclosed) while maintaining control over it. We also need to show that the certified
data derives from a member of some permitted group while not displaying any other
details about the actual user’s identity. This is achieved through anonymity (hiding the

13

user’s identity) and unlinkability (preventing anyone from linking transactions to a user
or tracking their activities) in all interactions. Our focus is on both aspects of privacy,
considering situations where the user’s identity and attributes can reveal privacy-sensitive
information. Guaranteeing strong privacy is a complex task that often requires leveraging
cryptographic security guarantees. Our goal is to ensure the integrity of the data while
simultaneously preserving the privacy of the users.

In this thesis, we investigate privacy-enhancing (attribute-based) credentials to achieve
the benefits of digital identity while preserving user privacy. Our focus is on developing
secure protocols that ensure user privacy while remaining practical. In particular, we focus
on anonymous credentials as a basis for authentication and authorization, which have
emerged as a promising solution for proving possession of credentials and attributes while
preserving user privacy. Designing privacy-preserving schemes and ensuring their security
is a delicate task that requires balancing strong security definitions, privacy protection,
efficiency, and practical feasibility to develop usable privacy-preserving solutions. By doing
so, we can ensure that users can enjoy the benefits of the digital world while protecting
their privacy.

1.1 Background
We start by providing background on cryptographic approaches that form the basis of our
work. Subsequently, we delve into the main concepts underlying the cryptographic schemes
and AC protocols that we aim to present in this thesis.

1.1.1 Anonymous Credentials
An application of private data protecting techniques is an Anonymous Credential (AC)
scheme. ACs play an essential role in privacy-preserving applications in which users can
authenticate while disclosing minimal information [Cha85,CL01,CL03,CL04]. ACs consist
of user(s), issuer(s), and verifier(s). An issuer issues credentials (signature on users’ identity)
to users, certifying specific attributes of the user. A user can then authenticate by proving
possession of certain attributes as authorized in its credential.

Generally, to design AC systems in the digital world, a common approach is to combine
signatures with zero-knowledge proofs, which enables proof of a signature without disclosing
information about it and thus provides anonymity. Users can also access various services
by selecting which attributes they want to disclose from the credential (selective disclosure).
More precisely, one can use commitment and signature schemes combined with efficient
protocols as follows: 1) a protocol in which we can prove knowledge of a committed
message, 2) another protocol in which we can prove knowledge of the signature on a
committed message, and optionally 3) a protocol for signing a committed message without
revealing the committed message to the signing party (a blind signature). Moreover, these
approaches usually provide the multi-show property such that several showings of the same
credential cannot be linked. The key feature is that the user can choose which attributes

14

from a credential to reveal to a verifier, and the verifier can cryptographically verify the
disclosed part. Meanwhile, the verifier should not learn anything more than that the
disclosed attributes were certified by issuers. Also, multiple authentications are unlinkable,
meaning that a verifier cannot distinguish a returning user from a new user. The user has
anonymity in the set of all users possessing the disclosed attributes (or even more powerful
meaning prove predicated over attributes).

In addition to the traditional AC schemes as described above, another popular type of
AC system (also called sometimes self-blindable credentials) that is both simple and efficient
is based on structure-preserving signatures on equivalence classes (SPSEQ) [FHS19,CL19].
SPS-EQ avoids the need for potentially costly zero-knowledge proofs and uses more efficient
show protocols. This simplifies the construction process and eliminates the need for
knowledge of the signature on committed (hidden) attributes, making it a straightforward
approach to AC systems. However, they only support selective disclose attributes but not
more expressive like proving predicates over attributes. In this thesis, we focus on this
type of AC system.

1.1.1.1 Decentralizing Anonymous Credentials

All approaches discussed above rely on a central authority issuing credentials. Such
a trusted party represents a single point of trust and failure and a valuable target of
attack. Also, as shown in [GGM14a], compromise or issuer misbehavior can be quite
difficult to notice in ACs. Moreover, in distributed settings spanning different contexts and
jurisdictions, finding a dedicated party that is trusted by all participants in a system is
usually non-trivial and often not desirable in practice. An increasingly prominent approach
in conventional identity management is to take advantage of a distributed setting and in
particular self-sovereign identity (SSI) frameworks like Sovrin1 that use distributed ledger
technologies (DLTs) and distributed public-key infrastructures (DPKIs) to mitigate this
problems2.

In SSI users are collecting certified attributes (called verifiable credentials) from different
sources and then presenting (subsets of) verifiable credentials from this collection. There is
an increasing push towards standardization of this verifiable credentials concept within
W3C3 and large efforts such as the future European data infrastructure (Gaia-X)4 or the
European Blockchain Services Infrastructure (EBSI)5 are adopting this approach. Within
the verifiable credential initiative in W3C it is also observed that privacy related features
are important. In particular well-known features from AC systems such as supporting
selective disclosure and proving predicates about attributes6. To realize this functionality

1https://sovrin.org/
2Sovrin also supports conventional anonymous credentials [KL17].
3https://www.w3.org/TR/vc-data-model/
4https://gaia-x.eu/
5https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home
6https://www.w3.org/TR/vc-data-model/#privacy-considerations

15

https://sovrin.org/
https://www.w3.org/TR/vc-data-model/
https://gaia-x.eu/
https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home
https://www.w3.org/TR/vc-data-model/#privacy-considerations

within W3C it is intended to base this upon the BBS+ signature scheme7, a well-known
building block for ACs currently being standardized by the CFRG of the IETF8 (Privacy
Pass [DGS+18] or the PrivateStats proposal by Facebook9 to privately collect client-side
telemetry from WhatsApp).

The aforementioned approach allows to preserve privacy in a setting where a user wants
to show a single verifiable credentials issued by a single party. However, for a decentralized
setting, where typically a subset of a collection of verifiable credentials from different
issuers needs to be shown, the question of how to efficiently realize this arises. A naive
way is to conduct a parallel credential showing of all the required verifiable credentials.
However, apart from reduced efficiency this also has privacy implications. In particular,
every verifiable credential reveals the exact issuer providing a lot of contextual partial
information, e.g., a passport issued from a certain country or a driving license issues by
a certain state reveal geographic information. This can be highly privacy intrusive in
many settings and undermining the very objective of SSI systems [BFGP22]. And it is
not possible to show that a credential comes from one of a larger set of issuers that would
be accepted by a verifier. A set of independent recent works introduced a property called
issuer-hiding [BEK+21,CLPK22,BFGP22] for AC systems. More specifically, users can
prove that their credential is issued by one accepted issuer – without revealing which one.
While this is a step towards countering the above privacy issues, these works only consider
single issuers and are thus not yet suitable for a decentralized setting.

1.1.1.2 Delegatable Anonymous Credentials

In our everyday use of credentials, a common challenge arises: delegation. We often need to
delegate our tasks, responsibilities, and permissions to others, or simply sharing access to
resources and services with different individuals or electronic devices. Indeed, in practice,
credentials are usually issued in a hierarchical manner, e.g., there is a chain of certificates
between the user certificate and a trusted root authority. An easy way to achieve this goal
is credential sharing. However, giving away the full and unlimited power of a credential
is often not what we want. Consider the following example: The manager of a company
wants to delegate a task that requires filling and signing documents to her secretary. Since
the documents need a valid signature, the manager shares her digital signature key with
the secretary. Unfortunately, this also gives the secretary the power to sign arbitrary
documents in the name of the manager – which is obviously not what the manager intended.
Even worse, since the actual signing key was shared, the only way to revoke these powers
from the secretary is to revoke and invalidate the whole credential. As also highlighted
in [BCC+09,CDD17,CL19], in a critical privacy context where AC systems are typically
used traditional AC assumes that the verifying party knows the public key of the credential
issuers. While such a hierarchical structure is desirable, this chain of issuers may reveal

7https://w3c-ccg.github.io/ldp-bbs2020/
8https://datatracker.ietf.org/wg/privacypass/about/
9https://research.fb.com/privatestats

16

https://w3c-ccg.github.io/ldp-bbs2020/
https://datatracker.ietf.org/wg/privacypass/about/
https://research.fb.com/privatestats

sensitive information about the issuer’s organizational structure or the credential holder.
Delegatable anonymous credentials (DACs), introduced by Chase and Lysyanskaya [CL06],

solve this problem and support hiding the full delegation (issuance) chain and provide
privacy during the delegation and the selective showing of attributes. This can be modeled
via levels (cf. Belenkiy et al. [BCC+09]), e.g., any user can delegate a level L = 1 credential
to another user. This level L credential can be used to derive a level L+ 1 credential for
another user. Also, the user can authenticate (i.e., prove possession of their credential)
without disclosing their identity among the group of delegatees to a verifying party. Only
the identity (i.e., public key) of the root issuer (not intermediate issuers) is revealed during
the verification, while with traditional AC systems, the identity of all intermediate issuers
will be revealed. Consequently, DACs provide stronger privacy guarantees than traditional
AC systems.

1.1.2 Human-Factors Authentication

Authenticated Key Exchange (AKE) is one of the most broadly used cryptographic
primitives which enables two parties to create a shared key over a public network. Typically,
the parties need to have authentication tokens, e.g., cryptographic keys (asymmetric
or symmetric high-entropy keys) or short secret values (low-entropy passwords). They
also securely store these authentication tokens in a trusted service provider during the
registration phase. There are various types of authentication factors such as knowledge,
possession, and physical presence in practice low-entropy passwords are widely present.
An example of an authentication protocol that relies on passwords is Password-based
Authenticated Key Exchange (PAKE) [BPR00a].

However, passwords are usually vulnerable to both online and offline attacks [Cam17,
WCW+17]. An adversary can compromises the data stored with the service provider (user
account data, consisting of usernames and associated (potentially salted) password hashes)
and run an offline dictionary attack on that data. Such an attack leads to the disclosure
of user accounts and has happened several times in the past, cf. [Cam17,GP16,Gem15].
Even if low-entropy passwords are correctly salted and hashed, they still do not resist
brute force attacks using modern hardware. Already in 2012, a rig of 25 GPUs could test
up to 350 billion guesses per second in an offline dictionary attack [Pau12]. Multi-Factor
Authentication (MFA) schemes overcome this risk by adding additional authentication
factors. MFA combines (low-entropy) passwords with, e.g., secret values stored in physical
tokens. Recent advancements in fingerprint readers and other sensors lead to the increased
usage of smartphones and biometric factors in MFA schemes (e.g., the use of biometrics to
securely retrieve private information [MMHN18]). These methods make it more difficult
to guess the authentication factors. However, some MFA schemes incorporate password
authentication and second-factor authentication as separate mechanisms and store a salted
password hash (or biometric) on the server, leading to different vulnerabilities such as
spoofing and offline attacks [OBM+18,JKSS18]. In other words, an adversary compromising
the server is still able to recover the actual password (even if that password is no longer

17

usable without the additional associated factors). Moreover, mobile devices (smartphones,
wearables, FIDO U2F , etc.) are considered more likely to be subject to loss or theft,
and particularly smartphones and wearables open a large, high-risk attack surface for
malware [MAR18,RPJ+18].

In general, authentication schemes are designed to uniquely identify a user. Consequently,
they do not aim at protecting user privacy and users’ activity in the digital world can
easily be tracked and analyzed. Leakage of individual information may have serious
consequences for users (including financial losses). To meet the increasing need of privacy
protection in the digital world, multi-factor authentications are enhanced with privacy-
preserving technologies. For instance, anonymous authentication schemes allow a member
of a legitimate group, called a prover, to convince a verifier that it is a member of the
group without revealing any information that would uniquely identify the prover within
the group. Various schemes for anonymous password authentication have been proposed,
e.g., [VYT05, Lin11, YZ08, SKI10]. In particular, anonymous password authentication
guarantees unlinkability: The prover (e.g. the server of a service or identity provider)
should not be able to link user authentications. Thus, for any two authentication sessions,
the prover is unable to determine if they have been performed by the same user or two
different users.

Centralized Authentication Architecture. An Identity Provider (IdP) with a centralized
database of authentication data of all users could easily provide an MFA scheme and
offer convenient single sign-on (SSO) to other services for its users [RR06]. SSO allows
users to once receive a single token provided by the IdP and repeatedly authenticate
themselves to service providers. Several initiatives such as PRIMA [ABS18], OAuth
[HJ12], SAML [One19], and OpenID [RR06] let service providers take advantage of
another centralized identity provider to authenticate users without becoming responsible
for managing account passwords. In all these systems, the authentication follows a similar
scheme (see Fig. 1.1) [AMMM18]:

• In the registration phase, the user creates credentials (e.g., a username/ID and a
password) and passes them to the IdP (a trusted server) which stores the username
together with the salted hash of the password.

• In the authentication phase, the IdP verifies the user-supplied sign-on credential by
matching the username and password hash.

• After successful verification, the IdP issues an authentication credential (a digital
signature or a message authentication code) using a secret key that authenticates
the user to the service provider (e.g., a website) they want to visit.

However, this kind of centralized system poses several challenges:

• The IdP represents a single point of failure and an obvious target for attacks, such as:

18

Figure 1.1: The generic flow diagram shows the authentication phase of a password-based
token method. The figure does not include the registration phase where the
user stores their username (usr) and hashed password (h) with the identity
provider.

– extraction of the secret key to forge tokens, which enable access to arbitrary
services and data in the system;

– capturing hashed passwords (or biometrics) to run offline dictionary attacks in
order to recover user credentials;

both potentially resulting in severe damage to the reliability of the system [AMMM18].

• The IdP is actively involved in each authentication session and can, therefore, track
user activity, leading to serious privacy issues [AHS11,FKS17].

• The IdP takes a significant amount of control over the digital identity away from
the user. Users cannot fully manage and store their identity by themselves but
always need to rely on and interact with an always online IdP that offers the identity
management system to them and the service provers they want to interact with.

Here we study decentralized options to overcome the above problems.

1.1.3 Recovery of Encrypted Mobile Device Backups (IDs)

Moving electronic identity (eID) into mobile devices is a growing trend. Examples in-
clude photo ID documents [HRM16], mobile payment wallets [GHR+15], and two-factor
authentication tokens10. While this approach can increase both usability and security by
transforming eID elements into hardware-backed software components on mobile devices, it
10E.g. by implementing the FIDO U2F or UAF protocols on smartphones with fingerprint sensors.

19

also creates a major single point of failure. Loss or theft of the smartphone becomes highly
problematic when the user relies on it for identification, payment, and communication.

To address this issue, it is important for critical eID elements to be backed up, allowing
owners to recover them on a new device if necessary - potentially under time pressure
and outside of their normal, trusted environments. For example, assume Alice uses her
smartphone as a digital identity and payment wallet, and her smartphone regularly creates
a backup of all encrypted data, including payments and eID data. If her phone is stolen,
she can acquire a new, compatible device and restore her private eID and payment data
within a short time frame and under stress. Recovering her secret key to access her private
eID data is also essential. While this backup system can help mitigate the risk of a single
point of failure, other complex issues, such as locking/wiping/revoking the stolen phone or
verifying the authenticity of a new device, are outside the scope of this thesis.

To date, the problem of backing up smartphones (not specifically eIDs) has been
typically approached with implicitly trusted cloud services by the respective device or OS
manufacturer. Although these services may potentially be made secure with significant
technical effort (cf. the public presentation of the Apple cloud keystore [Krs16] or Android
E2EE backup 11), they still require complete trust in the operator. Although an organization
may try to prevent itself from being able to extract previously stored key material with
tamper-resistant hardware, the implementations and processes for new backups can always
be changed without users being able to notice. Adding current issues of legal uncertainty
in various countries concerning key escrow and encryption regulations, we argue that this
level of trust in a for-profit company subject to a (potentially foreign) legal and political
system is misplaced, especially with the implications of handling eIDs.

Ideally, we need to reduce the required trust in cloud services for backup and recovery of
security- and privacy-critical data on smartphones, focusing on the use case of eIDs. The
obvious (and naive) approach is to directly derive a cryptographic key from a user-provided
password and locally encrypt/decrypt and sign/verify all backup data before sending it
to the cloud service. In this case, the service provider would only need to be trusted for
providing availability, but not for keeping confidentiality of the stored data (and integrity
violations could at least be detected). Current approaches to full-device backup typically
use such a method (including both the Android and iOS platforms at this time). However,
the well-known difficulty of remembering passwords with high entropy [YBAG04] is even
more of a problem for recovery of eID: such a recovery password would only be used very
rarely (if at all) and often under stress. At the same time, it needs to be of higher entropy
than typical login passwords, because it is the only element keeping a rogue (or legally
compelled) service provider from violating the confidentiality of the backup data by simple
brute-forcing a weak password. Therefore, a simple password-based key derivation function
(PKDF) does not seem to be an appropriate solution, and on-device encryption methods
have already been extended by including a hardware-based key part in the derivation
function (first on iOS, now also on Android platforms). Unfortunately, for decrypting

11https://security.googleblog.com/2018/10/google-and-android-have-your-back-by.html

20

https://security.googleblog.com/2018/10/google-and-android-have-your-back-by.html

backup data on a new device during recovery, we cannot rely on a trusted execution
environment (TEE) or other secure hardware to be in possession of a key part to contribute
during key derivation, as we assume the original device (from which the backup had been
created) to be completely unavailable (Alice’s phone was stolen).

1.2 Related Works

We present related work on the topics discussed above.

1.2.1 Anonymous Credentials

Chaum proposed the concept of anonymous credentials (ACs) [Cha85] to address the
privacy problem, which can be extended to provide privacy of service use even if credential
issuers and verifiers collude [CL03,CL04,PS16a, ILV11,San20,FHS19,HS21]: by avoiding
unique identifiers during authentication and providing only the relevant information from
a credential, multiple different interactions of the same user cannot be linked. This unlink-
ability property must be considered a core privacy requirement for digital identity systems
to avoid trivial mass surveillance. An important feature of modern anonymous credentials
(often called attribute-based credentials or ABCs) is that they encode attributes, e.g., age
or nationality, and allow users to selectively reveal some attributes while hiding others
and thus supporting both fine-grained access control and data minimization12 at the same
time. Prominent AC systems are Idemix13 by IBM and U-Prove14 by Microsoft. A recent
significant real world application is the integration of a more recent AC system [CMZ14a]
into the popular Signal Messenger [CPZ20]. The most widely deployed technology related
to ACs is the direct anonymous attestation (DAA) protocol [BCC04,CCD+17] supported by
commonly integrated Trusted Platform Modules (TPMs). Nowadays, there are numerous
approaches to construct ACs. The largest class of AC systems (and also DAA) builds upon
re-randomizable signatures on commitments [CL03,CL04,PS16a,LMPY16] and related
approaches such as equivalence class signatures [HS14,FHS19,HS21,CLK21] or redactable
signatures [CDHK15,San20] (or more generic malleable signatures [CKLM14a]). Besides
this signature-based approach, where a credential is essentially a signature from some issuer,
a fundamentally different approach was recently proposed by Deuber et al. [DMM+18].
They construct an AC system based on predicate encryption [KSW08] and a user creden-
tial represents the decryption key for some predicate issued by the credential issuer (see
Section 5.1).

12Unlinkability can only be guaranteed if neither the set of revealed attributes nor any associated meta
data can be uniquely linked to a user.

13https://hyperledger-fabric.readthedocs.io/en/release-2.0/idemix.html
14https://www.microsoft.com/en-us/research/project/u-prove/

21

https://hyperledger-fabric.readthedocs.io/en/release-2.0/idemix.html
https://www.microsoft.com/en-us/research/project/u-prove/

1.2.1.1 Decentralizing Anonymous Credentials

Garman et al. [GGM14a] introduced a solution in which there exists no credential issuers
and thus no signatures. Users make claims about their identity attributes in form of
commitments, which are submitted to a public transaction ledger, i.e., a blockchain. These
registered commitments can then be used as a basis to compute Non-Interactive Zero-
Knowledge Proof (NIZK) proofs, representing showings. While interesting, this cannot
be considered a general solution as for many types of common credentials, e.g., passport,
driving license, academic degrees, there is the need for explicit issuers.

Secondly, there is the concept of threshold issuance anonymous credentials, e.g., Coconut
by Sonnino et al. [SAB+19] and threshold BBS+ by Doerner et al. [DKL+23]. Such a
system thresholdizes a single issuer among a set of parties. While this helps to make AC
systems more robust, it does not efficiently support multiple issuers and also does not
support issuer-hiding.
Thirdly, Rosenberg et al. [RWGM22] present a framework to build ACs from existing

identity documents, e.g., passports, driving license, whose contents (attributes) are regis-
tered in lists of “issuers”. In particular, they are represented as commitments organized in
Merkle trees and users obtain the authentication paths to their credentials. Then, users can
use succinct NIZK proofs (zk-SNARKs) to prove statements about the attributes encoded
in potentially multiple credentials. Here the zk-SNARK proofs for the single credentials
are linked via NIZK proofs. This approach is very generic and avoids the lack of issuers
in [GGM14a]. However, it is very complex and their credential showing due to computing
Merkle membership proofs and linking of zk-SNARKS via NIZK can add significant costs
(showing times in the order of seconds).

Recently, Hébant and Pointcheval introduced the concept of (traceable) Multi-Authority
Anonymous Credentials (MA-ACs) [HP22]. Their approach to realize MA-ACs is based on
so called aggregate signatures with randomizable tags and allows to aggregate showings
of credentials of different issuers (but with respect to the same tag) into one compact
showing. Due to randomizability of signatures and tags, it is possible to produce unlinkable
showings. Moreover, the tag component has a secret part representing the user secret.
While this is an interesting concept, it does not provide an efficient way of providing
the issuer-hiding (IH) feature [BEK+21,CLPK22,BFGP22]. There is an obvious generic
way to use a succinct NIZK, i.e., a zk-SNARK, and prove that the aggregated signature
verifies for the given attributes under a subset of issuer keys without revealing which ones.
While this can lead to an asymptotically compact solution, the prover will concretely
be very expensive due the size of the verification keys, i.e,. they are of size G3+2n

2 each
with n being the maximum number (types) of attributes, and thus the complexity of the
verification equation in [HP22] to be proven with the zk-SNARK. Switching to non-succinct
Schnorr-type NIZK obtained via Fiat-Shamir as done in [BEK+21] (in Construction 2),
however, will result in a non-compact showing of size O(n ·K) where K represents the
number of issuers used in the aggregated output, and n represents the maximum number
of attributes (even when ignoring the size of the proof corresponding to the non-shown

22

attributes). We consider this an important concept and aim to propose the first concretely
efficient issuer-hiding MA-AC system.

1.2.1.2 Delegatable Anonymous Credentials

Chase and Lysyanskaya in [CL06] introduced the notion of delegatable anonymous cre-
dentials (DAC). DAC schemes, later improved in [BCC+09], are particularly interesting
for applications such as (physical) access control [MSM+18], root of trust15 [CL19], or
authorizing transactions in permissioned blockchains [CDD17, BCET21a]. Belenkiy et
al. [BCC+09] define their construction through levels. In their scheme, any user can issue a
level L = 1 credential to another user. This level L credential can be used to derive a level
L+ 1 credential for another user. Also, the user can authenticate (i.e., prove possession
of their credential) without disclosing their identity among the group of delegatees or
any of the attributes of the credential to a verifying party. Only the identity (i.e., public
key) of the root issuer is revealed during the verification. The foundation of [BCC+09] is
based on commitment and signature schemes that incorporate randomizable NIZK proofs.
Furthermore, they demonstrate the applicability of their method using Groth-Sahai (GS)
commitments and GS NIZK proofs [GS08], illustrating that these can be instantiated
with a size that scales linearly in relation to the chain length L. However, using such
heavy tools like the GS proofs makes their scheme inefficient for practical use as the quite
expensive statements result in poor performance and large credential size. Several other
DAC constructions have been proposed afterwards, e.g. [CKLM13,Fuc11,CKLM14b], which
follow roughly the same techniques as [BCC+09], i.e., using malleable proof systems (based
on GS) as the main building block, and thus have similar performance characteristics.
Camenisch et al. [CDD17] propose a DAC scheme that is efficient and practical. In

this scheme, we can prove possession of a credential in a privacy-preserving way, but we
cannot obtain credentials anonymously. Indeed, credential holders can see all attributes
and public keys on all levels in plain, i.e., not offering an anonymous delegation phase. They
present an efficient instantiation of their DAC scheme based on the structure-preserving
signature (SPS) by Groth [Gro15]. Later Blömer and Bobolz [BB18] proposed another
practical DAC construction using dynamically malleable signatures (DMS) and NIZK
proofs, which conceptually is similar to the approach in [CKLM14b]. In DMS a set of
allowed transformations is not static but can be modified for each signature. Thus, one
can derive signatures that are more restricted. Unfortunately, [BB18] does not describe a
full instantiation of their generic protocol, but according to [BCET21a], it appears less
efficient than [CDD17].

Crites and Lysyanskaya [CL19] provide probably the most efficient and conceptually most
simple construction of delegatable anonymous credentials. Their approach doesn’t rely on
complex tools like NIZK proofs. At the same time, they assert enhanced security features
compared to those of [CDD17], accomplished through the inclusion of an anonymous

15https://www.gradient.tech

23

https://www.gradient.tech

delegation phase. The main building block of their construction is a new type of signature
scheme, called mercurial signature. A mercurial signature extends structure-preserving
signatures on equivalence classes (SPSEQ) [FHS19] to equivalence classes on the key
space. SPSEQ in addition to randomizing signatures also provides randomization of signed
messages (modeled as equivalence classes). Thus, SPSEQ allow similar applications as
SPSs, but unlike the latter they do not need NIZK proofs on top, thereby yielding more
efficient schemes. Mercurial signatures extend SPSEQ in the sense that they add the
property of transforming public keys into an equivalent one, i.e., additionally supports
randomization of public keys.
Unfortunately, the DAC scheme derived from mercurial signatures in [CL19] has some

drawbacks: 1) It does not support attributes when used in a DAC which are often the key
values that we use to prove things (such as “Programmer and PhD"). This makes their
scheme unsuitable for many applications. Supporting attributes is left as an open problem
in [CL19]. 2) [BF20] demonstrate a drawback of their weak form of anonymity when
applying their mercurial signature in the DAC context. In essence, when Alice delegates
a credential to Bob, it allows her to identify Bob each time he uses the credential for
authentication. This situation presents a significant violation of Bob’s privacy. It arises
from the fact that, during the delegation process, Alice uses her secret key to sign Bob’s
pseudonym using her own pseudonym, which is represented by the randomized public key.
This signed information becomes an integral component of Bob’s credentials (for further
elaboration, refer to [BF20]). 3) Similar to [CDD17], the credential size depends on the
delegation chain length L, and thus, the size of signature grows linearly with L.
Summarizing the state-of-affairs in existing DAC schemes, efficiency in DAC schemes

still remains as a major challenge. In fact, the ones that are conceptually simple and
practically efficient do not provide all the desirable properties of supporting arbitrary
attributes, being compact, and providing strong anonymity guarantees at the same time.
Additionally, the previously proposed schemes do not support restricting capabilities during
the delegation between users. Applying such a restriction during the delegation phase
would allow restricting the purpose of a credential (cf. [MSM+18]), e.g., for performing a
specific task during a specific time frame, or a user can only delegate a certain subset of
their capabilities to another user.

1.2.2 Human-Factors Authentication

1.2.2.1 Single-Factor (Password) Authentication Key Exchange

For a long time, knowledge was (and still is) used as a primary means of authentication.
Single-factor authentication based on passwords and PINs is a mechanism that is well-
studied. Bellovin and Merritt [BM92] proposed Encrypted Key Exchange (EKE) where a
client and a server share a password and use it to exchange encrypted information to agree
on a common session key. EKE was followed by several enhancements (cf. [BM93,BMP00a,
GL06]). Bellare et al. [BPR00a] introduced a comprehensive and formal provable model

24

for Password Authentication Key Exchange (PAKE). Building upon this work, Gennaro
and Lindell [GL03] and Groce and Katz [GK10] proposed two generic PAKE schemes.
These schemes are considered among the most efficient methods for constructing PAKE
protocols in the standard model, which avoids relying on additional idealizing assumptions
and ensures the strongest security guarantees.

Benhamouda and Pointcheval [BP13] proposed an extension to the traditional authenti-
cated key exchange, incorporating a verifier into the process. The verifier is represented as
a hash value or transformation V = H (s, pw), where pw is the secret password and s is a
public salt. Each user’s entry in the server’s database consists of the pair (s, V).

1.2.2.2 Multi-Factor Authentication

A single knowledge-based authentication factor has the disadvantage that an adversary
needs to only compromise that single factor. Multi-factor authentication (MFA) overcomes
this by combining multiple different factors. The widely-used combination is long-term
passwords with secret keys, possibly stored in tokens (e.g., FIDO U2F). Shirvanian et
al. [SJSN14] introduce a framework to analyze such two-factor authentication protocols.
In their framework, the participants are a user, a client (e.g., a web browser), a server,
and a device (e.g., a smartphone). In the authentication phase, the user sends a password
and some additional information provided by the device. In most existing solutions,
including [SJSN14,BCL16], during the registration process, the user gets a value called the
“token”, while the server records a hashed password. During the authentication phase, the
two required factors (the password and the token) are sent to a verifier.
Jarecki et al. [JKSS16] proposed a password-authenticated key exchange protocol with

device enhancement, utilizing mobile device storage as a token. The scheme achieves two
primary objectives: Firstly, to thwart offline dictionary attacks, an adversary would need
to compromise both the login server and the mobile device storage. Secondly, the user is
required to confirm access to the mobile device storage during the login process, adding an
extra layer of security.
Another popular factor used to authenticate users to remote servers is biometrics

[HW15,HXB+14,PZ08]. Fleischhacker et al. [FMA14] also propose a modular framework
called MFAKE which models biometrics following the liveness assumption of Pointcheval
and Zimmer [PZ08]. However, Zhang et al. [ZXSM17] demonstrate that their scheme does
not adequately protect privacy. Indeed, biometric authentication becomes a weak point
when the framework directly uses the biometric template for authentication. In addition,
it requires to execute a lot of sub-protocols which makes the scheme inefficient.

1.2.2.3 Anonymous Authentication

To better understand the potential dangers of online data collection and anonymous
authentication, let us consider a loyalty programs example [BJDF16]. Imagine a grocery
store that offers a loyalty card to customers. This loyalty card allows customers to obtain

25

discounts on specific items, but it also tracks their purchases and builds a profile of their
shopping habits. If the customer only uses the card occasionally and does not mind the store
having access to their purchasing history, they may not be bothered by this data collection.
However, if the store were to sell this data to a third party or use it to discriminate
against customers, the customer’s right to privacy would be compromised. Blanco et
al. [BJDF16] and Bobolz et al. [BEK+20] propose a privacy-aware loyalty program based
on blind signatures and AC schemes and generalization of products that allows vendors and
consumers to enjoy the benefits of loyalty while allowing consumers to stay anonymous.
Another approach towards user authentication is the anonymous password authenti-

cation protocol proposed by Viet et al. [VYT05]. They combine an oblivious transfer
protocol and a password-authenticated key exchange scheme. Further enhancements were
proposed by [YZ08,SKI10]. An anonymous authentication protocol permits users to au-
thenticate themselves without disclosing their identity and becomes an important method
for constructing privacy-preserving authenticated public channels. Zhang et al. [ZXSM17]
presented a new anonymous authentication protocol that relies on a fuzzy extractor. They
consider a practical application and suggest several authentication factors such as pass-
words, biometrics (e.g., fingerprint), and hardware with reasonably secure storage (e.g.,
smartphone).

1.2.3 Recovery of Encrypted Mobile Device Backups (IDs)

An approach to secretly backing up the credentials of smartphones has been presented
by Ivan Krstić, Head of Security Engineering and Architecture at Apple [Krs16]. In
their concept of a cloud key-store, they encrypt the credentials with a random backup
("escrow") key and further protect it with a user-defined iCloud Security Code (iCSC). This
escrow key is stored inside a tamper-resistant device, a so-called Hardware Security Module
(HSM), on the Apple server infrastructure. As this key never leaves this tamper-resistant
hardware, decryption of the smartphone credentials can only be done within this HSM
and by providing the correct iCSC. To further protect the credentials and the escrow key
from being disclosed, Apple destroys the access keys for the administration of these HSMs
(i.e. keys to program the HSM), locking even themselves out. However, this system still
requires some trust in the operator. Even though the organization tries to prevent itself
from being able to extract previously stored key material with tamper-resistant hardware
and delete the access keys to that hardware, the implementations and processes for new
backups can always be changed without users being able to notice. Recently, secret sharing
protocols with password protection have been introduced as a way to solve this problem
and remove the tamper-resistant hardware. The first Password Protected Secret Sharing
(PPSS) scheme was proposed by Bagherzandi et al. [BJSL11]. Their scheme allows a user
to distribute a secret key among different servers, and then reconstruct it from a single
password, by communicating with at least t+ 1 honest servers (among n possible ones).
Also the public information (to enable the reconstruction key) is stored on each of the
servers. The scheme has an initialization phase where the user communicates with each

26

of a set of n servers S1, ..., Sn. After that each server Si stores some public information
associated with the user, the public information is a function of the secret key sk, the
password pw and the server names Si. When a user needs to retrieve the secret key sk,
she runs a reconstruction protocol by interacting with a subset of at least t + 1 servers
where the only input from the user is her password pw. However, the authors assumed
an additional PKI. Furthermore, if an adversary can catch the key pair of one server, he
has the ability to run an offline attack [ACNP16]. After that, Camenisch et al. [CLLN14]
introduce a PPSS protocol for Threshold Password-Authenticated Secret Sharing (T-PASS),
that does not require PKI authentication during the reconstruction phase. However, their
scheme is still expensive. The cost of their scheme is 14 client exponentiations per server
and 7 exponentiations for each server. It also requires 10 messages between a user and
each server in the secret reconstruction phase. Yi et al. [YHCL15] propose a lightweight
TPASS based on distributing a password, a secret and a digest of the secret. However, in
the reconstruction protocol, at least t servers perform a broadcasting protocol to obtain
and return the ElGamal encryptions of both the secret and the digest. Then users can
verify the secret key. Camenisch et al. [CLN15] propose an efficient protocol that is not
based on robust secret sharing scheme or zero-knowledge. Nevertheless, it is not able to
detect which shares are valid. Since that if a password is incorrect, the user’s failure will
happen at the end of the verification step and they need to restart again with a different
set of servers, which leads to DoS attack. Jarecki et al. [JKK14] present a PPSS scheme
that uses a Verifiable Oblivious Pseudorandom Function (VOPRF) to avoid simple DoS
attacks. Indeed, it guarantees that the user detects which server has tried to cheat or
which communication has been changed. Jarecki et al., in [JKKX16] further improve the
cost of this password-only PPSS by giving up of the robustness property. but, this can be
a good method with a few servers. Also, the user is unable to detect the cheating servers.
Abdalla et al. [ACNP16] propose two efficient Oblivious Pseudorandom Random Function
(OPRF) constructions to overcome this drawback: The first one is based on the One-More
Gap Diffie-Hellman assumption. The second scheme is on oblivious evaluation of the Naor
Reingold PRF, based on the sole DDH assumption. Their main contribution is the efficient
realization of the robustness in only one round of communication with each server. They
also avoid any complex zero-knowledge proof. Although their scheme is much more efficient
than the other schemes, it is still expensive (because it requires communication with many
servers). Moreover, if the user enters a wrong password, the protocol confront with failure
which leads to extra computations.

1.3 Contribution

Our main goal is to present practical/efficient protocols and schemes that are smoothly
deployable in various privacy applications while focusing on cases where authentication is
a crucial property. This thesis contains the following contributions, which split into several
chapters. More precisely, in chapters 3, 4, and 5, we develop AC schemes in a so-called

27

self-blindable paradigm (i.e., the credential can be randomized between showings, effectively
making the credential function as a zero-knowledge proof and no need for knowledge of
the signature on committed attributes) regarding various properties while optimizing their
efficiency. Chapter 6 shows how to combine AC with human factor authentication to
provide a privacy-preserving single-sign authentication. In Chapter 7, we show how to
securely restore the backup of this digital identity information. Finally, In Chapter 8, we
provide a prototype implementation of our ACs in python. In more detail, the contributions
are as follows:

1.3.1 Chapter 3: Issuer-Hiding Multi-Authority Credentials

Our goal here is to formalize and present a construction of (Issuer-Hiding) Multi-Authority
Credentials that mitigate the aforementioned problems. This chapter is based on the
paper [MBG+23] which has been accepted at ACM CCS 2023. Our contribution in this
paper is twofold:

Aggregate signatures with randomization features. To achieve our goals, we present
a fundamental approach by introducing tag-based aggregate signatures featuring random-
izable tags and public keys. We then enhance these signatures to support message
randomization, akin to the functionality of equivalence class signatures (SPSEQ) [FHS19].
Rigorous formal security models are provided for both types of schemes, along with provably
secure instantiations within these models. In detail, our contributions include:
Aggregate signatures with randomizable keys and tags (AtoSa16 for short). We introduce
a novel scheme called Aggregate Randomizable Tag-based Signatures (AtoSa), where sig-
natures are associated with tags that consist of private and public parts, allowing for
aggregation of signatures sharing the same tag. Moreover, we enable the randomization
of verification keys and tags, which are defined with respect to equivalence classes. This
can be seen as an extension of aggregate signatures with randomizable tags, as previously
introduced in [HP22], with the additional feature of randomizable keys and appropriate
signature adaptation. In our scheme, existing signatures can be adapted to verify under the
randomized public keys and tags. We build AtoSa based on the well-known Pointcheval-
Sanders (PS) signatures [PS16a], which have been widely used as the foundation for various
privacy-preserving primitives, such as group signatures and anonymous credentials [PS16a],
redactable signatures [San20,San21], and dynamically malleable signatures [BB18].
Aggregate Mercurial Signatures with Randomizable Tags (ATMS). We introduce an ad-
vanced extension known as Aggregate Mercurial Signatures with Randomizable Tags (ATMS),
which significantly enhances the capabilities of AtoSa by supporting the randomization
of messages, enabling the use of equivalence classes of messages similar to (SPSEQ). In
addition to AtoSa, ATMS allows existing signatures to be adapted for verification under
16The (ancient) Greek transliteration of the old Persian name Utauθa. Atossa means “bestowing very

richly” or “well trickling” or “well granting”. It refers to an Achaemenid empress who was the daughter
of Cyrus the Great, and the wife of Darius the Great.

28

randomized messages, meaning that different representatives of the same message class can
be used for verification. As a result, we achieve a version of mercurial signatures [CL19]
that combines both aggregatability and randomizable tags. This represents a pioneering
instance of an aggregate structure-preserving signature (and, consequently, SPSEQ). We
present an ATMS construction inspired by the message-indexed SPS in [CKP+22], which
itself is a variant of Ghadafi’s SPS [Gha16] scheme.
Restrictions of our Constructions. It is important to note that our constructions differ
from standard aggregate signatures in two aspects: 1) Firstly, they require all aggregated
messages and corresponding verification keys to be known before requesting the first
signature. 2) Alternatively, our constructions can be adapted to make the same assumption
as synchronized aggregate signatures [AGH10,HW18]. In this adapted setting, every issuer
ensures that only a single signature is issued for each tag. We will present our results
based on the first approach, but we will also discuss adaptations for the second approach.
It is worth mentioning that these adaptations do not alter any of the interfaces, security
definitions, or proofs. As our main application involves anonymous credentials, the choice
between the first and second approaches depends on the specific application scenario. How-
ever, it remains an intriguing open question to achieve fully dynamic signatures without
relying on any of the above assumptions.
Like other types of signatures with randomization features, we also expect that our

schemes will find applications beyond the one presented here.

Issuer-Hiding Multi-Authority Anonymous Credentials. We introduce a formal
model for issuer-hiding multi-authority anonymous credentials (IhMA) and present two
efficient constructions based on AtoSa and ATMS, denoted as IhMAAtoSa and IhMAATMS,
respectively. These constructions address the challenges of user privacy and scalability
in multi-authority settings, making them significant contributions to the field of ACs.
In our IhMAAtoSa and IhMAATMS constructions, acquiring a credential involves obtaining
signatures on desired attributes from a group of issuers, all under the same tag (which can be
considered the user’s identity in credential schemes). During the showing phase, signatures
are randomized from the relevant issuers, along with the tags, and then aggregated. Finally,
the user presents the aggregated signature, and optionally, opens subsets of attributes
or proves predicates over them, while also providing a proof of knowledge of the secret
tag part. Both IhMAAtoSa and IhMAATMS are highly efficient, but they do involve some
trade-offs, which we thoroughly discuss below.
Enabling the issuer-hiding feature [CLPK22] operates in the following manner: Each

verifier creates a "key-policy," which specifies a group of issuers (identified by their verifi-
cation keys) from whom the verifier will accept an (aggregated) credential. This policy
is a collection of SPSEQ signatures on the verification keys of either the AtoSa or ATMS
scheme. As the equivalence classes of the SPSEQ (representing the message space) align
with the key equivalence class of AtoSa and ATMS, the process of showing a credential
remains similar to what was described before. However, in this case, all verification keys
of the AtoSa or ATMS are randomized, and the corresponding SPSEQ signatures in the

29

key-policy are adjusted accordingly.
In the IhMAATMS scheme, instead of directly signing attributes, we adopt the framework

introduced by Fuchsbauer et al. [FHS19]. In this scheme, the signature is used to sign set
commitments to attribute sets. However, incorporating this approach is not straightforward,
as it requires ensuring that set commitments are compatible with the message space of
our ATMS. As an additional contribution, we introduce a generalization of the decisional
uber assumption family by Boyen [Boy08], along with an interactive version, to prove the
anonymity of this construction. While both IhMAAtoSa and IhMAATMS share a common
objective, the differences in their constructions give rise to certain trade-offs in terms of
functionality and efficiency:

• Credential size: The IhMAATMS scheme can yield a fixed-sized credential, while the
IhMAAtoSa scheme does not achieve this without utilizing Zero Knowledge Proof of
Knowledge (ZKPOK) of signatures.

• Efficiency: The IhMAATMS scheme is more efficient at showing and verifying credentials
compared to the IhMAAtoSa scheme.

• Need for a trusted party: The IhMAATMS scheme requires a trusted party, while the
IhMAAtoSa scheme does not. This is because IhMAATMS relies on a trusted party to hold
a trapdoor to generate set commitments, whereas IhMAAtoSa does not require such a
trusted party.

• Expressiveness: The IhMAATMS supports revealing a subset of attributes from a set of
attributes per issuer, i.e., selective disclosure per issuer. The IhMAAtoSa scheme only
supports a single attribute for each credential. Consequently, it only supports selective
disclosure over all issuers. However, both schemes allow for proving arbitrary predicates
over signed messages.

Overall, the choice of the concrete construction depends on the specifics of the use case or
application and priorities set in the overall system.

1.3.2 Chapter 4: Efficient Delegatable Anonymous Credentials
Our goal in this work is to formalize and present a construction and implementation of DAC
that mitigate the aforementioned problems. Along the way, we therefore design a novel
cryptographic building block that we call structure-preserving signatures on equivalence
classes on updatable commitments (SPSEQ-UC) and might be of independent interest.
This chapter is based on the paper [MSBM23]. We summarize our main contribution below:

Delegatable Anonymous Credentials. We propose a novel delegatable anonymous
credentials scheme (DAC). Our scheme provides the following key characteristics: i) It
represents a simple and practical construction without requiring zero-knowledge proofs
(for complex statements), which makes it well-suited for real-world applications. ii) It

30

is constant-size in two aspects. First, The bandwidth needed for the credential showing
protocol remains unaffected by the number of attributes involved, but only depends on
the delegation depth. Second, unlike the schemes in [CL19,CDD17] and similar to [BB18]
the credential size is independent of the length of the credential (delegation) chain. iii)
Credentials are attributes-based in a sense that every level in the delegation chain is as-
sociated to a set of attributes that are certified by the respective delegator. A credential
holder can then decide for every level whether and which attributes should be selectively
revealed during a showing of a credential. Moreover, every delegator can restrict delegation
in how many further levels can be delegated and whether attributes associated to previous
levels should be valid (showable) or invalidate them (making them unshowable). iv) It
provides full privacy which means not only support an anonymous showing phase but also
provide an anonymous delegation phase. Finally, v) our DAC comes with a prototypical
implementation and evaluation that demonstrates its practical efficiency.

Novel Building Block. Our DAC scheme is based on a novel cryptographic building
block that we call structure-preserving signatures on equivalence classes on updatable
commitments (SPSEQ-UC). This primitive draws inspiration from structure-preserving
signatures on equivalence classes [FHS19] as well as the set commitment scheme used in the
aforementioned work to construct conventional anonymous credentials. Loosely speaking
their idea is to use SPSEQ to sign a randomizable set commitment and showing a credential
amounts to randomizing the message (set commitment), randomizing and adapting the
signature to the new message and providing the signature, randomized commitment, and
an opening to the randomized commitment. While in SPSEQ the message space is simply
group element vectors, in SPSEQ-UC the message space is viewed as a vector (of length at
most `) of randomizable set commitments. This concept is somewhat similar to signatures
on randomizable ciphertexts (SoRC) [BFPV11,BF20]. However, in contrast to SoRC which
does not allow to reveal a subset of the encrypted message, here it is also possible to reveal
only a subset of the committed values of each commitment in the vector while guaranteeing
the privacy of the non-revealed ones. Thereby, SPSEQ-UC needs to be unlinkable, which
means the same commitment-signature pair can be revealed multiple times without being
linkable to each other. One key feature is that SPSEQ-UC allow to extend signed vectors
by additional set commitments. More precisely, in SPSEQ-UC signing of a commitment
vector of length k also produces an update key ukk′ corresponding to an integer k′ with
k ≤ k′ ≤ `. Given the update key ukk′ one can update a commitment vector C to a vector
C′ (i.e., extending it). Another key feature is that in a SPSEQ-UC scheme the signing
process is tied to a user public key. It allows a signer to produce a signature under her
secret key for a given user public key such that this signature can be adapted into another
valid signature for a new user public key by anyone knowing the related old user secret key.

We provide a rigorous security model for SPSEQ-UC which carefully crafts privacy no-
tions similar to SPSEQ [FHS19] in order to guarantee that adapted (i.e., re-randomized)
signatures, signatures after extending commitment vectors as well as signatures after

31

switching user public-keys are distributed identically to new signatures and thus are all
unlinkable to fresh signatures. This is important for our application in DAC and other
potential application in privacy-preserving protocols. Moreover, we provide a provably
secure construction of an SPSEQ-UC. It is based on the SPSEQ scheme in [FHS15] and
the set commitment scheme in [FHS19], but requires significantly new ideas to provide all
the desired functionality.

1.3.3 Chapter 5: Threshold Delegatable Anonymous Credentials

Our overall goal is to introduce, formalize, and present the first construction and implemen-
tation of threshold delegatable anonymous credentials (TDACs) to mitigate the problems
with existing constructions. This chapter is based on the paper [MSM23].

Building block. We start from a subset predicate encryption (SPE) scheme [KMMS17].
In such scheme, a user with a secret key for a set s can decrypt a ciphertext to obtain
plaintext message M (which in DACs can, e.g., be challenges set by a verifier) if the
ciphertext has been produced with respect to a set s′ if and only if s defines a subset of s′,
i.e., s ⊆ s′. Moreover, we need to recall hierarchical predicate encryption (HPE) [OT09],
which allows the delegation of secret keys to lower levels in a hierarchy. Building upon
these concepts, we introduce the notion of threshold delegatable subset predicate encryption
(TDSPE), whose features can be summarized as follows: 1) it extends SPE to support
delegation and 2) it supports a threshold issuance of decryption keys. The latter means that
we divide the trust by having multiple authorities. In order to generate a decryption key, a
user must receive a threshold number of partial decryption keys by interacting with an
authorized subset of authorities. We construct this process in a non-interactive way from
the authorities’ perspective, which means authorities do not need to interact with each
other to create decryption keys during the key issuing steps. This is akin to multi-authority
approaches in attribute-based encryption [Cha07,LW11]. However, in contrast to existing
multi-authority approaches, our threshold mechanism allows some authorities to not be
available and a user no longer needs to get the partial secret key from all authorities.
Moreover, as long as the number of the corrupted authorities is not more than the threshold
t, the system still works despite the fact that there are corrupted authorities. As a result,
the system is able to provide secret keys for new users unless more than the threshold
of authorities in the system are malfunctioning, which is especially useful in distributed
applications.
Ultimately, we provide a simple and efficient construction of a TDSPE scheme based

on an SPE scheme in [KMMS17]. In addition, our construction supports an unbounded
attribute universe and constant size public parameters and can be proven secure under a
well known assumption in the random oracle model in prime order bilinear groups.

Threshold delegatable anonymous credentials. We introduce the concept of thresh-
old delegatable anonymous credentials (TDAC), thereby combining the advantages of

32

anonymous credentials with threshold issuance features and the delegation capability of del-
egatable anonymous credentials. In decentralized settings, TDAC can cope with a threshold
number of dishonest or faulty nodes (Byzantine fault tolerance), which provides robustness
and availability properties while at the same time supporting multi-level controlled del-
egation. In particular, we propose a formal model of TDAC capturing desirable security
properties (i.e., unforgeability, unlinkability, and anonymity). As our main contribution,
we propose an instantiation of TDAC that we show to be provably secure in our model. It
is based on our TDSPE and yields an efficient construction with practical efficiency. Our
TDAC construction is the first scheme that supports threshold issuing and delegatable
credentials with credentials that are short and aggregatable in a multi-authority setting.

We present performance benchmarks based on a prototype implementation and provide
a concrete efficiency comparison with the most relevant works Coconut [SAB+19] and
Functional Credential (FC) [DMM+18], including the number of communication rounds,
communication complexity, and run time. In this comparison, we show the attribute and
parameters domain in the related schemes. In particular, in our approach we can encode
the attributes and support an unbounded attribute universe while at the same time having
compact (fixed size) public parameters independent of the number of supported attributes.
This is a feature that Coconut and FC do not provide. Moreover, our TDAC scheme is
non-interactive such that there is no need for interaction between issuers in the issuing of
credentials.

We stress that TDAC is designed for a controlled delegation model. That is, root issuers
define a fixed set of attributes that can be used and delegated (cf. Section 5.3.1 for encoding
of attributes). While this can be a limitation for some applications, this level of control is
beneficial for some relevant applications (see below and Section 5.5.3 for more comparisons
between TDAC and the related schemes).

1.3.4 Chapter 6: Privacy-Preserving Single Sign-On

This chapter is based on the publications [MRM20,MRM22].
In this chapter, we construct a novel decentralized privacy-preserving single sign-

on scheme using a new Decentralized Anonymous Multi-Factor Authentication scheme
(DAMFA), where the process of user authentication no longer depends on a single trusted
third party. Instead, it is fully decentralized onto a shared ledger to preserve user privacy
while maintaining the single sign-on property. That is, users do not need to register their
credentials with each service provider individually. The scheme also permits services where
authenticating users remain anonymous within a group of users. Subsequently, our scheme
does not require the IdP to be online during the verification (passive verification). Moreover,
since there is no single third party (i.e., the IdP) in control of the whole authentication
process, user and usage tracking by the IdP is inhibited.

The passive verification property of our scheme allows service providers to authenticate
users at any time without requiring additional interaction with an IdP except what is
available on the shared ledger. This property removes the cost of running secure channels

33

between the service provider and the identity provider. Simultaneously, the IdP is eliminated
as a single point of failure and attack within the authentication process.

The scheme relies on personal identity agents as auxiliary devices that assist the user in
the authentication process. The personal identity agents participate in a threshold secret
sharing scheme to store the distributed private key of their users. in the authentication phase,
the user unlocks their private key through a combination of biometrics and a password,
combining biometric, knowledge, and possession factors. The distributed architecture
prevents offline attacks against data extracted from compromised agents, as long as only a
set of agents below the threshold is compromised or corrupted.

We define the ideal functionality and real-world definitions for the security of our DAMFA
scheme. We prove our construction’s security via ideal-real simulation. Finally, we demon-
strate that our protocol is efficient and practical through a prototypical implementation
and through a comparison of our scheme with other SSO works.

1.3.5 Chapter 7: Recovery of Encrypted Mobile Device Backups (IDs)
This chapter is based on the paper [MMHN18].

As mentioned early, the growing trend of moving electronic identity (eID) components
into mobile devices, such as passports, credit card wallets, and loyalty cards, has created
a major single point of failure for individuals. A smartphone loss, theft, or malfunction
becomes problematic when users rely on it for identification, payment, and communication.
To address this issue, we propose a solution for the backup and recovery of security- and
privacy-critical data on smartphones, particularly for eID components.
The approach presented in this chapter offers a novel and practical solution to the

challenge of securely backing up and recovering sensitive data on smartphones. It not only
overcomes the difficulty of remembering passwords with high entropy but also reduces
the necessary level of trust in cloud services. We leverage biometric authentication and
auxiliary devices to allow clients to recover their secret keys from partially trusted servers
using a fuzzy extractor to increase the entropy of the cryptographic key. This solution can
potentially improve both the usability and security of eID components on mobile devices
and could be extended to other security- and privacy-critical data on smartphones. Overall,
our approach therefore relies on the following two aspects to enable authenticated recovery
from partially trusted cloud services:

The owner authenticates biometrically, and these biometric identifiers are part of the key
derivation function based on a fuzzy extractor. Individuals therefore do not have
to remember strong passwords. However, we do not assume biometric identifiers
(specifically fingerprint data within the scope of this paper) to be confidential against
sufficiently dedicated adversaries.

To increase the entropy of the resulting cryptographic key, an additional key part is added
in the key derivation, akin to the device-specific, hardware-based keys currently used
for on-device encryption. As we cannot rely on a single secure hardware component

34

to be available, we split this key into shares that need to be combined during recovery.
For instance, one can keep one of these shares online in a cloud service, carry a second
one printed as a QRcode with her during traveling or on an auxiliary device.

1.3.6 Chapter 8: Practical Realization (Implementation)

As part of this thesis, we have developed a Python package that implements our new
anonymous credentials, primitives, and protocols. The package includes all the necessary
building blocks to construct these new protocols and showcase their practical applications
and proof of concept.
To provide a standardized and cohesive interface for these credentials, we designed an

interface called AC. Each new AC (chapter) of the thesis implements this interface and
adds new features to it. This approach enables easy integration and comparison of the
various anonymous credentials schemes developed throughout the thesis. The resulting
Python package showcases the practicality of the proposed ACs and provides a useful tool
for others to build upon and further advance this area of research.

This package can serve as a tangible demonstration of the author’s contributions to the
field and provides a valuable tool for further research in this area. Moreover, including
the package in the thesis ensures consistency and clarity in presenting the new anonymous
credentials and allows future researchers to build upon and advance this work.

1.3.7 Publication History

The majority of the material in this thesis has either already been published or accepted and
will soon be published in the following papers, where the author is the main contributor.
Indeed, the author’s contributions encompass conceptualization and initial ideas, the
majority of the design of the schemes, properties, security models, applications, security
proofs, and writing a large part of the papers. We should also mention that, in the first
paper, the proofs of the ATMS’s unforgeability, issuer hiding, and public key class hiding
were fully carried out by the co-authors. Moreover, in the second paper, the proof of the
unforgeability of the SPSEQ-UC was fully done by one of the co-authors.

1. Omid Mir, Balthazar Bauer, Scott Griffy, Anna Lysyanskaya. Daniel Slamanig "Aggregate
Signatures with Versatile Randomization and Issuer-Hiding Multi-Authority
Anonymous Credentials", 30th ACM Conference on Computer and Communications
Security- ACM CCS 2023 (accepted). Cryptology ePrint https://eprint.iacr.org/2023/
1016.

2. Omid Mir, Daniel Slamanig, Balthazar Bauer, René Mayrhofer, "Practical Delegatable
Anonymous Credentials From Equivalence Class Signatures", Proceedings on Pri-
vacy Enhancing Technologies (PETS) 2023, https://petsymposium.org/popets/2023/
popets-2023-0093.pdf

3. Omid Mir, Daniel Slamanig, and René Mayrhofer. Threshold delegatable anonymous

35

https://eprint.iacr.org/2023/1016
https://eprint.iacr.org/2023/1016
https://petsymposium.org/popets/2023/popets-2023-0093.pdf
https://petsymposium.org/popets/2023/popets-2023-0093.pdf

credentials with controlled and fine-grained delegation. IEEE Transactions on De-
pendable and Secure Computing, pages 1–16, doi: 10.1109/TDSC.2023.3303834, 2023.

4. Omid Mir, Michael Roland, René Mayrhofer, "Decentralized, Privacy-Preserving, Sin-
gle Sign-On", Security and Communication Networks, vol. 2022, Article ID 9983995, 18
pages, 2022.

5. Omid Mir, Michael Roland, and René Mayrhofer. DAMFA: Decentralized Anonymous
Multi-Factor Authentication. 2nd ACM International Symposium on Blockchain and
Secure Critical Infrastructure (BSCI ’2020) page 10–19, 2020.

6. Omid Mir, René Mayrhofer, Michael Hölzl, and Thanh-Binh Nguyen. Recovery of en-
crypted mobile device backups from partially trusted cloud servers. 13th Interna-
tional Conference on Availability, Reliability and Security (ARES 2018): 38:1-38:10

1.3.8 Other Contribution
In addition to the publications included in this thesis, the following works are noteworthy
contributions by the author: [HRMM20,HRMM18], where the author defined the privacy
model of anonymity and unlikability for users, and provided proof for them.

1.4 Structure of this Thesis
The thesis is organized into the following chapters. The technical details presented in the sub-
sequent chapters have been extracted (mainly verbatim) from the author’s aforementioned
publications.

Chapter 2: This chapter provides the preliminaries and general definitions required for
this thesis.

Chapter 3: This chapter introduces new primitives, namely Aggregate Signatures with
Randomizable Tags and Public Keys (AtoSa) and Aggregate Mercurial Signatures
(ATMS). Based on these primitives, the chapter presents the concept of Issuer-Hiding
Multi-Authority Anonymous Credentials IhMA, which provides Multi-Authority (MA)
settings and Issuer Hiding (Ih).

Chapter 4: This chapter introduces new primitives called equivalence classes signatures
on updatable commitments (SPSEQ-UC), which serve as the main building blocks
for delegatable anonymous credentials.

Chapter 5: This chapter proposes another new primitive called threshold delegatable
subset predicate encryption scheme and then uses it to build threshold delegatable
anonymous credentials.

Chapter 6: This chapter presents a privacy-preserving, single sign-on method that allows
users to authenticate with service providers using their password and biometrics in a
privacy-preserving way.

36

Chapter 7: This chapter proposes a secure backup of identity data which includes storing
encrypted backups on cloud servers using a novel secret key reconstruction protocol.
This protocol enables clients to recover their secret keys from servers by leveraging
biometric authentication (e.g., fingerprint) and auxiliary devices.

Chapter 8: This chapter provides more details of a Python package that implements
the proposed anonymous credential schemes, primitives, and protocols.

Chapter 9 This chapter concludes the thesis and discusses open issues that could be
addressed in future research.

37

2 Preliminaries

In this chapter, we provide the basic preliminaries used throughout the thesis. Most of the
definitions are standard and can be seen as required-basis and less well-known (or more
specific) primitives are presented as building blocks when we use them in the respective
chapters.

2.1 Notation

For a relation R over strings, we write [x]R to denote representative x of the equivalence
class for given relation R. We mention that a relation R is parameterized if it is well-defined
as long as some other parameters are well-defined. Given a set S, we show x ← S as
uniformly samples an element at random in S. With λ ∈ N the main security parameter
is denoted. Likewise, 1λ is the string of λ. All algorithms, and the adversary A, receive
1λ as an, often implicit, input. We omit to mention the λ-input and assume that all
algorithms take λ as input. AB shows A has oracle access to B. We use O to denote
oracles defined in games and show a negligible function as ε. For a positive integer N , we
denote the set {1, . . . , N} by [N] and also show the vector v = (v1, . . . , vn). Given two
vectors v = (v1, . . . , vn) and w = (w1, . . . , wm), we represent vector appending by writing
(v,w) e, g. v = (1, 2, 3), w = (4), and then (v, w) = (v, 4) = (1, 2, 3, 4). Whenever we
have vectors w and v of identical dimension whose components are sets, then by v ⊆ w
we mean that the relation is applied componentwise. We have a closed interval [a, b] that
represents the set of all natural numbers greater or equal to a and less or equal to b. We
assume all algorithms are polynomial-time (PPT) unless otherwise specified and public
parameters are an implicit input to all algorithms in a scheme.

2.2 Computational Assumptions

The security of many cryptographic building blocks is rooted in the hardness of well-
established computational problems. Note we do not consider post-quantum assumptions
in this thesis.

A cyclic group. Regarding the book [BS22], we consider the GGen algorithm that takes
a security parameter λ as input and produces a group (G, g, q). Here, the group order of
G is a prime q with a bit length of λ, and g serves as a generator of G. We consider the
following assumptions:

39

Definition 1 (Discrete Logarithm assumption (DL) [BS22]). We say the DL holds, if for
every efficient adversary A, there exists a negligible function ε such that:

Pr[(G, g, q)← GGen(1λ), x← Zq, x
′ ← A(G, g, q, gx) : x = x′] ≤ ε(λ)

Definition 2 (Computational Diffie-Hellman Assumption (CDH) [BS22]). Let (G, g, q)
be a cyclic group, the CDH assumption holds, if for all PPT adversaries A there exists a
negligible function ε such that:

Pr
[
(G, g, q)← GGen(1λ), (y, x)← Zp, h

′ ← A(G, gx, gy) : h′ = gxy
]
≤ ε(λ).

Definition 3 (Decisional Diffie-Hellman Assumption (DDH) [BS22]). The decisional
Diffie-Hellman assumption holds, if for every efficient adversary A, there exists a negligible
function ε such that:

Pr[A(G, g, q, gx, gy, gz) = 1]− Pr[A(G, g, q, gx, gy, gxy) = 1] ≤ ε(λ),

where either z = xy or a random element.

2.3 Bilinear Pairing
Bilinear groups are a set of three cyclic groups G1,G2, and GT of prime order p along with
a bilinear map e : G1 ×G2 → GT with the following properties:

• Bilinearity. for all P ∈ G1, P̂ ∈ G2 and a, b ∈ Zp, e(P a, P̂ b) = e(P, P̂)a·b

• Non-degeneracy. for P ∈ G1/{1} and P̂ ∈ G2/{1}, e(P, P̂) 6= 1;

• Efficiency. the map e is efficiently computable.

Pairings can be categorized into three types:

• Type 1: G1 = G2 .

• Type 2: G1 6= G2 and there is an efficient isomorphism φ : G2 → G1, but no efficient
one in the other direction.

• Type 3: G1 6= G2 and there is no efficient isomorphism, for neither G1 → G2 nor
G2 → G1.

Note that the signature scheme and other constructions are based on type 3 bilinear
groups. We will use BG = (p,G1,G2,GT , e, P, P̂)← BGGen(1λ) to denote a bilinear group
generator where p is a prime of bit length λ. We use P (or g1) and P̂ (or g2) as generators
of G1 and G2, respectively throughout the thesis.

Definition 4 (External Diffie-Hellman assumption (XDH)). We say that the XDH holds
corresponding to BGGen if the DDH holds in G1

40

Definition 5 (Symmetric External Diffie-Hellman assumption (SXDH)). We say that the
SXDH holds corresponding to BGGen if the DDH holds in G1 and G2 .

Definition 6 (Decisional Bilinear Diffie-Hellman Assumption (DBDH)). The DBDH holds
relative to BGGen, for all PPT algorithms A, there exists a negligible function ε(λ) such
that ∣∣∣∣∣∣∣

Pr
[
1← A(P, P̂ , P a, P b, P c, P̂ a, P̂ b, P̂ c, e(P, P̂)abc)

]
− Pr

[
1← A(P, P̂ , P a, P b, P c, P̂ a, P̂ b, P̂ c, e(P, P̂)z)

]
∣∣∣∣∣∣∣ ≤ ε(λ)

PS assumption. The PS assumption is an interactive assumption, defined by Pointcheval
and Sanders [PS16a] to construct a short randomizable signature known as PS signature.
We take the PS definition from [PS16a] as follows:

PS Assumption [PS16a] The PS assumption holds if no PPT adversary A, who
takes asymmetric pairing (p,G1,G2,GT , P, P̂ , e), a tuple (P̂ x, P̂ y) ∈ G2

2 where
x and y are random scalars in Zp, and unlimited access to PS oracle OPS(m)
s.t. on input m ∈ Z∗p that chooses a random h ∈ G1 and outputs the pair
(h, hx+my), can efficiently generate a tuple (h∗, s∗,m∗) ∈ Gn

2 × Zp such that (1)
h∗ 6= 1G1 (2) s∗ = hx+ym∗ , (3) m∗ /∈ Q, where Q is the list of queried messages
to the OPS(m) oracle.
The validity of the PS assumption tuple (h∗, s∗,m∗) can be checked as:

e(s∗, P̂) = e(h∗, P̂ x(P̂ y)m∗).

Generalization of PS assumption (GPS). GPS is introduced by Kim et al. [KLAP20],
it splits the PS oracle into two: the first oracle provides basis h picked uniformly at random
and the second oracle part gets the message and h and generates the PS tuple. We take
the GPS definition from [KLAP20] as follows:

Generalized PS Assumption [KLAP20]. Given a tuple (P x, P̂ y) ∈ G2
2 and

two oracles OGPS
0 () and OGPS

1 (m,h) such that: OGPS
0 () → h, where h ∈ G1

is uniformly distributed OGPS
1 (m,h) → s, where h ∈ G1, m ∈ Zp, and s =

hx+ym ∈ G1 as output and if h /∈ Q0 ∨ (h, ?) ∈ Q1 return ⊥. The GPS
assumption holds if no PPT adversary, A, can find a tuple (h∗, s∗,m∗) ∈ G2

1×Zp
such that, (1) h∗ 6= 1G1 , (2) s∗ = (h∗)x+ym∗ , (3)m∗ /∈ Q, whereQ1 = Q1∪(h,m)
is the list of queried to OGPS

1 oracle by the adversary.

2.4 Basic Cryptographic Primitives

Here, we mention the needed basic cryptographic building blocks.

41

2.4.1 Digital Signature Schemes

One of the main primitives we use to construct our protocols for anonymous credentials is
a digital signature. Indeed, (in most cases) credentials are digital signatures on a set of
attributes and a secret user key. Consider the following definition:

Definition 7 (Digital Signature Scheme). A signature scheme with message spaceM is a
tuple of the following algorithms:

Setup(1λ): Take as input security parameter λ, output public parameters pp.

KeyGen(pp): Take as input public parameters pp, output a key pair (pk, sk).

Sign(pp, sk,m): Take as input secret key sk and a message m ∈M, output a signature σ.

Verify(pp, pk,m, σ): Take as input public key pk, a message m and a signature σ, output
b ∈ {0, 1}. We show 1 as valid signature and 0 otherwise.

Security Notions. The main security goal for a signature scheme is known as existential
unforgeability under chosen message attacks (EUF-CMA). In simpler terms, this means
that even if an attacker can access a signing oracle, it remains challenging to produce
a valid signature (m,σ) for a message m that was never previously requested from the
signing oracle.

Definition 8 (EUF-CMA). A signature is said to be (EUF-CMA), if for every PPT
adversary A there is a negligible function ε such that Pr[EUF-CMAA(λ) = 1] ≤ ε(λ), where
the experiment EUF-CMAA(λ) is defined in Figure 2.1.

EUF-CMAA(λ)

• Q = ∅, pp← Setup(1λ)
• (pk, sk)← KeyGen(pp)

• (σ∗,m∗)← AOSign (pp, pk)
• Output is 1 if Verify(pp, pk,m∗, σ∗) = 1 ∧m∗ /∈ Q.

OSign(m)
• σ ← Sign(sk,m)
• Q ∪ {m}, return (σ,m)

Figure 2.1: Existential Unforgeability under a Chosen-Message Attack (EUF-CMA)

2.4.1.1 Pointcheval-Sanders (PS) Signatures

The PS signature [PS16a] works on asymmetric (type 3) bilinear groups. It is EUF-CMA-
secure under the PS assumption (cf. Def. 2.3). For a single scalar message it is defined as
follows:

42

Setup(1λ): Take the security parameter λ as input and return the public parameters
pp = (p,G1,G2,GT , e, P, P̂), where P and P̂ are generators.

KeyGen(pp): Take pp as input, sample two random numbers (x, y) $← Z∗p, and return the
verification key vk = (X̂ = P̂ x, Ŷ = P̂ y) and the secret key sk = (x, y).

Sign(sk,m) : Take the secret key sk and a message m ∈ Zp as input. Sample r $← Z∗p
uniformly at random and then compute σ = (h, s) = (P r, hx+my) and return the
signature σ as output.

Verify(vk, σ,m): To verify a signature σ, it takes the verification key vk and message m as
input. If h 6= 1 and the pairing product equation e(h, X̂ · Ŷ m) = e(s, P̂) holds, then
it returns 1 (accept), otherwise 0 (reject).

2.4.1.2 Ghadafi SPS

Structure-preserving signatures (SPSs) [AFG+16] are signatures where public keys and the
signatures are source group elements of a bilinear group, and verification will be done only
using group-membership tests and pairing-product equations. SPSs are compatible with
the Groth-Sahai [GS08] proofs system defined on bilinear groups. Moreover, due to the
structure of signatures, it is easy to randomize and integrate them into other primitives
such as ElGamal encryption. We recall the SPS scheme by Ghadafi [Gha16] which is
a structure-preserving variant of PS signatures [PS16a]. Ghadafi’s SPS construction is
defined over a Diffie-Hellman message spaceMDH as:
Diffie-Hellman Message Space. Over an asymmetric bilinear group, a pair (M,N) ∈
G1 ×G2 is called a Diffie-Hellman (DH) messageMDH [AFG+16] if there exists m ∈ Zp
s.t. M = Pm and N = P̂m. One can efficiently verify whether (M,N) ∈ MDH by
checking e(M, P̂) = e(P,N). Thus, the message space is a vector of Diffie-Hellman pairs
(M,N) = (M1, . . . ,Mn, N1, . . . , Nn) s.t., (Mi, Ni) = (Pmi , P̂mi) ∈MDH for mi ∈ Zp.

The construction is defined as follows:

Setup(1λ): Generate a bilinear group pp = (q, P, P̂ ,G1,G2,Gt, e) and output pp.

KeyGen(pp): Take the pp, choose two randoms (x, y) $← Z∗p, and return the verification
key vk = (P̂ x, P̂ y) and the secret key sk = (x, y).

Sign(sk, (M,N)): Take the sk and DH message (M,N) ∈ MDH such that e(M, P̂) =
e(P,N) as input. Sample r $← Z∗p and compute the signature as

σ = (R,S, T) = (R = P r, S = M r, T = Rx · Sy)

Verify(vk, σ, (M,N)): Take the pp, vk, signature σ = (R,S, T) and a message (M,N) ∈
MDH. If the following equations hold, returns 1 and 0 otherwise:

e(R,N) = e(S, P̂) ∧ e(T, P̂) = e(R, X̂)e(S, Ŷ) ∧ h 6= 1

43

2.4.1.3 Message-Indexed Ghadafi SPS

To construct our ATMS scheme, we use the version of Ghadafi SPS that is presented
in [CKP+22] for signing elements of an Indexed Diffie-Hellman message space MH

iDH.
More precisely, Crites et al. [CKP+22] adapt the DH message space MDH to a tuple
(id,M,N) ∈ I ×G1 ×G2 called Indexed Diffie-Hellman message spaceMH

iDH, which uses a
random basis h computed using a random oracle instead of P , as follows:

The Indexed Diffie-Hellman Message Space MH
iDH is taken verbatim from

[CKP+22] as follows:

Definition 9 (Indexed Diffie-Hellman Message SpaceMH
iDH [CKP+22]). Given

a bilinear group (G1,G2,GT , p, e, g, ĝ) ← BGGen(1λ), an index set I, and a
random oracle H : I → G1,MH

iDH is an indexed Diffie-Hellman (DH) message
space if MH

iDH ⊂ {(id, M̃) | id ∈ I,m ∈ Zp, M̃ = (H(id)m, ĝm) ∈ G1 × G2}
and the following index uniqueness property holds: for all (id, M̃) ∈ MH

iDH,
(id′, M̃ ′) ∈MH

iDH, id = id′ ⇒ M̃ = M̃ ′.
One can define the equivalence class for each message M̃ = (M,N) ∈ M̃H

iDH,
as EQiDH(M,N) = {(M r, N) | ∃ r ∈ Zp}.

One can check the first condition by checking e(M, P̂) = e(h,N). The second condition
guarantees that no two messages use the same index, which needs to be ensured by signers;
otherwise, one can not guarantee the unforgeability of the signature. The construction is
defined as follows:

Setup(1λ): Let pp = (q, P̂ , P,G1,G2,Gt, e). Output parameters pp.

KeyGen(pp): Choose two random (x, y) $← Z∗p, returns the verification key as vk = (P̂ x, P̂ y)
and the secret signing key sk = (x, y).

Sign(pp, sk, (id,M,N)) : On input sk and (id,M,N) ∈MH
iDH such that e(M, P̂) = e(h,N),

where h = H(id) = P r. Computes the signature as σ = (h, s) = (h, s = hx ·My).

Verify(pp, vk, σ, (M,N)): Check if the following equations hold, returns 1 (verify a signature
σ), otherwise it returns 0 as: e(h,N) = e(M, P̂) ∧ e(s, P̂) = e(h, X̂)e(M, Ŷ) ∧ h 6= 1.

2.4.1.4 Signatures on Equivalence Classes

The concept of Structure-Preserving Signatures on Equivalence Classes (SPSEQ) [FHS19,
HS14] offers an efficient and simultaneous method for randomizing messages and signatures
publicly. This is applicable when the message space comprises group-element vectors
M ∈ (G∗)`.
The SPSEQ scheme facilitates the randomization of both messages and signatures by

utilizing a change of message representatives along with a corresponding signature update.
To achieve this, (G∗)` is divided into classes based on a specific equivalence relation:

R =
{
(M,M′) ∈ (G∗)` × (G∗)`

∣∣ ∃ s ∈ Z∗p : M′ = s ·M
}
⊆ (G∗)2`

44

Definition 10. An SPSEQ for equivalence relation R on G∗i (for i ∈ {1, 2}) consists of
the following PPT algorithms.

We take this definition of [FHS19], but adapted to our setting.
BGR(1λ): Take λ and return a bilinear group BG.
KeyGen(BG, `): Take BG and a length ` > 1, return a key pair (sk, vk):

sk← (xi)i∈[`], and the public key vk← (X̂i)i∈[`] = (P̂ xi)i∈[`].
Sign(sk,M): Take a representative M ∈ (G∗i)` and sk, output a signature σ

for the equivalence class [M]R as follows: σ = (Z ← (
∏
i∈[`]M

xi
i)y, Y ←

P
1
y , Ŷ ← P̂

1
y) for a random y

$← Z∗p.
ChangRep(M, σ, µ, vk): Take a representative M ∈ (G∗i)` of class [M]R, signa-

ture σ, scalar µ and public key vk, output a new signature-message pair
(M′, σ′), where M′ = Mµ is the new representative and σ′ its updated
signature as follows: pick r $← Z∗p and return σ′ ← (Zrµ, Y

1
r , Ŷ

1
r).

Verify(M, σ, vk): This algorithm on input a M ∈ (G∗i)`, signature σ, public
key vk, outputs a bit 1 if

∏
i∈[`] e(Mi, X̂i) = e(Z, Ŷ)∧ e(Y, P̂) = e(P, Ŷ), 0

otherwise.

Within the realm of EUF-CMA security, an adversary should generate a legitimate message-
signature pair associated with an unrequested equivalence class, then it is classified as a
forgery.

Definition 11 (EUF-CMA). An SPSEQ is EUF-CMA if for all ` > 1 and all PPT A, we
have:

Pr

 BG← BGGen(1λ),
(sk, pk)← KeyGen(BG, 1`),
(M∗, σ∗)← ASign(·,sk)(pk)

: ∀M ∈ Q : [M∗]R 6= [M]R ∧
VerifyR(M∗, σ∗, pk) = 1

 ≤ ε(λ) ,

Q is the queries set that A has asked to Sign oracle.

In addition to EUF-CMA, an additional security definition for SPSEQ was introduced
by [FHS19] as follows:

We take this definition form [FHS19]:

Definition 12 (Signature adaptation [FHS19]). Let ` > 1. An SPS-EQ scheme
SPSEQ on (G∗i)` perfectly adapts signatures if for all tuples (sk, pk,M, σ, µ)
with

VKey(sk, pk) = 1 M ∈ (G∗i)` Verify(M, σ, pk) = 1 µ ∈ Z∗p

ChangRep(M, σ, µ, pk) and Sign(Mµ, sk) are identically distributed.

45

2.4.1.5 Mercurial Signatures

Mercurial signatures [CL19] and signatures with flexible public keys (SFPK) [BHKS18]
extend the capabilities of SPSEQ by introducing the ability for signatures to adapt not
only to randomized messages but also to randomized verification keys, thereby allowing for
relations [vk]R on public keys. Additionally, Mercurial signatures offer support for message
randomization, similar to SPSEQ.
An additional property, which distinguishes it from SPSEQ, is called public key class-

hiding. This property makes it computationally hard to differentiate between a random
public key and a different public key within the relation. Similar to the message space
in [FHS19], the space of public keys consists of vectors of group elements from G∗2. Conse-
quently, we can define the following equivalence relations:

Rvk = {(vk′, vk) ∈ (G∗2)` × (G∗2)`|∃r ∈ Z∗p st. vk′ = vkr}

Rsk = {(sk, sk′) ∈ (Z∗p)` × (Z∗p)`|∃r ∈ Z∗p st. sk′ = sk · r}

Formally, in addition to the SPSEQ algorithms, we also require the following algorithms,
which for the scheme in [CL19] (which extends the SPS-EQ scheme from [FHS19] presented
above) are as follows:

ConvertSK(sk, ω) → sk′: Take as input sk and a random element ω ∈ Z∗p, output a new
secret key sk′ = skω.

ConvertVK(vk, ω) → vk′: Take as input vk = (X̂i)i∈[`] and a random element ω ∈ Z∗p,
output a new public key vk′ ∈ [vk]Rvk as vk′ = vkω.

ConvertSig(vk,m, σ, ω) → σ′: Take as input vk, a message m ∈ Z∗p, a signature σ =
(Z, Y, Ŷ), and random element ω ∈ Zp, pick r

$← Z∗p, this ConvertSig returns a new
signature σ′ s.t Verify(vk′,m, σ′) = 1 as: σ′ ← (Zrω, Y

1
r , Ŷ

1
r).

Mercurial signatures are origin-hiding [CL19] if in addition to the origin-hiding of ChangRep
(cf. Def. 35) the following property holds. We take this definition from [CL19] as:

Definition 13 (Origin-hiding of ConvertSig [CL19]). For all λ, for all pp ∈
Setup(1λ), for all vk, for all M , σ, if Verify(vk,M, σ) = 1, if ω ← Zp , then
ConvertSig(vk,M, σ, ω) outputs a uniformly random σ and ConvertVK(vk, ω)
outputs a uniformly random element of [vk]Rvk .

2.4.2 Public-Key Encryption Schemes
Using public-key encryption, a message m can be encrypted using a specific public key pk.
The resulting ciphertext reveals no information about the content of the message as long
as the related secret key sk remains secret.

46

Definition 14 (Public Key Encryption). A public key encryption scheme includes the
following algorithms:

PPGen(1λ): Given a security parameter λ, this algorithm generates public parameters
denoted as pp.

KeyGen(pp): Using the public parameters pp, this algorithm produces a decryption key
sk and a corresponding public encryption key pk.

Enc(pk,m): With a public encryption key pk and a message m chosen from the message
spaceM, this algorithm creates a ciphertext CT .

Dec(sk, CT): Given the secret decryption key sk and the ciphertext CT , this algorithm
outputs the original message m or ⊥ if the decryption fails.

In addition to the evident correctness property, we expect a public key encryption scheme
to satisfy IND-CPA security, which is formally stated below:

Definition 15 (IND-CPA). A public key encryption scheme is IND-CPA, if for all PPT
A, there exists a negligible function ε(·):

Pr[IND-CPAA = 1] ≤ 1
2 + ε(λ)

The related game is depicted in Figure 2.2.

IND-CPAA(λ)

• pp← Setup(1λ)
• (pk, sk)← KeyGen(pp)
• (m0,m1)← A(pp, pk)

• (b′)← AO
Enc (pp, pk, CT)

OEnc(m0,m1)
• If |m0| 6= |m1|, return ⊥.
• Otherwise CT ← Enc(sk,mb),
• return CT

Figure 2.2: IND-CPA Security

2.4.2.1 Predicate Encryption

Definition 16 (Predicate Encryption Schemes [KSW08]). A predicate encryption scheme
includes the following algorithms:

Setup(1λ): The Setup algorithm generates a master secret key denoted as dk and its
corresponding public key pk.

KeyGen(dk, f): Given the master secret key dk and a predicate f ∈ F , the KeyGen
algorithm generates a specific key denoted as dkf .

47

Enc(pk,A,m): With a public key pk, a set of attributes A, and a message m from a certain
message space, the Enc algorithm produces a ciphertext CT .

Dec(dkf , CT): Given the secret key dkf and the ciphertext CT , the Dec algorithm decrypts
the ciphertext and returns the original message m.

Correctness requires that for all λ ∈ N , m ∈ M, (pk, dk) ∈ Setup(1λ), f ∈ F , and
skf ∈ KeyGen(dk, f), and all A:

• If f(A) = 1⇒ Dec(dkf ,Enc(pk,A,m)) = m.

• If f(A) = 0⇒ Dec(dkf ,Enc(pk,A,m)) = ⊥ with

We consider the following predicate encryption in this thesis.

Subset Predicate Encryption (SPE) scheme. We take the second construction of the
SPE paper [KMMS17] as follows:

Setup(1λ, n): Setup generates a bilinear group pair (G1,G2) with generators
(P, P̂), selects a random α ∈ Z∗p and sets h = P̂α. Samples a random
secret vector (x1, . . . , xn) ∈ (Z∗p)n and sets for all i ∈ {1, . . . , n}: Xi = P xi .
The pk and the master secret key msk are as pk = (P,X1, . . . , Xn, P̂ , h),
and msk = Pα.

KeyGen(msk, pk, s): The KeyGen algorithm picks a random r ∈ Zp and defines
the private key associated with the set s as:
sks = (R = P̂ r,K = Pα

∏
i∈sX

r
i).

c← Enc(pk,m, s): Given set s, the Enc of a message m ∈ GT picks a random
ρ ∈ Z∗p and returns the following:

c = (m · e(P, h)ρ, P̂ ρ,∀i ∈ s : Xρ
i)

m← Dec(sks, pk, c): A ciphertext c = (A,B,C1, . . . , C`), for an integer ` ≤ n,
can be dencrypted using the private key sks = (K,R), return

m = A · e(
∏
i∈s

Ci, R)/e(K,B)

2.4.3 Commitment Schemes
A commitment scheme (simply commitment henceforth) allows a sender to commit to a
value without revealing it and send the commitment to a receiver. From this commitment,
the receiver does not learn anything about the actual value (hiding). The sender can
then send an opening to the receiver which will reveal the committed value, but the
sender cannot change their mind by opening to a value different from the one used during
computing the commitment (binding).

48

Definition 17. A commitment scheme is defined as a triple of algorithms (Setup,Commit,Open),
comprising the following components:

• Setup(1λ): Takes the security parameter λ and outputs the public parameter pp.

• Commit(pp,m): Given the public parameter pp and a message m from the message
spaceM, this algorithm produces a commitment C along with an open value d in
the form of a pair (C, d).

• Open(pp, C, d): This algorithm takes the public parameter pp, a commitment C, and
an open value d as input and deterministically outputs either the original message m
or a failure symbol ⊥.

We refer to [BS22] for the formal definitions of hiding and binding properties.

2.4.3.1 Equivocable and Extractable Commitments

Sometimes, we require a commitment to be equivocable, i.e., there is a trapdoor that allows
cheating during the opening of a commitment, i.e., a commitment can be opened to any
value (known as EQTDC). Finally, we require extractability, which allows the holder of this
trapdoor to extract the message from any valid commitment without knowing the opening
value [CF01,DMM+18].

Definition 18 (Commitment). It consists of three algorithms (Setupcom,Commit,VerCom):

• EQTDC.Setupcom(1λ) → crs: Takes the security parameter as input, and outputs
some public parameters, passed via a crs to all other algorithms.

• EQTDC.com(crs,m)→ (com, decom): Takes a message m, public parameters crs and
picks a random integer r and returns a commitment com and the corresponding
opening decom.

• EQTDC.VerCom(crs, com, decom)→ (m,⊥) Takes a commitment com and the open-
ing value decom; returns the message m, or ⊥.

We take the formal definitions of equivocable and extractable properties from [DMM+18]:

Correctness requires that for all crs ∈ {0, 1}poly(λ), m ∈ {0, 1}poly(λ), and
(com, decom)← Commit(crs,m) there exists a negligible function s.t,: Pr[m←
VerCom(crs, com, decom)] ≥ 1− ε(λ).

Definition 19. (Equivocable and Extractable Commitments [DMM+18]). A
commitment scheme is equivocable and extractable (EQTDC) if there exists two
algorithms (ξ, ξ0

Eq, ξ
1
Eq, ξExt) s.t, for all m ∈ {0, 1}poly(λ), (crs, a) ∈ ξ(1λ), com ∈

ξ0
Eq(crs, a), and decom ∈ ξ1

Eq(crs, a, com,m), it holds: m← VerCom(crs, com, decom)
and the random variables

49



crs← {0, 1}poly(λ); (com, decom)← Commit(crs,m) :
(crs, com, decom) and
(crs, a)← ξ(1λ); com← ξ0

Eq(crs, a);
decom← ξ1

Eq(crs, a, com,m) : (crs, com, decom)


are indistinguishable. Moreover, there exists a negligible function such that

for all algorithms Commit∗, for all m ∈ {0, 1}poly(λ):

Pr


(crs, a)← ξ(1λ);
(com, decom)← Commit∗(crs,m);
m′ ← ξExt(crs, a, com) : VerCom(crs, com, decom) = m′

−

Pr


crs← {0, 1}poly(λ);
(com, decom)← Commit∗(crs,m) :
VerCom(crs, com, decom) = m

 ≤ ε(λ).

2.4.3.2 Pedersen Commitments

Pedersen commitments [Ped91] have a group G of prime order q and generators (g0, . . . , gm)
as public parameters. For committing to the value (z1, . . . , zm) ∈ Zq, a user picks a random
r ∈ Zq and sets C = PedCom (z1, . . . , zm; r) = gr0

∏m
i=1 g

zi
i .

2.4.3.3 Set Commitment

Fuchsbauer et al., [FHS19] present a novel commitment that enables commitment to
sets and opening of arbitrary subsets. A crucial aspect of their scheme is its support
for commitment randomization, which aligns with the randomization of messages in the
SPSEQ scheme, involving multiplication by a scalar.

Definition 20 (Set commitment [FHS19]). A set commitment SC scheme includes the
following algorithms. We take this definition from [FHS19]:

SC.Setup(1λ, 1t) → ppsc: The Setup algorithm takes a security parameter λ
and an upper bound t for the maximum size of committed sets. It outputs
public parameters denoted as ppsc, which will be used as an implicit input
for all subsequent algorithms.

SC.Commit(S)→ (C,O): Given a set S from the message space, the Commit
algorithm generates a commitment C to the set S and an associated
opening value O.

50

SC.Open(C, S,O)→ 0/1: The Open algorithm takes a commitment C, a set
S, and an opening value O. It outputs 1 if O is a valid opening of C
corresponding to the set S ∈ SppSC , and 0 otherwise.

SC.OpenSubset(C, S,O, T) → W : Given a commitment C, a set S from the
message space SppSC , an opening value O, and a set T , the OpenSubset
algorithm returns ⊥ if T is not a subset of S. Otherwise, it returns a
witness W for the set T , indicating that T is a subset of the set committed
to in C.

SC.VerifySubset(C, T,W)→ 0/1: The VerifySubset algorithm takes a commit-
ment C, a set T , and a witness W . If W is a valid for the set T , it outputs
1, and 0 otherwise.

We refer the reader to [FHS19] for formal definitions of the correctness, binding, hiding,
and subset-soundness notions and their proofs.

On computing commitments. We note that with the knowledge of the trapdoor α,
we can compute a commitment when externally provided with the randomness ρ in the
group as P ρ. If required, we will therefore modify the commitment computation to
SC.Commit(S, α, P ρ), which then computes C ← (P ρ)fS(α) and sets O ← ⊥.1

2.4.4 Zero-Knowledge Proofs of Knowledge

We are exploring zero-knowledge proofs of knowledge (ZKPoK), specifically focusing on
protocols for proving knowledge of a discrete logarithm. Fortunately, there exists a
commonly used pattern for demonstrating knowledge of a discrete logarithm, known as
the Σ-protocol. This protocol represents a three-round public-coin honest-verifier zero-
knowledge proof of knowledge. In the context of ZKPoK, Σ-protocols are highly efficient
implementations that can be transformed into (malicious-verifier) zero-knowledge proofs of
knowledge through the application of Damgard’s Technique [CDM00].
For formal definitions of zero knowledge, soundness, and completeness, we recommend

referring to [BS22].

The Fiat-Shamir heuristic provides a way to convert a Σ-protocol into a non-interactive
zero-knowledge proof of knowledge, denoted as NIZK. The core concept behind this heuristic
is to eliminate the need for a verifier to choose a challenge and, instead, let the prover
compute the challenge herself using a hash function applied to the announcement.

Camenisch and Stadler Notation [CS97]. We use the common Camenisch and Stadler

1Here we assume that ρ is honestly chosen, i.e., the discrete logarithm w.r.t. P is known. This can be
enforced by requiring to provide a ZKPoK of the discrete logarithm ρ w.r.t. element P .

51

[CS97] notation for ZKPOK (or ZKPoK) as follows:

ZKPOK
{

(α, β) : y = Pα ∧ z = P β · hα
}
,

denotes an (non-) interactive proof of knowledge of discrete logarithms (α, β) (the witness)
meeting the right-hand side statement about the public values y, P, z, h.

2.4.5 Secret Sharing
Shamir’s Secret Sharing scheme (SSS) [Sha79a] is a randomized algorithm that on input four
integers (n, t, p, s), where p is a prime, 0 < t ≤ n < p and a secret s ∈ Zp, outputs n shares
(s1, . . . , sn) ∈ Znp such that the following two conditions hold for any set ST = {i1, . . . , iτ}:

• If τ ≥ t, there exists fixed (i.e., independent of s) integers (λ1, . . . , λτ) ∈ Zτp (a.k.a.
Lagrange coefficients) such that

∑τ
j=1 λjsij = s mod p;

• If τ < t, the distribution of (si1 , . . . , siτ) is uniformly random.

Specifically, Shamir’s secret sharing performs as: Choose (a1, . . . , at−1) uniformly from Zp.
Set p(x) := s+ a1 · x1 + a2 · x2 + . . .+ at−1 · xt−1 and let si be p(i) for all i ∈ [n].

2.5 Computational Models.
We can conduct security proofs using different computational models as follows. We briefly
describe them below.

Standard Model. Provable security involves establishing a formal relationship between
the security of cryptographic schemes and the difficulty of solving well-known hard problems.
This is achieved through reductionist security proofs, which demonstrate that breaking a
cryptographic scheme is as hard as solving a well-studied problem. The standard model
does not need any additional idealizing assumptions. So, it is the most promising model.

Random-Oracle Model. The random oracle model (ROM) [BR93] is a cryptographic
framework that treats hash functions as if they were idealized random functions. In this
model, hash functions are represented as oracles that respond with uniformly random
values for each query, while consistently repeating the same responses for previously asked
queries.

Universal Composition. The Universal Composition (UC) framework [Can00] allows the
modular design of cryptographic protocols using "ideal functionalities," eliminating the
need for explicit reductions. Ideal functionalities act as trusted third parties, defining
adversary capabilities. Simulators demonstrate protocol security by making real and ideal
worlds indistinguishable.

52

3 Issuer-Hiding Multi-Authority Credentials
In this chapter, we introduce the concept of Issuer-Hiding Multi-Authority Anonymous
Credentials (IhMA). It allows a compact and efficient showing of multiple credentials from
different issuers. Another important property is called issuer hiding (IH). This means that
showing a set of credentials is not revealed which issuer has issued which credentials but
only whether a verifier-defined policy on the acceptable set of issuers is satisfied. This
issue becomes particularly acute in the context of MA, where a user could be uniquely
identified by the combination of issuers in their showing. Our proposed solution involves
the development of two new signature primitives with versatile randomization features
which are independent of interest: 1) Aggregate Signatures with Randomizable Tags
and Public Keys (AtoSa) and 2) Aggregate Mercurial Signatures (ATMS), which extend
the functionality of AtoSa to additionally support the randomization of messages and
yield the first instance of an aggregate (equivalence-class) structure-preserving signature.
These primitives can be elegantly used to obtain IhMA with different trade-offs but have
applications beyond.
We formalize all notations and provide rigorous security definitions for our proposed

primitives. We present provably secure and efficient instantiations of the two primitives
as well as corresponding IhMA systems. Finally, we provide benchmarks based on an
implementation to demonstrate the practical efficiency of our constructions.

3.1 Comparison of IhMA with Previous Work
We have already discussed that there is only one dedicated MA-AC scheme [HP22]. This
is however not issuer-hiding (IH) and as mentioned, adding IH comes with a significant
overhead. In Table 6.3.5, we compare our IhMA approaches to other schemes in the
literature that provide the IH feature [BEK+21,BFGP22,CLPK22] and for comparison we
use the naive approach to achieve MA, i.e., parallel showings of single credentials, which we
indicate by ≈. We compare them in terms of the size of credential |Cred|, communication
cost of showing |Show|, and computational cost of showing Show for user (P) and verifier
(V). We provide concrete analysis for our schemes’ communication cost in Section 3.5.1.
To ensure a fair comparison between the schemes, we consider a typical case where k out
of n attributes come from K out of N issuers where n is the total number of attributes
given to the user by N issuers, and k is the number of attributes involved in the showing
(and K the number of issuers indicated in the showing).

With respect to credential size |Cred|, the naive approach to MA leads to O(K)
complexity. Our IhMAATMS scheme maintains a constant credential size even when there

53

Table 3.1: Comparison of AC schemes inMA setting (n: Attributes; k: Disclosed attributes,
u: Undisclosed attributes, N : Total issuers in policy, K: issuers in showing)

[CLPK22] ‡ [BFGP22]?? [BEK+21]?? IhMAAtoSa IhMAATMS
IH X X X X X
MA ≈ ≈ ≈ X X

|Cred| O(N) O(N) O(N) O(N)? O(N)?
|Show| O(K ·N) O(k ·K) O(k · 2K) O(K) O(K)
Show (P) O(KuN) O(k ·K) O(k · 2K) O(K)† O(u ·K)
Show (V) O(KkN) O(k ·K) O(k · 2K) O(k) O(k ·K)
? We present the scheme in a way that supports ad-hoc attribute/issuer aggregation, but for fixed signatures, a
constant size credential is achievable. For ATMS we will show how to achieve this in Section 3.4.3.

?? K refers to proving knowledge of K credentials and K signatures of key policy in Showing.
† Since the ad-hoc aggregation cost is negligible, it is skipped here. Also, without considering IH, it becomes O(1).
‡ This scheme uses standard assumptions in the ROM while other schemes use the GGM.

are K > 1 issuers, while our IhMAAtoSa scheme has O(K) credentials. However, we can
aggregate credentials and then during showing apply a ZKPOK of a PS signature, which
allows us to reduce the credential size to a constant size. In contrast, others have a
credential size linear in the number of issuers K.
In terms of communication cost in showing (|Show|), our schemes require sending the

randomized vks of the K issuers, along with two signatures (one for the credential and one
for the key policy), overall giving O(K). In [BEK+21], the communication size is based on
sending K blinded credentials and K blinded signatures in the key policy and provide a
ZKPOK of having correctly done so. The scheme in [BFGP22] is similar to [BEK+21], but
the size of the policy is fixed. Finally, in the scheme described in [CLPK22], one needs
to prove knowledge of K out of N verification keys (a linear sized OR statement) and
sends them along with K credentials. Note that the size of ZKPOK includes many group
elements and significantly more than only transferring K verification keys, as it is the case
for our constructions.

When it comes to the computational cost of showing, i.e., Show (P) and Show (V), our
IhMAAtoSa scheme has a minimal computational cost for provers as they only need to perform
a small/constant number of operations for aggregation, along with K exponentiations
for randomizing the verification keys vk. Our IhMAATMS scheme involves additional
computation in the creation of a witness for set commitments corresponding to undisclosed
attributes (a multi-exponentiation of O(u)). In [BEK+21], this cost includes proving
knowledge of k signatures (in the key policy), K credentials, and k disclosed attributes.
Similarly, [BFGP22] requires the computation of generating witness for their aggregator
(accumulator) on K credentials, proving knowledge of k credential, but it does not need to
prove knowledge of signatures in the policy. Moreover, in [CLPK22], proving knowledge
of K-out-of-N verification keys is necessary, along with the computation of generating
witness on undisclosed attributes for set commitments on K credentials. Again, the cost of
ZKPOK for credentials or committed attributes is significantly more expensive than in our

54

case, which is needed only to prove a secret key and some multi-exponentiation for creating
witness. We should mention here that by leveraging ZKPOK, arbitrary relationships can
be proved on attributes.

In summary, while the efficiency of different schemes may appear to be close asymptoti-
cally, our IhMA approaches are significantly more efficient than existing approaches while
providing both properties simultaneously. Indeed, we only need group operations on Gi at
the cost of O(k). In contrast, other schemes require proving knowledge of signatures or
keys, which is significantly more expensive.

3.2 Aggregate Signatures with Randomizable Keys and Tags
Now we introduce a novel primitive named AtoSa where one can aggregate signatures
of different messages under different keys only if they are associated with the same tag
(consisting of a private and a public part). Moreover, apart from allowing randomizing
signatures, verification keys as well as tags can be randomized. Unlike mercurial signatures,
our AtoSa scheme does not allow for randomization of messages. Tags and verification
keys are defined with respect to equivalence classes and randomization switches between
representatives of these classes. We introduce a comprehensive formal model and a
construction which as a starting point takes PS signatures [PS16a]. For our AtoSa scheme
we show how to integrate tags into PS signatures, use the above discussed features to
make them aggregatable, and show that the key-randomization features of PS signatures
(cf. [CRS+21] with ∆2 = 0) applies to our modification.

3.2.1 Formal Definitions
The public key randomization is similar to that of mercurial signatures [CL19], which allow
to define equivalence classes on the key space [vk]Rvk , [sk]Rsk (cf. Section 2.4.1.5). Let a
tag be (τ,T), where τ and T are the secret and public parts of tag respectively. For the
tag randomization, we define equivalence classes [T]Rτ ([τ]Rτ for secret parts) on the tag
space T similar to [vk]Rvk and [sk]Rsk as:

Rτ =
{

(T′,T) ∈ (G∗1)` × (G∗1)`| ∃µ ∈ Z∗p : T′ = Tµ

(τ ′, τ) ∈ (Z∗p)` × (Z∗p)`| ∃µ ∈ Z∗p : τ ′ = τ · µ

}

We denote the space of all tags as T and the messages space is Zp. In contrast to SPSEQ
(and mercurial) signatures, we do not consider equivalence classes on the message space for
AtoSa.

Definition 21 (Aggregate Signatures with Randomizable Public Keys and Tag (AtoSa)).
An AtoSa for parameterized equivalence relations Rτ , Rsk and Rvk, consists of the following
algorithms:

Setup(1λ)→ pp: On input the security parameter λ, output the public parameters pp.

55

KeyGen (pp)→ (sk, vk): On input the public parameters pp, output a key pair (sk, vk).

VKeyGen (sk): On input a secret key sk, output a verification key vk.

GenAuxTag(S) → ({auxj}j∈[n], (τ,T)): Given a message-key set S = {(mj , vkj)j∈[n]},
output auxiliary data {auxj}j∈[n] correlated to (vkj ,mj) and a tag pair (τ,T), where
all vkj should be distinct.

Sign(skj , τ, auxj ,mj)→ σj : On input a secret key skj , tag’s secret τ , auxiliary data auxj
and message mj ∈ Zp, output a signature σj for (τ,T) and mj under the verification
key vkj .

Verify(vkj ,T,mj , σj)→ {0, 1}: Given a verification key vkj , tag’s public T, message mj

and signature σj , output 1 if σj is valid relative to vkj , mj and T, and 0 otherwise.

AggrSign(T, {(vkj ,mj , σj)}`j=1)→ σ: Given ` signatures, (σj)j∈[`] for messages (mj)j∈[`]
under verification keys, (vkj)j∈[`] on the same tag T, output an aggregate signature
σ on all messages M = (mj)j∈[`] under the tag T and aggregated verification key
avk = (vkj)j∈[`].

VerifyAggr(avk,T,M, σ) → {0, 1}: Given an aggregated verification key avk, tag T,
messages M and signature σ, output 1 if σ is valid relative to avk, M and T, and 0
otherwise.

ConvertTag(T, µ)→ T′: On input a tag T and randomness µ, output a new randomized
tag T′ ∈ [T]Rτ .

RndSigTag(vk,T,m, σ, µ) → (σ′,T′): (Randomize Signature and Tag together) Given
a signature σ on a message m under tag T and vk, and randomness µ. Return
a randomized signature and tag (σ′,T′) s.t Verify(vk,T′,m, σ′) = 1, where T′ ←
ConvertTag(T, µ).

ConvertSK(sk, ω)→ sk′: On input a sk and key converter ω, output a new secret key sk′.

ConvertVK(vk, ω)→ vk′: On input a vk and key converter ω, output a new public key vk′.

ConvertSig(vk,m,T, σ, ω) → σ′: On input a vk, message m, tag T, signature σ, and
key converter ω, return a new signature σ′ s.t Verify(vk′,T,m, σ′) = 1, where vk′ ←
ConvertVK(vk, ω).

We note that VKeyGen is only required in the security definition and is never used in the
construction. Although the signer receives the tag secret key τ , we replace this with a
ZKPOK in our IhMA scheme.

56

3.2.2 Security Definitions

Correctness. As usual we require that honest signatures verify as expected, but need to
consider all the randomizations as well as the aggregation.

Definition 22 (AtoSa correctness). An AtoSa is correct if it has the following three
properties:

Basic signature correctness:
For all {ski, vki}i∈[`] ← (KeyGen(1k))n, {mi}i∈[`] ∈ Z∗p`, (τ, {auxj}) = GenTagIdx(τ, {mi, vki}i∈[`])
j ∈ [`], we have that σ = Sign(skj , τ, auxj ,mj) and Verify(vkj ,T,mj , σ) = 1

Randomizable signature correctness:
For all (sk, vk,m,T, τ, β, ω, µ, σ′, vk′, σ∗,T∗,T†) such that Verify(vk,T,m, σ) = 1, β, ω ∈
Z∗p, σ′ = ConvertSig(vk, σ, ω), vk′ = ConvertVK(vk, ω), sk′ = ConvertSK(sk, ω), (σ∗,T∗) =
RndSigTag(vk′,T,m, σ′, β), (T†) = ConvertTag(T, ω),
the following holds:
ConvertSig(vk, σ, ω) = Sign(sk′, aux, τ,m) (for a valid aux), Verify(vk′,T∗,m, σ∗) = 1 and
Verify(vk,T†,m, σ′) = 1.
We’ve combined the definitions of all randomization functions (RndSigTag,ConvertTag, . . .)
in this definition, but for ensuring that use of a single randomization function is value, we
can set the other randomization factors (β, ω) to 1 indicating no randomization to see that
all the randomization functions are correct independent of each other.

Aggregatable signature correctness:
For all {ski, vki,mi, σi,T}i∈[`] such that ∀i,Verify(vki,T,mi, σi) = 1.
Then, the following holds:
σ′ = AggrSign(T, {vki,mi, σi}i∈[`]), VerifyAggr

(
avk,T, {mi}i∈[`], σ

′
)

= 1, where avk =
(vki)i∈[`].

Randomizable of Aggregatable signature correctness:
For all avk = (vki)i∈[`],T, {mi}i∈[`], σ and β, ω ∈ Z∗p such that VerifyAggr

(
avk,T, {mi}i∈[`], σ

)
=

1, σ′ = ConvertSig(vk, σ, ω), i ∈ [`]: vk′i = ConvertVK(vki, ω), sk′i = ConvertSK(ski, ω) and
(σ∗,T∗) = RndSigTag(T, avk, (mi)i∈[n], σ

′, β). (T†) = ConvertTag(T, ω),
Then the following holds:
VerifyAggr

(
avk′,T∗, {mi}i∈[`], σ

∗
)

= 1 and VerifyAggr
(
avk,T†, {mi}i∈[`], σ

′
)

= 1, where
avk′ = (vk′i)i∈[`].
Unforgeability. Wemodel unforgeability following the ideas in the chosen-key model [BGLS03,
LMRS04], where the adversary A is given a single public key vk′ and access to a signing
oracle on the challenge key. The adversary wins if the aggregate signature, σ, is a valid
aggregate signature on a vector of messages M = (m1, . . . ,mn) under keys (vk1, . . . , vkn),

57

and σ is nontrivial, i.e., the adversary did not request a signature on a mj for vkj = vk′
or more precisely where vkj is in the same equivalence class as the challenge key vk′. A
has the power to choose all public keys except the challenger’s public key vk′. For our
instantiation, however, we have to work in a slightly weakened model which is equivalent
to the certified-keys model [LLY13,LOS+06]. In this setting the A registers pairs of (vk, sk)
with exception of the challenge key. To model this, we have the adversary output the secret
keys of the verification keys they provide in our security games. In the real world, such a
key registration can be realized by requiring issuers to prove knowledge of their sk, which
in the formal analysis allows a reduction to extract the secret key.
Definition 23 (Unforgeability). An AtoSa signature is unforgeable if for all PPT algo-
rithms A having access to the oracle OSign(), there exists a negligible function ε such that:
Pr[ExpUnfAtoSa,A(λ) = 1] ≤ ε(λ) where the experiment ExpUnfAtoSa,A(λ) is defined in Fig.
4.1 and Q is the set of queries that A has issued to the OSign.

ExpUnfAtoSa,A(λ):

• Q := ∅; pp← Setup(1λ);
• (vk′, sk′)← KeyGen(pp);
• (j′, avk = (vkj)j∈[`] , ask = (skj)j∈[`]\j′ ,M∗ =

(m∗j)j∈[`], (τ∗,T∗), σ∗)← AO(pp, vk′)
• (vk∗j) := (VKeyGen (skj))j∈[`]\j′ ,

return:VerifyAggr (avk,T∗, σ∗,M∗) = 1 ∧ ∀j ∈ [`], j 6= j′ :
[vk∗j]Rvk = [vkj]Rvk ∧ [vk′]Rvk = [vkj′]Rvk

∧ ∀(m,T) ∈ Q : m 6= m∗j ∨ [T]Rτ 6= [T∗]Rτ



OSign(m, aux, (τ,T)):

• σ ← Sign(sk′, τ, aux,m)
• Q = Q ∪ {m,T},

return σ

Figure 3.1: Experiment ExpUnfAtoSa,A(λ)

Privacy guarantees. Similar to mercurial signatures [CL19], we define the following
privacy notion for randomized keys vk and tags:
Definition 24 (Public key class-hiding). For all PPT adversaries A, and pp← Setup(1λ)
there exists a negligible ε such that:

Pr


(vk1, sk1)← KeyGen(pp); (vk0

2, sk0
2)← KeyGen(pp);

r
$← Zp; vk1

2 = ConvertVK(vk1, r); sk1
2 = ConvertSK(sk1, r);

b← {0, 1}; b′ ← ASign(sk1,·),Sign(skb2,·)(vk1, vkb2) : b′ = b

 ≤ 1
2 + ε(λ)

Definition 25 (Tag class-hiding). For all PPT adversaries A there is a negligible function
ε(·) such that

Pr
[
b← {0, 1},BG← BGGen(1λ),T← T ,T(0) ← T ,
T(1) ← [T]R, b∗ ← A(BG,T,T(b)) : b∗ = b

]
− 1

2 ≤ ε(λ)

58

The tag class-hiding property for Rτ is implied by the DDH assumption.

The following definition guarantees that a signature with tag T on a message m under
vkoutput by ConvertSig and fed into RndSigTag produces a uniformly random signature
under a uniformly random tag (from the respective tag class) and uniformly random key
(from the respective key class).

Definition 26 (Origin-hiding of ConvertSig). For all λ, and pp ∈ Setup(1λ), for all
(vk,m, σ,T), if Verify(vk,T,m, σ) = 1, and (ω, µ) ∈ Z∗p, then (σ′,T′)← RndSigTag(vk,T,
m,ConvertSig(vk,m,T, σ, ω), µ) outputs uniformly random elements in signature space and
[T]Rτ) such that Verify(vk′,T′,m, σ′) = 1, and vk′ $← ConvertVK(vk, ω) is a uniformly
random element of [vk]Rvk .

We also require a similar definition for ConvertTag and the tag randomization:

Definition 27 (Origin-hiding of ConvertTag). For all λ, pp ∈ Setup(1λ), for all (vk,m, σ,T),
if Verify(vk,T,m, σ) = 1, and µ ∈ Z∗p, then (σ′,T′)← RndSigTag(vk,ConvertTag(T, µ),m, σ,
µ) outputs uniformly random elements in the signature space and [T]Rτ such that

Verify(vk,T′,m, σ′) = 1.

3.2.3 Construction

We construct the AtoSa scheme based on the PS signature [PS16a]. We can observe that
to make PS signatures (hi, si) aggregateable, we need the hi components to be identical
for all signatures to be aggregated. While in the original PSvconstruction h is a random
element independently chosen during signing, this can be emulated in AtoSa by generating
h for all signatures via a hash function based on some common information embedded in
aux. For example, aux, could be a concatenation of all the messages and the tag. This
technique was implicitly used in Coconut [SAB+19] and Camenisch et al. [CDL+20], and
has recently been formalized by Crites et al. in [CKP+22].
We note that we should be careful when computing h, i.e., in choosing aux, as in

PS signatures one can forge signatures when obtaining two signatures on two different
messages with respect to the same element h. To prevent forgeries when aiming to aggregate
signatures, a unique base h for a set of messages signed under the same tag is required.
Therefore, we compute h as a hash of a concatenation of the messages to be signed and
corresponding verification keys, denoted as aux. This approach ensures that every signer
computes signatures on the same base h. We also introduce a new definition and function:
Aux binding. To ensure this property of h while making our construction modular, we
define a straightforward property of GenAuxTag(S), i.e., no adversary can “open” an aux
to two messages for the same signer. This definition is paired with the function VerifyAux
which is called by Sign.

59

Definition 28 (Aux binding). We split aux into a preimage and an opening: (c, o). For
all PPT A, and pp ← Setup(1λ) and (sk, vk) ← VKeyGen(1λ) there exists a negligible ε
such that:

Pr


(h, aux = (c, o), aux = (c′, o′), τ,m, τ ′,m′)← A(vk);
VerifyAux(sk, (c, o), τ,m) = 1 ∧ VerifyAux(sk, (c′, o′), τ ′,m′) = 1;
c = c′ ∧ ([τ]Rτ 6= [τ ′]Rτ ∨m 6= m′)

 ≤ ε(λ)

We will then hash the preimage, c in our construction to reduce to the GPS assumption
effectively. The o value in this definition may seem unnecessary, but it will become useful
when we introduce our IhMA construction in Section 3.4. We’ve left aux binding out of
our definition and rather defined it in our construction in order to make our definition
more generic as aux binding is simply a property we use in the proof to ensure that our
construction satisfies the definition of AtoSa.
Synchronicity assumption. We note that when we do not want to fix messages and
verification keys in aux beforehand, then we can make assumption as in synchronized
aggregate signatures [AGH10,HW18] and require each signer to only issue a single signature
per tag. In this case aux only contains the tag and in the construction below we set
c = P ρ1 ||P ρ2 and Definition 28 is trivially satisfied.

We involve the tag in signatures by exponentiating the component h with the secret part
of the tag hρ and compute the component s using this value, which clearly can be checked
via a pairing with the tag’s public part and verified like a standard PS signature. Moreover,
AtoSa allows the randomization of tag, vk and signatures via a change of representatives
tag and vk and a matching signature update.
Our construction. The construction is as follows:

Setup(1λ): Run BG = (p,G1,G2,GT , P, P̂ , e) ← BGGen(1λ) with a prime number order
p, where P is a generator of G1, P̂ a generator of G2. Pick H as a hash function:
H : {0, 1}∗ → G1. Output public parameters pp = {BG, H}.

KeyGen (pp): Choose (x, y1, y2) $← Zp and set the secret key sk = (x, y1, y2) and verification
key vk = (Ŷ1 = P̂ y1 , Ŷ2 = P̂ y2 , X̂ = P̂ x).

VKeyGen (sk): On input a secret key sk = (x, y1, y2), output vk = (Ŷ1 = P̂ y1 , Ŷ2 =
P̂ y2 , X̂ = P̂ x).

GenAuxTag(S): Given a set S = {(mj , vkj)j∈[`]}, choose (ρ1, ρ2) $← Zp, set c = P ρ1 ||P ρ2 ||(mj ,
vkj)j∈[`]. Next set all auxj = (c,⊥). Compute h = H(c) and output aux and a tag
pair (τ = (ρ1, ρ2),T = (T1 = hρ1 , T2 = hρ2)).

VerifyAux(sk, aux, τ,mj) Parse aux as (c, o). Check that τ ∈ c (i.e., that c has the form
P ρ1 ||P ρ2 ||...) and (mj , vk) ∈ c where vk is a verification key related to sk (in the same
equivalence class). Also check that no other vkj in aux has the same equivalence

60

class as sk. This can be done by checking that Ŷ2 = Ŷ
y2
y1

1 and that X̂ = Ŷ
x
y2

2 . If these
checks pass, it means that this is in the same equivalence class as the verifier’s key.
If the check doesn’t pass, it means the vkj is not in the same equivalence class.

Sign(skj , τ, auxj ,mj): Given a skj = (y1j , y2j , xj), τ , auxj and a messagemj . If VerifyAux(skj ,
auxj , τ,mj) 6= 1 return ⊥. Else, parse aux as (c, o) and compute h = H(c) and output:

σj =
(
h′, sj

)
=
(
h′ = hρ1 , sj = (hρ1)xj+y1j ·mj · (hρ2)y2j

)
Verify(vkj ,T,mj , σj): Given a vkj , tag T = (T1, T2), message mj and signature σj , parse

σj as (h′, sj) and return 1 if the following checks hold and 0 otherwise:

e(h′, X̂ · Ŷ m1
1)e(T2, Ŷ2) = (sj , P̂) ∧ T1 = h′ 6= 1G

AggrSign(T, {(vkj ,mj , σj)}`j=1): Given ` valid signatures σj = (h′, sj) for mj under vkj
and the same tag T, where j ∈ [`], outputs an aggregate signature σ on the messages
M = (mj)j∈[`] under the tag T and aggregated verification key avk = (vkj)j∈[`] as:
σ′ =

(
h′, s′ =

∏`
j=1 sj

)
.

VerifyAggr(avk,T,M, σ): Given an avk, tag T, messages M and aggregate signature
σ = (h′, s), it outputs 1 if the following checks holds and 0 otherwise:

e

h′, ∏
j∈[`]

X̂j · Ŷ
mj

1j

 e
hρ2 ,

∏
j∈[`]

Ŷ2j

 = e
(
s, P̂

)
∧ T1 = h′ 6= 1G

ConvertTag(T, µ)→ T′: On input a tag T and randomness µ, output a randomized tag
T′ = Tµ = (Tµ1 , T

µ
2).

RndSigTag(vk,T,m, σ, µ)→ (σ′,T′): Given a signature σ on message m under a valid tag
T and vk, and randomness µ. Return a randomized signature σ′ and a randomized
tag:

σ′ =
(
h′
µ
, sµ
)
, T′ ← ConvertTag(T, µ)

where is a valid signature for a new tag representative T′ ∈ [T]Rτ .

ConvertSK(sk, ω): On input sk and a key converter ω ∈ Z∗p, output a new secret key sk′
as sk′ = sk · ω.

ConvertVK(vk, ω): On input vkand a key converter ω ∈ Z∗p, output a new public key as
vk′ = vkω.

ConvertSig(vk,m,T, σ, ω): On input a vk, message m, signature σ, tag T, and key
converter ω ∈ Z∗p, return a new signature σ′ s.t. Verify(vk′,T,m, σ′) = 1, where
vk′ $← ConvertVK(vk, ω) as follows: σ′ = (h′, s′ = sω).

61

The correctness of our construction follows from inspection. We formally show the unforge-
ability and privacy notations.

Theorem 3.2.1 (Unforgeability). Our construction achieves the EUF-CMA security stated
in Def 23, under the hardness of GPS assumption, stated in Def. 2.3 in the random oracle
model.

Proof. To simplify our proof and make it more readable, we split our proof via two lemmas
such that Lemma 3.2.2 indicates that the aggregate signature with a randomizable tag
is secure in the RO model (without considering randomizable keys). To realize Lemma
3.2.2, we modify the game in Definition 23 to only output one if the forgery is on the
honest signer’s exact key, vk′ = vkj . Lemma 3.2.3 stands for randomizable verification
keys property and shows that if the aggregate signature with a randomizable tag is secure,
meaning lemma 3.2.2 is correct, we can achieve an aggregate signature with randomizable
verification keys. WLOG, we assume the game only outputs one if the forgery is on the
honest signer’s exact key vk′ = vkj′ for an index j′.

Lemma 3.2.2 (Aggregate Signatures with Randomizable Tags). Let A be an adversary
against the EUF-CMA security of the aggregate signature scheme (Def. 23). If GPS
assumption holds, then our construction in Section 3.2.3 is unforgeable when A outputs
a forgery on an exact honest verification key instead of an equivalent one. This means
that after interacting with the EUF-CMA challenger, no PPT adversary can produce
(avk = (vkj), ask = (skj),M∗ = (m∗i), τ̂∗, σ∗)j∈[`] s.t:

An A interacting with the EUF-CMA challenger produces: (j′, avk = (vkj)j∈[`] , ask =
(skj)j∈[`]\j′ ,M∗ = (m∗j)j∈[`], (τ∗,T∗), σ∗) That adversary has defeated the EUF-CMA game
if their output satisfies:

VerifyAggr (avk,T∗, σ∗,M∗) = 1 ∧
∀j ∈ [`], j 6= j′ : [vk∗j]Rvk = [vkj]Rvk ∧
[vk′]Rvk = [vkj′]Rvk ∧ ∀(m, τ) ∈ Q : m 6= m∗j ∨ [T∗] 6= [T]


Proof. We construct a reduction B using A against the GPS assumption (Def. 2.3). The
challenger of latter game will be denoted by C. We answer to the random oracle H(c) by
calling OGPS

0 (c) to generate base h where c is part of aux from Definition 28. This is a
similar call to OGPS3

0 (id) in Definition 2.3 but replacing id with c.
The reduction will continue by using the given challenge key from the GPS challenger

to sign either messages or tags. The insight for why this proof works comes from the
fact that our signature is exactly a multi-message signature (from [PS16a]) on m and ρ2

ρ1
randomized by ρ1. Our proof of security will be similar to the proof of multi-message
security in [PS16a].

Setup: B receives from C values (X̂ = P̂ x, Ŷ = P̂ y) and pp of BG. B then computes
α1, β1, α2, β2 and values: Ŷ1 = Ŷ α1P̂ β1 , Ŷ2 = Ŷ α2P̂ β2 . B then computes the challenge
key for AtoSa as vk′ = (X̂, Ŷ1, Ŷ2) and gives this to the adversary.

62

Queries: WhenA asks a signature query on a tag τ ,m, aux = (c, o), s.t VerifyAux(sk, aux, τ,m) =
1, B computes a signature as follows:

• B first requests from C a base h = H(c), by calling h ← OGPS
0 (c) which is also

a RO response. C (or RO) response as follows: if Q0[c] =⊥, pick r $← Z∗p and
compute Q0[c]← h = P r: return Q0[c], where Q0 is the list of queried messages
to OGPS

0 (or RO). Note that if h ∈ Q1 we return ⊥.

• B requests from C to compute s for a message m† = α1m + α2
ρ2
ρ1

by calling

s← OGPS
1 (m†, h). C computes this as s = h

x+(α1m+α2
ρ1
ρ2

)y. B then computes

σ =
(
h′ = hρ1 , s′ =

(
s ∗ hβ1m+β2

ρ2
ρ1

)ρ1)
and returns this to the adversary. We

can see that this verifies with the vk′ we gave the adversary earlier.

σ =
(
h′ = hρ1 , s′ =

(
h
ρ1(x+(α1ym+α2

ρ2
ρ1

)y+β1m+β2
ρ2
ρ1

)
))

Using the equations from Sign (removing the degeneracy check):

e(h′, X̂ ∗ Ŷ m
1)e(T2, Ŷ2) = e(s′, P̂)

= e(hρ1 , P̂ x ∗ P̂ (α1y+β1)m)e(hρ2 , P̂α2y+β2) = e(s′, P̂)

= e(h, P̂)ρ1∗(x+(α1y+β1)me(h, P̂)ρ2∗(α2y+β2) = e(s′, P̂)

= e(h, P̂)ρ1∗(x+(α1y+β1)m)+ρ2∗(α2y+β2) = e(s′, P̂)

= e(h, P̂)ρ1∗(x+mα1y+mβ1m+ ρ2
ρ1
α2y+ ρ2

ρ1
β2) = e(s′, P̂)

If we rearrange s′ we can see this is the same so the signature verifies correctly:

e(s′, P̂) = e(h, P̂)ρ1(x+α1ym+β1m+α2
ρ2
ρ1
y+β2

ρ2
ρ1

)

• A then repeats a polynomial number of signing queries adaptively.

Output: Eventually, A outputs a forgery as (j′, h′∗, s∗, τ∗ = (ρ∗1, ρ∗2, hρ
∗
1 , hρ

∗
2)) on messages

M∗ = (m∗1, . . . ,m∗n) under the keys (sk1, . . . , skn) and (vk1, . . . , vkn). From the
definition, we know that for an index j′, a tuple (m∗j′ , σ∗j′) should be the new signature-
message pair under vkj′ = vk′ that is aggregated in σ∗ such that A has never queried
both m∗j′ and τ∗ together. The adversary has also output all other secret keys except
for the challenge key. This allows us to isolate this key:

63

leftmirgin=* B cancels the tag out from the aggregate signature which is a new tuple as:

σ∗j′ =

h∗, s∗j′ = s∗∏
j∈[`]\j′(h∗)

xj+y1jmj+y2j
ρ∗2
ρ∗1

(h∗)−
∑

βjm
∗
j



This signature should now satisfy: e(h∗, X̂Ŷ
α1m∗j′+α2

ρ∗2
ρ∗1) = e(s∗j′ , P̂).

Send (σ∗j′ = (h∗, s∗j′), α1m∗j′ + α2
ρ∗2
ρ∗1

) under vk = (X̂, Ŷ) as a valid GPS response to C.

Because this verifies on the challenge key for a message α1m∗j′ + α2
ρ∗2
ρ∗1
, it will be a valid

forgery if this message were never queried previously. We can see that, after fixing a
challenge key Ŷ , then ∀α1, α2, Ŷ1, Ŷ2 ∈ G2, ∃β1, β2 s.t. Ŷ1 = Ŷ α1P̂ β1 , Ŷ2 = Ŷ α2P̂ β2 . This
can be seen by setting P̂ β1 to be Ŷ −1Ŷ1 (and similar for P̂ β2). This value for β1 isn’t
possible to compute in polynomial time, but it still exists and each choice of β1 is just as
likely to be chosen via random coins as any other element. Further, the distribution of
vk values resulting from the choice of β1, β2 is uniform. Thus, because of β1 and β2, the
adversary’s view is independent of α1 and α2. In the space of message/tag pairs, we have
only p3 sets of pairs ((m, ρ2

ρ1
), (m′, ρ

′
2
ρ′1

)) that satisfy this equation:

α1m+ α2
ρ2
ρ1

= α1m
′ + α2

ρ′2
ρ′1

(3.1)

(where p is the order of the group). This is because for each combination of m, ρ2
ρ1
,m′, there

is a specific value for ρ′2
ρ′1

that completes the set. Thus there are only p3 distinct sets that
meet Equation 3.1. Notice that there are p4 of these sets without the restriction in Equation
3.1. The adversary samples these sets at random when issuing queries since their view is
independent of the chosen α1, α2. In the end, the reduction will only fail if a we find a set
that satisfies Equation 3.1 in the adversary’s signature queries. Note that the adversary
cannot entirely benefit from his or her polynomial number of queries since the pair must
contain the adversary’s outputted forgery and the adversary’s view is independent of α1, α2
so their choice of which message to output must be random. Thus, the adversary outputs
a forgery m∗j′ , τ∗ which forms a pair with each q query issued previously (where q is the
polynomial number of signing queries). Thus, the chance that our adversary outputs a
forgery that meets Equation 3.1 with a previous query (which would mean our reduction
does not constitute a forgery) is p3∗q

p4 which is negligible since p is exponential and q is
polynomial in the security parameter.

Note that we never ask OGPS
1 for a second signature on any given h. This is because of

Aux binding (Definition 28). The value we pass to OGPS
0 is based on the messages and tags

we sign. Thus, if the adversary asks for a second signature on a particular message/tag

64

pair, the resulting h will either be the same (meaning we can simply return the previous
signature) or be a fresh result from OGPS

0 , meaning that this h has not been seen before.

Lemma 3.2.3 (Aggregate Tag based Signatures with randomizable Keys). An adversary
cannot produce a valid forgery in Definition 38 without querying the corresponding ran-
domization of the challenge verification key, vk′, thus allowing a reduction to extract this
randomization and de-randomize the signature to verify with this key.

To prove the randomization (flexible) public keys property, we follow proof of convert
Mercurial signature [CL19]. Assume there exists a generic group, PPT algorithm A
that can break the unforgeability of aggregate signature scheme randomizable tag and
public keys; that is, when given an honest verifier key, vk′, A is able to produce a forgery
(avk = {vk∗i }, ask, τ∗,M∗, σ∗) that satisfies the following conditions with non-negligible
probability:

[vk′]Rvk = [vk∗1]Rvk ∧ ∀m ∈ Q,m
∗
1 6= m∧

VerifyAggr(avk,T∗,M∗, σ∗) = 1

Where WLOG, vk∗1 is in the same equivalence class as vk′ (with this construction, the
adversary’s forgery can always be rearranged to produce a forgery like this). The fact that
vk∗1 belongs to the same equivalence class as vk′ implies that there exists some α ∈ Z∗p
such that vk′ = vkα1 . We can construct a PPT reduction, B that creates a forgery for
an aggregate tag based signature scheme using A, then use Lemma 3.2.2 to prove our
construction secure. The challenger C in the tag based signature unforgeability game for B
chooses values (x, y1, y2) $← Z∗p, sets vk′ = (X̂, Ŷ1, Ŷ2) = (P̂ x, P̂ y1 , P̂ y2), and forwards vk′
to B.

On input vk′, B operates as follows:

• B forwards vk′ to A and runs A(vk′). B forwards A’s signature queries to the AtoSa
(with inflexible public keys) challenger and forwards the results to A. B also services
and records A’s GGM queries.

• B obtains A ’s forgery (avk = {vk∗i },M∗ = {m∗i }, σ∗, τ∗).

• If, via this process, it is possible for B to obtain α, B can remove α and outputs
(avk′ = {(vk∗i)α},M∗, σ′ = (h, (s∗)α), τ∗) as his forgery; else, B outputs ⊥.

Now, let us analyze this reduction. One of these vk∗i is in the same equivalence class as vk′.
WLOG, we’ll say this is vk∗1.

Claim 3.2.3.1. If [vk′]Rvk = [vk∗1]Rvk , then the generic group model reduction B can obtain
α ∈ Z∗p such that vk′ = (vk∗1)α.

Proof. Initially, before any queries are made, the elements of G2 that A has seen are P̂
and vk′ = (X̂, Ŷ1, Ŷ2). Any output in G2 by the adversary must be from a GGM query of
the form:

Pα1 ∗ X̂αx ∗ Ŷ αy1
1 ∗ Ŷ αy2

2

65

Where α1, αx, αy ∈ Zp. We can rewrite this as:

Pα1+xαx+y1αy1+y2αy2

This must be the form of the adversary’s output, vk∗1 = X̂∗1 , Ŷ
∗

1 .

X̂∗1 = Pα
(X̂∗)
1 +xα(X̂∗)

x +y1αy1
(X̂∗)+y2αy2

(X̂∗)

Ŷ ∗1,1 = Pα
(Ŷ1
∗)

1 +xα(Ŷ1
∗)

x +y1αy1
(Ŷ1
∗)+y2αy2

(Ŷ1
∗)

Ŷ ∗2,1 = Pα
(Ŷ2
∗)

1 +xα(Ŷ2
∗)

x +y1αy1
(Ŷ2
∗)+y2αy2

(Ŷ2
∗)

Where, for example, α(X̂∗)
y1 is the adversary’s coefficient for the secret value, y1, when

computing their forgery verification key, X̂∗. We want to prove that α(X̂∗)
1 , α(Ŷ1

∗)
1 , α(Ŷ2

∗)
1 ,

α
(Ŷ1
∗)

x , α(Ŷ2
∗)

x , α(Ŷ2
∗)

y1 , α(X̂∗)
y1 , α(X̂∗)

y2 , and α
(Ŷ ∗1)
y2 are zero and α

(X̂∗)
x is equal to α(Ŷ1

∗)
y1 and

α
(Ŷ2
∗)

y2 . If so, we will know that α(X̂∗)
x = α

(Ŷ1
∗)

y1 = α
(Ŷ2
∗)

y2 = α and we can compute the
forgery for the AtoSa game. We can think of the exponents as polynomials:
p∗
X̂

(x, y) = α
(X̂∗)
1 + xα

(X̂∗)
x + y1α

(X̂∗)
y1 + y2α

(X̂∗)
y2 ,

p∗
Ŷ1

(x, y) = α
(Ŷ1
∗)

1 + xα
(Ŷ1
∗)

x + y1α
(Ŷ1
∗)

y1 + y2α
(Ŷ1
∗)

y2 ,

p∗
Ŷ2

(x, y) = α
(Ŷ2
∗)

1 + xα
(Ŷ2
∗)

x + y1α
(Ŷ2
∗)

y1 + y2α
(Ŷ2
∗)

y2 ,
Signatures are exclusively in G1, so the adversary does not learn any more elements in
G2. If the adversary outputs a vk∗1 where α(X̂∗)

1 6= 0, α(X̂∗)
y1 6= 0, or α(X̂∗)

y2 6= 0, then X̂∗1
and X̂ ′ (in vk∗1 and vk′) are the result of queries to the GGM of distinct polynomials in
Zp[x, y1, y2] where p is the size of the groups of the bilinear pairing. There is a similar
arguement for Ŷ ∗1,1 and Ŷ ∗2,1. Thus, according to the Schwartz-Zippel lemma, the chance
that these two polynomials evaluate to the same value when x, y are chosen randomly, is
negligible. Thus, if we have B output random encodings independent of x, y1, y2 and later
define x, y1, y2, there is a negligble chance that A can compute a non-zero value for α(X̂∗)

1 ,
α

(Ŷ1
∗)

1 , α(Ŷ2
∗)

1 , α(X̂∗)
y1 , α(X̂∗)

y2 , α(X̂∗)
y1 , α(Ŷ2

∗)
y1 , α(X̂∗)

y2 , or α(Ŷ1
∗)

y2 where the resulting vk∗1 is still
in the equivalence class of vk′. This proves claim 1.
After proving that only α

(X̂∗)
x , α(Ŷ1

∗)
y1 and α

(Ŷ2
∗)

y2 are non-zero, it holds that α(X̂∗)
x =

α
(Ŷ1
∗)

y1 = α
(Ŷ2
∗)

y2 = α as, otherwise, [vk∗1]R 6= [vk′]R.
We can see from the Verify algorithm that, if the reduction can recover α such that vk∗1 =

(vk′)α, and (avk,m∗, σ∗, τ∗) is a valid forgery for our AtoSa scheme with randomizable public
keys, then (avk′,m∗, σ′, τ∗) is a valid forgery for our AtoSa scheme without randomizable
public keys:

avk = {X̂j , Ŷ1,j , Ŷ2,j},
avk′ = {X̂

1
α
j , Ŷ

1
α

1,1, Ŷ
1
α

2,1},

66

e(h,
∏
i∈[`]

X̂j ∗ Ŷ m
1,j)e(hρ2 ,

∏
j∈[n]

Ŷ2,j) = e(s, τ̂∗),

e(h,
∏
i∈[`]

X̂
1
α
j ∗ Ŷ

1
α
m

1,j)e(hρ2 ,
∏
j∈[n]

Ŷ
1
α

2,j) = e(s
1
α , τ̂∗),

We know that (vk∗1)
1
α = vk′ and so we can use Lemma 1 with avk† = avk

1
α , σ† = (h, s

1
α) to

reduce this to breaking the GPS.

Theorem 3.2.4 (Privacy). Our construction is origin-hiding of ConvertSig, origin-hiding
of RndSigTag, tag class hiding and has public key class-hiding based on Def. 26, Def. 27,
Def. 25, and Def. 24, respectively.

The proof of tag class-hiding follows exactly from the message class hiding of the FHS
scheme in [FHS19]. The proof of other properties is provided in our paper [MBG+23].

3.3 Aggregate Mercurial Signatures With Randomizable Tags
We now present an aggregate mercurial signature with randomizable tags (ATMS). Similar
to AtoSa, (see Def. 21), one can aggregate mercurial signatures of different messages under
different keys under the same tag and randomize those signatures, public keys, and tags.
ATMS differs from AtoSa by in addition supporting equivalence classes on the message
space. This further allows the randomization of messages, leading to a feature known
from structure-preserving signature on equivalence classes (SPSEQ) and, more precisely,
mercurial signatures.
To achieve the aggregation property, we follow the strategy presented by Crites et al.
in context of threshold SPS [CKP+22], where the authors define a so called Indexed
Diffie-Hellman message spaceMH

iDH. But the main problem with this approach, as it is
defined over both groups, is that we can not define indistinguishable equivalence classes over
Gk

1 ×Gk
2, since spanning both groups makes DDH easy and would yield trivial linkability.

Note that given both ((M1,M2), (N1, N2)) and ((M ′1,M ′2), (N ′1, N ′2)), one can easily link
them together by checking e(M1, N ′2) = e(M2, N ′1) and e(M ′1, N2) = e(M ′2, N1) holds. So
we adapt MH

iDH and define a new message space called a Tag-based DH message space
MH

TDH and its corresponding EQ relation. We essentially define one equivalence class
per group and tie them together via the message, the tag, and an index obtained via
some auxiliary information (similar to the aux in the case of AtoSa). Indeed we adapt the
Diffie-Hellman message spaceMDH to a Tag-based DH message spaceMH

TDH for a tuple
(aux, h,T,M,N), which includes a tag T with auxiliary data aux (instead of the id).

This new message space then allows us to aggregate and define an equivalence (EQ)
relation which gives an indistinguishable message space.

3.3.1 Formal Definitions
We begin our definitions by introducing Tag-based DH message space MH

TDH and give
an instantiation in the random oracle model (ROM). Then we define a new EQ relation

67

regarding this message spaceMH
TDH, and finally, we define our new primitive ATMS.

A Tag-based DH message space. We adapt the message indexing technique introduced
by [CKP+22] (cf. Def. 9) to tags:

Definition 29 (A Tag-based DH message space (MH
TDH)). Let H be a random oracle.

For the aux and tag T = (hρi)i∈[k], we defineMH
TDH as a tag based DH message space, if

the following property holds: For the messages vector (M,N) = (M1, . . . ,Mk, N1, . . . , Nk)
there exists mi ∈ Zp s.t. for each tuple (aux, Ti = hρi ,Mi = Tmii , Ni = P̂mi), the following
holds: e(Mi, P̂) = e(Ti, Ni).

We provide an instantiation in Fig. 3.2. Let us assume WLOG a message vector with the
length k = 2 as m = (m1,m2), this can be generalized to any length k > 1.

MH
TDH(T = (hρ1 , hρ2), aux,m):

• h← H (aux)

• for i ∈ [2]:
– Mi ← hmiρi

– Ni ← P̂mi

• return (M,N)

H (aux):

• If QH [aux] =⊥:

• r
$← Zp

• QH [aux]← P r := h

• return QH [aux]

Figure 3.2: Tag based Diffie-Hellman message space in ROM

Equivalence relations (EQ) over MH
TDH. Let the message space MH

TDH be defined
as (M,N) = (M1,Mk, N1, . . . , Nk) ∈ (G∗1)k × (G∗2)k such that for (h,T), and i ∈ [k]:
e(Mi, P̂) = e(Ti, Ni). Now we can define a family of equivalence relations IR` so that for
any ` with 1 < k ≤ `. We define the following equivalence relation RTDH ∈ IR` and the
equivalence class [(M,N)]RTDH of a message vector with size k. More concretely, for a fixed
bilinear group BG and (k, `), we define RTDH ∈ IR` as follows:

Definition 30 (Equivalence relations of MH
TDH message spaces). If vectors of a pair

(M,N) ∈ (G∗1)k × (G∗2)k is a message vector from MH
TDH, then the equivalence relations

[(M,N)]RTDH defined as

RTDH =
{

(M,N), (M′,N′) ∈ (G∗1 ×G∗2)k × (G∗1 ×G∗2)k ⇔ ∃(µ, υ) ∈ Z∗p :
M′ = Mµυ,N′ = Nυ

}

Note that the EQ relation for an aggregate signature on a set of vectors M = ((Mj ,Nj))j∈[`]
is the family (set) of relation as above, while all vectors use the same randomness M =
((Mµυ

j ,Nυ
j))j∈[`]. For instance, the j’th message vector (Mj ,Nj) ∈ [(M,N)]RjTDH

is in the
class RjTDH ∈ IR` and if one more signature-message pair is added to the set, we have
Rj+1

TDH ∈ IR`, where j + 1 < `. Moreover, we consider the EQ relation for verification keys

68

vk and Tag similar to AtoSa and indicate as Rvk (see Def. 2.4.1.5) and Rτ as stated in
Def. 3.2.1. We again denote by T the space of all tags. We present our ATMS scheme in
Definition 31.

Definition 31 (Aggregate Mercurial Signatures with Randomizable Tag (ATMS)). An
ATMS scheme, associated with the parameterized equivalence relations IR`, RTDH, Rτ and
Rvk, and also message spaceMH

TDH consists of the algorithms:

Setup(1λ)→ pp: On input the security parameter λ, output the public parameters pp.

KeyGen (pp)→ (sk, vk): On input the public parameters pp, output a key pair (sk, vk).

VKeyGen (sk): On input a secret key sk, output a verification key vk.

GenIdxTag(S) → (auxj , (τ,T)): Given a set S = ((Mj ,Nj) , vkj)j∈[n] of messages and
keys, output auxiliary data auxj and a tag pair (τ,T) where τ is the secret part and
T is the public part of tag and all vkj should be distinct.

Sign(skj , τ, auxj , (Mj ,Nj))→ σj : On input a secret key skj , tag’s secret τ , auxiliary data
auxj and message vector (Mj ,Nj) ∈MH

TDH, output a signature σj under the τ , vkj
and (Mj ,Nj).

Verify(vkj ,T, (Mj ,Nj), σj)→ {0, 1}: Given a verification key vkj , tag’s public T, message
vector (Mj ,Nj) and signature σj , output 1 if σj is valid relative to vkj , (Mj ,Nj)
and T, and 0 otherwise.

VerifyTag(T, τ, σ)→ {0, 1}: Given a tag’s public T, tag’s secret signature σ, output 1 if
T is valid relative to σ, and τ , and 0 otherwise.

AggrSign(T, (vkj , (Mj ,Nj), σj)`j=1)→ σ′ Given ` signed messages (Mj ,Nj) in σj under
vkj for j ∈ [`] and the same tag T, output a signature σ on the messages M =
((Mj ,Nj))j∈[`] under the tag T and verification key avk = (vkj)j∈[`].

VerifyAggr(avk,T,M, σ)→ {0, 1}: Given a verification key avk, tag T, messages M and
signature σ, output 1 if σ is valid relative to avk, M and T, and 0 otherwise.

ConvertTag(T, µ)→ T′: On input a tag T and randomness µ, output a randomized tag
T′ ∈ [T]Rτ (i.e., a new representative of tag).

ChangRep((M,N), σ,T, (µ, υ))→ (σ′,T′): On input a representative (M,N) ∈ [(M,N)]RTDH ,
T ∈ [T]Rτ , signature σ and randomness (µ, υ), return a new signature ((M′,N′),T′, σ′),
where M′ = Mµυ ∧N′ = Nυ ∈ [(M,N)]RTDH and T′ ← ConvertTag(T, µ) are the
new representatives and σ′ is valid for (M′,N′) and [T]Rτ .
This will also apply for a set representative M such that one can get a new set
representative M′ by scaling all message with the same (µ, υ).

69

ConvertSK(sk, ω)→ sk′: On input a sk and key converter ω, output a new secret key sk′.

ConvertVK(vk, ω)→ vk′: On input a vkand key converter ω, output a new public key vk′.

ConvertSig(vk,T, (M,N), σ, ω) → σ′: On input a vk, message vector (M,N), signature
with tag (σ,T), and key converter ω, return a new signature σ′ such that Verify(vk′,
T, (M,N), σ′) = 1, where vk′ ← ConvertVK(vk, ω).

The VerifyTag and VKeyGen are only used for the security game.

3.3.2 Security Definitions

Correctness. As usual we require that honest signatures verify as expected, but need to
consider all the randomizations as well as the aggregation.

Definition 32 (ATMS correctness). For all: S,λ,(M,N) ∈MH
TDH such that:

pp← Setup(1λ)
aux,T, τ := GenAuxTag(S)
(σi)`i=1 = (Sign(ski, τ, aux, (Mi,Ni)))`i=1,

σ′ := AggrSign(T, (vkj , (Mj ,Nj), σj)`j=1)

Then:

∧̀
i=1

Verify(vki,T, (Mi,Ni), σ′i) = 1.

VerifyAggr(avk,T(Mi,Ni)`i=1, σ
′)

Further, for randomization, if ∀ τ secret part of the tag, (m(1)
1 ,m

(1)
2)`i=1 ∈ Z2`

p , keys honestly
generated (ski, vki)`i=1 and for all randomness (γ, β, ω), for all σ, {σi}i∈[`],T, if

∧̀
i=1

Verify(vki,T, (Mi,Ni), σi) = 1.

VerifyAggr(avk,T, (Mi,Ni)`i=1, σ)
(σ′i,T′)`i=1 = (ChangRep(vki,T, (Mi,Ni), (γ, β)))`i=1,

(vk′i)`i=1 := (ConvertVK(vki, ω))`i=1

(σ′′i)`i=1 := (ConvertSig(vki, (Mi,Ni),T′, σ′i, ω))`i=1

(T†i) := ConvertTag(T, ω)
σ∗ := AggrSign(T′, (vkj , (Mj ,Nj), σ′′j)`j=1)

70

then

VerifyAggr(avk,T′, (Mi,Ni)`i=1, σ
∗)

VerifyAggr(avk,T†, (Mi,Ni)`i=1, σ
∗)∧̀

i=1
Verify(vk′i,T′, (Mi,Ni), σ′i) = 1.

∧̀
i=1

Verify(vki,T†, (Mi,Ni), σ′′i) = 1.

Also ∀(sk, vk) honestly generated T and (M,N) then
ChangRep(vk,T, (M,N), σ, ·) is a group morphism from Z∗2p to SIG, moreover, we have

ω 7→
(

ConvertSK(sk, ω),ConvertVK(vk, ω),
ConvertSig(vk, (M,N),T, σ′i, ω)

)

is a group morphism from Z∗2p to SK × VK × SIG

Unforgeability. The unforgeability game follows the unforgeability definition of AtoSa
(see Def. 23). It is slightly modified to fit with our additional EQ relation (Def. 30), i.e.,
unforgeability is defined with respect to message classes and in addition need to check
VerifyTag.

Definition 33 (Unforgeability). An ATMS is unforgeable if for all PPT A having access
to the oracle OSign() there exists a negligible function ε s.t: Pr[ExpUnfATMS,A(λ) = 1] ≤ ε(λ)
where the experiment ExpUnfATMS,A(λ) is defined in Fig. 3.3 and Q is the set of queries
that A has issued to OSign().

ExpUnfATMS,A(λ):

• Q := ∅; pp← Setup(1λ);

• (vk′, sk′)← KeyGen(pp);

• (j′, avk = (vkj)j∈[`] , ask = (skj)j∈[`]\j′ ,M∗ = ((M∗j ,N∗j))j∈[`],T∗, τ∗, σ∗)←
AO(pp, vk′)

• (vk∗j := VKeyGen(skj))j∈[`],j 6=j′ Return:VerifyAggr (avk,T∗, σ∗,M∗) = 1 ∧ VerifyTag(T∗, σ∗, τ∗) ∧ ∀j ∈ [`], j 6= j′ :
[vk∗j]Rvk = [vkj]Rvk ∧ [vk′]Rvk = [vkj′]Rvk∧

∀((M,N),T) ∈ Q : [(M,N)]RTDH 6= [(M∗j ,N∗j)]RTDH ∨ [T]Rτ 6= [T∗]Rτ



OSign((τ,T), aux, (M,N)):

• σ ←
Sign(sk′, τ, aux, (M,N))

• Q = Q ∪ {(M,N),T},
Return σ

Figure 3.3: Experiment ExpUnfATMS,A(λ)

71

Privacy guarantees. Similar as in Section 3.2, we consider the privacy notations Origin-
hiding of ConvertSig, and Public key class-hiding (it is the same as Def. 24). We note that
all definitions can be updated due toMH

TDH message space (receptively EQ relations of
MH

TDH) instead of the vector M. Origin-hiding of ConvertSig definition can be updated
straightforwardly as follows:

Definition 34 (Origin-hiding of ConvertSig for ATMS). For all λ, and pp ∈ Setup(1λ),
for all (vk, (M,N), σ,T), if Verify(vk,T, (M,N), σ) = 1, and (ω, υ, µ) ∈ Z∗p, then σ′ ←
ChangRep((M,N),ConvertSig(vk,T, (M,N), σ, ω),T, (υ, µ)) outputs a uniformly random
in the respective spaces s.t. Verify(vk′,T′, (M′,N′), σ′) = 1, where vk′ $← ConvertVK(vk, ω)
outputs a uniformly random element of [vk]Rvk .

However, since this is a variant of SPSEQ we consider the adaption property similar
to [FHS19] below, an additional property which guarantees that signatures from ChangRep
and Sign are identically distributed. This definition also covers Origin-hiding of ConvertTag.
Definition 35 (Perfect Adaption of Signatures). An ATMS scheme perfectly adapts sig-
natures if for all (vk,T, (M,N), σ, (µ, υ)) with (M,N) ∈ MH

TDH ∧ Verify(vk,T, (M,N),
σ) = 1 ∧ (µ, υ) ∈ Z∗p we have that the output of (σ′,T′)← ChangRep(σ, (M,N),T, (µ, υ))
is a uniformly random element in the respective space, conditioned on Verify(vk,Tµ, (
Mµυ,Nυ), σ′) = 1.

3.3.3 Construction
Our construction is inspired by the message-indexed SPS by Crites et al. [CKP+22]
(see Def. 2.4.1.3), which is a variant of Ghadafi’s SPS [Gha16] (see Def. 2.4.1.2). We
use the tag-based message definition MH

TDH (Def. 29) instead of the message-indexed
(Def. 9). For simplicity, we assume a message vector with the length k = 2 as (M,N) =
((M1,M2), (N1, N2)), but this can be straightforwardly generalized to any length k > 1.
Similar to the construction in Section 3.2.3, we again need aux binding to make this
particular construction work.

Definition 36 (Aux binding for ATMS). We split aux into a preimage and an opening:
(c, o). For all PPT A, and pp ← Setup(1λ) and (sk, vk) ← VKeyGen(1λ) there exists a
negligible ε such that:

Pr

(aux = (c, o), aux = (c′, o′), τ, (M,N), τ ′, (M′,N′))← A(vk);
VerifyAux(sk, (c, o), τ, (M,N)) = 1 ∧ VerifyAux(sk, (c′, o′), τ ′, (M′,N′)) = 1∧
c = c′ ∧ (τ 6= τ ′ ∨ (M,N) 6= (M′,N′))

 ≤ ε(λ)

Synchronicity assumption. Same as in Section 3.2.3, instead of fixing messages and
verification keys in aux, we can make same assumption as in synchronized aggregate
signatures and simply set c = P ρ1 ||P ρ2 in the construction below and Definition 28 is
trivially satisfied.
Our construction. The construction is as follows:

72

Setup(1λ): Run BG = (p,G1,G2,GT , P, P̂ , e) ← BGGen(1λ) with a prime number order
p, where P a generator of G1, P̂ a generator of G2 and H a hash function: H :
{0, 1}∗ → G1, output pp = (G1,G2,GT , P, P̂ ,H).

KeyGen(pp): Given pp, sample sk = (x, y1, y2, z1, z2) $← (Z∗p)5, and vk = (X̂ = P̂ x, Ŷ1 =
P̂ y1 , Ŷ2 = P̂ y2 , Ẑ1 = P̂ z1 , Ẑ2 = P̂ z2).

VKeyGen (sk): Given sk = (x, y1, y2, z1, z2), return vk = (X̂ = P̂ x, Ŷ1 = P̂ y1 , Ŷ2 =
P̂ y2 , Ẑ1 = P̂ z1 , Ẑ2 = P̂ z2).

GenIdxTag(S): Given a set S = {(Mj ,Nj , vkj)j∈[n]}, choose (ρ1, ρ2) $← Zp, set τ =
(ρ1, ρ2),T = (T1 = hρ1 , T2 = hρ2), and c =

(
P ρ1 ||P ρ2 ||(Nj , vkj)j∈[n]

)
, where h =

H(c) and auxj = (c, o =⊥).

VerifyAux(sk, aux, (τ1, τ2), ((M1,M2), (N1, N2))): Extract (T1, T2), parse aux as (c, o). Check
that ((M,N), [VKeyGen(sk)]) ∈ aux (i.e., c = ...||((M,N), [VKeyGen(sk)])||...) s.t no
other vk in aux related to sk and check that (T1, T2) = (hτ1 , hτ2) . Compute h := H(c).
Output

∧2
i=1 e(Mi, P̂) = e(hτi , Ni).

Sign (skj , τ, auxj , (M,N)): Given a skj , τ, auxj = (c,⊥), and message (M,N) = ((M1,
M2), (N1, N2)) ∈ MH

TDH. Parse τ as (ρ1, ρ2). Run VerifyAux(sk, aux, τ, (M,N)) and
verify that this outputs 1. If so compute h = H(c) and output a signature as:

σ = (h, b =
∏
j∈[2]

hρj ·zj , s = (hx ·
∏
j∈[2]

M
yj
j)).

Verify(vk,T, (M,N), σ): Given a vk, tag T = (T1 = hρ1 , T2 = hρ2), message (M,N) and
signature σ = (h, b, s) return 1 if the following holds and 0 otherwise:

e(h, X̂)
∏
j∈[2]

e(Mj , Ŷj) = e(s, P̂) ∧ e(b, P̂) =
∏
j∈[2]

e(Tj , Ẑj)

2∧
j=1

e(Tj , Nj) = e(Mj , P̂)

VerifyTag(T, τ, σ): Given τ = (τ1, τ2), σ = (h, b, s), output 1 if Ti = hτi for all i ∈ {1, 2},
and 0 otherwise.

AggrSign(T, (vki, (Mi,Ni), σi)`i=1): Given ` valid signatures σi = (h, bi, si) for (Mi,Ni)
under vki and the same tag T for i ∈ [`], return ⊥ if all h are not the same, else output
a signature σ on the messages M = ((Mi,Ni))i∈[`] under the tag T and aggregated
verification key avk = (vk1, . . . , vk`) as follows: σ =

(
h, b′ =

∏`
i=1 bi, s

′ =
∏`
i=1 si

)
.

73

VerifyAggr(avk,T,M, σ): Given avk = (vk1, . . . , vk`), tag T = (T1 = hρ1 , T2 = hρ2),
messages M and signature σ = (h, b, s), check if the following checks holds and 0
otherwise: ∏

i∈[`]

e(h, X̂i)
∏
j∈[2]

e(Mij , Ŷij) = e(s, P̂) ∧ e(b, P̂) =
∏
i∈[`]

∏
j∈[2]

e(Tj , Ẑij)

∧
j∈[2]∧i∈[`]

e(Tj , Nij) = e(Mij , P̂)

ConvertTag(T, µ)→ T′: On input a tag T and randomness µ, output a randomized tag
T′ = (hρ1µ, hρ2µ).

ChangRep(σ, (M,N),T, (µ, υ)): On input a representative (M,N) ∈ [(M,N)]RTDH , T ∈
[T]Rτ , signature σ = (h, b, s), and (µ, υ) ∈ (Z∗p)2, output:

σ′ =
(
h′ ← hµυ, b′ ← bµ, s′ ← sµυ,T′ ← ConvertTag(T, µ)

)
,

which is a valid signature for new representatives (Mµυ = M′,Nυ = N′) ∈
[(M,N)]RTDH and T′ = (hρ1µ, hρ2µ) ∈ [T]Rτ .

ConvertSK(sk, ω)→ sk′: On input a sk and key converter ω ∈ Z∗p, output a new secret key
as sk′ = sk · ω.

ConvertVK(vk, ω) → vk′: On input a vkand key converter ω ∈ Z∗p, output vk′ = vkω =
(X̂ω, Ŷ ω

1 , Ŷ
ω

2 , Ẑ
ω
1 , Ẑ

ω
2).

ConvertSig(vk, (M,N), σ,T, ω)→ σ′: On input a vk, message (M,N), signature σ with
tag T, and key converter ω ∈ Z∗p, returns a new signature σ′ as: σ′ = (h, bω, sω).

Note that one can reduce the number of paring operations in VerifyAggr by using batching
verification techniques (cf. [FGHP09]).

Theorem 3.3.1 (Privacy). Our construction is origin-hiding of ConvertSig (Def. 26),
public key class-hiding (Def. 24), and provides perfect adaption of signatures (Def. 35).

We refer to [MBG+23] for the proof of Theorem 3.3.1.

Theorem 3.3.2 (Unforgeability). Our construction is EUF-CMA secure regarding the
definition 33 in the generic group model for Type-III bilinear groups.

The proof of Theorem 3.3.2 is provided in our paper [MBG+23].

74

3.4 Application to AC

As our core application we present Issuer-Hiding Multi-Authority Anonymous Credentials
(IhMA). In a multi-authority setting [HP22], credentials come from ` different credential
issuers. Naively, the showing of credentials requires ` independent credentials to be shown.
This can be overcome [HP22] by leveraging aggregate signatures, obtaining a compact
AC system with compact-size credentials, and showing costs. However, verifying a user’s
credentials needs knowledge of all issuers’ verification keys, which might violate user privacy.
Thus, in the vein of [BEK+21] we introduce the issuer-hiding property for multi-authority
credentials. We recall that here the verifier can define a set of acceptable issuers in an
ad-hoc manner. Then a user can prove that the subset of credentials shown were issued by
acceptable issuers without revealing which credential corresponds to which issuer. This is
an important feature, especially in multi-authority settings where disclosing issuer keys
can reveal too much information compared to a single issuer setting and already lead to
identification of the user.

3.4.1 Formal Definition

Our definition supports multiple users (uj)j∈[`] and multiple credential issuers (CIj)j∈[`].
An issuer can generate a key pair of secret and verification keys (isk, ivk) via IKeyGen().
Similarly, users runs UKeyGen() to generate a user key pair (usk, uvk). Each issuer can
then issue a credential (cred) on an attribute (a) or attribute-set (A) to a user who can
verify the received credential locally. Indeed, when we use AtoSa, we consider an attribute
a (i.e., the attribute set includes only one attribute); when we use ATMS, we consider
an attribute set, A. We use the notation A, to define security and formal definitions for
consistency of definitions.
Users can then use the CredAggr algorithm to aggregate all credentials and create a

single credential valid for all attributes and verification keys. To define the set of accepted
issuers, a verifier generates a key-policy pol using GenPolicies (it is known as Presentation
policies in [BEK+21]), which can be checked for well-formedness by everyone. Finally, with
an aggregate credential (disclosing a subset attributes D) and some key-policy pol from
the verifier, a user uses Show to derive a proof, which a verifier can verify.

Definition 37 (Issuer-Hiding Multi-Authority Credentials (IhMA)). An IhMA is defined
by the following algorithms/protocols:

• Setup: On input a security parameter λ, output public parameters pp (implicit input to
all algorithms) .

• IKeyGen: Generate a key pair (isk, ivk) for an issuer i.

• UKeyGen: Take a message-key set S, generate a user key pair (usk, uvk) which acts as
user’s identity and auxiliary data aux.

75

• Issuance: In this protocol, an issuer i associated to (isk, ivk) creates a credential cred on
an attributes-set A to a user u associated to (usk, uvk) as follows:

[CredObtain(usk, ivk,A)↔ CredIssue(isk, uvk,A)]→ cred

• CredAggr: Take as input a usk of user and a list of credentials (ivk,Ai, credi) for i ∈ [`]
and output an aggregated credential cred of attributes-set {Ai}i∈[`]:

CredAggr
(
usk, {(ivk,Ai, credi)}i∈[`]

)
→ cred

• GenPolicies: A verifier with the secret key vsk can define policies defining sets of issuers
{ivk}i∈[n] they are willing to accept for certain Show sessions, we have:

GenPolicy(vsk, {ivk}i∈[n])→ pol, where n ≤ `

• Show: In this protocol, a user u with (usk, uvk) runs CredShow and interacts with a
verifier running CredVerify to prove that she owns a valid credential cred on disclosed
attribute sets D ⊆ {Ai}i∈[`] issued respectively by one or some credential issuers in pol:[

CredShow(usk, pol, {(ivk,Ai)}i∈[`], cred, D)↔
CredVerify(pol, (ivki)i∈[`], D)

]
→ (0, 1)

3.4.2 Security Definitions
We define our security model based on the game-based framework in [FHS19,HP22], with
some modifications to harmonize their definition with the one on IhMA and consider the
use of multi-authority and issuer-hiding properties. The adversary A has access to the
following oracles that describe the possible ways to interact with the IhMA. Moreover, we
define some global lists that are shared among oracles as HU a list of honest users and
CU a list of corrupted users, similarly we define HCI and CCI for the honest/corrupted
credential issuers. Also, Luk stands for a list of user’s keys and Lcred which is a list of
user-credential pairs which includes issued credentials and attributes, and to which users
they were issued. A credential in Lcred can be empty (⊥) if the user has not received a
credential on this attribute yet. For simplicity we assume a tag τ includes aux as well.

• OHCI(i): Create an honest issuer with identity i. If i already exists (i.e. i ∈ HCI ∪CCI),
output ⊥. Otherwise, run (isk, ivk)← IKeyGen(i), add (i, isk, ivk) ∈ HCI, and return
ivk.

• OCorruptCI(i): Corrupt a credential issuer i. If i does not exist (i.e. i /∈ HCI ∪ CCI),
create a new corrupted issuer by appending i to CCI. Otherwise, if i ∈ HCI, remove i
from HCI, add it to CCI and output isk. Note that A does not allow to corrupt the
challenge key vk′.

76

• OUser(u, S): On input a user identity u and issuer/attributes pairs {(ai, vki)} ∈ S. If
u ∈ HU or u ∈ CU , return ⊥. Else, create a fresh entry u by running (usk, uvk, aux)←
UKeyGen and adding u and (usk, uvk, aux) to the list HU and Luk, receptively. Then,
for each (ai, vki) ∈ S, add LS [i]. Return uvk.

• OCorruptU(u): On input a user identity u and a user public key uvk. If u /∈ HU , register
a new corrupt user with uvk and add u ∈ CU . Else, move the entry corresponding to u
from HU and add it to CU , output usk and all the related credentials items (u,Ai, credi)
of Lcred[u].

• OObtIss(u, i,Ai): (Perform an honest issuing/obtaining) Take as input a user identity u,
issuer identity i, and attribute(s) Ai. If u /∈ HU ∨ i /∈ HCI, return ⊥. Else, find entries
(usk ∈ Luk, isk ∈ HCI), and run the issuing protocols:

[CredObtain(usk, ivk,Ai)↔ CredIssue(isk, uvk,Ai)]→ credi

and add the entry (u,Ai, credi) to Lcred, where credi includes auxi.

• OObtain(u, i,Ai): (Perform an honest obtaining of a credential with a malicious issuer)
On input a user identity u ∈ HU , issuer identity i ∈ CCI and attributes Ai. If
u /∈ HU ∨ i /∈ CCI, return ⊥. Else, find usk ∈ Luk, and run the Obtain protocol with A:

[CredObtain(usk, ivk,Ai)↔ A]→ credi

If credi =⊥, return ⊥. Else, append the resulting output (u,Ai, credi) to Lcred.

• OIssue(u, i,Ai): (Perform a malicious obtaining of a credential with an honest issuer) On
input a user identity u ∈ CU , issuer i ∈ HCI, and attributes Ai. If u /∈ CU ∨ i /∈ HCI,
return ⊥. Else, find entries isk ∈ HCI, and run Issuing with A:

[A ↔ CredIssue(isk, uvk,Ai)]→ credi

Append elements (u,Ai, credi) to Lcred. This oracle is used by a corrupted user u to get
a credential from a honest issuer.

• OCredShow(j, pol,D): On input an index of an issuance j, key-policy pol and attributes-
subset D. First parses Lcred[j] as (u,Ai, credi), where credi is the credential issued by
an issuer ivk on Ai for a user u during the i-th query to OObtIss or OObtain. If i /∈ HU
return ⊥. Else, run (with the adversary):
CredShow(usk, pol, {(ivk,Ai)}i∈[`], cred, D)↔ A.

(OObtain) and (OIssue) are defined specifically for the anonymity ExpAno and the unforge-
ability ExpUnf, respectively. The other oracles are common between ExpAno and ExpUnf.
Correctness We require that honestly issued credentials shown to honest verifiers always
verify with a caveat. If a user does not specify a particular issuer and attribute when User

77

is called, then if that issuer is called to issue that attribute to the user, it is allowed to fail.
I.e.: the user must include pairs for every attribute they wish to receive. Further, if the
user specifies two attributes for the same issuer, we allow the scheme to return ⊥ during
issuing. This limitation can be overcome practically by having each issuer use a different
key for each attribute.
Unforgeability. Unforgeability requires that no adversary can convince a verifier to
accept a credential for a set of attributes for which he does not possess all the individual
credentials (and related users’ secret keys) from the accepted issuers set I = {ivk}i∈[`]. A
can obtain ivk ∈ I using OHCI(i) and OCorruptCI(i). Intuitively, an adversary can win the
unforgeability experiment if A is able to convince an honest verifier that he satisfies a
certain attribute subset while he does not have an appropriate credential. To make the
game non-trivial, we impose restrictions that for all corrupted users the disclosed attributes
subset D should not pass verification (satisfy attributes credentials).

Definition 38 (Unforgeability). An IhMA is unforgeable if, for all λ ∈ N and for any PPT
adversary A, there exists ε(λ) s.t Pr[ExpUnf IhMA,A(λ) = 1] ≤ ε(λ), experiments are defined
in Fig 3.4, where Aui means the (set) attribute issued by the issuer ivkto u.

ExpUnf IhMA,A(λ):

• (pp)← Setup(1λ); I ← A<OCorruptCI,OHCI>(pp);
• (sk′, vk′)← IKeyGen(pp); I ′ = I ∪ vk′;
• pol← GenPolicies(I ′);
• (D, avk = (ivk)i∈[`])← A〈O〉(pol, vk′);
• b← (A ↔ CredVerify(pol, (ivk)i∈[`], D))
• if b = 1 ∧ ∃i ∈ [`] : [ivk] = [vk′] ∧ (ivk)i∈[`] ⊂ I ′ ∧D 6⊂

⋃
i∈[`]

Aui, ∀u ∈ CU

return 1
• else return 0

Figure 3.4: Experiment ExpUnf IhMA,A(λ)

Anonymity. Anonymity requires that a malicious verifier cannot distinguish between two
users. Thus we allow the adversary to output two sets of credentials, attributes, as well
as a key-policy pol, attribute subset D, and issuers’ public keys (can be corrupted). The
adversary has adaptive access to an oracle that on the input of two distinct user indexes j0
and j1, acts as one of the two credential owners (depending on bit b) in the verification.
To make the game non-trivial, we impose restrictions that the subset D is either satisfied
or not by both credentials, i.e., D(A) = 1⇒ D ⊆ ∪i∈[`]Ai if attributes in A satisfy D and
D(A) = 0⇒ D 6⊆ ∪i∈[`]Ai otherwise. The essence of the game is captured by the oracles
OAnon
b in Fig 3.5.

78

Definition 39 (Anonymity). An IhMA is anonymous, if for λ ∈ N, any PPT ad-
versary A there exists a negligible function ε(λ) so that |Pr[ExpAno0

IhMA,A(λ) = 1] −
Pr[ExpAno1

IhMA,A(λ) = 1]| ≤ 1
2 + ε(λ), experiments are defined in Fig 3.5, respectively.

ExpAnobIhMA,A(λ):

• pp← Setup(1λ)
• (j0, j1, pol, (ivk)i∈[`]) ←
A〈O〉(pp)

• b′ ← A〈O
Anon
b

,O〉(st)
• return(b = b′)

OAnon
b (j0, j1, D, pol):

• If j0 or j1 > |Lcred|, return ⊥.
• Else, parse Lcred[j0] as (u0,A0i, cred0i)i∈[`]

and Lcred[j1] as (u1,A1i, cred1i)i∈[`], such that ∀i,
credbi ← [CredObtain(uskb, ivk,Abi)↔ CredIssue(isk, uvkb, Abi)]

• If D(A0) 6= D(A1) ∨ (u0, u1) /∈ HU , return ⊥.
• Otherwise run:

CredShow(uskb, pol, {(ivk,Abi)}i∈[`], credb, D)↔ A, where
credb ← CredAggr

(
uskb, {(ivk,Abi, credbi)}i∈[`]

)
Figure 3.5: Experiment ExpAnoIhMA,A(λ)

Issuer-hiding. Issuer-hiding refers to the property that a malicious verifier cannot
distinguish if verification keys belong to the credential issuer. We let A output a set of
issuers and a key-policy pol. We consider key policies {σi, ivk}i∈[n]. Here, σi is a signature
on an issuer’s public key ivk which is generated by the verifier. Consequently, users can
demonstrate that credential verification is performed using the verification key as specified
in the key policy. Note that this definition assumes honest issuers.

Definition 40 (Issuer-Hiding). An IhMA provides issuer-hiding, if for all λ ∈ N, ` > 1, for
all D 6⊆ ∪i∈[`]Ai and (pp) $← Setup(1λ) for any PPT adversary A, there exists a negligible
function ε(λ) s.t:

Pr



(isk, ivk)i∈[`]
$← IKeyGen(pp);

(I0, I1, pol,D) $← A〈O〉(pp, ivki∈[`]);
(usk, uvk) $← UKeyGen(pp); b $← {0, 1};
∀ivk ∈ Ib : (credb,i, st)

$← CredObtain(usk, ivk,Ai)↔
CredIssue(isk, uvk,Ai);
credb ← CredAggr

(
usk, {(ivk,Ai, credb,i)}i∈[`]

)
b∗

$← AO
CredShow (pol, Ib, D,Ai∈[`])

: b∗ = b


≤ ε(λ)

where both |I0| = |I1| and I0, I1 ⊆ ivki∈[`] are one or a set of selected issuer(s).

3.4.3 Constructions
Now we are ready to describes our two constructions of IhMA, the first being based on AtoSa
(Def. 21) and SPSEQ [FHS19] and the second based on ATMS (Def. 31), a set commitment
scheme SC (Def. 2.4.3.3), and SPSEQ. To enhance users’ privacy and prevent issuers
from learning attributes issued by other issuers, we change how aux for the signatures is
computed. In particular, we commit to the attributes (messages) instead of including them

79

in plaintext. For example, this can be achieved using a hash-based commitment scheme,
where a commitment value c is generated by computing c := H ′(a, r) with H ′ being a
hash function modeled as a random oracle, a being the attributing being committed to,
and r a sufficiently large random value. When issuing a credential, users can reveal the
relevant message (attribute) a, the opening o, and the commitment value c. The signer
then verifies if the c is correct for a and o before issuing the corresponding credential. We
modify GenAuxTag(S) and VerifyAux in AtoSa and ATMS as follows:

• GenAuxTag(S): Given S = {(mj , vkj)j∈[`]}, choose (ρ1, ρ2) $← Zp, set c = P ρ1 ||P ρ2 ||(cmj ||
vkj)j∈[`], where cmj is a hash commitment to j’th message and all vk are distinct. Output
aux = (c, oj) and tag τ = ((ρ1, ρ2), (T1 = hρ1 , T2 = hρ2)) with h = H(c).

• VerifyAux(sk, aux, τ,mj) Parse aux as (c, o). Check that τ ∈ t (i.e., that c has the form:
P ρ1 ||P ρ2 ||...) check that cj exists such that (cj , vk) ∈ t and Open(cj , o,mj) = 1 where
vk is a verification key related to sk (in the same equivalence class). Also check that no
other vk in aux has the same equivalence class as sk.

In our IhMA schemes, tags are user identities and are used to verify the user before issuing
attributes.

3.4.3.1 AtoSa based IhMA Construction in Fig. 3.6.

Here, every issuer creates a credential (signature) σ1i on an attribute ai for the user u with
tag τ (and the respective aux) verified with ivk by the AtoSa scheme. We cannot reveal the
secret part of the tag to signers (issuers) as this would violate the security of the user. To
obtain a credential through the Issuing protocols, a user is required to disclose the public
parts of tag as identity to the issuer and then authenticate their identity via a ZKPOK.
Interactive signing. We can adapt the signing in a way that signers (issuers) don’t learn
(ρ1, ρ2) as follows:

• u sends (aux, (h,T), π), where aux = P ρ1 ||P ρ2 ||(cmi , vki)i∈[n] and
π = ZKPOK {(ρ1, ρ2) : T1 = hρ1 ∧ T2 = hρ2 ∧ u1 = P ρ1 ∧ u2 = P ρ2}.

• Signer (issuer) checks if proof π is valid and if so outputs
(h′ = hρ1 , s = (hρ1)xj+y1j ·mj · (hρ2)y2j)

We note that this interactive signing outputs signatures that are identical to that output
by Sign and this is used in Issuance. For the Show protocol, we assume that verifier(s) have
signed all accepted issuer keys using an SPSEQ scheme [FHS19]. A user u can take pol
and the set of disclosed credentials D, aggregates the respective credentials (signatures)
and randomizes the aggregated signature and tag. We note that alternatively, a user could
already after Issuance aggregate all credentials to a constant-size (single) credential and
then in Show protocol can provide a ZKPOK of the signature and selectively disclose the

80

required attributes (as originally done for PS signatures in [PS16a]). This also yields
constant size credentials as noted in Table 6.3.5. We stick with the former approach here
as it is more efficient for showing credentials, but one can easily switch to the other option.
Moreover, In IhMAAtoSa, only one attribute per vk can be issued. However, if an issuer
needs to issue multiple attributes, they can easily generate multiple vks.

To hide the issuer’s keys, u randomizes them using a random ω and adapts the signature
for these randomized keys using ConvertSig. So far, we have created a compact randomized
credential (proof) for attributes in D where issuer verification keys of this signature are
hidden. The next step is to show that these random verification keys correspond to those
keys signed by the verifier (using SPSEQ signatures) in pol. In this direction, u first collects
signatures in pol according to issuer keys that are needed in the proof. Then u runs
ChangRep of SPSEQ to randomize messages (which are issuer public keys) and signatures
with the same randomness ω used in convert, i.e., randomized keys. Randomized issuer
keys in a credential match with the messages signed by verifier in pol. Finally, u uses the
randomized tag as a pseudonym for communication and provides a ZKPOK of the secret
part of tag (secret keys and randomness) used in the credentials.

3.4.3.2 ATMS based IhMA Construction in Fig. 3.7.

We use the framework in [FHS19] in which one can combine mercurial or SPSEQ with a
set commitment such that a credential is a signature on set commitment SC. One can then
open a subset of messages from this commitment while randomizing both set commitment
and signature together. This provides unlinkability and selective disclosure at the same time
(see [FHS19]). Unlike the previous construction, we can aggregate credentials immediately
after receiving them and have a constant-size credential but still avoid zero-knowledge
proof of a signature in showing protocol (because of compatibility of EQ message relation
of ATMS and SC randomization).

In the Show protocol, similar to the previous construction, u first collects the signatures
required to prove the attributes D from pol. Then, for issuer-hiding similar to AtoSa it
randomizes these SPSEQ signatures using ChangRep of SPSEQ with ω. For preparing a
proof for D, a user (u) randomizes issuer verification keys in credentials using ConvertVK
and converts the ATMS signature using ConvertSig with ω. Subsequently, u randomizes the
signature with a tag using ChangRep. Finally, u opens a subset of attributes D from the
set commitments. Now a verifier can check if these attributes are in the set commitments
signed by some issuers in pol. Same as in the first construction, since all issuer keys are
randomized due to the SPSEQ signature the issuers are hidden. We run a ZKPOK to prove
that u knows all secret values related to the randomized tag like before. The only point
left is the signing of set commitments, which is defined in one source group in [FHS19],
but we need both groups. Subsequently, we show how one can combine set commitments
with a tag-based DH message space.
Set commitments for MH

TDH. The main point here is that we need to convert the set
commitments space to MH

TDH, which can be smoothly done as follows: In addition to

81

- Setup(1λ): Run ppAtoSa ← Σ1.Setup(1λ) ∧ ppSPSEQ ← Σ2.Setup(1λ), output pp =
(ppAtoSa, ppSPSEQ). The attribute space is Zp.

- UKeyGen(pp, S): Run ({auxj}, (τ,T))← GenIdxTag(pp, S), and return (usk = τ, uvk = T, {auxj})
to u.

- IKeyGen(pp): Generate (sk, vk) $← Σ1.KeyGen(pp), return (isk = sk, ivk = vk) to an issuer i.

- Issuance: On input (T, auxi, ai), u and each issuer i act as follows for an attribute ai:
• u sends (T, auxi, π), to an issuer i, where π is a zero knowledge proof that the user knows

the secret part of the given tag.
• Issuer checks π is valid and runs σi ← Σ1.Sign(isk,T, auxi, ai) and outputs (σi, ai) to u

or aborts if Sign outputs ⊥.
• u takes (ivk, credi = (ai, σi))i∈[`], checks Σ1.Verify(ivk, ai, credi)i∈[`], and saves cred =
{credi = (σi, τ),A}i∈[`], where A = (ai)i∈[`].

- GenPolicies: Generate a key pair (vsk, vpk) ← Σ2.KeyGen(pp), run σ2i ← Σ2.Sign(vsk, ivk) for
i ∈ I where ivk is a message vector for SPSEQ, return pol = (vvk, (ivk, σ2i)i∈[I]).

- Show: On input cred = {(σi, τ,A)i∈[`]}, pol = (vvk, (ivk, σ2i)i∈[I]), an D (a set of attributes) from
n ⊆ I issuers (|D| = n), u prepares a proof for D as:
• Run σ ← Σ1.AggrSign(T, (ivk, ai, σi))i∈[D] with avk = {ivk}i∈[D]. For ω ∈ Z∗p, run avk′ ←

Σ1.ConvertVK(avk, ω), σ′ ← Σ1.ConvertSig(avk, D,T, σ, ω), and randomize (σ′′,T′) ←
Σ1.RandSign(vk,T,m, σ′, υ) for υ ∈ Z∗p.

• Run (σ′2i, avk′) $← Σ2.ChangRep(Mi = vki, σ2i, ω)i∈[n] where avk′ is the same as avk′ ←
Σ1.ConvertVK.

• Prove in zero knowledge that the user knows the secret key for the tag T′, yielding π,
send (σ′′, nym = T′, σ′2i, π)i∈[n] to a verifier V.

- CredVerify: Output 1, if π ∧ Σ1.VerifyAggr(avk′,T′, D, σ′) ∧ Σ2.Verify(vvk,M, σ′2) = 1, where
M = avk′ and T′ = nym. Output 0 if this check fails.

Figure 3.6: Our IhMA scheme (Σ1 and Σ2 denote AtoSa and SPSEQ [FHS19], respectively)

credentials issuers, we also define a Trusted Authority TA who holds the trapdoor α of
the set commitment scheme and can create commitments for the attributes of users who
want to register in the system. WLOG, let us for simplicity assume only one attribute set
A = (A, η), where we have a fixed constant η which is never opened in practice and it is
the same for all (it is just required for anonymity). It works as follows:

• The user sends a tag T and aux to TA.

• TA computes a set commitment in both groups (C = (C1, C2), Ĉ = (Ĉ1, Ĉ2)) (i.e.,
(M,N)) with tag, where (C2, Ĉ2) are dummy commitments for a fixed constant η and
the other one for the (real) attribute set A. More precisely: TA computes the commitment
in G1 to base hρi and the one in G2 in base P̂ : C1 = (hfA(α))ρ1 , Ĉ1 = P̂ fA(α), C2 = (hη)ρ2

82

and Ĉ2 = P̂ η such that such that we have
∧
i∈[2] e(Ti, Ĉi) = e(Ci, P̂), where h = H(c),

aux = (c, o), c = P ρ1 ||P ρ2 ||(cAi ||vkj)j∈[2], returns (C, Ĉ). Note that cA := H ′(A, r).

Note that α is a trapdoor kept by TA, but TA does not need to know (ρ1, ρ2) (e.g., Ci
be computed as (T1)fA(α)). A multiparty computation protocol can also be used to hide
other user details from TA. A user can first randomize set commitment exactly like our
tag-based message with (µ, υ) as (Cµυ, Ĉυ) and use υ as opening information to open
any subset values from Ĉ1 and still verify as follows: verifying the OpenSubset works
e(P, Ĉ1) = e(P fD(α),W). Consequently, we do not need any fundamental change on SC
construction, and it works as stated in 2.4.3.3. In our construction, we make it explicit as:

• SC.Commit3(A, α,T, h)→ ((C, Ĉ), O): On input a set A = (A, η), T and h, compute a
commitment: C1 = (T fA(α)

1), Ĉ1 = P̂ fA(α), C2 = (T η2) and Ĉ2 = P̂ η, output ((C, Ĉ), O)
with O ←⊥.

Now, we can use the same technique as AtoSa to not reveal (ρ1, ρ2) to issuers when signing
the above commitments (C, Ĉ) as follows:
Interactive signing. We can adapt the signing in a way that signers (issuers) don’t learn
(ρ1, ρ2) as follows:

• u sends (aux,T, (C, Ĉ), π), where
π = ZKPOK{(ρ1, ρ2) : T1 = hρ1 ∧ T2 = hρ2 ∧ u1 = P ρ1 ∧ u2 = P ρ2}, where P ρ1 and P ρ2

are in aux.

• Signer (issuer) checks if proof π is valid and if so outputs
(h = H(c), b =

∏
T zii , s = (hx ·

∏
i∈[2](Ci)yi)).

Again we note that this interactive signing outputs signatures that are identical to that
output by Sign and this is used in Issuance.
Achieving constant-size credentials. This can be achieved by following these steps:
1) Users can obtain the (hαi) values from the TA instead of the commitments. 2) During
the issuing phase, users can aggregate all the credentials received from issuers. 3) The
commitments can then be recomputed using randomness and the obtained information,
eliminating the need to store them. Note that in this case the size of the |Show| operation
will become linear with respect to N instead of K.

Theorem 3.4.1. The above IhMA constructions in Fig. 3.7 and in Fig. 3.6 are correct,
unforgeable, anonymous, and issuer-hiding.

Proof. We provide proof for the first and second constructions.

Lemma 3.4.2 (Unforgeability construction). Let ZKPOK be a simulation-sound extractable
ZKPoK, and SPSEQ be unforgeable signature, if AtoSa is unforgeable, then the IhMA
construction Fig 3.6 is unforgeable.

83

Proof. Intuitively, A has a potential ways of breaking unforgeability: if he can forge
a AtoSa signature on the challenge public key (that is, A does not possession proper
attributes, but it can perform verification by forging credentials). We show that if an
adversary A can win the unforgeability game (Def. 38) with non-negligible probability.
We then construct an adversary (reduction) B that breaks the unforgeability of AtoSa
(Def. 23). Note that we can extract witness from ZKPOK and assume this will only fail
with negligible probability. Lets us assume that Ai = ai is an attribute for simplicity, now
we show this reduction as follows:
Reduction. The reduction is straightforward. B communicates with a challenger C in
the unforgeability game of AtoSa and B simulates the IhMA-unforgeability game for A.
B receives from C values (X̂ = P x, Ŷ1 = P̂ y1 , Ŷ2 = P̂ y2) and public parameters pp of BG.
Next, B sets vk′ = (X̂, Ŷ1, Ŷ2) as the challenge key and sends (pp, vk′) to A. As in the real
game, all oracles are executed normally, except for following ones which use the signing
oracle in AtoSa instead of using the (challenge) signing key sk′:

OUser(u): On input a user identity u. If u ∈ HU or u ∈ CU , return ⊥. Else, create a
fresh entry u by running (usk, uvk)← UKeyGen but create aux using commitments,
adding u and (usk, uvk, aux) to the list HU and Luk, receptively. Return uvk.

OObtIss(i, u,Ai): If u /∈ HU ∨ i /∈ HCI ∪ vk′, return ⊥. Else if ivk 6= vk′, find entries
((usk = τ, aux) ∈ Luk, isk ∈ HCI), and compute σi ← Sign(isk, τ, aux,Ai) (note that
with knowledge of isk, B can compute a signature on it’s own). Else ivk = vk′, asks
the query σi ← OSign(Ai, aux, τ) of AtoSa, which the oracle runs Sign(sk′, τ, aux,Ai),
adds the entry (u,Ai, credi) to Lcred, where credi = (σi, τ).

OIssue(i, u,Ai): If u /∈ CU ∨ i /∈ HCI ∪ vk′, it returns ⊥. Else, if ivk 6= vk′, compute
σi ← Sign(isk, τ, aux,Ai). Else ask the query σi ← OSign(Ai, aux, τ) of AtoSa, add
the entry (u,Ai, credi) to Lcred, where credi = (σ, τ).

Obviously, B handles any oracle query (assuming a simulated ZKPOK for issuing and
showing protocols). Thus, at the end of the game, B simulates all oracles perfectly for
A. To do this, B interacts with A in a showing. If A outputs a valid showing proof as
(avk, σ∗ = (h∗, s∗), D, nym∗ = T∗) and conducting π = ZKPOK(nym∗) then B extracts from
the proof π in the Show, lets called the value (ρ∗1, ρ∗2) related to the nym∗ (the tag tuple
(T∗, (ρ∗1, ρ∗2))) and stores all elements. Moreover, no credentials owned by corrupt users
can be valid on this set of messages D (as A can win the unforgeability game). This means
that, for all credentials credui on Aui and (usk) with u ∈ CCU , we have D 6⊆ ∪i∈[`]Aui.
From the definition we have that at least one of the key in vkj ∈ avk should be the
challenge key [vkj]R = [vk′]R such that the related attribute is in the set Aj ∈ D. Finally
we can find all isk ∈ HCI ∪ CCI corresponding to [ivk]R ∈ I ′ for all i ∈ [`], and output
ask = (isk)i∈[`]. Note that even if adversarial keys are randomized, we can output initial
secret keys registered in the list and reduction still works for the AtoSa scheme because of
keys class [vk]R. In all cases, this means that (avk, (τ∗,T∗), D, ask, σ∗) is a valid forgery

84

against our signature scheme, B breaks thus unforgeability of AtoSa which concludes our
proof, assuming SPSEQ is unforgeable.

Lemma 3.4.3. Let ZKPOK be a simulation-sound extractable ZKPoK, if AtoSa is origin-
hiding of ConvertSig and public key class-hiding, SPSEQ is perfect adaption, then the IhMA
construction in Fig 3.6 is anonymous and issuer hiding.

Since these properties follow almost immediately from the zero-knowledge property and
the privacy notions of the underlying signature AtoSa (Def. 3.2.4).
Anonymity. From the randomization (unlinkability) of the AtoSa signature, a tuple
(σ = (h′, s),T = (T1, T2)) can be hidden by randomizing them with secret randoms µ ∈ Z∗p
as (σ = (h′µ, sµ),Tµ), where does not leak any information about the initial tag/signature
(tag acts as pseudonym in the interaction). In addition, in the Show protocol, the proof of
knowledge of the witness (tag’s secret part) is zero-knowledge. This also does not leak any
information about secrets either. Consequently, a credential does not leak any information
about usk or uvk. Note that the Anonymity experiment guarantees that the witnesses
used when computing π are valid for both b = 0 and b = 1 and also the signature/tag is
randomized correctly. This means that the Anonymity experiment is indistinguishable
from one where the ZKPOK simulator creates π. In the end, the view of A is independent
of b. More formally we provide proof as follows:
Proof. The proof follows a sequence of games until a game where answers for the query to
OAnon
b is independent of the bit b. Let S be the event, and for i = 1, . . . , n, the construction

defines an event Si in Gamei. In Game1 we simulate all ZKPoKs. In Game2 we replace
all ConvertTag and ConvertSig calls with freshly generated signatures and In Game3 we
replace the T with a representative element of the same class.

Game0: The original game as Def. 56.

Game1: As Game0, except that the experiment runsOAnon
b as follows: All proofs ZKPoK(nymp)

in CredShow and Obtain respectively, are simulated.
Game0 → Game1: By perfect zero-knowledge of ZKPoK, we have that

Pr[S1] = Pr[S0]

Game2: Consider Game1, but with the following modifications. Let qu be the maximum
number of queries to OUser. In the start, during Game1, a selection is made where w
is chosen randomly from the set [qu] (guessing that the user with the jb-th credential
is registered at the w-th call to OUser). Runs OUser, OCorruptU and OAnon

b (j0, j1, D)
as follows:

• OUser(u, S): As in Game1, but if this is the w-th call then, setting u∗ ← u.
• OCorruptU (u): If u ∈ CU or u ∈ OAnon

b , it returns ⊥ (as before). If u = u∗ then
stops and returns a random b′

$← {0, 1}. Else, it outputs usk and credentials,
and moves u from HU to CU .

85

• OAnon
b (j0, j1, D): As in Game2, except that if u∗ 6= Lcred[jb], the experiment

stops outputting b′ $← {0, 1}.
Game1 → Game2: By assumption, OAnon

b is called at least once with some input
(j0, j1, D) such that u0 ← Lcred[j0], u1 ← Lcred[j1] ∈ HU . If u∗ = ub then OAnon

b and
OCorruptU do not stop (not have been called on ub before that call to OAnon

b (else
ub /∈ HU); if called afterwards, it returns ⊥, where u∗ ∈ OAnon

b). If u∗ = [ub] with
probability 1

qu
, the probability that the game does not stop is 1

qu
, and so

Pr[S2] ≥ (1− 1
qu

)1
2 + 1

qu
· Pr[S1]

Game3: As Game2, except OAnon
b (j0, j1, D): pick a random T← T and performs the show-

ing with D = (di)i∈[k]. The only difference is the choice of T.

Game2 → Game3: The difference between two games is that we use the tag class
hiding Def. 25,
which indirectly implies DDH. Indeed, the reduction accepts T,Tb from the tag
class-hiding challenger and uses these for users. The oracles are simulated as in
Game2, excepting for the following ones:

• OUser(u, S): Like in Game1, but if it is the w-th call then u∗ ← u, sets usk[u]←⊥
and uvk← T.

• OAnon
b (j0, j1, D): As in Game2, except that for u∗ = Lcred[jb], the experiment

run show for Tb which is either T(0) $← T or T(1) $← [T]Rτ . Picks b and
sends (Tb, σb, π) to A, and receives b′ form A. Return b′ as answer to the tag
class-hiding game. We thus have:

|Pr[S2]− Pr[S3]| ≤ εDDH(λ) + (1 + 2ql)1
p

Game4: As Game3, except that the experiment runs OAnon
b as follows: Like in Game3, but

for µ, υ ∈ Z∗p, all executions of RndSigTag and ConvertSig for the credential and tag
(ub,A′, σb)← Lcred[jb] are replaced by freshly generated signatures (note that we can
randomize signatures and output uniformly random elements in the respective spaces
and we know the related secret keys). So, oracles are simulated as in Game3.

Game2 → Game3: By Origin-hiding (ConvertSig) and (ConvertTag), signatures ob-
tained from RndSigTag and ConvertSig are identically distributed for all (A,T, vk, σ).
We thus have

Pr[S3] = Pr[S4]

86

At the end, OAnon
b outputs the random signature σ and tag, and a simulated proof; the

bit b is thus information-theoretically hidden from A. probability analysis is similar
to [FHS19,MSBM23].

Proof of issuer-hiding for IhMAAtoSa. We refer to [MBG+23] for the proof of issuer-
hiding.

Lemma 3.4.4 (Unforgeability of construction in Fig 3.7). Let ZKPOK, SC, and SPSEQ
be a simulation-sound extractable ZKPoK and a binding commitment and unforgeable
signature receptively, if ATMS is unforgeable, then the IhMA construction in Fig 3.7 is
unforgeable.

Proof. Similar to Lemma 3.4.2, we show that if an adversary A can win the unforgeability
game (Def. 38) with non-negligible probability. We then construct an adversary (reduction)
B that breaks the unforgeability of ATMS (Def. 33). Assume that we can extract witness
from ZKPOK. It follows the same reductions as AtoSa, so we only show the differences
here as follows:
Reduction. B interacts with a challenger C in the unforgeability game of ATMS and B
simulates the IhMA-unforgeability for A.

• B receives from C values (X̂ = P x, Ŷ1 = P̂ y1 , Ŷ2 = P̂ y2) and public parameters
ppATMS. Then, it sets vk′ = (X̂ = P x, Ŷ1 = P̂ y1 , Ŷ2 = P̂ y2) as the challenge issuer key,
ppSPSEQ ← Σ2.Setup(1λ) and pick α and create set commitment public parameters
ppSC ← SC.Setup(1λ, α) and send vk′ and pp = (ppATMS, ppSC, ppSPSEQ) to A.

• As shown in Lemma 3.4.2, B handles any oracle query and simulates all oracles
perfectly for A similar to Lemma 3.4.2, and never aborts, we skip to mention them
here.

• If A ’s winning condition is not fulfilled, B aborts.

• Otherwise, A is able, with some probability, to prove possession of a credential on
attributes D∗.

So B interacts with A as verifier in a showing protocol. If A outputs a valid showing
proof as (avk, (C∗, Ĉ∗), σ∗, D∗,W ∗, nym∗ = T̂∗) and conducting π = ZKPoK(nym∗) then B
extracts from the proof π, called the value τ∗ = (ρ∗1, ρ∗2) related to the nym∗ and stores all
elements. Also, we know that no credentials owned by corrupt users can be valid on this set
of messages D∗ (as A can win the unforgeability game). This means that, for all credentials
credui on (usk) with u ∈ CCU , we have (D∗ 6⊆ A). From the definition we have that at least
one of the key in vkj ∈ avk should be the challenge key vkj = vk′ such that the related
attribute is in the set Aj ∈ D∗. Find all isk ∈ HCI ∪ CCI corresponding to [ivk]R ∈ [`].
Finally, with all these cases, we conclude that (avk, ask, (τ∗, T̂∗), D∗, σ∗, (C∗, Ĉ∗)) is a
valid forgery against our signature scheme, where (C∗, Ĉ∗) = (M∗,N∗). So B breaks

87

unforgeability of ATMS which concludes our proof. Note that we also assume SC is a
binding and hiding commitment and SPSEQ is unforgeable, so A can not forge proof by
breaking binding of SC or unforgeability of SPSEQ.

Lemma 3.4.5. Let ZKPOK be a simulation-sound extractable ZKPoK, ATMS is origin-
hiding of ConvertSig and ChangRep and public key class-hiding, and SPSEQ is perfect
adaption, then the IhMA construction in Fig 3.6 is anonymous and issuer hiding.

Proof. The argument follows the one in Lemma 3.4.3 except that we replace privacy
notations of AtoSa by ATMS and show that a new uber assumption holds 3.4.6 for the
randomization set commitments and tag. The proof follows a sequence of games until
a game where answers for the query to OAnon

b is independent of the bit b. In Game1 we
replace all ChangRep and ConvertSig calls with freshly generated signatures. In Game2 we
simulate all ZKPoKs and In Game3 we replace the respective commitment vectors C with
a represantive element of the same class.

Game0: The original game as given in Definition 56.

Game1: As Game0, except that the experiment runs OAnon
b as follows: Like in Game0,

but for µ, υ ∈ Z∗p, all executions of ChangRep and ConvertSig for the credential and
tag (ib,A′, σb)← Lcred[jb] are replaced by randomized signatures (note that we can
randomize signatures and output uniformly random elements in the respective spaces).
So, oracles are simulated as in Game1.
Game1 → Game0: By Origin-hiding (ConvertSig), adapted privacy (ChangRep) sig-
natures obtained from ChangRep and ConvertSig are identically distributed for all
(A,T, vk, (C, Ĉ)). We thus have

Pr[S0] = Pr[S1]

Game2: As Game1, except that the experiment runsOAnon
b as follows: All proofs ZKPoK(nymp)

in CredShow and ObtIss respectively, are simulated.
Game2 → Game3: By perfect zero-knowledge of ZKPoK, we have that

Pr[S1] = Pr[S2]⇒ Pr[S0] = Pr[S1] = Pr[S2]

Game3: As Game2, except that for OAnon
b (j0, j1, D): it replaces all (Ci, Ĉi) and T with

another vectors in the same equivalence class and performs the showing with
D = (di)i∈[k] and Wi ← fdi(a)−1 · Ĉ1i. The only difference is the computation
of (Ci, Ĉi); while all Wi are distributed as in Game4, in particular, they are unique
elements satisfying VerifySubset.
Game2 → Game3: The difference between two games is that we use the uber assump-
tion Def. 3.4.6 to create set commitments. Oracles are simulated as in Game4, except
for the following oracles as:

88

• OObtain(u, i,Ai): As in Game2, except for the computation of following values:
compute the polynomials f1 = FAi(α) · ρ1 · r, f2 = ρ2 · r · η, f̂1 = FAi(α), and
f̂2 = η, where r $← Zp is for h and come from RO and η is a constant and
same for all commitments. Then for i ∈ [2] it calls Ci ← Ouber(1, fi, fi) and
Ĉi ← Ouber(2, f̂i, f̂i) (all Ci and Ĉi are distributed as in the original game.)

• OCredShow(j, pol,D): As in Game2, it computes the witness Wi ← fdi(α)−1 · Ĉ1i
(Wi is thus distributed as in the original game and D = (di)i∈[k].)

• OAnon
b (j0, j1, D): As in Game4, with the following difference. For two honest

users u← Lcred[j0] and u′ ← Lcred[j1], first parses Lcred[jb] as (u,Ai, credi) and
(u′,A′i, cred′i).
Compute polynomials for each set Ai as f1i = FAi(α) · ρ1 · r, f2i = ρ2 · r · η,
f̂1i = FAi(α), and f̂2i = η.
Compute polynomials for each set A′i as f ′1i = FA′i(α) · ρ′1 · r′, f ′2i = ρ′2 · r′ · η,
f̂ ′1i = FA′i(α), and f̂ ′2i = η.
Compute polynomials for the tags T and T′ as f ′t1 = ρ′1 · r′, f ′t2 = ρ′2 · r′,
ft1 = ρ1 · r, and ft2 = ρ2 · r.
Then it calls C1i ← Ouber(1, f1i, f ′1i) and C2i ← Ouber(1, f2i, f ′2i), same for
Ĉ1i ← Ouber(2, f̂1i, f̂ ′1i) and Ĉ2i ← Ouber(2, f̂2i, f̂ ′2i). Also, to compute tags, it
calls
T1 ← Ouber(1, ft1, f ′t1) and T2 ← Ouber(1, ft2, f ′t2).
It sends (Ci, Ĉi) and T to A, and receives b′ form A.

|Pr[S2]− Pr[S3]| ≤ εuber(λ)

Return b′ as answer to the uber assumption. We have simulated Game2 if the
uber assumption was “real” and Game3 otherwise.

Uber Assumption To demonstrate the anonymity of IhMAAtoSa, we introduce a variant
of the uber assumption. For a formal definition of the uber assumption and its proofs, we
refer the reader to our paper [MBG+23].

Theorem 3.4.6. Let A be a adversary that solves decisional uber in a bilinear generic
group G of prime order p of type 3, making at most (m1,m2,mT ,mp) generic queries
and (q1, q2, qT) and (d1, d2, dT) the cardinality, and the upper bound on the degrees of
(R1, R2, RT). Then

A
(
uberdecisionalAG

)
≤ 2

(
d1(q1 +m1)2 + d2(q2 +m2)2 + max(d1 + d2, dT)(qT +mT +mp)2

p

)
.

Where the experiment UberinteractiveAG is defined in Fig 3.8.

89

- Setup(1λ): Run ppATMS ← Σ1.Setup(1λ) ∧ ppSPSEQ ← Σ2.Setup(1λ) ∧ ppSC ← SC.Setup, output
pp = (ppATMS, ppSPSEQ, ppSC).

- IKeyGen(pp): Generate (sk, vk) $← Σ1.KeyGen(pp), return (isk = sk, ivk = vk) to an issuer i.

- UKeyGen(pp, S): Run ((τ,T), aux)← GenIdxTag(S), and return (usk = τ, uvk = T) to u.
Then, TA and u interact to computes ((Ĉi,Ci)i∈[`])← SC.Commit3(Ai, α,T), for all attribute
sets.

- Issuance: The interaction between an issuer i and a user u for one attribute-set A ∈ Zp and (C, Ĉ)
acts as follows:

• u hands over (T, (C, Ĉ), auxi, π) to an issuer i, where π is zero knowledge proof the
secret parts of the tag.

• An issuer i checks that the proof is correct, then runs σ ← Σ1.Sign(isk,T, auxi, (C, Ĉ)),
and outputs (A,T, σ) = credi.

• u takes (ivk, credi) for i ∈ [`], checks Σ1.Verify(ivk,T, (Ci, Ĉi), σi)i∈[`] = 1, and outputs
{cred = (σi, τ), (Ai,Ci, Ĉi)i∈[`]}.

- GenPolicies: Generate a key pair (vsk, vpk) ← Σ2.KeyGen(pp), run σ2i ← Σ2.Sign(vsk, ivk) for
i ∈ I, return pol = (vvk, (ivk, σ2i)i∈[I]).

- Show: On input cred = {(σi, usk,Ai)i∈[`]}, pol = (vvk, (ivk, σ2i)i∈[I]), and D ⊆ A from n ⊆ I
issuers, u prepares a proof for D as:

1. Run (σ′2i, avk′)← Σ2.ChangRep(Mi = vki, σ2i, ω)i∈[n] for ω ∈ Z∗p.

2. Run σ ← Σ1.AggrSign(T, (ivk, (Ci, Ĉi), σi))i∈[n]. Convert credentials and issuer keys
avk′ ← Σ1.ConvertVK(avk, ω) and σ′ ← Σ1.ConvertSig(avk, (C, Ĉ), σ,T, ω).

3. Run (σ′,T′) $← Σ1.ChangRep(σ, (Mi,Ni)i∈[n],T, (µ, υ)) for (µ, υ), where (Mi,Ni) =
(Ci, Ĉi), and σ′ is valid for (C′i = Cµυ

i , Ĉ′i = Ĉυ
i)i∈[n]. Create witnesses for at-

tributes Wj ← SC.OpenSubset(Ĉ1j , Aj , Oj , dj) for j ∧ dj ∈ D. Aggregate witness
W ← SC.AggregateAcross({Ĉ1j , dj ,Wj}j∈[`]), randomize W ′ ←Wµυ.

4. Prove in zero knowledge that the user knows the secret key for the tag T′, yielding π,
send (σ′,W ′,T′, σ′2i, π,M = {(C′i, Ĉ′i)})i∈[n] to V.

- CredVerify: Output 1, if π ∧ Σ1.VerifyAggr(avk′,T′,M, σ′) ∧ Σ2.Verify(vvk,M, σ′2) ∧
SC.VerifySubset(C′, D,W ′) = 1, where M = avk′ is verified by vvk.

Figure 3.7: Our IhMA scheme (Σ1 and Σ2 denote ATMS and SPSEQ [FHS19], respectively)

3.4.4 Additional Properties

We now discuss how additional features can be obtained via slight modifications of the so
far presented approach.
Blind issuing credential for AtoSa. We note that our schemes can provide a blind
issuing protocol in which a user can receive credentials on blind attributes using the

90

UberinteractiveAG

• (g1, g2)← BG ; gT ← e(g1, g2)

• b
$←− {0, 1}

• x = (x1, . . . , xm) $← Zmp

• (R0
1,R0

2,R0
T ,R

1
1,R1

2,R1
T) := ([1], [1], [], [1], [1], [])

• b′
$← AO(g1, g2)

• If (R0
1,R0

2,R0
T ,R

1
1,R1

2,R1
T) is τ -trivial:

• Return a random bit

• Else Return
(
b = b′

)

O(t ∈ {1, 2, T}, R0, R1) :

• ∀b′ ∈ {0, 1} : Rb′
t := Rb′

t :: Rb′

• Return
(
g
Rb(x1,...,xn)
t

)

Figure 3.8: Adaptative game for the uber assumption relatively to the bilinear group G
and adversary A.

two-party computation technique provided in PS and Coconut [SAB+19]. It works as
follows:

• A user generates an El-Gamal key-pair (d1, D1 = P d1); pick a random k and compute
an El-Gamal encryption of m as below: c = Enc(m) = (a = P k, b = P k·d · (h′)m).
Output (aux, h,D, c, π), where π and h′ = hρ1 is defined by: π = ZKPoK{(d,m, k) :
D = P d ∧ c = (P k, Dk · (h′)m)}

• A signer checks the π is correct, and generates blind signatures as follows: δ = (a′1 =
ay1 = P y1·k, b′ = (hρ2)y2 · (h′)x · by1 = P y1·k·d · (h′)y1·m+x · hy2·ρ2)

• The user decrypts/unblinds signature δ = (a′, b′) and gets h′y1·m+x · (hρ2)y2 as follows:
(a′)d = P y1·k·d and (h′)m·y1+x · (hρ2)y2 = b′

(a′)d .

As we showed in the IhMA, one can also hide the tag.
Multi-Message Signatures for AtoSa. One can extend this scheme to sign a message
vector m rather than a single m by extending a verification key vki = (X̂i, Ŷi1, . . . , Ŷin)
regarding the number of messages. A signer i can sign a vector m = (m1, . . . ,mn) as
hxi+

∑
yimi for mi ∈m (see [PS16a] for more details).

Non-transferable Credentials. Often it is desirable to prevent users from easily sharing
their credentials with others. One common approach to deter such transfers is to leverage a
valuable item, such as a secret key, which would also need to be shared if a credential were
to be shared [CL01]. We note that schemes involve users proving their knowledge of tag’s
secrets that represents their identity. We can now use the canonical representative (ρ1/ρ2)
of the respective tag class as the valuable secret. Then note that when sharing a credential

91

even with a re-randomized tag (υρ1, υρ2), one can extract the canonical representative and
thus also shares the valuable secret. While this feature is important for ACs, however,
it is not always easily achievable in all AC systems. In fact, achieving this feature can
be quite challenging in some cases, especially in self-binding approaches such as SPSEQ
or [CLPK22].
Proving Knowledge of AtoSa Signature. One can achieve the proving knowledge of a
signature exactly similar to PS. Assume AtoSa signature is σ = (h, s), we select random
r, t← Zp and compute σ′ ← (hr, (s · ht)r). We send it to the verifier and carries out a zero-
knowledge proof of knowledge π (a Schnorr proof) of (m, ρ1, ρ2) and t for the signature on a
single message: ZKPOK{(m, ρ1, ρ2, t) : e(h′, X̂)·e(h′, Y1)m·e(h′, Y1)ρ1 ·e(h′, Y2)ρ2 ·e(h′, P̂)t =
e(s′, P̂)}. It can be extended straightforwardly for multi messages (see [PS16a] for more
details).

3.5 Implementation and Evaluation

In the following we present our evaluation based on a Python library in which we implement
our primitives ATMS and AtoSa as well as our IhMA protocols (Fig. 3.7 and Fig. 3.6). Our
implementation is based upon the bplib library1 and petlib 2 with OpenSSL bindings3.
We use the popular pairing friendly curve BN256 which provides efficient type 3 bilinear
groups at a security level of around 100 bits. Our measurements have been performed on
an Intel Core i5-6200U CPU at 2.30GHz, 16GB RAM running Ubuntu 20.04.3.
Benchmark of Primitives. Table 3.2 shows the mean of the execution time of each
algorithm over 500 runs such that AggrSign and VerifyAggr are computed assuming two
signers (n = 2); the other algorithms are independent of n. ChR/Rnd stands for ChangRep
and signature randomization (RandSign) for the ATMS and AtoSa, respectively. PC stands
for Pre-Computation, and in ATMS it includes converting messages to theMH

TDH message
space and generating tags. While in AtoSa, PC includes generating tags and aux using
Pedersen commitment, but note that one could also use a hash based commitment instead.
We can observe that signing is faster than verifying the signature – due to the pairing
operation in the latter. Moreover, verification of ATMS is slower than AtoSa because of
additional pairing operations that are needed to check if messages are in MH

TDH. We

Table 3.2: Running times for ATMS and AtoSa (ms)
PC Sign Verify Convert ChR/Rnd AggrSign VerifyAggr

AtoSa 6 2,5 8,4 4 2,7 0.005 9
ATMS 8.6 3 33 5,4 7,4 0.01 72

1https://github.com/gdanezis/bplib
2https://github.com/gdanezis/petlib
3https://github.com/dfaranha/OpenPairing

92

https://github.com/gdanezis/bplib
https://github.com/gdanezis/petlib
https://github.com/dfaranha/OpenPairing

increase the number (n) of signers from 2 to 10 and show the running time in Fig. 3.9.
Since aggregation is almost free (for n = 10 is 0.05 ms), we omit it. We should also note
that the result are stated without considering VerifyAux algorithm.

Figure 3.9: Running times of VerifyAggr in ATMS & AtoSa (ms)

IhMA Benchmarks. IhMA is based upon Schnorr-style discrete logarithm ZKPOK. Our
library supports Damgård’s technique [CDM00] for obtaining malicious-verifier interactive
zero-knowledge proofs of knowledge during the showing and also ZKPoK obtained via the
Fiat-Shamir heuristic. We interpret signers as issuers here and also show n as a number of
issuers involved in Showing. For example, n = 2 means showing two credentials from 2
different issuers.
Issuing. This protocol does not depend on n, and results are as follows: 1) For IhMA
based on AtoSa, including generation of signature, tag, user keys, and aux, it takes 8 ms.
2) For IhMA based on AtoSa, including generation of tag and encoding messages toMH

TDH,
with two attributes in each credential it takes 10 ms.
Showing. Fig. 3.11 shows the runtime of showing for IhMA based on AtoSa. In this
experiment, we increase the number of issuers n from 2 to 10 and assume that all attributes
are disclosed during verification (the worst-case scenario). Each issuer issues only one
attribute, giving a total of n attributes. Fig. 3.10 shows the time for showing a credentials
of IhMA based on ATMS. Here, we have a different setting; we can encode a set of attributes
in a credential as we use set commitments. For our evaluation, we have the following
parameters: n represents the number of the issuer, t the number of attributes in each set
(each credential issued), d < t is the number of disclosed attributes from each attribute set
A in the respective commitment C. Here we increase n from 2 to 10, set t = 2, and d = 1.
The total disclosed attributes length |D| = d · n and the total attribute |A| = n · t range
from 2 to 10 and 4 to 20, respectively.

93

Figure 3.10: Running times of IhMAATMS

Figure 3.11: Running times of IhMAAtoSa

3.5.1 Bandwidth Analysis of our IhMA Schemes

We present a concrete comparison of schemes in Table 3.3. We denote the size of zero
knowledge proof of the tag as ZKPOK which as we showed in Section 5, the statements are
simple and can be done efficiently with simple Schnorr proofs (the statements are presented
in Section 3.4.3) .

Table 3.3: Communication complexity of our IhMA schemes (N : total issuers andK: issuers
in showing).

IhMAAtoSa IhMAATMS

|cred| 2NG1 + 2Zp 3NG1 + 2Zp
|show| 4G1 + 4KG2+ 2KG1 + ZKPOK 6KG2 + 6G1+ 2KG1 + ZKPOK
? We present the scheme in a way that supports ad-hoc attribute/issuer aggregation, but for fixed signatures,
a constant size credential is achievable.

94

3.6 Summary
This chapter introduces the Issuer-Hiding Multi-Authority Anonymous Credentials (IhMA).
MA means proving possession of attributes from multiple independent credential issuers
requires the presentation of independent credentials. Meanwhile, Ih means verifying a
user’s credential does not require disclosing multiple issuers’ public keys.
Our proposed solution involves the development of two new signature primitives with

versatile randomization features which are independent of interest: 1) Aggregate Signatures
with Randomizable Tags and Public Keys (AtoSa) and 2) Aggregate Mercurial Signatures
(ATMS), which extend the functionality of AtoSa to support the randomization of messages
additionally.
We formalize all notations and provide rigorous security definitions for our proposed

primitives. We present provably secure and efficient instantiations of the two primitives and
corresponding IhMA systems. Finally, we provide benchmarks based on implementation to
demonstrate the practical efficiency of our constructions.

95

4 Delegatable Anonymous Credentials

In this chapter we present a novel DAC scheme that supports attributes, provides anonymity
for delegations, allows the delegators to restrict further delegations, and also comes with
an efficient construction. Our approach builds on a new primitive that we call structure-
preserving signatures on equivalence classes on updatable commitments (SPSEQ-UC). The
high-level idea is to use a special signature scheme that can sign vectors of set commitments,
where signatures can be extended by additional set commitments. Signatures additionally
include a user’s public key, which can be switched. This allows us to efficiently realize
delegation in the DAC. Similar to conventional SPSEQ, the signatures and messages can
be publicly randomized and thus allow unlinkable delegation and showings in the DAC
system. We present further optimizations such as cross-set commitment aggregation that,
in combination, enable efficient selective showing of attributes in the DAC without using
costly zero-knowledge proofs. We present an efficient instantiation that is proven to be
secure in the generic group model and finally demonstrate the practical efficiency of our
DAC by presenting performance benchmarks based on an implementation.

4.1 High Level Idea of Our Approach

On a very high level, our approach to construct DAC takes inspiration from the anonymous
credentials in [FHS19] as well as the approach based on DMS in [BB18]. Importantly, in
contrast to the latter and similar to DACs based on mercurial signatures [CL19,CL21], it
however avoids the use of NIZK for complex statements.

The idea in our DAC, omitting some details for the sake of brevity, is that in a hierarchy
of delegations the root authority issues a SPSEQ-UC signature on a commitment.1 The
commitment carries the attributes for the first delegatee and the public key to which the
signature is tied is the one of the delegatee. The delegatee, if provided with a corresponding
update key for this signature by the delegator, can then perform further delegations. This
update key allows to further extend the commitment vector (and thus add attributes) and
thus delegating a credential for the next level in the delegation hierarchy. Again the public
key of the delegatee, now playing the role of the delegator, is switched to the one of the
next delegatee. Due to the privacy properties of the SPSEQ-UC, a signature resulting from
extending the vector looks like a fresh signature (derivation-privacy) and one resulting from
switching a user key also looks like a fresh signatures (conversion-privacy). This ensures

1Technically to guarantee anonymity we require two commitments, where the first one is a dummy
commitment and not assigned any or simply some fixed attributes.

97

that in the DAC, delegations cannot be tracked and all credentials in a delegation chain
are indistinguishable. This process keeps on going until the end of the delegation chain is
reached (if no further delegations are allowed, then no update key is provided). One issue
that is worth mentioning is that every delegator can control how far delegations can go by
further restricting the update key and a delegator can also restrict the possibility to show
attributes from a certain level in the hierarchy (which corresponds to a commitment in the
commitment vector) by not providing the opening of the commitment to the delegatee.

Now showing a credential simply amounts to adapting the signature to a re-randomized
signature for a re-randomized commitment vector and providing subset openings of the
respective commitments. Due to the origin-hiding property of the SPSEQ-UC this results
in an unlinkable showing. As we show in Section 4.5 we can realize a cross-commitment
aggregation technique to make the opening of multiple commitments compact.

4.2 Practical Example Application

While DAC can be beneficial in many applications of ACs, we want to discuss a particular
application of DAC as a motivation for future practical deployments.
ISO 18013-5, a recently published standard, establishes the standardization of interna-

tional mobile driving licenses (mDLs). This mDL deployment serves as a widely adopted
example of real-world credentials on a global scale and represents one of the initial inter-
national standards for digital credentials with built-in privacy protections. This stands
in contrast to currently deployed NFC passports, which lack any provisions to address
privacy-sensitive concerns.

In contrast to traditional paper/plastic card implementations, digital versions of driving
licenses employ measures to prevent forging by utilizing signatures from trusted issuing
authorities (IAs). These measures, known as "protection against forgery," rely on signa-
tures over Mobile Security Objects (MSOs). These MSOs consist of hash commitments
representing the credential attributes and are referred to as "issuer data authentication" in
the standard. Additionally, they incorporate "protection against cloning," which is based
on message authentication codes (MACs) applied during individual sessions (known as
"mdoc authentication").

To ensure "protection against unauthorized access," consent dialogs are implemented
on the holder’s device, allowing users to choose which attributes to disclose during a
presentation. Moreover, to establish unlinkability between different showings (as long
as no identifying attributes are included), multiple MSOs can be provisioned 2. Each
presentation employs unique attribute hash sets and signature values, enhancing the level
of privacy and security. In short, the current mDL standard [ISO] offers the following
features related to Attribute Credentials (ACs): 1) Selective disclosure of attributes. 2)

2Note that the decision to provide multiple MSOs for a provisioned mDL lies with the issuing authority.
If the IA does not provide them, holders of mDLs can be trivially linked between different showings
based on the MSO.

98

Unlinkability against verifiers. 3) Capability to include different showings to the same
verifier (assuming sufficient availability of MSOs for single-use showings). 4) Unforgeability,
relying on the assumption of an unforgeable signature scheme. 5) Compactness in terms
of static credential/signature data and showing sizes, along with sufficient efficiency for
implementation on current smart cards and phones.
However, it currently does not address strong anonymity against issuers themselves or

the delegation of capabilities to issuing authorities3.
Delegation holds significant importance in the context of global standards and practical

implementations of real-world credentials. It is unlikely that a single issuer would be
universally trusted for driving licenses across the world. In many larger countries, this
authority is already delegated to smaller organizational units, like US state DMVs, creating
delegation chains with at least two levels. However, the current standard assumes that all
verifiers possess a consolidated list of all issuer public keys. This information is then used to
verify presented Mobile Security Objects (MSOs) and perform "issuer data authentication"
for disclosed attributes. Consequently, the respective issuer becomes explicitly known
to the verifier, even if no specific credential attribute would have otherwise disclosed
this information. This poses several problems, such as potentially revealing the holder’s
approximate home location, citizenship, or other internal aspects of the issuing organization.
For instance, if separate sub-organizations issue credentials for legal aliens, asylum seekers,
or refugees, this information can be misused for discriminatory or tracking purposes.
Our proposed solution has the potential to enhance future mDLs or similar real-world

credentials significantly. It stands out by explicitly providing robust anonymity protection
against issuers and verifiers, as well as enabling delegation with the option for top-level
issuers to determine the depth of their organizational hierarchy. Unlike some alternative
proposals, our solution maintains the capability for selective attribute disclosure while
ensuring efficiency and compactness in all communication and processing. Particularly
in widely applicable scenarios like age verification, one of the main applications of mDLs,
our solution can prevent unintentional leaks of personal data through the delegation
hierarchy, leading to substantial improvements in user privacy and the prevention of
potential discrimination.

4.3 Comparison with Previous Work

In Table 6.3.5, we provide a comparison of our approach with other existing efficient DAC
schemes in the literature [BB18,CDD17,CL19,CL21]. We compare our DAC with these
schemes in terms of the following criteria: Attr indicates whether credentials include
attributes that can at least be selectively revealed. We use ≈ to indicate that [CL21]
supports attributes, but as all attributes always need to be revealed it does not support

3The current mDL standard also does not cover efficient revocation of credentials, but instead, it
recommends using short-lived MSO signatures as a mitigation. We consider revocation to be out of
scope for this discussion and, therefore, do not point it out as another shortcoming.

99

selective disclosure. Expr represents the expressiveness of the supported showing policies,
where R stands for arbitrary computable relations over attributes and S denotes the selective
disclosure of a subset of attributes. We note that by avoiding NIZK proofs for complex
statements, it seems necessary to be restricted to selective disclosure (S), which is however
sufficient for most practical applications, e.g., ISO 18013-5 discussed in Section 4.2. Rest

Table 4.1: Comparison of practical DAC schemes (L: Delegation chain depth; n: Attributes;
u: Undisclosed attributes).

Scheme Attr Expr Rest SAnon |Cred| |Show|

BB [BB18] X S/R ≈ G#† O(1) O(u)
CDD [CDD17] X S/R × G#†,♣ O(nL) O(uL)
CL [CL21] ≈ × × G#∗ O(nL) O(uL)
Ours X S X ‡ O(1) O(L)
† Requires a trusted setup and have a trapdoor associated to their parameters.
♣ It does not support an anonymous delegation phase.
‡ We consider a malicious CA key and all delegators keys can be exposed.
∗ It also allows an adversarial CA but no delegators’s keys leak.

indicates whether it is possible to apply a restriction on the delegator’s power during the
delegation. Here, our scheme allows such restrictions in which a (superior) delegator can
decide i) how many additional levels of delegation can be made, ii) to make all attributes of
selected levels “unshowable” by not providing the opening of the respective commitments,
and, iii) how many attributes in each level (commitment) can be delegated by determining
(potentially removing) key components in ukk′ . Here, we note that BB [BB18] provides
a type of restriction on the attributes such that delegators can prevent changing some
attributes during delegation. However, one still can use these attributes in showings of a
credential. Also, BB does not have a delegation-level concept and thus one cannot control
and restrict the delegation-level number (power). (SAnon) refers to strong anonymity
guarantees, meaning that no one can trace or learn information about the user’s identity
or anything beyond what they suppose to show during both the issuing/delegation and
showing of credentials. Moreover, anonymity holds without relying on a trusted setup (and
thus a potential trapdoor breaking anonymity) as well as under a malicious key generation
by a (corrupted) root authority, and user’s key can leak 4. Here means that the scheme
satisfies all conditions, and G# means that it does not provide one or more of them.

With |Cred| we denote the size of the credential. L indicates the length of the delegation
chain. As it turns out, BB [BB18] (2 group elements) and our scheme (5 group elements)
provide constant-size credentials. But as already mentioned, our scheme provides a simpler
construction by avoiding potentially costly linear-sized (in the number of attributes) zero-

4We note that CL and our model require a credential credb of the anonymity challenge to be on a delegation
path from a (corrupted) root credential where all delegations have been performed honestly. However, we
additionally allow the adversary to access the user corruption oracle in which we reveal the (delegators)
user’s secret keys to the adversary. CL cannot support this type of corruption as then the anonymity of
their construction breaks down. This makes our model stronger than the one of CL.

100

knowledge proofs. With |Show| we denote the size of the credential showing. Our showing
is efficient as it needs only a constant number of group elements (5 elements) and the
commitment vector with the size of delegation L. BB does not have the concept of levels
and needs to send the signature (2 elements) and the elements of proving knowledge of
undisclosed attributes (|ZKPoK| = u). Note that for practical use-cases, we can typically
assume L < u. For other schemes, this cost is much higher as their credentials grow linearly
in the number of attributes and L. Note that if there are a large number of attributes to
be issued, they can be split into two sets and embedded in two credentials.

Comparing efficiency with related work. We do not provide a comparison with CL
as it does not support selective showing of attributes (and there is also no implementation
available). CDD is the most efficient scheme and the only one from Table 6.3.5 that is fully
specified. We will compare our implementation to the implementation of CDD [CDD17]
that has recently been provided by [BCET21b] in Section 4.7. Moreover, we provide a
more comprehensive theoretical comparison with CDD, which due to the lack of space is
deferred to 4.7.1. For BB [BB18], unfortunately, only the underlying signature scheme
based on Pointcheval-Sanders signatures [PS16a] is specified. But the remaining parts of
their generic constructions are not detailed, making concrete performance estimates hard.
However, since their credential showing must conceal the DMS signature and prove the
verification relation of the DMS (resulting in a size linear in the number of undisclosed
attributes), this imposes a rather complex NIZK statement.

4.4 SPSEQ on Updatable Commitments

As our primary building block, we introduce equivalence-class signatures on updatable
commitments called (SPSEQ-UC). It can be viewed as a variant of SPSEQ with the
following modifications: i) It considers the message space as vectors of randomizable set
commitments, i.e., one can adapt a signature on a commitment vector to a randomized
version of the signed commitments. This means that equivalence classes are defined on
vectors of commitments. ii) SPSEQ-UC not only considers signing representatives of classes
of a single projective equivalence relation R, but a family of relations. This is, as we allow
to extend signed vectors by additional commitments. Thus we consider a family of such
relations IR` such that Rk ∈ IR` for any 1 ≤ k ≤ `. More technically, in SPSEQ-UC signing
of a commitment vector of length k also produces an update key ukk′ corresponding to an
integer k′ with k ≤ k′ ≤ `. Given the update key ukk′ , in addition to adapting a signature
on a commitment vector C in class [C]Rk to another representative of the given class, one
also can update a commitment vector C (i.e., extending it) to a vector C′ being in a class
[C′]Rk′ of a new equivalence relation. Then one can adapt the signature accordingly to
the updated commitment vector. Finally, iii) in SPSEQ-UC a signature is bound to a user
public key. The signer produces a signature bound to a user public key, and this can be
adapted into another valid signature for a new user public key by anyone knowing the old
user secret key.

101

4.4.1 Formal Definitions

We recall that in an SPSEQ scheme, one can sign vectors of group elements and it is possible
to jointly randomize messages and signatures in public. The messages space consists of
representatives of projective equivalence classes defined on one source group of a bilinear
group, i.e, (G∗1)` (for some fixed ` > 1), and randomization of a message represents a
change to another representative in the signed class. In case of SPSEQ-UC the message
space consists of a vector of group elements representing set commitments (a commitment
vector) from (G∗1)`. As mentioned above since we require updating, i.e., extending, the
commitment vector, in contrast to SPS-EQ, we consider a family of equivalence relations
IR`. Thus, for any k with 1 < k ≤ `, we can define the following equivalence relation
Rk ∈ IR` and the equivalence class [C]Rk of a set commitment vector C = (C1, . . . , Ck).
More concretely, for a fixed bilinear group BG and (k, `), we define Rk ∈ IR` as follows:

Rk =
{

(C,C′) ∈ (G∗1)k × (G∗1)k ⇔ ∃µ ∈ Z∗p : C′ = Cµ
}
.

Now we are ready to present the definition.

Definition 41 (SPSEQ-UC scheme). A SPSEQ-UC scheme for a set commitment scheme
SC and a parameterized family of equivalence relations IR` consists of the following PPT
algorithms:

PPGen(1λ, 1t, 1`)→ (pp): On input the security parameter λ and an upper bound t for
the cardinality of committed sets and a length parameter ` > 1, this probabilistic
algorithm outputs the public parameters pp. The message set space SSC is well-defined
from pp. pp will be an implicit input to all algorithms.

KeyGen(pp)→ (vk, sk): On input the public parameters pp, this probabilistic algorithm
outputs a verification and signing key pair (vk, sk).

UKeyGen(pp) → (sku, pku): On input the public parameters pp, outputs a key pair
(sku, pku) for a user u.

RndmzC(C,O, µ) → (C′,O′): Takes a commitment vector C of size 1 < k ≤ `, corre-
sponding openings O and randomness µ. It runs (C ′i, O′i)← SC.RndmzC(Ci, Oi, µ) for
all i ∈ [k] and outputs a new representative of the set commitment vector C′ ∈ [C]Rk
and corresponding openings O′.

Sign(sk,M, k′, pku; ρ) → (σ, (C,O), ukk′): This probabilistic algorithm takes as input a
signing key sk, a vector of set messages M = (M1, . . . ,Mk), an index k′ with k ≤ k′ ≤ `,
a user public key pku and a vector of randomness ρ. It computes (Cj , Oj)j∈[k] ←
SC.Commit(Mj ; ρj) for all j ∈ [k], sets C = (C1, . . . , Ck) and O = (O1, . . . , Ok). It
outputs a signature (σ,C) for pku, and also an update key ukk′ in case k′ 6= `.

102

Verify(vk, pku,C, σ, (T,U)) → 0/1: On input a verification key vk, a user public key
pku, a commitment vector C = (C1, . . . , Ck), the purported signature σ, and a pair
(subset/witness form set commitments) (T,U), it outputs 0 if any of the following
checks fail and 1 otherwise:

• Check whether σ is a valid signature for (C, pku).
• For all (Ti, Ui) ∈ (T,U): if Ui = Wi check

1 ?= SC.VerifySubset(Ci, Ti,Wi). Else if Ui = Oi, check 1 ?= SC.Open(Ci, Ti, Oi).

UKVerify(vk, ukk′ , k′, σ) → 0/1 : On input a verification key vk, an update key ukk′ , an
integer k′ and a signature σ, this update key verification algorithm outputs 0 or 1.

RndmzPK(pku, ψ, χ) → pk′u: On input a user public key pku and randomness ψ, χ, this
public key randomization algorithm outputs the randomized public key pk′u.

ChangRep(pku, ukk′ , (C,O), σ, µ, ψ) → (σ′, (C′,O′), (uk′k′ or ⊥), pk′u, χ): This algorithm
takes as input the user public key pku, a commitment vector C = (C1, . . . , Ck) in
equivalence class [C]Rk and corresponding openings O, a signature σ for C, randomness
ψ, µ and optionally an update key ukk′ . It returns an updated signature σ′ for a new
commitment vector and corresponding openings (C′,O′)← RndmzC(C,O, µ) such that
C′ ∈ [C]Rk as well as a randomized user public key pk′u ← RndmzPK(pku, ψ, χ) for
uniform randomness χ. In case that ukk′ 6=⊥, it additionally outputs a randomized
update key uk′k′ .

ChangeRel(Ml, σ,C, ukk′ , k′′) → (σ′, (C′, Ol), ukk′′): On input a message set Ml ⊂ SSC
for l = k + 1 ∈ [k′], a signature σ for a vector of commitments representative C =
(C1, . . . , Ck) of equivalence class [C]Rk , an updatable key ukk′ , and an index k′′ ≤ k′.
This algorithm adapts a signature σ′ for a new commitment vector C′ = (C, Cl) of
equivalence class [C′]Rl , where Cl is a set commitment for Ml with the related opening
information Ol. Also, for k′′ ∈ [l + 1, k′], updates the updatable key for the range
[l + 1, k′′] into ukk′′ .

SendConvertSig(vk, sku, σ) → (σorph): It is an algorithm run by a user who wants to
delegate a signature σ. It takes as input the public verification key vk, a secret key sku
and the signature σ. It outputs an orphan signature σorph.

ReceiveConvertSig(vk, sku′ , σorph) → σ′: It is an algorithm run by a user who receives a
delegatable signature. It takes as input the verification key vk, a secret key sku′ , an
orphan signature σorph. It outputs a new signature σ′ for pku′ .

For simplicity, when we write ConvertSig(vk, sku, sku′ , σ) we mean [SendConvertSig(vk, sku, σ)
↔ ReceiveConvertSig(vk, sku′)]→ σ′, where σ′ is a valid signature.
We note that UKVerify is an algorithm that checks whether the update key is formed

correctly. This is required in the DAC construction (cf. Section 4.6.2) to verify whether a
delegation is valid. Moreover, it helps in the definition of the privacy properties below.

103

4.4.2 Security Definitions
Similar to conventional signatures, a SPSEQ-UC scheme needs to be correct and unforgeable.
And similar to SPSEQ, we need additional properties covering the distribution of adapted
signatures.

Correctness. We require that honest signatures verify as expected. Moreover, algorithms
ConvertSig,ChangRep and ChangeRel need to output valid signatures for the respective
parameters. We provide a formal correctness definition as follows:

Definition 42 (Correctness). A SPSEQ-UC scheme for a set commitment scheme SC and
a parameterized family of equivalence relations IR` for all ` > 1, is correct if it satisfies
the following conditions for all t, λ, k, k′ with k ≤ k′ ≤ `, for all pp ∈ PPGen(1λ, 1t, 1`),
(vk, sk) ∈ KeyGen(pp), pku ∈ UKeyGen(pp), all M, ρ, T ⊆ M, all (σ, (C,O), ukk′) ∈
Sign(sk,M, k′, pku; ρ), any U with 1 = SC.VerifySubset(Cj , Tj , Uj)j∈k (for Uj being a subset
opening) and 1 = SC.Open(Ci, Ti, Ui)j∈k (for Uj being an opening):
Verification: We have that:

Verify(vk, pku,C, σ, (T,U)) = UKVerify(vk, ukk′ , k′, σ) = 1.

Change of set commitments representative: For all (µ, ψ), (σ′, uk′k′ , χ) ∈ ChangRep(pku,
ukk′ , (C,O), σ, µ, ψ), all (C′,O′)← RndmzC(C,O, µ), pk′u ← RndmzPK(pk, ψ, χ) and any
U′ s.t. either U ′j ← SC.OpenSubset(C ′j , O′j , Tj) or U ′j = O′j we have:

Verify(vk, pk′u,C′, σ′, (T,U′)) = 1 and C′ ∈ [C]Rk .

Signature conversion: For all (pku′ , sku′) ∈ UKeyGen(pp), σ′ ← ConvertSig(vk, sku,
sku′ , σ) it holds that

Verify(vk, pku′ ,C, σ′, (T,U)) = 1.

Change of set commitments relation: For any iterative application of pkul ∈ UKeyGen(pp),
(ukk′′

l
, σ′l)← ChangeRel(Ml, σl−1,C, ukk′

l−1
, k′′) for anyMl, with C′ = (C, Cl ∈ SC.Commit(Ml))

and M′ = (M,Ml), any U′ s.t. U ′j ← SC.OpenSubset(C ′j , O′j , Tj)j∈l ∨ U ′j = O′j with
l < k′′ ≤ k′ and T′ ⊆M′, we have:

Verify(vk, pkul ,C
′
, σ′l, (T′,U′)) = 1

whenever l ∈ [k + 1, k′] and also we have [C′]Rl.

Unforgeability. Here, we consider an adversary that has access to signatures for message
set vectors of its choice, controls randomness of commitments and is allowed to create
as well as corrupt user keys. We require that it cannot come up with a signature on a
commitment vector that opens to non-signed message (sub-)sets. Here we need to consider
that the adversary is allowed to extend commitment vectors. In addition, the adversary

104

needs to specify the used user secret and public key (sk∗, pk∗) for the forgery, which is
required to make this concept useful in the application to DACs. Looking ahead, since
the output of ChangeRel and ChangRep is distributed identical to Sign, we do not need to
provide access to such oracles as it can be done by the adversary on its own. To detect
that signatures derived with ukk′ are obtained from ChangeRel or are generated freshly in
the Sign oracle, we define the following relation Rk′ . Consequently, signatures that can be
legally derived using ConvertSig and ChangRep are not considered as forgeries.

Definition 43. Let k, ` be integers. For any ` ≥ k′ > k, we define the relation Rk′ for
two vectors M = (M1, . . . ,Mk) and M∗ = (M∗1 , . . . ,M∗k′) as follows:

(M,M∗) ∈ Rk′ ⇐⇒ ∀i ≤ k : M∗i ⊆Mi

ExpUnfSPSEQ-UC,A(λ, `, t):

• Q := ∅;UL := ∅, pp← PPGen(1λ, 1t, 1`)
• (vk, sk)← KeyGen(pp)
• ((sk∗u, pk∗u)(C∗,T∗,U∗), σ∗)← A<O>(vk, pp)

return:∀(pku, sku) 6∈ UL,∀(M, k′, pku) ∈ Q :
(M,T∗) /∈ Rk′ ∧ (sk∗u, pk∗u) ∈ UKeyGen(pp)
∧ Verify(vk, pk∗u,C

∗, σ∗, (T∗,U∗)) = 1


OCreate(i):

• (pku, sku)← KeyGen()
• UL ← UL ∪ {(i, pku, sku)}

return pku

OSign(M, k′, pku, ρ):

• If ` ≥ k′ ≥ k:
• Then (σ, (C,O), ukk′) ← Sign(sk,M, k′,

pku; ρ)
• Q = Q ∪ {(M, k′, pku)}
• return ((C,O), σ, ukk′)
• Else return ⊥

OCorrupt(i):
• If ∃i ∈ UL such that (pku, sku) ∈ UL
• Then delete the item from the list and

return (sku, pku)
• Else return ⊥

Figure 4.1: Experiment ExpUnfSPSEQ-UC,A(λ, `, t)

Formally for unforgeability we require the following:

Definition 44 (Unforgeability). A SPSEQ-UC scheme is unforgeable if, for all (λ, t) ∈ N,
and ` > 1, for any PPT adversary A, there exists a negligible function ε(λ) such that
Pr[ExpUnfSPSEQ-UC,A(λ, `, t) = 1] ≤ ε(λ), where the experiment ExpUnfSPSEQ-UC,A(λ, `, t)
is defined in Fig 4.1 and Q is the set of queries that A has issued to the signing oracle.

Note that unforgeability allows the adversary to either output a full opening (U∗i = Oi)
or subset opening (U∗i = Wi) for each commitment in the commitment vector. This is also
used to make it useful in the application to DAC.

Privacy notions. Subsequently, we define three privacy properties that are similar
in vein to origin-hiding and signature adaption from previous works on SPSEQ and
mercurial signatures [CL19,FHS19]. However, since SPSEQ-UC supports more functionality
we need to introduce additional notions. Firstly we adapt origin-hiding from [CL19,

105

FHS19] to SPSEQ-UC. We want to guarantee that fresh and randomized signatures are
indistinguishable, which is important to guarantee the anonymity of showings in DACs.
Secondly, we newly introduce derivation-privacy, which guarantees that signatures obtained
by extending commitment vectors are indistinguishable from fresh signatures on extended
commitment vectors. Thirdly, we introduce conversion-privacy, which guarantees that
when switching a user key in the signature, the resulting signature is indistinguishable
from a fresh signature on the new user public key. We note that these properties compose
(the outputs are always valid signatures and update keys) and can thus be applied an
arbitrary number of times and in an arbitrary order. The notions are essential to the
anonymity (of delegation) in the DAC application. Subsequently, we use ≈ to denote
perfect indistinguishability.

Origin-hiding (also called signature adaptation [FHS15,FHS19]) formalizes the fact that
signatures for well-formed commitment vectors and well-formed update keys output by
ChangRep are distributed identical to fresh signatures on the new representative.

Definition 45 (Origin-hiding). For all (λ, t, `) and pp ∈ PPGen(1λ, 1t, 1`), for all vk, pku,
C, M, O, T, U, ukk′, k′ and σ. If pku ∈ UKeyGen and SC.Open(pp, Cj ,Mj , Oj)j∈k =
1 ∧ UKVerify(vk, ukk′ , k′, σ) = Verify(vk, pku,C, σ, (T,U)) = 1, then for all µ, ψ, the
algorithm ChangRep(pku, ukk′ , (C,O), σ, µ, ψ) outputs a uniformly random C′ ∈ [C]Rk and
uniformly random pk′u, and σ′ (and if ukk′ 6=⊥ update key uk′k′) in the respective spaces.

Since we support the extension of the signed commitment vector, with derivation privacy
we guarantee that signatures derived on a commitment vector C∗ output by ChangeRel are
indistinguishable from signatures freshly created with sk by running Sign on the extended
vector.

Definition 46 (Derivation-privacy). For all (λ, t, `), pp ∈ PPGen(1λ, 1t, 1`), all (vk, sk) ∈
KeyGen(pp), pku, M, O = ρ, T, U, ukk′ , k′, and σ. If pku ∈ UKeyGen and SC.Open(pp, Cj ,
Mj , Oj)j∈k = 1 ∧ Verify(vk, pku,C, σ, (T,U)) = 1 ∧ UKVerify(vk, ukk′ , k′, σ) = 1, then,
for all k′′ ∈ [k+ 1, k′], Ml, we have (σ′, (C′, Ol), ukk′′)← ChangeRel(Ml, σ,C, ukk′ , k′′) and
the following holds:

(vk, sk, pku, ukk′ , (σ′, (C′,O′), ukk′′)) ≈
(vk, sk, pku, ukk′ ,Sign(sk,M′, k′′, pku; ρ))

where M′ = (M,Ml) and O′ = (O, Ol).

With conversion-privacy we require that a converted signature, i.e., a signature where
the public key has been switched, is identically distributed to a fresh signature using the
new public key.

Definition 47 (Conversion-privacy). For all (λ, t, `), pp ∈ PPGen(1λ, 1t, 1`), and for
all (vk, sk) ∈ KeyGen(pp), (sku, pku) ∈ UKeyGen, C,T, M, U,O = ρ, ukk′, k′, and σ. If

106

SC.Open(pp, Cj ,Mj , Oj)j∈k = 1 ∧ Verify(vk, pku,C, σ, (T,U)) = 1 ∧ UKVerify(vk, ukk′ , k′, σ) =
1, then for all (pku′ , sku′) ∈ UKeyGen, the following holds:

(vk, sk, pku′ , (ConvertSig(vk, sku, sku′ , σ), (C,O), ukk′)) ≈
(vk, sk, pku′ ,Sign(sk,M, k′, pku′ ; ρ)).

We can also define a class-hiding notion in the vein of [CL19,FHS19]. However, analogous
to [FHS15] (Proposition 1), the origin-hiding notion together with the indistinguishability of
the message space (under DDH) implies a stronger notion. We will use the above properties
in combination with the DDH assumption later directly in the proof of anonymity of the
DAC scheme. By class-hiding, we mean that, for all k, 1 < k ≤ `, given two messages
vectors C1 and C2 of size k, it should be hard to tell whether or not C1 ∈ [C2]Rk .

Definition 48 (Class-hiding). A SPSEQ-UC scheme for parameterized equivalence relations
Rk is class-hiding if for all λ and polynomial-length `(λ) and all probabilistic polynomial-
time (PPT) adversaries A, there exists a negligible function ε such that:

Pr


pp← PPGen(1λ, 1`, 1t); C1 ← (G∗1)k;
C0

2 ← (G∗1)k; C1
2 ← [C1]Rk ; b← {0, 1};

b′ ← A(pp,C1,Cb
2) : b′ = b

 ≤ 1
2 + ε(λ)

4.4.3 Construction

We now present our SPSEQ-UC construction and start with an intuition behind our
approach. We start from the SPSEQ scheme in [FHS15]. Inspired by their implicit use of
SC in [FHS19] to construct traditional ACs, we make the message space of the scheme a
vector of set commitments in a way that meets our requirements. Consequently, SPSEQ-UC
encodes each message setMi ⊂ Ztp into a set commitment Ci and signs a commitment vector
(G∗1)k of size k ≤ `. The randomization of the commitment vector is identical to a change
of representative in the SPSEQ. More specifically, we use the algorithm SC.Commit to
encode a message set to a set commitment in Sign and also an algorithm RndmzC to change
the commitment vector representative. Note that as made explicit in the unforgeability
game, we allow the adversary to control the randomness (opening information) used in
commitments. So we choose this randomness externally and pass it to Sign which then
passes it to SC.Commit. The most significant change compared to SPSEQ is the feature
of updating a commitment vector by appending new commitments, and the support to
adapt a signature to this updated commitment vector. Therefore, we can use the elements
from the set commitment parameters {P ai}0<i<t and bind them to the signing key of the
respective position of the vector and the randomness used in the Sign. We do this for
all indices from k to k′ and finally use these elements as the update key. Now, one can
add a new commitment (message set) to the signed commitment vector using algorithm
ChangeRel that receives a new message set, a signature and the update key. It first encodes

107

this set to a commitment. Then, it uses the update key to create another set commitment
value for the new message set, which can be easily aggregated into the signature (element
Z) and get the new signature for the updated commitment vector. For the user’s public
key bound to a signature, instead of signing the user’s public key by including it in the
vector, we define the extra element T to tie the signature to this key. This allows us to
update the user’s public keys by only locally updating the T element in the signature but
still guaranteeing unforgeability. The RndmzPK then allows to randomize a public key
consistently with the signature and in a way to achieve a new independent user public key
for each call to ChangRep.

PPGen(1λ, 1t, 1`)→ (pp): Run BG = (p,G1,G2,GT , P, P̂ , e)← BGGen(1λ). Pick α← Z∗p
and run ppSC = (Pαi , P̂αi)i∈[t] ← SC.Setup(1λ, 1t;α), and define SSC ← {M ⊂ Zp|0 <
|M | ≤ t}. Output pp = {BG, ppSC, SSC, `}.

KeyGen(pp)→ (vk, sk): For 0 ≤ i ≤ ` pick xi ← (Z∗p)`, set the signing key sk = (x0, . . . , x`).
Compute the related verification key vk = (X0, X̂0, . . . , X̂`), where X0 = P x0 and
X̂i = P̂ xi for 0 ≤ i ≤ `. Output (vk, sk).

UKeyGen(pp) → (sku, pku): Pick wu ← Z∗p, set pku ← Pwu and sku = wu, and finally
return (sku, pku).

RndmzC(C,O, µ) → C′: On input a set commitment vector C ∈ [C]Rk corresponding
openings O and randomness µ, produces a new representative of the set commitment
vector C′ = Cµ and corresponding openings O′ = µO.

Sign(sk,M, k′, pku; ρ)→ (σ, (C,O), ukk′): On input the signing key sk, a vector of message
sets M = (M1, . . . ,Mk), an index k′, k ≤ k′ ≤ `, a user public key pku and a vector
of randomness ρ. For all j ∈ [k] run (Cj , Oj)j∈[k] ← SC.Commit(Mj ; ρj), and get a
vector of set commitments C = (C1, . . . , Ck) related to a vector of sets M and opening
O = (O1, . . . , Ok). More precisely, SC.Commit computes a set commitment for each
Mj in M as follows: define a polynomial fMj (X) :=

∏
m∈Mj

(X −m) =
∑|Mj |
i=0 fi ·Xi

and with ρj ∈ ρ, compute:

Cj =

|Mj |∏
i=0

(
Pα

i
)fiρj and Oj = ρj ,

where Pαi are elements in pp. Then, compute a signature σ for (pku,C) as follows:
Pick a random y ← Z∗p and compute σ =Z ←

∏
j∈[k]

C
xj
j

 1
y

, Y ← P y, Ŷ ← P̂ y, T ← P x1·y · pkx0
u



108

Also, if k 6= `, compute an update key for a range between k and k′ as:

ukk′ =
((

usignj =
(
(Pαi)xj

)y−1)
j∈[k+1,k′],i∈[t]

)
.

Output (σ, (C,O), ukk′).

Verify(vk, pku,C, σ, (T,U))→ 0/1: On input a verification key vk, a user public key pku,
a commitment vector C = (C1, . . . , Ck), the purported signature σ, and a pair (T,U),
it outputs 0 if any of the following checks fail and 1 otherwise:

• Check whether σ is a valid for (C, pku), i.e., output 0 if one of the following checks
fails:

k∏
j=1

e(Cj , X̂j+1) = e(Z, Ŷ) ∧ e(Y, P̂) = e(P, Ŷ)

∧ e(T, P̂) = e(Y, X̂1) · e(pku, X̂0).

• For all (Ti, Ui) ∈ (T,U) if Ui = Wi, then Wi is a witness for Ti being subset of the
set committed to Ci: run SC.VerifySubset(Ci, Ti,Wi), i.e., output 1 if the following
equation holds; else 0: ∏

i∈[|W|]
e(Wi, P̂

fTi (α)) =
∏

i∈[|W|]
e(Ci, P̂)

Else Ui = Oi, then Ti = Mi is a message set and Oi is valid opening of Ci to Ti:
run SC.Open(Ci, Ti, Oi), i.e., output 1 if the following holds; else 0:

∀i ∈ [k] : Oi = ρi ∧ Ci = (P fMi (α))ρi

UKVerify(vk, ukk′ , k′, σ)→ 0/1. On input a vk, ukk′ , index k′, a signature σ = (Z, Y, Ŷ , T),
parse ukk′ = (usignj = ((Pαi)xj)y−1)j∈[k+1,k′],i∈[t] output 1 if the following holds; else 0:

∧
i∈[t],j∈[k+1,k′]

e(Pαi , X̂j) = e(((Pαi)xj)y−1
, Ŷ)

RndmzPK(pku, ψ, χ) → pk′: On input a user public key pku and randomness ψ, χ ∈ Z∗p,
output the randomized public key pk′u = (pku ·Pχ)ψ, related to the secret key (χ+sku)ψ.

ChangRep(pku, ukk′ , (C,O), σ, µ, ψ)→ (σ′, (C′,O′), (uk′k′ or ⊥), pk′u, χ): On input a user
public key pku, optionally an update key ukk′ , a commitment vector C = (C1, . . . , Ck)
in equivalence class [C]Rk with corresponding openings O, a valid signature σ for C
and randomness ψ, µ ∈ Z∗p.

109

Pick χ← Z∗p and compute a new commitment representative (C′,O′)← RndmzC(C,O, µ)
as well as a randomized user public key pk′u ← RndmzPK(pku, ψ, χ) and update signature
as σ′ = (Z

µ
ψ , Y ψ, Ŷ ψ, (T ·Xχ

0)ψ). Moreover, if ukk′ 6=⊥, check if UKVerify(vk, ukk′ , k′, σ) =
1, randomize the update key:

uk′k′ =
(
(usignµ·ψ

−1

j)j∈[k+1,k′]
)
,

and output (σ′, (C ′,O′), (uk′k′ or ⊥), pk′u, χ).

ChangeRel(Ml, σ,C, ukk′ , k′′) → (σ′, (C′, Ol), ukk′′): On input a message set Ml ⊂ SSC
for l = k + 1 ∈ [k′], a valid signature σ for commitment vector C = (C1, . . . , Ck) in
equivalence class [C]Rk , a valid update key ukk′ , and an index k′′ ≤ k′.
First it creates a set commitment (Cl, Ol = ρl)← SC.Commit(Ml). Then, it performs
the following steps to update the signature for a commitment vector including Cl:

• First, compute a set commitment ϑl as in SC.Commit, but using keys of the
l-component of ukk′ as

usignl =
(
(Pαi)xl

)y−1

for i ∈ [t] :

fMl
(X) =

∑
fiX

i ⇒ ϑl = (
∏
i∈[t]

usignfili)
ρl =

∏
i∈[t]

((Pαi·xl·y−1︸ ︷︷ ︸
usignli

)fi)ρl

• Second, update σ for a commitment vector C′ = (C, Cl) as:

σ′ =
(
(Z · ϑl) , Y, Ŷ , T

)
.

• Finally for k′′ ∈ [l + 1, k′], update the update key ukk′ for j ∈ [l + 1, k′′]: ukk′′ =(
usignj

)
j∈[l+1,k′′]

.

Output (σ′, (C′, Ol), ukk′′).

SendConvertSig(vk, sku, σ) → σorph: On input vk = (X0, X̂0, . . . , X̂`), a user secret key
sku for the public key pku, and a valid signature σ = (Z, Y, Ŷ , T). Output an orphan
signature σorph = (

Z, Y, Ŷ , T ′ = T · (Xsku
0)−1

)
ReceiveConvertSig(vk, sku′ , σorph)→ σ′: On input the verification key vk, a secret key sku′ ,

an orphan signature σorph =
(
Z, Y, Ŷ , T ′

)
. Output a signature σ′ for pku′ as:

σ′ =
(
Z, Y, Ŷ , T ′′ = T ′ ·Xsku′

0 = P x1·y · pkx0
u′

)
.

110

The correctness of our SPSEQ-UC construction follows form inspection. We formally show
the following:

Theorem 4.4.1 (Unforgeability). Our SPSEQ-UC construction is unforgeable in the
generic group model for type-3 bilinear groups.

The proof of Theorem 4.4.1 is provided in our paper [MSBM23].

Theorem 4.4.2 (Privacy). Our SPSEQ-UC construction is origin-hiding, conversion-
privacy and derivation Privacy based on definitions 45, 46 and 47, respectively.

We now prove that our SPSEQ-UC construction from Section 4.4.3 is Origin-hiding (Def.
45) and provides Conversion-privacy (Def. 46) and Derivation-privacy (Def. 47).

Lemma 4.4.1 (Origin-hiding). The construction described in Section 4.4.3 is Origin-
hiding.

Proof. Origin-hiding of ChangRep follows from the perfect adaptation of SPSEQ [FHS19].
The only main difference here is the additional element T in a signature as well as
elements (pku, ukk′) which we show that they are correctly randomized in both algorithms.
Let C ∈ (G∗1)k, T ⊆ M, any O,U s.t. SC.Open(Cj ,Mj , Oj)j∈k = 1, pku ∈ G1, and
(x0, x1, . . . , x`)← (Z∗p)` be such that vk = ((P̂ xi)i∈[0,`], P

x0). For some y ∈ Z∗p , a signature
(Z, Y, Ŷ , T) ∈ G1×G∗1×G∗2×G1 satisfying Verify(vk, pku,C, (Z, Y, Ŷ , T), (T,U)) = 1 along
with ukk′ is of the form

σ =

(k∏
i=1

Cxii

)y−1

, P y, P̂ y, P x1·y · pkx0
u

 .
For µ, ψ ∈ Z∗p , ChangRep(pku, ukk′ , (C,O), (Z, Y, Ŷ , T), µ, ψ) outputs

σ′ =

(k∏
i=1

Cµ·xii

)y−1·ψ

, P y·ψ, P̂ y·ψ, P x1·y·ψ ·Xψ(sku+χ)
0

 ,
which is a uniformly random element σ′ in G1 ×G∗1 ×G∗2 ×G1. That is, all elements of
the signature σ′ are perfectly randomized using randomness µ, ψ, χ and conditioned on
Verify(vk, (pku · Pχ)ψ,Cµ, σ′, (T,U)) = 1. Now we show that ukk′ (in the case that it is
requested for further delegation), and pku are also randomized perfectly using ψ, χ and µ.
For all k′, an update key ukk′ ∈ (G∗1)[k+1,k′] s.t. UKVerify(vk, ukk′ , k′, σ) = 1 and pku ∈ G∗1
are the from

ukk′ =
(

usignj =
(
(Pαi)xj

)y−1

j∈[k+1,k′]∧i∈[t]

)
and pku = P sku .

111

For µ, ψ ∈ Z∗p , ChangRep outputs the following form, so we have

uk′k′ =
(
(usignj)ψ

−1·µ
)
j∈[k+1,k′]

and pk′u = P (sku+χ)·ψ,

where χ← Z∗p is randomness selected locally for RndmzPK. It is not difficult to see that all
elements of the ukk′ are distributed as expected and also pku is perfectly randomized with
ψ, χ and represents a uniform element in G∗1. So, ChangRep clearly produces signatures
with the same distribution as Sign:

(σ,C, ukk′ , pku) ≈ (σ′,C′, uk′k′ , pk′u)

Lemma 4.4.2 (Conversion-privacy). The construction described in Section 4.4.3 provides
Conversion-privacy.

First of all, let us assume that ConvertSig(vk, sku, sku′ , σ) includes [SendConvertSig(vk, sku, σ)↔
ReceiveConvertSig(vk, sku′)]→ σ′, where σ′ is a valid signature.

Proof. For all (vk, sk) ∈ KeyGen(pp), (sku, pku) ∈ UKeyGen, C,T, M, U,O s.t. SC.Open(Cj ,
Mj , Oj)j∈k = 1 and σ. If Verify(vk, pku,C, σ, (T,U)) = 1. The signature σ in G1 ×G∗1 ×
G∗2 ×G1 is the form of:

σ =

(k∏
i=1

Cxii

)y−1

, P y, P̂ y, P x1·y ·Xsku
0 = P x1·y · pkx0

u

 .
Then for (sku′ , pku′) ∈ UKeyGen(pp), ConvertSig(vk, sku, sku′ , σ) outputs a new signature
with the form of:

σ′ =

(k∏
i=1

Cxii

)y−1

, P y, P̂ y, P x1·y ·Xsku′
0 = P x1·y · pkx0

u′

 .
It is clear that this looks like a fresh signature σ′ in G1 × G∗1 × G∗2 × G1 for pku′ with
randomness y. So the output of ConvertSig is distributed the same as the output of
Sign.

Lemma 4.4.3 (Derivation-privacy). The construction described in Section 4.4.3 provides
Derivation-privacy.

Proof. For all (vk, sk) ∈ KeyGen(pp), pku, M, O = ρ, k′, k′′, T, U, ukk′ , and σ. If
SC.Open(Cj ,Mj , Oj)j∈k = 1 ∧ Verify(vk, pku,C, σ, (T,U)) = 1 ∧ UKVerify(vk, ukk′ ,
k′, σ) = 1, then for an index l = k + 1 ∈ [k + 1, k′], let Ml be a message set such that
the message vector is M∗ = (M,Ml) and the related commitment vector is C∗ = (C, Cl).
We intend to show that ChangeRel produces outputs with the same distribution as Sign
for vectors M∗ and C∗: Sign(sk,M∗, k′, pku; ρ) ≈ ChangeRel(Ml, σ,C, ukk′ , k′′). More

112

precisely, for some y ∈ Z∗p , a signature σ = (Z, Y, Ŷ , T) ∈ G1 × G∗1 × G∗2 × G1 satisfying
Verify(vk, pku,C∗, σ, (T,U)) = 1 is of the form

σ =

(k∏
i=1

(C∗i)xi
) 1
y

, P y, P̂ y, P x1·y · pkx0
u


ConvertSig outputs the element Z of the signature as:

Z =

 k∏
i=1

(Cxii)
1
y ·

 ∏
i∈[t]∧l∈[k+1,k′]

Pα
i·xl·y−1

fi
 =

∏(
(Cxii)

1
y · C

xl· 1y
l

)
=
∏

(Cxii · C
xl
l︸ ︷︷ ︸∏l

i=1(C∗i)xi

)
1
y

So for the whole signature, it outputs the signature as:

σ′ =

(l∏
i=1

(C∗i)xi
) 1
y

, P y, P̂ y, P x1·y · pkx0
u


which looks like a fresh signature σ in G1 ×G∗1 ×G∗2 ×G1 for M∗ using the randomness y.
This is, for vectors C∗,M∗, ConvertSig produces signatures with the same distribution as
Sign.

4.5 Cross-Set Commitment Aggregation
We introduce an aggregatable set commitment CSCA that allows non-interactive aggregation
of witnesses across multiple commitments. We use a technique inspired by [BDFG20,
GRWZ20] to batch different subset opening witnesses into one and to improve the efficiency
of the verification operation with batching pairing equations. Functionality-wise, we require
that witnesses for multiple subsets of multiple commitments can be aggregated into a single
value called proof. This allows us to use the CSCA in the DAC scheme in order to open
any subset of attributes in each set commitment efficiently. CSCA adds two additional
algorithms in SC (Def. 2.4.3.3) to aggregate witnesses across k-commitments and verify
them:

AggregateAcross({Cj , Tj ,Wj}j∈[k]) → π. Takes as input a collection {Cj , Tj}j∈[k] along
with the corresponding subset opening witnesses {Wj}j∈[k] (computed using OpenSubset)
and outputs an aggregated proof π.

VerifyAcross({Cj , Tj}j∈[k], π)→ b. Takes as input a collection ({Cj , Tj}j∈[k]) along with
a cross-commitment-aggregated proof π, and checks: for all j ∈ [k], Cj is a set
commitment to a message set consistent with the subset Tj .

113

On computing commitments. Similar to SC in Section 2.4.3.3, with the knowledge of the
trapdoor α, we can compute a commitment when externally provided with the randomness
ρ in the group as P ρ. So, we add the commitment computation to CSCA.Commit2(Sj , α, P ρ)
with addition input to commit group elements.

Construction A Cross Set commitment aggregation scheme CSCA consists of the following
PPT algorithms:

CSCA.Setup(1λ, 1t) → ppCSCA: On input a security parameter λ and a maximum set
cardinality t, run BG = (p,G1,G2,GT , P, P̂ , e)← BGGen(1λ), choose H : {0, 1}∗ →
Zp, pick α← Zp, store α as a trapdoor and output ppCSCA ← (BG, H, (Pαi , P̂αi)i∈[t]),
which defines message space SppCSCA = {S ⊂ Zp|0 < |S| ≤ t}. ppCSCA will be an
implicit input to all algorithms.

CSCA.Commit(Sj) → (Cj , Oj): On input a set Sj ∈ SppSC : pick ρj ← Zp, compute
Cj ← (P fSj (α))ρj ∈ G∗1 and output (Cj , Oj) with Oj ← ρj .

CSCA.Commit2(Sj , α, P ρj)→ (Cj , Oj): On input a set Sj ∈ SppSC , α, and P
ρj : compute

Cj ← (P ρj)fSj (α) ∈ G∗1 and output (Cj , Oj) with Oj ←⊥.

CSCA.Open(Cj , Sj , Oj)→ 0/1: On input a commitment Cj , a set Sj , and opening Oj = ρj :
if Cj /∈ G∗1 or ρj /∈ Z∗p or Sj /∈ SppCSCA then return ⊥. Otherwise if Oj = ρj and
Cj = (P fSj (α))ρj , return 1; else return 0

CSCA.OpenSubset(Cj , Sj , Oj , Tj) → Wj : On input a commitment Cj , a set Sj , opening
Oj and a subset Tj , if CSCA.Open(Cj , Sj , Oj) or Tj 6⊆ Sj or Tj = ∅ then return ⊥. If
Oj = ρj , output Wj ← (P fSj\Tj (α))ρj .

CSCA.VerifySubset(Cj , Tj ,Wj) → 0/1: On input the commitment Cj , the subset Tj
and the witness Wj : if Cj /∈ G∗1 or Tj /∈ SppSC , return 0. Else if Wj ∈ G∗1 and
e(Wj , P̂

fTj (α)) = e(Cj , P̂), return 1; else 0.

CSCA.AggregateAcross({Cj , Tj ,Wj}j∈[k])→ π. Takes as input a collection ({Cj , Tj}j∈[k])
along with the corresponding subset opening witnesses {Wj}j∈[k] and outputs an
aggregated proof π as follows:

π :=
∏
j∈[k]

W
tj
j , where tj = H(j, {Cj , Tj}j∈[k]).

CSCA.VerifyAcross({Cj , Tj}j∈[k], π)→ 0/1. Checks that the following equation holds:∏
j∈[k]

e(Cj , P̂
tj ·ZS\Tj (α)) = e(π, P̂ZS(α))

where S =
⋃
j Tj , and ZS(α) =

∏
i∈S(α− i).

114

We require the same correctness of opening as before, extended to cross-commitment aggre-
gation in a natural way. To fit with the DAC, one provides one group element in G1 proof
π of the current values of the attributes required for the showing. When multiple subsets
of disclosed attribute sets are used, cross-commitment aggregation allows us to compress
witnesses (W1, . . . ,Wk) into a single proof π. This can help to reduce the bandwidth over-
head significantly and improves verification efficiency by saving k pairing equations. Note
that without aggregation verification has the form:

∏
i∈[k] e(Wi, P̂

fTi (α)) =
∏
i∈[k] e(Ci, P̂).

Randomization. We can randomize π and commitments Cj as (πµ,Cµ) and verification
works out.

Security. We can view the set commitment from Section 2.4.3.3 used for the cross-
commitment aggregation as an instantiation of [BDFG20], but restricted to monic polyno-
mials. So their analysis carries over. Note that in AggregateAcross, to be non-interactive,
we aggregate witnesses using tj using a hash function H modeled as a random oracle (as
done in [GRWZ20]), meaning that their analysis carries over.

4.6 Delegatable Anonymous Credentials
We now present our definition of delegatable anonymous credentials. It is similar to
[CL19,FHS19], but splits up the issuing protocol for issuing a root credential (CreateCred)
and delegating a credential (IssueCred) and works as follows: A root issuer (called CA)
issues a level-1 (L = 1) credential (a root credential) to intermediate issuers using the
CreateCred protocol. The credential is assigned for a user sku (whom it knows with a
pseudonym nymu) with an attribute vector A and the related set commitments C rooted
at pkCA. CA also creates a delegation key dkL′ which determines how the credential can be
delegated further until level L′. With this key, a user U can replace an old pseudonym with
a new one and also delegate their credential further to another user, say R, by switching to
R’s public key and possibly adding another set of attributes A′. Showing the credential
consists of the user proving possession of the secret key sku and providing a randomized
signature with required attributes.

Definition 49 (Delegatable anonymous credentials). DAC includes algorithms (Setup,KeyGen,
NymGen) and protocols CreateCred/ReceiveCred, IssueCred/ReceiveCred for issuing a cre-
dential and CredProve/CredVerify for showing of credentials as:

Setup(1λ, 1t, 1`)→ (pp, skCA, pkCA): Takes as input the security parameters λ, an upper
bound t for the cardinality of committed sets and a depth (i.e., level) parameter ` > 1.
It generates the public parameters pp for the system as well as a signing key skCA and
public key pkCA for all i ∈ [`] for CA. Outputs the pp and CA key pair (pp, skCA, pkCA).
pp will be implicitly input to all algorithms.

KeyGen(pp)→ (pk, sk): Generates a key pair (pk, sk), where sk refers to the user’s secret
key, and pk refers to the user’s public key (or an initial pseudonym).

115

NymGen(pk) → (nym, aux): Takes as input a user’s public key pk, and outputs a
pseudonym nym for this user and the auxiliary information aux (randomness) needed
to use nym.

Issuing a root credential:

[CreateCred(L′,A, skCA) ↔ ReceiveCred(pkCA, sku,A)] → (cred, (C,O), dkL′): This is an
interactive protocol between a user (issuer) who is known by nymu and CA. The com-
mon inputs are the pp, the CA ’s public key pkCA and the attribute set A. CA creates
a root credential, i.e. the (powerful) delegatable credential for a set commitment C
corresponding to the attribute set A and the related opening information O as well
as a delegatable key dkL′ regarding the level L′ for a user nymu (nymu is sent to the
CA), rooted at pkCA.

Issuing/delegating a credential:

[IssueCred(pkCA, dkL′ , sku, credu, Al, L
′′) ↔ ReceiveCred(pkCA, skr, Al)] → (credr, dk′L′′): It

is an interactive protocol between an issuer who is known by nymu and runs the
IssueCred algorithm, and a receiver, who is known by nymr and runs the ReceiveCred
side. The common inputs are the pp, CA ’s public key pkCA, and attribute set Al. Also,
the issuer takes as input the issuer’s secret key sku and his own credential credu (a
signature) together with all information associated with it (e.g. A, the delegatable
key dkL′ , the pseudonym nymu and its associated auxiliary information (randomness)
auxu), and (optionally) a level L′′ < L′ (if not set L′′ := L′). The receiver takes as
input her own secret key skr, and creates a nymr (and sends to nymu), and the auxiliary
information auxr associated with her pseudonym nymr. At the end of the protocol, the
receiver side outputs her credential credr that is issued for A′ = (A, Al) and dk′L′′ (if
further delegation is allowed) or ⊥.

Showing of a credential:

[CredProve(pkCA, skP, nymP, auxP, credP, D) ↔ CredVerify(pkCA, nymP, D)] → (0, 1): The
protocol involves two parties: a prover, responsible for proving possession of a credential
and executing the CredProve side of the protocol, and a verifier, executing the CredVerify
side. The shared inputs include pp, the public key pkCA of the credential authority
(CA), and the subset of attributes D that need to be disclosed.
The prover’s input includes their user secret skP and their credential, along with all
associated information (i.e., A, the prover’s pseudonym nymP, and related auxiliary
data auxP). On the other hand, the verifier takes the common inputs and receives nymP.
It outputs 1 if it accepts the proof of possession of a credential for D and 0 otherwise.

Note that the nym’s can be derived from the respective secret key and algorithms (KeyGen,
NymGen), we avoid passing nym’s as an explicit input whenever possible.

116

Definition 50 (Correctness of DAC). DAC is correct if Setup, KeyGen, NymGen, CreateCred,
and issuing/receiving protocols are executed correctly on honestly generated inputs, then in
an honest execution of the proving/verifying protocol, the verifier will accept the credential
cred with probability 1.

4.6.1 Security of DAC

We define our security model based on the game-based framework in [FHS19], with some
modifications to harmonize their definition with the one on SPSEQ-UC. The adversary
A has access to oracles that describe the possible ways to interact with the system. We
use 〈O〉 to denote the collection of oracles in the games. For the anonymity game we
have 〈O〉 = (OUser,OCorrupt,OCreateRoot,OObtIss,OObtain,ORootObt,OCredProve) and for the
unforgeability game 〈O〉 = (OUser,OCreateRoot,OCorrupt,OObtIss,ORootIss,OIssue,OCredProve).
We define four global lists that are shared among oracles as HU a list of honest users, CU a
list of corrupted users, Luk a list of user’s keys, and Lcred a list of user-credential pairs which
includes issued credentials and corresponding attributes and to which user they were issued.
Note that dkk′ implicitly shows k′ and subsequently Rk′ . Moreover, in each issuing query
(OObtIss,OIssue) only one commitment (and attributes set) is added in the commitment
vector. Also, for simplicity, we assume that credi contains (σ, (C,O, pki = nymi), auxi).

OUser(i): Takes as input a user identity i. If i ∈ HU or i ∈ CU it returns ⊥, else it creates
a fresh entry i in lists HU and Luk by running (ski, pki)← KeyGen(pp) and adding i
and (ski, pki) to the list HU and Luk, receptively. It returns pki = nymi.

OCorrupt(i, pki): On input a user identity i and a public key pki. If i /∈ HU , a new corrupt
user with public key pki (or nymi) is registered and add i ∈ CU , else it moves the
entry corresponding to i from the list of honest users HU and adds it to the list of
corrupted users CU . Then, it returns ski and all the associated credentials items
(i,A, dkk′ , credi) of Lcred[i]. Finally, it sets the form (⊥,A, k′,⊥) ∈ Lcred for all A and
i in this case.

OCreateRoot(i, k′,A): Takes as input a user identity i, an index k′ and attributes A. If
i /∈ HU it returns ⊥, else it creates a root credential by running[

CreateCred(k′,A, skCA)↔
ReceiveCred(pkCA, ski,A)

]
→ (credi, dkk′)

with a user i for an attribute set A and appends (i,A, dkk′ , credi) to Lcred.

ORootIss(k′,A): Takes as input an index k′ and attributes A. It creates a root credential by
running the CreateCred protocol with A: CreateCred(k′,A, skCA)↔ A for an attribute
set A and appends (⊥,A, k′,⊥) to Lcred. This oracle allows an adversary represented
by nymi to play a corrupted user to get a root credential from a CA.

117

ORootObt(i, k′,A): On input a user identity i, an index k′ and attributes A. If i /∈ HU it
returns ⊥, else it creates a root credential by running the Receive protocol with A
who impersonates a malicious CA to issue a root credential to an honest user i by
running: A ↔ ReceiveCred(pkCA, ski,A). If credi =⊥ the oracle returns ⊥. Else it
stores the resulting (i,A, dkk′ , credi) ∈ Lcred.

OObtIss(i, j, Al, k′′): Takes as user identities i and j, a set of attributes Al, and (optionally)
an index k′′. It makes user i delegate a credential to user j. If i, j /∈ HU or
(i,A, dkk′ , credi) /∈ Lcred it returns ⊥, else finds entries (ski, credi), skj , and runs the
issuing protocols as:[

IssueCred(pkCA, dkk′ , ski, credi, Al, k′′)
↔ ReceiveCred(pkCA, skj , Al)

]
→ (credj , dk′k′)

and adds the entry (j,A′, dk′k′ , credj) to Lcred, where A′ = (A, Al).

OObtain(j, Al, k′′): On input a user identity j ∈ HU and a set of attributes Al, and
(optionally) an index k′′. If j /∈ HU it returns ⊥. Else, the oracle runs the Receive
protocol with A: A ↔ ReceiveCred(pkCA, skj , Al). If credj =⊥ the oracle returns ⊥.
Else it stores the resulting output (credj , dk′k′ ,A′) and it appends (j,A′, dk′k′ , credj)
to Lcred. This oracle is used by A, whom it knows by nymi impersonating an issuer
to issue a credential to an honest user j.

OIssue(i, Al, k′′): On input a user identity i, a set of attributes Al, and (optionally) an
index k′′. If i /∈ HU it returns ⊥. Also it checks if 6 ∃(i,A, dkk′ , credi) ∈ Lcred,
returns ⊥. Else, it runs: IssueCred(pkCA, dkk′ , ski, credi, Al, k′′) ↔ A. The elements
(⊥,A′ = (A, Al), k′,⊥) are then added to Lcred. This oracle is used by a corrupted
user with adversarial nymj to get a credential from honest issuer i.

OCredProve(j,D): On input an index of an issuance j and subsets D. This oracle first
parses Lcred[j] as (i,A′, dk′k′ , credi). Let credi be the credential issued on A′ for a user
i during the i-th query to OObtIss or OObtain (or it can be outputs of OCreateRoot when
directly issued by CA). If i /∈ HU returns ⊥. Else, it retrieves (auxi, nymi, ski) for
i from lists credi and Luk, and runs: CredProve(pkCA, ski, nymi, auxi, credi, D)↔ A,
with the adversary playing the role of the verifier.

Anonymity. Anonymity requires that a malicious verifier cannot distinguish between any
two users. The adversary has adaptive access to an oracle that on the input of two distinct
user indexes i0 and i1, acts as one of the two credential owners (depending on bit b) in the
verification algorithm. Note that D(A′) = 1 if attributes in A′ satisfies the policy subset
and D(A′) = 0 otherwise. Moreover, credb 8 OObtIss requires that credentials cred0 and
cred1 are on a delegation path from a (corrupted) root credential where all delegations
have been performed honestly, but the respective users might all be corrupted. We note
that this requirement is similar to the anonymity model of CL in [CL19], however, we

118

additionally allow the adversary to access the user corruption oracle in which we reveal
the user’s secret keys to the adversary. CL can not support this type of corruption as then
the anonymity of their construction breaks down.This makes our model stronger than the
one of CL. The essence of the game is captured by the oracles OAnon

b in Fig 5.3. To make
the game non-trivial, we impose restrictions that the policy is either satisfied or not by
both credentials and they have commitment vectors of equal length. Note this also implies
unlinkability for delegation anonymity.
Definition 51 (Anonymity). A DAC is anonymous, if for all (λ, `, t) ∈ N, any PPT
adversary A there exists a negligible function ε(λ) so that |Pr[ExpAno0

DAC,A(λ, `, t) =
1]−Pr[ExpAno1

DAC,A(λ, `, t) = 1]| ≤ 1
2 +ε(λ), experiments are defined in Fig 5.3, respectively.

Unforgeability. Unforgeability is the property that ensures no adversary can deceive a
verifier into accepting a credential for a set of attributes that they do not possess. In other
words, an adversary A wins the unforgeability experiment (cf. Fig 5.3) if A can convince
an honest verifier that they satisfy a specific attributes subset without having the required
credential.
Definition 52 (Unforgeability). A DAC is unforgeable if, for all (λ, `, t) ∈ N, for any PPT
adversary A, there exists a negligible function ε(λ) such that Pr[ExpUnfDAC,A(λ, `, t) = 1] ≤
ε(λ), where the experiment ExpUnfDAC,A(λ, `, t) is defined in Fig 5.3.

ExpAnobDAC,A(λ, `, t):

• (pp, pkCA, st)← A(1λ, 1`, 1t)

• b′ ← A〈O
Anon
b ,O〉(st)

• return(b = b′)

OAnon
b (j0, j1, D):

• If j0 or j1 > |Lcred| the oracle returns ⊥.

• Else, it parses Lcred[j0] as (i0,A′0, dk0, cred0)
and Lcred[j1] as (i1,A′1, dk1, cred1).

• If D(A′0) 6= D(A′1) ∨ |C0| 6= |C1| ∨ credb 8
OObtIss, return ⊥.

• Otherwise run:
A ↔ CredProve(pkCA, skb, nymb, auxb, credb, D)

ExpUnfDAC,A(λ, `, t):

• (pp, (skCA, pkCA))← Setup(1λ, 1`, 1t)

• (D∗, nym∗)← A〈O〉(pp, pkCA)

• b← (A ↔ CredVerify(pkCA, nym∗, D∗))

• ∀(⊥,A′, k′,⊥) ∈ Lcred: If (D∗,A′) ∈ Rk′ ,
return 0

• Else return b

Figure 4.2: Experiments ExpAnoDAC,A(λ, `, t) and ExpUnfDAC,A(λ, `, t).

4.6.2 Construction of DAC
We first give an intuition of our construction. To obtain a root credential from a CA, a user
needs to send one of their pseudonyms to the CA and use some mechanism to authenticate

119

with the real identity. The latter concern is outside of the protocol and omitted here.
The initial nym is viewed as a user public key pk in the SPSEQ-UC scheme Σ, one can
always derive a new nym using NymGen, which calls RndmzCpk of Σ to randomize the nym,
and the respective signature can be adapted to the randomized nym. CA then creates a
root credential (signature of Σ) on a vector of two commitments and a delegation key.
Regarding these first two commitments in CreateCred protocol, we can assume the first
dummy commitment for a fixed set A1 (that is used by all credentials and are never shown
in practice) and the second commitment holds the initial attribute set A2. We only require
this restriction for the root credential.
Via the IssueCred protocol, users U can then delegate their credentials to another user R
using the delegatable key. U needs to derive a signature on R’s secret key skr without being
given the key directly. This is achieved by removing U’s pseudonym nymu and switching
to R’s pseudonym nymr using ConvertSig of Σ and adding any additional attribute set
Ai using ChangeRel of Σ. To show a credential, a user U randomizes the credential σu
and nymu using ChangRep of Σ and providing a ZKPoK that demonstrates that the secret
key and randomness sku, auxu belong to the new (randomized) nymu along with opening
subsets of the attributes D using the CSCA scheme.
We provide our DAC construction in Fig 4.3. It is based on our SPSEQ-UC signature
(denoted by Σ) from Section 4.4.3 and the CSCA scheme from Section 4.5. We use the
following notation: Assume attribute universe U = SSC, A = M, the updatable key
as a delegatable key ukk′ = dkL′ and k′ = L′ + 1 and the root authority’s public key
pkCA = vk. Then each credential is parameterized with a vector A = (A1, . . . , Ak), where
Ai ⊆ U is an attribute set and consider the relation in Definition 43 for attributes which
defines how a user can use their credentials. For the sake of compactness, we write
ZKPoK(w, x) or ZKPoK(w, x) for a (non)-interactive zero-knowledge proof of knowledge of
witness w for statement x and ZKPoK(w, x) = 1 if verifier accepts (cf. Section 2.4.4 for a
formal treatment). In Fig 4.3, we replace SC by CSCA (cf. Section 4.5) to improve the
communication bandwidth by aggregating witnesses and also verification efficiency due to
batching of pairing equations. It also allows creating a set commitment for openings ρ in
the group as P ρ. We stress that CSCA is fully compatible with SC and provides identical
functionality.

Theorem 4.6.1. The DAC construction in Figure 4.3 is correct, unforgeable, and anony-
mous.

Proofs. The proof is presented in as follows, where we note that in our formal proof, we
consider our core SPSEQ-UC which is based on SC. Unforgeability follows from the ZKPoK
and unforgeability of SPSEQ-UC. While anonymity follows from the ZKPoK, privacy
properties of SPSEQ-UC and the DDH assumption. Note that when using CSCA instead of
SC and NIZK obtained via the Fiat-Shamir heuristic, then the proofs are in the random
oracle model (ROM).

Remark 1. We note that except for the NIZK in Setup, we require multiple-extractions in

120

Setup(1λ, 1t, 1`): Pick α← Zp and run ppΣ ← Σ.Setup(1λ, 1t, 1(`+1);α). Generate a key pair (skCA, pkCA)
for CA as (vk, sk) ← Σ.KeyGen(ppΣ), and set pkCA = (vk, Pα), and skCA = (sk, α), and run πCA ←
NIZK(skCA, pkCA). Output pp = (ppΣ, pkCA, πCA). The attribute space is U = SppΣ of ppΣ.

KeyGen(pp): Pick wu ← Z∗p, set pku ← Pwu and sku = wu, and return (sku, pku).
NymGen(pku): Pick randomness ψ, χ ← Z∗p, compute nymu = pk′u ← Σ.RndmzPK(pku, ψ, χ), set auxu =

(χ, ψ), and output (nymu, auxu).

Issuing a root credential
[CreateCred(L′,A, skCA)↔ ReceiveCred(pkCA, sku,A)]→ (cred, (C,O), dkL′):

U picks ρj ← Z∗p, sends ((P ρj)j∈[2], nymu,A = (A1, A2)), to CA and runs ZKPoK(ρ, P ρ) with CA.
CA checks if proofs are correct, then runs (σ, (C,O), ukk′) ← Σ.Sign(sk,A, L′, pku; (P ρj)j∈[2]), where

(C,O) ← CSCA.Commit2(Ai, α, P ρj)i∈[2] and nymu = pku. Sets dkL′ = ukk′ and outputs (σ, dkL′)
as well as (C,O).

U checks if Σ.Verify(pkCA, pku,C, σ, (T,U)) = 1∧Σ.UKVerify(pkCA, dkL′ , L′, σ) = 1, where (T,U) = (A,O),
sets O = ρ and runs (σ′, (C′,O′), dk′L′ , nym′u, χ) ← Σ.ChangRep(nymu, dkL′ , (C,O), σ, µ, ψ) for
µ, ψ ← Z∗p, update auxu with χ, ψ and saves a credential credu = σ′, as well as (dk′L′ ,C′,O′).

Issuing/delegating a credential (an issuer U and a receiver R)
[IssueCred(pkCA, dkL′ , sku, credu, Al, L

′′)↔ ReceiveCred(pkCA, skr, Al)]→ (credr, dk′L′′):

On input (nymr, Al, credu = σ, dkL′ , (A,C,O)), U prepares a delegated credential for nymr and A′ = (A, Al):
• Run σ′ ← Σ.ConvertSig(vk, sku, sku′ , σ) with R, run (σ′′, (C′, Ol), ukk′′) ←

Σ.ChangeRel(Ml, σ
′,C, ukk′ , L′′), where L′′ is a level, ukk′ = dkL′ , ukk′′ = dkL′′ and

Ml = Al for C′ = (C, Cl).
• Send (σ′′,C′,O′ = (O, Ol)) and optionally dkL′′ = ukk′′ to R.

R checks Σ.Verify(pkCA, nymr,C′, σ′′, (A′,O′)) = 1, then for µ, ψ ← Z∗p runs (σ′′′, (C′′,O′′), dk′L′′ , pk′u, χ)←
Σ.ChangRep(nymr, dkL′′ , (C′,O′), σ′′, µ, ψ) and updates auxr with χ, ψ and stores (credr =
σ′′′, (C′′,O′′)) and the delegatable key dk′L′′ .

Showing of a credential (a prover P and a verifier
V) CredProve(pkCA, skP, nymP, auxP, credP, D)↔ CredVerify(pkCA, nymP, D)→ (0, 1):
On input a credential σ = credr for nymr and D = {dj}j∈[k], P prepares a proof for nymP and {Aj}j∈[k]:

• Run (σ′, (C′,O′), pk′u, χ)← Σ.ChangRep(pku,⊥, (C,O), σ, µ, ψ) for µ, ψ ← Z∗p, where σ = credr
and pku = nymr. Set σ′ = credP and pk′u = nymP, and update auxP with ψ, χ.

• Run Wj ← CSCA.OpenSubset(Cj , Aj , Oj , dj) for j ∈ [k]. Aggregate witness π ←
CSCA.AggregateAcross({Cj , dj ,Wj}j∈[k]).

• Send (credP,C′, nymP, π) to V, and run ZKPoK((skP, auxP), nymP) with V.
V outputs 1, if ZKPoK((skP, auxP), nymP) verifies and Σ.Verify(pkCA, pku,C, σ, (T,U)) = 1, where σ = credP,

T = D, U = π and pku = nymP. Else output 0.

Figure 4.3: Our DAC scheme (Σ denotes our SPSEQ-UC scheme from Section 4.4.3).

the security proofs. Thus we opted to rely on interactive ZKPoK. We however note that
when willing to pay some extra costs, one could instead use straight-line extractable NIZK,
e.g., obtained via Fischlin’s transformation [Fis05].

The correctness of Scheme follows by inspection. Unforgeability follows from unforge-

121

ability of SPSEQ-UC, while anonymity follows from class and origin hiding. Proofs are
based AC scheme has been predestined in [FHS19]. More precisely, we prove the following:

Lemma 4.6.1 (Unforgeability). Let ZKPoK be a ZKPoK and let SPSEQ-UC be unforgeable,
then the DAC construction in Fig 4.3 is unforgeable.

Proof. We show that an adversary performing an incompatible showing for a dishonest
user can be used to forge an SPSEQ-UC signature similar to [FHS19]. Assume a PPT
adversary A that wins the unforgeability game with non-negligible probability and let
(C∗, nym∗P ,A∗, σ∗) be the message-signature pair it uses and W∗ be the witness for an
attribute set (D∗,A′) /∈ Rk′ (this implies D∗ 6⊆ A′), for all i = ⊥ where i,A′, dkk′ ∈ Lcred;
moreover, the ZKPoK(sk∗P, nym∗p) verifies. We construct an adversary B that breaks the
unforgeability of SPSEQ-UC. We note that we extract from ZKPoK and assume this will
only fail with negligible probability. Then, we are ready to reduce to the unforgeability of
SPSEQ-UC:

Reduction. B interacts with a challenger C in the unforgeability game for SPSEQ-UC and
B simulates the DAC-unforgeability game for A. C runs (pp, skCA, pkCA)← Setup(1λ, 1t, 1`)
and gives (pkCA, pp) to B. Then, B sets pp = ppSPSEQ-UC, vk = pkCA and sends them to A.
It next simulates the oracles. All oracles run as in the real game, except for the oracles
that use the signing oracle instead of the skCA key.

• When the oracles OCorrupt and OUser are called, B queries OCorrupt and OCreate of the
SPSEQ-UC scheme, respectively. Note that when B queries OCorrupt of the SPSEQ-UC,
it gets ski and finally returns ski and all the associated credentials items to A.

• OCreateRoot(i, k′,A): On input a user identity i, an index k′, and an attribute vec-
tor A. If i /∈ HU it returns ⊥, else it picks ρ for an attributes vector. Then
it submits (nymi, k

′,A, ρ) to the signing oracle OSign. Receives a signature (σ =
(Z, Y, Ŷ , T), (C,O), ukk′). It sets σ = credi, ukk′ = dkk′ and appends (i,A, dkk′ , credi)
to Lcred.

• ORootIss(k′,A): On input an index k′ and an attribute vector A. It extracts ρ from
the proof of knowledge ZKPoK(ρ, P ρ) produced by A for an attributes vector. Then
it submits (nymi, k

′,A, ρ) to the signing oracle OSign, where nymi is an adversary
pseudonym of a corrupted user. Receives a signature (σ = (Z, Y, Ŷ , T), (C,O), ukk′).
It sets (σ,C,O, nymi) = credi, ukk′ = dkk′ and appends (⊥,A, k′,⊥) to Lcred and
outputs the results.

• The oracles (OIssue,OObtIss): In both OObtIss and OIssue, all executions of ChangeRel
and ConvertSig for credentials (i, dkk′ ,A′, σi) ∈ Lcred are replaced by the oracle
Sign(skCA,A′, k′, pki, ρ), where pki = nymi = 1 for the OIssue and pki = nymj for the
OObtIss.

122

As it is clear, B can handle any oracle query. So, at the end of the game, B simulates all
oracles perfectly for A who is able to prove possession of a credential on A∗. To do this,
B interacts with A as verifier in a showing protocol. If A outputs a valid showing proof
as (C∗, σ∗ = (Z∗, Y ∗, Ŷ ∗, T ∗), D∗, nym∗p,W∗) and conducting ZKPoK(sk∗P, nym∗p) then B
extracts from the proof ZKPoK the value sk∗p related to the nym∗P and stores all elements.
Moreover, the credential of corrupt users can not be valid on this set of messages D∗ (as
A can win the unforgeability game). Thus, for any credential on (ski) with all i = ⊥, we
have (D∗,A′) /∈ Rk′ . In all cases, this means that (sk∗p, (C∗, D∗,W∗), σ∗) is a valid forgery
against our signature scheme, B breaks thus unforgeability of SPSEQ-UC which concludes
our proof.
Lemma 4.6.2 (Anonymity). Let ZKPoK be a ZKPoK, NIZK be knowledge sound, the
DDH assumption holds and the SPSEQ-UC provides Origin-hiding, Conversion-privacy and
Derivation-privacy, then the DAC construction in Fig 4.3 is anonymous.
Proof. The proof is similar to [FHS19], but we adapted it with our setting. It follows a
sequence of games until a game where the answers for the query to OAnon

b is independent of
the bit b. In Game1 we use the knowledge soundness of NIZK to extract the signing key.
Then, in Game2 we replace all ChangRep, ChangeRel and ConvertSig calls with freshly
generated signatures. In Game3 we simulate all ZKPoKs and in Game4 we guess a user
to be asked in OAnon

b . Finally, in Game5 we replace the respective commitment vectors
with random vectors.

Game0: The original game as given in Definition 56.

Game1: Like Game0, except when A outputs the pkCA and corresponding NIZK(skCA, pkCA),
the game runs the knowledge extractor for NIZK, which extracts a witness ((xi)i∈[0,`], α)
sets them as skCA including the SC trapdoor. We stop in the case that the extractor
fails.
Game0 → Game1: The success probability in Game1 is the same as in Game0, unless
the extractor fails, i.e., using knowledge soundness we have

|Pr[S0]− Pr[S1]| ≤ εks(λ).

Game2: As Game1, except that the experiment runs OAnon
b as follows: Like in Game1, but

for µ, ψ ∈ Z∗p , all executions of ChangRep(pku, ukk′ , (C,O), σ, µ, ψ) for the creden-
tial (ib, dkk′ ,A′, σb)← Lcred[jb] are replaced by Sign(skCA,A′, k′, pku; ρ). Oracles are
simulated as in Game1 , except for the following oracles as:

• OObtIssObtIss: all executions of ChangeRel and ConvertSig for credentials (j, dkk′ ,
A′, σj) ∈ Lcred are replaced by Sign(skCA,A′, k′, pkj , ρ).

Game2 → Game1: By Origin-hiding, Derivation-privacy and Conversion-privacy,
replacing signatures from ChangRep, ChangeRel and ConvertSig with ones from Sign
are identically distributed for all (A,C). We thus have

Pr[S1] = Pr[S2]

123

Game3: As Game2, except that the experiment runsOAnon
b as follows: All proofs ZKPoK(skp, nymp)

and ZKPoK(ρ, P ρ) in CredProve and CreateCred respectively, are simulated.
Game2 → Game3: By perfect zero-knowledge of ZKPoK, we have that

Pr[S2] = Pr[S3]⇒ Pr[S1] = Pr[S2] = Pr[S3]

Game4: Same as Game3, with the following changes. Let qu be the maximum number
of queries to OUser. At the start, during Game4, a selection is made where ω is
chosen randomly from the set [qu] (i.e., guessing that the user with the jb credential
is registered at the ω-th call to OUser) and runs OUser,OCorrupt and OAnon

b as follows:
• OUser(i): Like Game3, but if the call of this oracle is the ω-th call then it sets
i∗ ← i as well.

• OCorrupt(i, pku): Like Game3, but it returns ⊥, if i ∈ CU or i ∈ OAnon
b . Also If

i = i∗, stops and returns b′ ← {0, 1}. If i ∈ HU , the algorithm outputs the
user’s secret key ski and credentials, and then transfers i from the HU to the
CU . On the other hand, if i /∈ HU ∪ CU , the algorithm registers a new corrupt
user i, assigns them the public key pki, and adds i to the set CU .

• OAnon
b (j0, j1, D): As in Game3, but if i∗ 6= ib ← Lcred[jb], it stops and outputs

b′ ← {0, 1}.
Game3 → Game4: By assumption, OAnon

b is called at least once with some input
(j0, j1, D) such that i0 ← Lcred[j0], i1 ← Lcred[j1] ∈ HU . If i∗ = ib then OAnon

b does not
abort and neither does OCorrupt. Since i∗ = [ib] with probability 1

qu
, so the probability

of the experiment not aborting is greater than or equal to 1
qu
. and thus

Pr[S4] ≥ (1− 1
qu

)1
2 + 1

qu
· Pr[S3]

Note that Before the call to ObAnon, it is ensured that ib has not been previously
called (otherwise, ib /∈ HU). If ObAnon is called afterwards, it returns ⊥, where
i∗ ∈ OAnon

b .

Game5: As Game4, except that for OAnon
b (j0, j1, D): it picks C← (G∗1)k and performs the

showing using cred′ ← (C,Sign(sk,M, . . .)), with D = (di)i∈[k] andWi ← fdi(a)−1 ·Ci
for i ∈ [k]. The only difference is the selection of C; while W is distributed as in
Game4, in particular, they are unique elements satisfying VerifySubset(Ci, Di,Wi)i∈[k].
Game4 → Game5: Let (BG, P x, P y, P z) be a DDH instance (not to be confused with
SPSEQ-UC elements) for BG = BGGen(1λ) where x, y ← Zp and Z is equal to P x·y
or a random element. The extended version of DDH that we consider here is given
by (P, P x1 , . . . , P xk , P y, Z1, . . . , Zk) where Zi = P xi·y or random for all ∈ {1, . . . , k}.
One can easily show that this extended version of DDH follows from DDH itself (with
some polynomial security loss) as long as k is a polynomial. Oracles are simulated as
in Game4, except for the following oracles as:

124

• OObtIss(i,A): Like Game4, except for the following values when i = i∗. Since
α /∈ A, it computes Ci ← fAi(a) · P xi for Ai ∈ A (all Ci are thus distributed as
in the real game.)

• OCredProve(j,D): As in Game4, with the difference that if i∗ = i ← Lcred[j], it
computes the witness Wi ← fAi/di(a)µ · P xi . (Wi is thus distributed as in the
real game and D = (di)i∈[k].)

• OAnon
b (j0, j1, D): As in Game4, with the difference as follows: We use DDH

self-reducibility. It selects s, t← Z∗p and computes Y ′ ← P t·y · P s = P y
′ with

y′ ← t · y + s, and Z ′i ← P t·zi · P s·xi = P (t(zi−xi·y)+xi·y′). (If zi 6= xi · y then Y ′
and Z ′i are random; else Z ′i = y′ · Xi) Finally, it performs the showing using
values: Ci ← fAi(a) · Z ′i and Wi ← fAi/di(a)−1 · Ci. We assume a /∈ D.

With a negligible probability of an error event, we successfully simulate Game4 when the
DDH instance is "real" and Game5 otherwise. During the simulation of ObAnon, if any
Y ′i = 0G1 or Z ′i = 0G1 , the distribution of values deviates from either of the two games.
However, if Y ′i 6= 0G1 and Z ′i 6= 0G1 , we implicitly set ρi ← xi and µ ← y′ (with a fresh
value y′ at each call of ObAnon). For a DDH instance, we have Ci ← (P fAi(a))ρi·µ for all
Ci; otherwise, all Ci are independently random. Assume the probability of solving DDH
problem is εDDH(λ), and let ql be the number of queries to the OAnon

b . Then we have:

|Pr[S4]− Pr[S5]| ≤ εDDH(λ) + (1 + 2ql)
1
p

In Game5 the OAnon
b returns a freshly generated signature σ on random values C← (G∗1)k

and a simulated proof. The bit b is thus information-theoretically hidden from A, so we
have Pr[S5] = 1

2 . From this and the above equations we have

Pr[S4]≤Pr[S5]+εDDH(λ)+(1 + 2ql)
1
p

= 1
2 +εDDH(λ) + (1 + 2ql)

1
p
,

Pr[S3]≤ 1
2 +qu · Pr[S4]− 1

2 · qu ≤
1
2 +qu · (εDDH(λ)+(1 + 2ql)

1
p

),

Pr[S0]≤Pr[S1]+ks(λ)≤ 1
2 +ks(λ)+qu · (εDDH(λ) + (1 + 2ql)

1
p

)

where Pr[S1] = Pr[S3]. Assuming security of ZKPoK, NIZK and DDH, this advantage is
very small. Note that qu, qo and ql are the number of queries to Ouser, OObtain and the
OAnon
b oracle, respectively.

125

4.7 Implementation and Evaluation

We now present an evaluation of our our SPSEQ-UC and DAC schemes implement as a
Python library 5. Our implementation is based upon the bpliblibrary6 and petlib7 with
OpenSSL bindings8. It uses the BN256 curve, providing efficient type 3 pairings at around
100 bit security. We also want to point to an independent Rust implementation of our
scheme9.
We present a benchmark of SPSEQ-UC (including the cross-commitment aggregation

provided by the CSCA scheme) and the DAC scheme described in Section 4.6. DAC is
based upon Schnorr-style discrete-logarithm zero-knowledge proofs and using Damgard’s
technique [CDM00] for obtaining malicious-verifier interactive zero-knowledge proofs of
knowledge during the showing and issuing/delegating of credentials. It also uses NIZK proofs
obtained via the Fiat-Shamir heuristic for proofs of knowledge of pkCA. Our measurements
have been performed on an Intel Core i5-6200U CPU at 2.30GHz, 16GB RAM running
Ubuntu 20.04.3. For our evaluation, we take the execution time of each algorithm for the
following parameters: ` represents an upper bound for the length of commitment vector, t
an upper bound for the cardinality of committed sets, ni < t is the number of attributes in
each attribute set Ai in the respective commitment Ci of the commitment vector, which we
set to be the same for every level (each commitment) for simplicity. Moreover, k represents
the length of attribute set vector A = (A1, . . . , Ak) and thus commitment vector C. The
number of attribute sets which can be delegated is k′. The results are shown in Table 6.2,

Table 4.2: Running times for SPSEQ-UC and DAC (ms)
SPSEQ-UC DAC

Se
tu

p

K
ey

Ge
n

Si
gn

Ch
an

gR
ep
/u

k

Ch
an

gR
ep

Ch
an

ge
Re

l

Co
nv

er
tS

ig

Ve
rif

y

Cr
ea

te
Cr

ed

D
el

eg
Iss

ue

Cr
ed

Pr
ov

e

Cr
ed

Ve
rif

y

µAV 385 21 73 50 6 15 2 38 82 21 35 195
SD ±3 ±1 ±2 ±1 ±2 ±2 ±1 ±1 ±1 ±2 ±2 ±3

where µAV is the mean and SD the standard deviation of 100 executions of each algorithm.
Note that in each delegation one additional attribute set is added. More precisely, in Table
6.2, we set the above parameters as t = 25, ` = 15, k = 4, k′ = 7 and n = 10 to cover a
broad spectrum of applications. ChangRep/uk represents the randomization of a signature
along with ukk′ and ChangRep represents the randomization of signatures only. In the
CredProve and CredVerify protocols, we use di to denote the subset of each attribute set

5https://github.com/mir-omid/DAC-from-EQS
6https://github.com/gdanezis/bplib
7https://github.com/gdanezis/petlib
8https://github.com/dfaranha/OpenPairing
9https://github.com/docknetwork/crypto/tree/main/delegatable_credentials.

126

https://github.com/mir-omid/DAC-from-EQS
https://github.com/gdanezis/bplib
https://github.com/gdanezis/petlib
https://github.com/dfaranha/OpenPairing
https://github.com/docknetwork/crypto/tree/main/delegatable_credentials

Ai that will be disclosed and D all di’s, i.e., D = (di)i∈[k]. We thereby assume that each
subset di contains approximately half of the attributes in Ai. Let us provide an example
to clarify our notation: Assume k = 2, we have two commitments C1, C2 (for simplicity we
can say each commitment is the output of one delegation level e.g., L = 2 is the delegation
level in DAC) such that each includes 5 attributes. Then D = (d1, d2) means that each d1
and d2 includes two attributes of sets of C1 and C2, respectively and |D| = 4. By that, we
say the total number of attributes is |M| = |A| = k · n. We use this semantics in Fig 4.4
and 4.5.
In Fig 4.4 we show the effect on the computation time of SPSEQ-UC when increasing
the parameters (k, k′, n). Since the Setup algorithm runs only once, we do not consider
the computation time of Setup. We measure the computation time for a message (or an
attribute) set of size n from 5 to 20, k from 2 to 10 (so that the total messages |M| is from
10 to 200), and k′ from 4 to 20. Since the runtime of the algorithms KeyGen, ChangRep,
and ConvertSig is independent of the parameters (k, k′, n) we omit them.

Figure 4.4: The running times of SPSEQ-UC (ms)

In Fig 4.5 we show the effect of increasing the parameters (k, k′, d, n) on the computation
time of DAC such that k = L and k′ = L′ here mean for levels. We measure the computation
time of CredProve and CredVerify protocols for n, L and d (a disclosed attribute subset)
varying from 5 to 16, 2 to 6 and 2 to 5, respectively. The total disclosed attributes length
|D| = d · L and the total attributes length |A| = n · L range from 4 to 30 and 10 to
96, respectively. The CredProve and CredVerify are independent of L′. Meanwhile, the
computation time of CreateCred and IssueCred change when L′ varies from 4 to 16 in
addition to being dependent on n and L. These algorithms are independent of d. As can
be seen in Fig 4.5, the pairing product operations in the verification produce the largest
overhead. Though, in absolute terms verification is still highly efficient. For example,
it is less than a second, in the maximum parameters setting with almost 100 attributes
and disclosing 30 attributes. This efficiency makes our implementation also suitable for
time-critical applications like public transportation or ticketing.
Comparison with CDD [CDD17, BCET21b]. In Fig. 4.6, we present an approxi-
mate comparison of running time between our DAC and CDD, which has recently been

127

(a) The running times of IssueCred (b) The running times of CredProve

Figure 4.5: The running times of DAC (ms)

(a) The running times of CredProve (ms) (b) The running times of CredVerify (ms)

Figure 4.6: Comparison between our DAC and CDD (n = 4)

implemented10 by [BCET21b]. Their implementation is in Go and, similar to ours, uses
the BN256 curve. In [BCET21b] running times for proving and verifying credentials from
benchmarks on a c2-standard-60 GCE VM running Ubuntu 18.04 (60 vCPUs, Intel Cascade
Lake 3.1 GHz, 240 GB RAM) are provided. To make the approaches comparable, we
set parameters as in [BCET21b] as follows: n = 4 attributes per level (the maximum
in [BCET21b]) and L for levels from 2 to 10. We note that the machine used to obtain the
benchmarks in [BCET21b] is much more powerful than the one used to benchmark our
DAC. But we still significantly outperform CDD. We note that benchmarking them on the
same platform will only increase the computational advantage of our approach.

4.7.1 Theoretical Analysis and Comparison

We now analyze and compare the computational and communication complexity of our
DAC compared with Camenisch et al. [CDD17] (CDD), one of the most efficient and fully
specified approaches.

10https://github.com/IBM/dac-lib

128

https://github.com/IBM/dac-lib

4.7.1.1 Computational Complexity

To analyze the efficiency of our DAC, we consider the number of (multi)-exponentiations
required for the IssueCred (issuing or delegating), CredProve (the showing of a credential),
and CredVerify (verifying a credential). We summarize the following efficiency analysis
comparing our DAC and the CDD scheme [CDD17] in Table 5.2. We use notations that
are used in [CDD17], where di and ui denote the amount of disclosed and undisclosed
attributes at delegation level i, respectively, such that ni = di + ui; and X{Gj

1}, X{G
j
2},

and X{Gj
t} denote X j-multi-exponentiations in the respective group; j = 1 denotes a

simple exponentiation. Ek denote a k-pairing product with k = 1 denoting a single pairing.
Assume z = |[k + 1, k′]| and k′′ = k′ (the worst case), where k is length of message M and
commitment C vectors and n < t is size of a message (attributes) set M s.t. Mi includes
ni messages. Moreover, we assume that a ni number of elements for each j ∈ [z] can be
delegated and put into ukk′ . We summarize the efficiency analysis as follows, where we
also count the cost of the C randomization in ChangRep, but ignore the cost of proving
knowledge of the secret key, as a Schnorr NIZK induces an insignificant cost:

CreateCred: CA creates the first level of the credential. To do this, CA runs Sign and a
user runs ChangRep/ukk′ :((

k∑
i=1

(Gni
1 + G1)

)
+ G2

1 + G1 + Gk+1
1 +

z∑
i=1

niG1 + G2

)

+
(

(k + 3)G1 + G2 + G2
1 +

z∑
i=1

niG1

)

IssueCred: Delegation of a credential includes running the ConvertSig, ChangeRel, and
ChangRep. We have:(

2G2
1
)

+
(
2(Gn

1 + G1) + G2
1
)

+
(
(k + 3)G1 + G2 + G2

1
)
.

If a further delegation is needed, then the randomization of ukk′ adds
∑z
i=1 niG1.

CredProve: Proving possession of a credential by a user includes ChangRep, AggregateAcross,
and OpenSubset: Let D = (di)i∈[k], we have:

(
(k + 3)G1 + G2 + G2

1
)

+
(
G|D|1

)
+

 |D|∑
i=1

(Gui
1 + G1)


CredVerify: The credential verification includes SPSEQ-UC.Verify (using CSCA.VerifyAcross):

Let S =
⋃
i di, where i ∈ [k], we have

(
Ek + E2 + 4E

)
+

E + Ek + G|S|2 +
|D|∑
i=1

(
G|S−di|2 + G2

)

129

Table 4.3: Computational complexity
CDD [CDD17] Our DAC

CredProve odd:
∑L

i=1,3 1G2 + (ni + 2)G1 + (1 + di)G2
t

(
(k + 3)G1 + G2 + G2

1
)

+
+(1 + ui)G3

t + (2 + ni)G2
1

even:
∑L

i=2,4 1G1 + (ni + 2)G2 + (1 + di)G2
t

(
G|D|1

)
+
(∑|D|

i=1 (Gui1 + G1)
)

+(1 + ui)G3
t + (2 + ni)G2

2
CredVerify (1 + d1)E + (3 + u1 + dL)E2 + uLE

3 (
Ek + E2 + 4E

)
+

+(4 + n1 + dL){Gt}+∑L

i=1((1 + di)E2 + (1 + ui)E3 + (1 + di){Gt})
(
E + Ek + G|S|2 +

∑|D|
i=1

(
G|S−di|2 + G2

))

Although we do not have a concept of delegation chain length, in order to compare our
scheme with [CDD17], we assume that each commitment is the output of one delegation-
level, e.g., if k = 2 such that C = (C1, C2), the L = 2 is delegation level. In other words,
at each delegation level, we add one attribute set and the related commitment. Also,
unlike [CDD17] where their underlying signature construction needs switching G1 and G2
of message space throughout, we do not need it. Note that operations in G1 are faster
than G2 and also the length of elements in G1 is smaller. We only consider the number of
(multi)exponentiations required to show a credential since this will be the most frequently
executed operation. The result of CDD scheme is taken from Table 1 in [CDD17].

Credential size. The size only counts the cryptographic components of the credential; the
metadata and attribute values are assumed to be the same for all systems. In particular, the
credential size (σ, skp and pseudonym nymp) in SPSEQ-UC is independent of the delegation
chain length and number of attributes. In SPSEQ-UC, credentials have constant size which
is four G1, one G2 and one Zp element. Let |G1| = |Zp| = 256 and |G2| = 512 in bit, we
have a size of 1792 bits. While, in CDD the credential size grows linearly with the number
of attributes and delegation levels. Also, the size of the related ukk′ in our scheme is z · 256.

4.7.1.2 Communication Complexity

We analyze the communication complexity and the size of each element exchange involved
in DAC. More precisely, the IssueCred protocol depends on the number of keys in ukk′
(if delegation is requested), while the CredProveprotocol is independent of the number of
attributes, delegation levels and keys. In the CredProve, we have: ((k+ 5)|G1|+ |G2|+Zp),
where k is the size of C (that is, the delegation level L) that we send for verification
and Zp with one G1 element that belong to the ZKPoK. In the IssueCred, we have
((k+3)|G1|+ |G2|+k|Zp|+z|G1|), where z = |[k, k′]| is the number of keys in this range. In
CDD, this communication cost grows linearly with the number of attributes and delegation
levels (see Table 5.3.) Here, for the CDD scheme, we take a proof generated from an even
Level-L credential.

130

Table 4.4: Communication Complexity
Schemes CredProve

Our DAC ((k + 5)|G1|+ |G2|+ Zp)

CDD [CDD17] (2L+
∑L−1
i=1,3(ni + ui))|G1|+ (2L− 1 +

∑L
i=2,4(ni + ui))|G2|+ 2Zp

4.8 Summary
In this chapter we first present a new primitive called structure-preserving signatures on
equivalence classes on updatable commitments SPSEQ-UC in which one can sign vectors
of set commitments that can be extended by additional set commitments. Moreover,
signatures contain a user’s public key, which can be switched. Second, we present an
efficient delegatable anonymous credential scheme DAC that supports attributes, provides
strong privacy under a reasonable corruption model, and allows the delegators to restrict
further delegations. We show the practical efficiency of our DAC by presenting performance
benchmarks based on an implementation.

131

5 Threshold Delegatable Anonymous
Credentials

In order to avoid a single point of trust and failure, decentralized AC systems have been
proposed. They eliminate the need for a trusted credential issuer by replacing it with
a public append-only ledger, e.g., a blockchain. Another type of decentralized system
that does not rely on a public append-only ledger but reduces necessary trust in single
systems can be constructed using a set of credential issuers that issue credentials in a
threshold manner (e.g., t out of n). In this chapter, we present a novel AC system
with such threshold issuance that additionally provides credential delegation and thus
represents the first decentralized and delegatable AC system. We provide a rigorous formal
framework for such threshold delegatable anonymous credentials (TDAC’s). Our concrete
approach departs from previous delegatable ACs and is inspired by the concept of predicate
encryption and in particular functional credentials. More precisely, we propose a threshold
delegatable subset predicate encryption (TDSPE) scheme, in which partial decryption
keys are issued in a threshold way by multiple authorities and from which users then
can generate full decryption keys. Finally, we use TDSPE to construct a TDAC scheme
and present a comparison with previous work and performance benchmarks based on a
prototype implementation.

5.1 High Level Idea of Our Approach
Our construction is inspired by the template of designing functional credentials (FCs)
by Deuber et al. in [DMM+18], which departs from the common approach of designing
ACs. We recall that the common and most prevalent approach blindly issues signatures
on attributes and represents a zero-knowledge proof of a respective signature (or a re-
randomized signature along with a suitable zero-knowledge proof) [CL03,CL04]. In FC
and consequently in our approach, instead of a signature, the credential is a decryption
key, and the verifier encrypts some random challenge using an attribute-policy, akin to
ciphertext-policy attribute-based encryption (CP-ABE) [BSW07]. If a user is then able to
decrypt the ciphertext correctly (using its credential) and to return the correct challenge,
it implicitly demonstrates the possession of the required attributes such that the used
policy in the ciphertext is satisfied and thus passes the authentication. To circumvent
the requirement of proving the correctness of encryption using a zero-knowledge proof to
deal with a malicious verifier, which can incur a significant performance penalty, Deuber
et al. [DMM+18] proposed to rely on a generic approach due to Brandt et al. [BDLP98],

133

which we also rely on. It requires commitments to the randomness of encryption (by the
verifier) and the result (by the user) and two additional moves opening these commitments.
As argued by Deuber et al. [DMM+18], this additional communication is in most settings
a reasonable trade-off for improved efficiency. However, in contrast to FCs which are
generically built from any predicate encryption scheme, we focus on efficient realizations for
the flexible class of subset predicates and are also interested in their practical performance
validated by an implementation. Moreover, while Deuber et al. focus on the verification to
be delegated to designated verifiers by computing delegation tokens for specific predicates,
we realize a full featured delegation in that credentials can be delegated to other users
and they can use them with all potential verifiers in an unlimited way. Finally, as already
outlined above, our construction like Coconut [SAB+19] supports threshold issuing of
credentials. Nevertheless, Coconut does not support delegation.
In Figure 5.1 we present a very high level schematic overview of our approach. In

particular, 1 there are n issuers who run a distributed key generation algorithm with a
threshold k < n in the setup phase. Then, 2 a user engages with at least k of these issuers
in an issuing protocol to obtain partial credentials for his attribute set, where the issuers
do not need to interact. The issuers may also give the user the power for further delegating
credentials. In this example, this is the case, and the user turns into a delegator (an
intermediate issuer). Then, 3 the user combines (aggregates) their partial credentials into

Figure 5.1: High-level overview of our approach.

a single credential. Since the user represents a delegator, 4 the credential can be further
delegated to other users (the delegatees). Thereby, the delegator may decide whether the
delegatees can also turn into delegators. We note that giving out delegation capabilities
clearly delegates quite some power and care has to be taken when choosing delegators (e.g.,
there should be some trust in the delegator parties). However, we realize a fine-grained and
controlled delegation mechanism (as discussed below), that allows to restrict the power of
the delegator. Finally, 5 delegators as well as 6 delegatees can then engage in showing
protocols with any verifier thereby demonstrating knowledge of subsets of the attributes

134

associated to their credentials. These selective showings do not reveal anything beyond
the shown attributes and multiple showings of any user as well as all their delegatees are
unlinkable.

Highly controlled, fine-grained delegation: Apart from the efficiency problem that
the traditional DAC schemes [CDD17,CL19,BCC+09,Fuc11,CKLM14a] face, the main
difference between the traditional DAC delegation model and our delegation model is
that the traditional model does not allow issuers to restrict the use and delegation of
credentials, i.e., they do not support the concept of controlled delegation. Indeed in the
traditional setting the root authority gives all the power to the intermediate authorities
without having any control over the further delegation chain, and it is not clear how
the root can restrict this power. For example, if traditional DAC schemes allow the
integration of attributes, delegation can only extend the set of attributes, but not restrict
it during delegation. This fine-grained control of delegation is a feature missing in DAC
schemes. While restricting the ability of the issuer in a credential scheme has been proposed
in [BJS10], they consider the traditional setting of authorization and not the DAC setting
with a focus on privacy guarantees. In contrast our approach allows for restricting the
delegation in privacy-preserving DAC schemes.

Consequently, an inherent drawback of traditional DAC is that it is hard for root issuers to
predict all the consequences of their credentials, i.e., how it could be further delegated. Thus,
what is encoded in the issuer credential could have unexpected consequences, potentially
leading to security breaches and, in general, policies that are more permissible than
intended. For instance, Alice may want to give Bob access to her home door (when she is
on vacation), but only under the condition that if this access is re-delegated, it must have
been re-delegated to someone like Charlie, who is both Alice’s and Bob’s friend or have
been re-delegated to access the home at a specific time (cf. [BJS10] for other examples).

We therefore propose a novel method for allowing credential issuers to control how their
credentials can be used. To accomplish this, we embed in credentials explicitly specified
constraints as delegation keys that express the authorized uses of the credentials and are
enforced using proof rules.

5.2 Practical Application Scenarios

While TDACs can be used in any application of ACs, the combination of decentralization
and delegation makes them particularly suitable for scenarios reflecting a hierarchical
structure. We discuss the use of TDAC with two specific but widely different use cases to
motivate practical impact:

Decentralized hardware root of trust. In secure systems, a root of trust is established
and agreed upon by participating stakeholders. The process begins by ensuring that only
trusted firmware, operating systems, drivers, and application components are loaded onto
the hardware system. Each component in the boot chain verifies the next one’s validity,

135

ensuring a secure chain of trust. The TDAC system extends TPM methods to create a
complete chain of trust for the involved systems. As part of the TPM system, Remote
Attestation (RA) protocols prove to online services or remote parties that a system has
booted in a trustworthy state. Attestation Identity Keys (AIK) unique to TPM are signed
by Certificate Authorities (CA) to establish a single root of trust.
However, the use of unique AIKs raises concerns about user traceability, which Direct

Anonymous Attestation (DAA) addresses. Both RA and DAA currently support the
verification of a single system and rely on a centralized trust authority. To enhance the
chain of trust, delegation is introduced to extend the chain of trust to the application
level in hierarchical settings, such as IoT or critical infrastructure scenarios with trust
relationships between devices.

Additionally, supporting threshold issuers (e.g., t out of n issuers) enables decentralization
of CAs, eliminating a single point of failure. This is crucial for IoT and infrastructure
scenarios, as automatic deployment and management are required. Threshold issuing
enhances resilience by requiring collaboration between multiple systems, making it harder
for attackers to compromise the entire chain. The proposed TDAC system supports both
decentralization and delegation of chain of trust certificate issuance, at the same time.
Controlled delegation allows easier separation of (offline, long-term) root keys from (online,
short-term) issuing authorities limited, e.g., to firmware for only the existing product line
or geographic region and delegating (restricted) capabilities to other applications executing
on such a trusted operating system.

Physical access control. We consider the specific motivating example of a mass public
transport organization1. Several operators (e.g., tourist offices or reseller agents) manage
different zones (different regions of the transport system). Each zone includes some gates
for accessing directions and platforms. Groups of managers (the organization) act as
independent authorities for the whole access control system, with permissions delegated to
local operators for each zone.

Managers regularly issue initial credentials such as (city, zone number, expiration time).
Also, using delegation keys, managers specify for which gates and tickets operators are
allowed to issue credentials. For example, they create the credential (London, zone 1, "the
end of year") and delegation keys as {gates (1, 2), tickets (one-way, one-day, one-week)},
and send them to operator 1. This process is similarly done for other operators with
different credentials. In this example, all tickets are valid until the end of year and must be
used by then, and operator 1 does not have the right to issue an annual ticket or a ticket
for gate 3.

Suppose a user buys a one-way ticket for zone 1, the operator will give her a credential
for (London, zone 1, "the end of year", gate 1, one-way) which means this user has access
to gate 1 for a one-way direction. This credential is valid until the end of year.

1This use case is directly transferable to companies with different subsidiaries, office parks, apartment
blocks with common rooms/areas, etc. We use transport systems as a crucial example in terms of
availability and controlled delegation properties.

136

We argue that, in addition to the clear benefits of delegation mapping to real-world
hierarchical relationships, decentralized issuers (managers) are also crucial from an avail-
ability perspective. Public mass transport has significantly higher availability requirements.
Threshold-based issuers can easily tolerate the (planned or unplanned) unavailability of
a subset of trusted nodes and therefore support high availability guarantees for critical
infrastructure. Note that threshold-based issuers can guarantee the robustness of infras-
tructures both in terms of availability (n > 1, i.e., preventing a single point of failure)
and security against compromise (t > 1, i.e., preventing a single point of attack). While
the latter may not seem so important for transport scenarios, it enhances security as a
compromised issuer key (without thresholding) will require re-setup of the system. This
issue is associated with a potentially huge economic loss and administrative overhead (for
re-issuing tickets that are still valid). Moreover, other physical access control scenarios
may require multiple cooperating issuers for granting new access as part of the standard
process (e.g., bank safe access, server housing, etc.). TDAC can technically enforce such
multi-stakeholder approval.

5.3 Threshold Delegatable Subset Predicate Encryption
We introduce the notion as well as a simple and efficient construction of threshold delegatable
subset predicate encryption (TDSPE), which adds support of a multi-authority setting and
the delegation of decryption key capabilities to the existing concept of subset predicate
encryption [KMMS17].

5.3.1 Formal Definitions

In TDSPE, a message is encrypted with respect to a set Θ′ from an unbounded universe
U and the resulting ciphertext can be decrypted by a key that is associated with a set Θ
if and only if Θ = Θ′. We stress that since we are in an unbounded setting, the original
interpretation of subsets in SPE in [KMMS17] is not meaningful anymore (they treat finite
sets), and in our case, the subset turns into equality. Indeed the subset operator in our
setting is set equality, and we achieve a notion of subsets via explicit encoding used in
our TDAC application (see our DNF example 5.3.1). Moreover, the issuing of a secret
key runs in a distributed way and secret key holders can obtain delegation keys at level
L = 1 (the first level) which allow them to further delegate the keys at level L+ 1 (e.g.,
the second level L = 2) and thereby extending the set Θ (depending on the capabilities in
the delegation). We note that in contrast to HPE [OT09], which is defined with respect to
predicate vectors, we are working with sets and thus find it more natural to use the term
delegatable instead of hierarchical (note that when designing attributes in a way that they
reflect a hierarchy one can clearly also implement a hierarchy).

Definition 53. A TDSPE scheme consists of a set of authorities, encrypter(s), decrypter(s)
and is modeled by the following PPT algorithms:

137

Setup(n, t, λ)→ (pp, (ski, pki)i∈[n]): Takes as input a number of authorities n, a threshold
t where 1 ≤ t ≤ n, and a security parameter λ. It outputs the public parameters
pp and (sk1, . . . , skn) is a vector of n secret key shares and corresponding public
encryption key shares (pk1, . . . , pkn). Authority i is given the secret key share ski
and the encryption key share pki. pp will be an implicit input to all algorithms.

AggKey(pk1, . . . , pkt)→ pk: Takes as input a subset of t public encryption key shares. It
aggregates these public encryption key shares into a single consolidated public key
pk, and eventually outputs this public encryption key pk. It is run once by anyone
who wants to encrypt messages (an encrypter).

Enc(pk,Θ′, L,M) → CT : Takes as input the public key pk, a set Θ′, a level L and a
plaintext M . It returns a ciphertext CT for a decrypter in level L.

ShareKeyGen(ski,ST,Θ,Ω)→ (dkiΘ,mkiΩ): Takes as input a secret key ski of authority i
in a subset ST of [n], where |ST| ≥ t, a set Θ and a delegation set Ω. Each authority
i outputs a partial decryption key dkiΘ along with a delegation key mkiΩ for i ∈ ST.

KeyGenComb({(dkiΘ,mkiΩ)}i∈ST) → (dkΘ,mkΩ): Takes as input the partial decryption
and delegation keys {(dkiΘ,mkiΩ)}i∈ST from authorities in the subset ST. A decrypter
(L = 1) aggregates keys into single consolidated decryption and delegation keys and
outputs the full key dkΘ and delegation key mkΩ.

Dec(dkΘ, CT)→ {M,⊥}: Takes as input the decryption key dkΘ for the set Θ and the
ciphertext CT for the set Θ′. It outputs either a message M or the symbol ⊥.

Delegate(dkΘ,mkΩ, Θ̂)→ (dkΘ∪Θ̂,mkΩ̂): Takes as input the decryption key dkΘ at level L
and the delegation key mkΩ as well as a set Θ̂. A delegator outputs a new decryption
key dkΘ∪Θ̂ if Θ̂ ⊆ Ω and updates the delegation key mkΩ̂ (where Ω̂ ⊆ (Ω \ Θ̂)) for a
delegatee at L+ 1 or ⊥.

Correctness. For every k ∈ N, all Θ,Θ′, Θ̂,Ω, Ω̂, a message M , every n, t with t ≤ n and
ST ∈ [n] with |ST| ≥ t, (pp, (ski, pki)i∈[n]) ← Setup(n, t, λ), pk ← AggKey(pk1, . . . , pkt),
(dkiΘ,mkiΩ)← ShareKeyGen(ski, ST,Θ,Ω), (dkΘ,mkΩ)← KeyGenComb({(dkiΘ,mkiΩ)}i∈ST)
we have that if Θ = Θ′ then

Dec(dkΘ,Enc(pk,Θ′, 1,M)) = M.

and if Θ̂ ⊆ Ω and Θ ∪ Θ̂ = Θ′ then

Dec(Delegate(dkΘ,mkΩ, Θ̂, Ω̂),Enc(pk,Θ′, L+ |Θ̂|,M)) = M.

Thereby, Delegate may be iteratively applied as long as the constraints are satisfied.

Encoding of Elements in TDSPE. We are now going to discuss how we can map an

138

arbitrary universe of elements (we call them attributes henceforth) to the TDSPE scheme
by means of an example. Let U be a universe of attributes and assume a decryption
key associated with a set of attributes Θ = A = {α1, α2} from the universe. We have a
delegation key for the set Ω = A′ = {α3, α4, α5}. It is clear that for attributes sets A,A′
with corresponding Θ and Ω, we have A ∪ A′ := Θ ∪ Ω = {α1, α2, α3, α4, α5}. Also assume
that we get a set as Θ̂ = {α3, α4} for the delegation, then one can simply compute a new
delegation key dkΘ∪Θ′ = {α1, α2, α3, α4}. In this case we have an updated delegation key
dkΩ̂ for Ω̂ = α4.
In order to see the expressiveness of the approach consider a Disjunctive Normal Form

(DNF) formula f = (C1 ∨ . . . ∨ Ct), where each Cj represents a conjunction over some
subset of the attributes, i.e., Cj =

∧
i αi,j where αi,j ∈ U .2

To encrypt a message M , a sender processes each of the t clauses independently. For the
j’th clause Cj , the sender encrypts the message running Enc on input ΘCj = Θ′ as:

ΘCj = {αi|αi ∈ Cj}.

The Enc algorithm generates a concatenation of ciphertexts related to each clause. For
decryption, the user identifies a clause Cj that is satisfied by their attribute set A. Note
that the attribute set A satisfies the formula f if there exists a clause Cj in the set [t] such
that A = Cj . Thus, the user can decrypt the ciphertext corresponding to that clause if its
key is associated with a set Θ = ΘCj (or we can view it as A ⊆ f , A satisfies the formula
f).

Moreover, a user who possesses a secret key dkΘ in the top level, associated with attribute
set A := {α1, α2}, can delegate any value (say A′ = {α3, α4}) of the second level key dkΘ∪Θ̂
with the attribute set Θ̂ ⊆ Ω. For instance, if Θ̂ = A′′ = {α3} then the decryption key
would be A ∪ A′′ = {α1, . . . , α3} (or any other combination regarding Θ̂) and the updated
delegation key is Ω̂ = α4. Clearly, one can delegate keys for less powerful predicates, i.e., if
the set Θ′ used in encryption is kept minimal, extending the set Θ in the decryption key
via delegation soon removes the power to decrypt all ciphertexts that the original key can
decrypt.

5.3.2 Security Definition

Subsequently, we define the security of our scheme. It is similar to that of SPE [KMMS17],
i.e., in a selective setting, except that we allow additional corruption queries (for corrupted
key issuers) as well as we consider delegation. In particular, we allow an adversary A to take
control of up to t− 1 authorities CA and make them behave in an arbitrary manner, while
these corruptions happen in a selective way at the start of the game (static corruption).
For simplicity, let us assume a KeyGen algorithm that includes both ShareKeyGen and

2Note that when used for selective disclosure we have only one clause instead of many clauses. If users
possess several keys, they can simply decide which keys and related attributes (selectively) they want to
use for decryption.

139

ExpCPA−b
TDSPE,A(k, n, t):

• (Θ∗, CA)← A(k)

• (pp, (ski, pki)i∈[n])← Setup(n, t, k)

• b′ ← A〈O〉(pp, (pki)i∈[n], (skj)j∈CA)

• return (b = b′)

OKeyGen(Θ,Ω, ST):

• if Θ ∪ Ω = Θ∗ ∨ |Θ| 6= |Ω| return ⊥

• else:
– (dkiΘ,mkiΩ)←ShareKeyGen(ski,Θ,Ω)i∈ST

– (dkΘ,mkΩ)←KeyGenComb(dkiΘ,mkiΩ)i∈ST

– return (dkΘ,mkΩ)

OChallenge(M0,M1, L):

• if |M0| = |M1|:

– CT
$← Enc(pk,Mb, L,Θ∗)

– Return CT

• else return ⊥.

Figure 5.2: Experiment ExpCPA−b
TDSPE,A(1λ)

KeyGenComb algorithms. A may adaptively ask the challenger for a number of decryption
keys queries including delegations as long as these keys and what can be delegated from
them do not satisfy the challenge set Θ∗. Note that we do not provide an explicit delegation
oracle, as the adversary will get access to delegation keys when it queries KeyGen. Formally,
the security in TDSPE is defined using a game ExpCPA−b

TDSPE,A(1λ) in Fig. 5.2.

Definition 54 (IND-CPA). A TDSPE scheme is secure against chosen-plaintext attacks
(CPA) under static corruption of authorities, if for any adversary A there exists a negligible
function ε(λ) such that

|Pr[ExpCPA−0
TDSPE,A(k, n, t) = 1]−

Pr[ExpCPA−1
TDSPE,A(k, n, t) = 1]| ≤ ε(λ),

where b ∈ {0, 1} is a random coin and the experiment is defined in Figure 5.2.

5.3.3 TDSPE Construction

Intuition. Our TDSPE construction is a thresholdized version of the second construction
in [KMMS17] (see Section 2.4.2.1) but extended by a novel delegation feature. We also

140

realize an unbounded universe, i.e., number of attributes and in particular instead of
putting a Yi element for each element in the universe in the key, we implicitly define these
values via a hash function (random oracle). In particular, for any possible attribute αi, we
compute it on the fly as Yi = H(αi). With this technique, we have also a compact public
parameter (fixed size) independent of the number of attributes compared to SPE, which
grows linearly with the set of attributes. We note that for simplicity TDSPE.Setup is ran by
a single entity, but in a practical realization, the shares of private key and the corresponding
public key are computed without a trusted party in a distributed protocol using standard
distributed key generation techniques [GJKR07]. In order to dynamically add or remove
authorities (which means an adversary might corrupt more than the threshold of issuers
over a longer period of time), one can rely on dynamic proactive secret sharing [BELO15]
instead of a SSS.

Now in the ShareKeyGen algorithm, we generate partial decryption keys and delegation
keys for each authority in a specified subset. The keys are derived using random values
ri, hashed attribute values Yi = H(αi), and partial secret keys xi with the Lagrange
coefficients λi (this yields the full key by aggregating at least a threshold number of keys).
The delegation keys are also generated the same way as decryption keys by hashing the
delegation attribute values.

The Delegate algorithm allows the delegation of decryption capabilities. Given a decryp-
tion key dkΘ = (h,K), a delegation key mkΘ̂, and sets of attributes for further delegation
Ω̂, it generates a new decryption key dkΘ∪Θ̂ = (h,K ′) and delegation key mkΩ̂ that extend
the original capabilities to encompass the additional attributes. This can be achieved by
combining the keys mkΘ̂ and dkΘ and aggregating their attributes, where the structure of
keys allows us to combine them as dkΘ∪Θ̂ = (h,K ′ = K ·mkΘ̂), where h is the same as
before and K ′ represents the updated decryption key resulting from the combination of
K (and its attributes) and the attributes provided by mkΘ̂. We now describe TDSPE in
detail as follows:

TDSPE.Setup(n, t, λ): Run (p,G1,G2,GT , e, P, P̂) ← BGGen(1λ), define the function
H : {0, 1}∗ → G1, and set public parameters as pp = (G1,G2,GT , e, p,H, P, P̂ , gt).
Pick a random x ∈ Zp, and generate secret shares as (x1, . . . , xn) ← SSS(n, t, p, x),
using a polynomial of degree (t − 1) with coefficients in Zp. We denote the i’th
Lagrange coefficient by λi. For each authority i, set secret key share ski := xi and
public key pki =

(
P̂ xi

)
i∈[n]

, and return (ski, pki)i∈[n].

TDSPE.AggKey(pk1, . . . , pkt): Given any subset of at least t values of pki = P̂ xi , the
algorithm computes the value pk =

∏t
i=1(pki)λi using standard Lagrange interpolation

in the exponent. It outputs the public key (assumed to be input to all algorithms):
pk =

(
X = P̂ x

)
The algorithm returns the ciphertext: CT =

{
C0, C1, C2, (Cj)j∈[q]

}
.

TDSPE.ShareKeyGen(ski,ST,Θ,Ω): Each authority i in any subset ST ⊆ [n] with |ST| ≥ t,
takes as input a secret secret key ski and sets (Θ, Ω) of size q and ` which encode

141

values for the key and the delegation set respectively. It picks a random r′i ← Zp and
outputs partial decryption keys and delegation keys:

dkiΘ =

hi = P̂ r
′
i , ki = gxi1

∏
j∈[q]

Y
λ−1
i

j

r′i
 ,

where Yj = H(αj), for all αj ∈ Θ and i ∈ ST. For all βk ∈ Ω = {β1, . . . , β`} , we
have

mki,kΩ =
(
P xi · Y r′i

k

)
k∈[`],i∈ST

,

where Yk = H(βk), where βk is the k’th element from Ω.

TDSPE.KeyGenComb({(dkiΘ,mkiΩ)}i∈ST): A user takes as input the partial functional
decryption and delegation keys in the set ST, and eventually outputs the functional
decryption key dkΘ and the delegation key as:

dkΘ =



h =
∏
i∈ST

hi = g

∑
r′i

2 ,K =
∏
i∈ST

kλii =

g
(λi·xi)
1 · Y

∑
i∈ST r

′
i

(∑t

i=1 λi·λ
−1
i

)
j

=

gx1 · ∏
j∈[q]

Y

∑
i∈ST r

′
i

j




and

mkkΩ =

 ∏
i∈ST,k∈[`]

(mki,kΩ)λi
 =

(
P x · Y

∑
i∈ST r

′
i

k

)
k∈[`]

TDSPE.Enc(pk,Θ′, L,M): On input the public key pk and a set Θ′ = (α′1, . . . , α′I), a level
L (L = 1 for the dk without delegation keys), and a message M ∈ Gt, it chooses a
random r ∈ Zp and computes the ciphertext CT as follows:(

C0 = M · e(P,
∏
L=1

X)r, C1 = gr2, (Cj = Y r
j)j∈[I]

)

where Yj = H(α′j), for all α′j ∈ Θ′.

TDSPE.Dec(dkΘ, CT): On input the decryption key dkΘ = (h,K) for the set Θ and
ciphertext CT , if Θ = Θ′ and the same level L, returns 1 if the following equation
hols and ⊥ otherwise:

C0 · e(
∏
j∈q(Cj), h)

e(K,C1) = M,

where j ∈ q means for an attribute in q, as the size of an attribute set Θ.

142

TDSPE.Delegate(dkΘ,mkΩ, Θ̂, Ω̂): On input the decryption key dkΘ = (K,h), for level L,
the delegation key mkΩ = (mkkΩ)k∈[`], and set Θ̂. If Θ̂ 6⊆ Ω, returns ⊥, else computes
key components for Θ̂ from mkΩ: Let mkΘ̂ =

∏
k∈Θ̂mk

k
Ω and

∑
i∈ST r

′
i = r, we can

return a decryption key for Θ ∪ Θ̂ composed as:

dkΘ∪Θ̂ =
(
K ·mkΘ̂

)
=

g∑u

i=1 x
1 ·

∏
j∈[|Θ∪Θ̂|]

(Yj)r, h


which decrypts ciphertexts with L+ |Θ̂| = u, note that |Θ̂| can be 1 (the common
case), if Θ̂ is only one element in the set Ω. A delegation key for Ω̂ ⊆ Ω \ Θ̂ (for
further delegation) as:

mkΩ̂ = mkk
′

Ω =

gx1 · ∏
j∈Ω̂

Y

∑
i∈ST r

′
i

j

 .
Remark 2. We remark that one could use certain CP-ABE schemes instead of our TDSPE
scheme which would yield (depending on the CPA-ABE) more expressive policies. The key
advantages of using TDSPE is its inherent support for thresholdizing and delegation, which
provides significant benefits in terms of flexibility and functionality. Nevertheless, we want
to mention that a CP-ABE scheme that efficiently supports key delegation and thresholdizing
the key generation could serve as a potential candidate for our construction. While the
BSW CP-ABE [BSW07] scheme supports efficient delegation, the need to compute gβ and
g1/β makes the distributed key generation very costly. We consider it as an interesting
future work to identify or even modify CP-ABE schemes, in a way that both additional
requirements can be met efficiently.

For our construction we can show the following:

Theorem 5.3.1. Assuming that the Decisional Bilinear Diffie-Hellman assumption holds,
the above TDSPE construction is CPA secure in the random oracle model according to
Definition 54.

Proof. Correctness follows from inspection. The main difference compared to [KMMS17]
is that we now do not fix the Yi elements in the setup, but derive them via a random oracle
(RO). For the proof strategy this makes up to collisions (which happens with negligible
probability when using the RO) only a conceptual difference, i.e., for elements inside the
challenge set we program the random oracle just to random values and for the elements
outside the challenge set (which is in the selective setting known from the beginning) the
RO is programmed exactly as the Yi elements are generated in [KMMS17]. The only
addition is to handle the delegation. For the delegation feature, we can easily compute
consistent mk elements when using the proof strategy of [KMMS17] as follows: The case

143

where Ω = ∅, i.e., no delegation keys are requested, skip to compute the mk key. Otherwise,
we can observe that if Θ ∪ Ω 6⊆ Θ∗, directly follows from [KMMS17] i.e, compute mkΩ
similar the decryption key for Θ and then since Θ 6= ∅, i.e., at least one index must be
non-zero, this in particular means that Θ 6⊆ Θ∗. This implies that this also needs to be
set in Θ∗ in order to be able to decrypt and this does not represent a valid key query.
Consequently, whenever Θ not already represents a subset of Θ∗, then Ω will not help to
achieve this either. Therefore, we can exactly follow the simulation of keys in [KMMS17]
which implicitly sets the randomness to r′ = r− b∑

j∈I wj
(where the w is from the challenge

Θ∗). More precisely, we can perfectly simulate the respective delegation key elements
by implicitly computing Y r′

k∈I′ as Y r′
k = P r ·

(
(B1)−1) 1

w . For the threshold issuing, we
can exactly follow the strategy by Boneh et al [BBH06] in their threshold Identity based
encryption. We describe the reduction as follows:

Basis of DBDH reduction. If there exists an adversary A that could break the security
property of our proposed scheme (Def. IND-Security 54), then we could built a simulation
B to break the DBDH assumption. Our reduction follows an approach described in
[KMMS17], and behaves as follows: The simulation B takes as input a decision DBDH
tuple (P,A1 = P a, B1 = P b, C1 = P c, P̂ , A2 = P̂ a, B2 = P̂ b, C2 = P̂ c, Z), where Z is
either e(P, P̂)abc or a random element GT . B outputs 1 if Z = e(P, P̂)abc and 0 otherwise.
Without losing generality, the simulation receives the targeted predicates sets Θ∗ and a list
of t− 1 corrupted authorities CA (and their secret keys) from the adversary. The reduction
B gets as input a DBDH tuple as above and uses A to interact with a TDSPE challenger:

• Initialization. The selective game begins with A first outputting predicates set Θ∗ =
{α∗1, . . . , α∗q}, that it intends to attack. Moreover, A chooses a set CA of t − 1
decryption servers that it wants to corrupt. Let CA = {s1, . . . , st−1} ⊂ {1, . . . , n}.

• Setup. To generate the system parameters, the algorithm B proceeds as follows:

1. First, B gives A the public parameters as pp = (P,G1,G2,GT , e, P, P̂).

2. Next, B generates the secret key shares for the t− 1 corrupt servers in CA. To
do so, B first picks t− 1 random integers x1, . . . , xt−1 ∈ Zp. Let f ∈ Zp[X] be
the degree t− 1 polynomial implicitly defined to satisfy f(0) = x and f(si) = xi
for i = 1, . . . , t− 1; note that B does not know f since it does not know x. B
gives A the t− 1 secret key shares sksi = xi. These keys are consistent with this
polynomial f since sksi = f(si) for i = 1, . . . , t− 1.

3. Finally, B constructs the public encryption key, which is a n-vector (pk1, . . . , pkn)
such that pki = P̂ f(i) for the polynomial f defined above, as follows:

– For i ∈ CA, computing pki is easy since f(i) is equal to one of the
x1, . . . , xt−1, which are known to B. Thus, pks1 , . . . , pksk ∈ G2 are easy for
B to compute.

144

– For i /∈ CA, algorithm B needs to compute the Lagrange coefficients
λ0, λ1, . . . , λt−1 ∈ Zp such that f(i) = λ0f(0) +

∑t−1
j=1 λjf(sj); these La-

grange coefficients are easily calculated since they do not depend on f .
B then sets pki = gλ0

2 pkλ1
s1 , . . . pk

λt−1
st−1 , which entails that pki = g

f(i)
2 as

required.
Once it has computed all the pki ’s, B gives to A the public encryption key
pk = (pk1, . . . , pkn).

• Query. A may adaptively make a polynomial number of key generation queries to B.
Random Oracle Calls:
– It proceeds by uniformly sampling for all αi ∈ Θ∗ an elements yi ∈ Z∗p and

setting Yi = P yi . It stores all values yi.
– For j = 1, 2, . . . , ϕ, B responds to hash query number j for a fresh input Θj 6⊆ Θ∗

by choosing (yi, w) ∈ (Z∗p)q+1 for all αi ∈ Θj (or βi ∈ Ωj , when the delegation
key is required) and sets Yi = Aw · P yi = ga·w+yi , where q = |Θj |.

Decryption Key Query: A may adaptively make a polynomial number of key genera-
tion queries for some sets Θj = {αi}i∈[q],Ωj = {βi}i∈[q] under the constraint that for
all j ∈ {1, . . . , ϕ− 1}, it holds that Θj 6⊆ Θ∗ and |Ωj | = |Θj | = q. The B calls RO,
picks r and responds to each query j and partial decryption keys as follows:

dkΘj =

B −
∑

i∈Θj yi
qw

1 ·

∏
i∈Θj

Y ′i

r , B −1
qw

2 · gr2

 .
We observe that:

dkΘj =

gb·−
∑

i∈Θj yi
q·w +r(

∑
i∈Θj a·w+yi)

1 , g
r− b

qw

2

 =

gab+b·
(
−
∑

i∈Θj yi
qw

−a
)

+r(
∑

i∈Θj a·w+yi)
1 , g

r− b
qw

2

 =

(
g
ab− b

qw
·(
∑

i∈Θj yi+
∑

i∈Θj aw)+r(
∑

i∈Θj (a·w+yi))
1 , g

r− b
qw

2

)

=
(
g
ab+(r− b

qw
)(
∑

i∈Θj (a·w+yi))
1 , g

r− b
qw

2

)
=

gab1 ·

∏
i∈Θj

Yi


(
r− b

qw

)
, g
r− b

qw

2



145

To see that dkΘj is a valid secret key for Θj , set r′ := r − b/(
∑
wi) ∈ Zp and x = ab.

This provides a valid and properly distributed key, as r is uniformly distributed over
Zp as gx ·

∏
j∈Θj (Yj)r

′ . Moreover, if Ω 6= ∅, we can simulate the delegation key mkΩj
in the same way of dkΘj as

mkΩj =

B −
∑

i∈Θj yi
qw

1 ·

∏
i∈Ωj

Yi

r , gr− b
qw

2

 =

g−
∑

i∈Θj b·yi
qw

·r(
∑

i∈Ωj aw+yi)
1 , g

r− b
qw

2

 =

gab+b·
(
−
∑

i∈Ωj yi
qw

−a
)

+r(
∑

i∈Θj a·w+yi)
1 , g

r− b
qw

2

 =

(
g
ab− b

qw
·(
∑

i∈Ωj yi−
∑

i∈Ωj aw)+r(
∑

i∈Ωj a·w+yi)
1 , g

r− b
qw

2

)
=

(
g
ab+(r− b

qw
)(
∑

i∈Ωj (a·w+yi))
1 , g

r− b
qw

2

)
=

gab1 ·

∏
i∈Ωj

Yi


(
r− b

qw

)
, g
r− b

qw

2


which one can produce a key dkΘj∪Ωj for Θj ∪Ωj 6⊆ Θ∗, this in particular means that
delegation key does not help A to win the game.

dk(Θ∪Ω)j =gab1 ·

∏
i∈Θj

Yi


(
r− b

qw

) ·
gab1 ·

∏
i∈Ωj

Yi


(
r− b

qw

)

=

gab1 · gab1 ·

 ∏
i∈(Θ∪Ω)j

Yi


(
r− b

qw

)
We mention that the procedure encounters a failure whenever w = 0 (due to division
by zero in the exponent). This situation occurs only if the queried set Θj is a subset
of the challenge set Θ∗, but with a negligible probability.

146

• Challenge: The adversary submits two messages (M0,M1) ∈ GT . B randomly
selects a value b ∈ {0, 1} and provides the attacker with the challenge ciphertext
CT ∗ = (C0 = Mb · Z,C1,∀j ∈ Θ∗ : Cyi1) We should mention that if Z = e(P, P̂)abc
then CT ∗ is a valid ciphertext as{

C1 = Mb · Z = Mb · e(P, P̂)abc = Mb · e(A1, B2)c,
C2 = P̂ c, ∀j ∈ Θ∗ : Cyj1 = (gyj1)c = Y c

j

}

In contrast, the message Mb remains hidden from the adversary’s view in an
information-theoretic sense as Z is uniformly distributed in GT ,

Clearly, when the ciphertext tuple contains Z = (P, P̂)abc, A’s view perfectly resembles
the expected inputs in the standard security experiment. This implies that A has an
advantage greater than some non-negligible ε(λ), as assumed. Alternatively, if the input
tuple includes a uniformly distributed element Z in GT , A gains no information about the
secret bit b. Consequently, in this scenario, A cannot outperform random guessing, leading
to a contradiction with the DBDH assumption, and thus concluding our proof.

5.4 Threshold Delegatable Anonymous Credentials
We start by introducing a formal model for a threshold delegatable anonymous credential
(TDAC) system. We note that we model the algorithm TDAC.IssueCred as a non-interactive
algorithm as there is no input from the user required and assume that users obtain their
partial credentials via a private authenticated channel (which is outside the model).

5.4.1 Formal Definition

Definition 55. A Threshold Delegatable Anonymous Credential TDAC system consists of
a set of authorities, users/provers, and verifier(s) and also the following algorithms:

TDAC.Setup(λ, n, t) → (pp, (ski, pki)i∈[n]): Setup takes as input the security parameter
λ, two additional parameters (n, t), and generates the public parameters pp which
include the combined public key pk (assumed to be input to all algorithms), a vector
of n secret key shares (sk1, . . . , skn) with threshold t, and corresponding public keys
(pk1, . . . , pkn) for each authority. It is run by authorities.

TDAC.IssueCred(ski, pk,A,A′) → (σi,mki): This algorithm is run by authority i in a
subset ST of [n], where |ST| ≥ t, by which the user obtains partial credentials
(σi)i∈ST for attributes A = {α1 . . . , αq}, and also partial delegation keys (mki)i∈ST
for attributes A′.

TDAC.AggCred((σi,mki)i∈ST)→ (σ,mk): The user runs AggCred to aggregate any subset
of |ST| ≥ t partial credentials σi and delegation keys into a single consolidated

147

ExpAnobTDAC,A(k, n, t):

• f∗ ← A(k)

• (pp, (ski, pki)i∈[n])← Setup(k, n, t)

• b′ ← A〈O
Anon,
b

,O〉(pp, (pki)i∈[n]))

• return(b = b′)

OAnon
b (i0, i1, f∗):

• If i0 or i1 > |Q| the oracle returns ⊥.

• Else, it parses Q[i0] as (Id0,A0,A′0,mk0, σ0)
and Q[i1] as (Id1,A1,A′1,mk1, σ1).

• If f∗(A0) 6= f∗(A1), return ⊥.

• Otherwise, return: ProveCred(σb,Ab, f∗)↔ A

ExpUnfTDAC,A(k, n, t):

• (f∗, CA)← A(k)

• (pp, (ski, pki)i∈[n])← Setup(k, n, t)

• > ← A〈O〉(pp, (pki)i∈[n]), (skj)j∈CA)

• If ∀(Id,A, .) ∈ Q s.t. Id ∈ CU : f∗(A) = 0,
return

A ↔ VerifyCred(pk, f∗)

Figure 5.3: Experiments ExpAnoTDAC,A(k, n, t) and ExpUnfTDAC,A(k, n, t).

credential σ and delegation key, and obtains a full credential on the attribute set A
and also gets a full delegation key mk.

TDAC.ProveCred(σ,A, f)↔ TDAC.VerifyCred(pk, f)→ (1/0): This interactive protocol is
run by a user and a verifier to prove possession of a credential certifying that attributes
satisfy the policy (predicate) f under the public key pk of issuers. ProveCred takes
as input the credential σ, attributes A and the policy f , while VerifyCred takes as
input pk and the policy f . After execution, the verifier outputs 1 if the credential
satisfies the policy or 0 otherwise.

TDAC.DelegIssue(σ,mk,A,A′,A′′) → σ′. The delegation algorithm gets as input the
credential σ for attributes A, the delegation key mk for A′ and a new attribute vector
A′′ ⊆ A′. A delegator outputs a derived credential σ′ for attributes A ∪ A′′ and an
updated delegation key mk regarding A′′ to a delegatee. It is run by the delegatee
and delegator.

5.4.2 Security Definition
We define our security model for TDAC based on the game-based framework of Deuber et
al. [DMM+18]. The adversary has access to oracles below that describe the possible ways
to interact with the system. We use 〈O〉 to denote the collection of all oracles defined in
the games. Moreover, we assume four global lists that are shared among the oracles as: HU
a list of honest users, CU a list of corrupted users, Q a list of user-credential pairs, and CA
a list of corrupted authorities. Note that we do not provide an explicit delegation oracle,
as the adversary will get access to all delegation keys when corrupting users. Oracles are
defined as follows:

148

• OUser(Id): This oracle takes a user identity Id as input. If Id is found in the list of
honest users HU or the list of corrupted users CU , it returns ⊥, indicating an error.
Otherwise, it creates a new entry for Id in the honest users list HU .

• OCorrupt(Id): This oracle takes a user identity Id as input. If Id is not found in the
honest users list HU , it returns ⊥. Otherwise, it moves the entry associated with Id
from the honest users list HU to the corrupted users list CU . It also returns all the
items in the form of (Id,A,A′,mk, σ) ∈ Q, as well as σ.

• OIssue(Id,A,A′): This oracle takes a user identity Id, an attributes set A, and a
delegatable attributes set A′ as input. If Id is not found in either the honest users list
HU or the corrupted users list CU , it returns ⊥, indicating an error. Otherwise, it
generates a signature σ using the IssueCred function with the user’s secret key ski, A,
and A′. It then adds the entry (Id,A,A′,mk, σ) to the list Q.

• OProveCred((i, f)): This oracle takes an index i and a policy set Θ as input. If i is
greater than the size of the list Q, it returns ⊥, indicating an error. Otherwise, it
retrieves the entry at index i from Q and parses it as (Id,A,A′,mk, σ). It then runs
the ProveCred(σ,A) function with the adversary (acting as a verifier in the verification
protocol).

Anonymity. Anonymity requires that a malicious verifier cannot distinguish between any
two users (cf. Figure 5.3). The adversary has adaptive access to an oracle that on input
two distinct user indexes i0 and i1, acts as one of the two credential owners (depending on
bit b) in the verification algorithm on some policy predicate f∗ chosen by the adversary in
a selective way. Note that f∗(A) = 1 if attributes in A satisfy the policy and f∗(A) = 0
otherwise. To make the game non-trivial, we impose restrictions that the policy is either
satisfied or not satisfied by both credentials. Note that this implies unlinkability.

Definition 56 (Anonymity). A TDAC is anonymous, if for all k ∈ N, n, t with t ≤ n, any
PPT adversary A there exists a negligible function ε(λ) such that

|Pr[ExpAno0
TDAC,A(k, n, t) = 1]−

Pr[ExpAno1
TDAC,A(k, n, t) = 1]| ≤ ε(λ),

where b ∈ {0, 1} is a flipped coin and the experiment is defined in Fig 5.3.

Unforgeability. Unforgeability demands that no adversary can persuade a verifier
into accepting a credential for a policy that the adversary does not genuinely satisfy. In
simple terms, an adversary succeeds in the unforgeability experiment (refer to Figure 5.3)
if they manage to convince an honest verifier that they satisfy a particular policy, even
though they lack the appropriate credential. The adversary has the freedom to select any
policy that no corrupted user can satisfy and can corrupt any set of authorities below the
threshold.

149

Definition 57 (Unforgeability). A TDAC scheme is unforgeable if, for all k ∈ N, n, t
with t ≤ n, for any PPT adversary A, there exists a negligible function ε(λ) such that
Pr[ExpUnfTDAC,A(k, n, t) = 1] ≤ ε(λ), where ExpUnfTDAC,A(k, n, t), where the experiment
is defined in Figure 5.3.

Remark 3. We note that in contrast to Deuber et al. [DMM+18], who aim to provide
a generic framework for functional credentials, our goal is very efficient instantiations.
Consequently, due to the lack of efficient adaptively secure underlying primitives we opted
to provide our definitions in a selective sense. Nevertheless, our definitions can easily be
adapted to the adaptive setting if efficient primitives are available.

5.4.3 Construction

Our construction TDAC is based on TDSPE and an equivocable and extractable commitment
scheme EQTDC, which closely follows the interactive protocol presented by Deuber et
al. [DMM+18]. The idea behind the protocol is that the attribute policy (predicate)
is associated with the ciphertext. This is an important property to prevent using zero
knowledge proofs that might be inefficient and complex. Consequently, the user proves the
possession of a credential by decrypting a ciphertext that encodes the policy set, where
the decryption key represents the credential. To ensure that the ciphertext was honestly
computed by the verifier, the verifier initially commits to randomness r, the user sends
randomness r′ and the verifier determines the challenge S and encryption randomness t
as S||t = r ⊕ r′. After decrypting the challenge ciphertext CT , the user first commits
to the result M of the decryption (which in case the verifier behaves honest is equal to
S). It then lets the verifier disclose the randomness r, which was used to compute the
initial ciphertext. Now having r and r′ the user can compute S||t and by re-encryption
can check if the ciphertext CT was indeed honestly generated. If so, the user sends the
opening information to the challenge M = S and otherwise if M 6= S it aborts. Finally,
the verifier accepts if the opening yields the plaintext M = S corresponding to the original
ciphertext. The full protocol is depicted in Figure 5.4. Note that we use the respective
syntax of TDSPE and thus the encoding of attribute sets A, A′, A′′ to the respective sets
Θ,Ω, Θ̂ is done in the obvious way as already discussed in Section 5.3.1.

By setting A′ = A in the TDAC.IssueCred, we obtain the standard functionality of
Delegatable AC. Therefore, maintaining A′ equal to A ensures the same level of functionality
as previous DAC definitions. However, the advantage in our approach lies in making A′
smaller, which enables fine-grained controlled delegation for enhanced flexibility and
granularity in the credential delegation.

Also, note that for a DNF f , we use the abbreviation TDSPE.Enc(PK, f,M) to actually
mean running the encryption algorithm of the respective sets as also discussed in Sec-
tion 5.3.1 and also f includes the level L. Finally, we make the simplification and write
TDSPE.Dec(CT, σ) whereas we mean that the prover determines the set Θ that satisfies f
with attribute A and then decrypts the respective ciphertext. We can prove the following:

150

• TDAC.Setup(n, t, λ): Run (pp, (ski, pki)i∈[n]) ← TDSPE.Setup(k, n, t). Com-
pute pk ← TDSPE.AggKey(pk1, . . . , pkt), crs ← EQTDC.Setup(1λ) and output(
(pp, pk, crs), (ski, pki)i∈[n]

)
.

• TDAC.IssueCred(ski, pk,A,A′): Each authority runs (dkiΘ,mkiΩ) ← TDSPE.ShareKeyGen
(ski, ST,Θ,Ω). When a user obtains them it sets a partial credential as σi = dkiΘ for
attributes A and also a partial delegation key as mkiΩ for attributes A′.

• TDAC.AggCred({σi,mki}i∈ST): The user runs (dkΘ,mkΩ) ←
TDSPE.KeyGenComb({dkiΘ,mkiΩ}i∈ST) to aggregate a subset of t partial credentials
σi into a single credential and sets σ = dkΘ as a full credential and mk = mkΩ as a full
delegation key.

• TDAC.ProveCred(σ,A, f)↔ TDAC.VerifyCred(pk, f): The user (U) and the verifier (V) inter-
act as follows:

– V chooses a random r and computes (com0, decom0)← EQTDC.com(crs, r) and sends
com0 to U.

– U chooses a random r′ and sends it to V.
– V computes S‖t = r ⊕ r′, CT ← TDSPE.Enc(pk, f, L, S; t) and sends CT to U.
– U computes M ← TDSPE.Dec(CT, σ) and (com1, decom1) ← EQTDC.com(crs,M),

sends com1 to V.
– V sends the opening information decom0 of com0 to U.
– U obtains S′‖t′ = EQTDC.VerCom(crs, com0, decom0) ⊕ r′ and checks if CT =

TDSPE.Enc(pk, f, L, S′; t′). If this check holds it sends the opening information decom1
to V.

– V accepts if S = EQTDC.VerCom(crs, com1, decom1) and returns ⊥ otherwise.

• TDAC.DelegIssue(σ,mk,A,A′,A′′): If a user (delegator) on level-L wants to issue a cre-
dential to a user (delgatee) on level-L + 1, the delegator performs (dkΘ∪Θ̂,mkΩ̂) ←
Delegate(dkΘ,mkΩ, Θ̂, Ω̂) on inputs the delegation key with attributes A′ and a new at-
tribute vector A′′ ⊆ A′. It outputs a derived credential σ′ = dkΘ∪Θ̂ = dkA∪A′′ and a updated
delegation key mkΩ̂ to a delegatee.

Figure 5.4: Our threshold delegatable anonymous credentials scheme.

Theorem 5.4.1. If TDSPE and EQTDC are secure, then TDAC protocol in Figure 5.4 is
unforgeable and anonymous.

Our proof is inspired by the paper of Deuber et al. [DMM+18]. We note that Deuber
et al. [DMM+18] use a very different delegation mechanism, which is not present in our
construction, but can easily be omitted from their construction (one then does no longer
require a EUF-CMA secure signature scheme). Moreover, in contrast to Deuber et al.
we have two additional features: we provide a threshold issuing as well as a credential
delegation in a way that a delegation key mk allows to compute a delegated credential
for an extended attribute vector. The threshold issuing however, is encapsulated by the
underlying TDSPE scheme and thus does not require any change to the proof (i.e., CA the

151

list of corrupted authorities just calls the corrupt authorities in TDSPE). The same holds
for the delegation, which exactly matches to the KeyGen query of TDSPE.

Lemma 5.4.2 (Unforgeability). Let TDSPE be a secure threshold delegatable subset predi-
cate encryption scheme and EQTDC be an equivocable and extractable commitment scheme,
then TDAC is unforgeable.

Proof. We employ a sequence of games to modify the unforgeability experiment and
demonstrate that the probability of success for any probabilistic polynomial-time (PPT)
adversary A is negligibly.

Game0. Original game in Definition 57.

Game1. The Setup(1λ) is changed by having crs from ξ(1λ) (along with a which is stored
locally).

• (pp, (ski, pki)i∈[n])← TDAC.Setup(n, t, λ)

• crs, a ← EQTDC.ξ(1λ)

Game2. In this game, we modify the algorithm ProveCred(σ,A, f) as follows:
• Receives com0 and chooses r′ ← Z∗p

• m′ ← ξExt(crs, a, com0)

• m← TDSPE.Dec(CT, σ) and com1 ← EQTDC.Commit(crs,m).

• Computes s′‖t′ = m′ ⊕ r′ . It sends decom1 to Verifier.

Game3. In this transition, we change the algorithm ProveCred(σ,A, f) as follows:
• Receives com0 and chooses r′ ← Z∗p
• m′ ← ξExt(crs, a, com0)

• m← TDSPE.Dec(CT, σ) and com1 ← ξ0
Eq(crs, a) .

• Computes s′‖t′ = m′ ⊕ r′ and decom1 ← ξ1
Eq(crs, a, com1,m) .

Game4. In the next step, we modify the algorithm ProveCred(σ,A, f) as follows: The
decryption is no need to evaluate and this algo computes decom1 ← ξ1

Eq(crs, a, com1, s′)
if the attributes associated to a credential σ satisfy the policy f , otherwise return ⊥.

• Receives com0 and chooses r′ ← Z∗p
• m′ ← ξExt(crs, a, com0)
• com1 ← ξ0

Eq(crs, a)

• Computes s′‖t′ = m′ ⊕ r′ and decom1 ← ξ1
Eq(crs, a, com1, s′)

152

Game5. The algorithm VerifyCred(pk, f) is changed as follows:

• Choose r ← Z∗p, com0 ← ξ0
Eq(crs, a) .

• Receives r′, s‖t = r ⊕ r′, and CT ← TDSPE.Enc(pk, f, L, s; t).

• Receives com1 and decom0 ← ξ1
Eq(crs, a, com0, r).

• Receives decom1. Accept if s = EQTDC.VerCom(crs, com1, decom1) and return
⊥ otherwise.

Game6. The algorithm VerifyCred(pk, f) is further changed as follows:
• Choose r ← Z∗p, com0 ← ξ0

Eq(crs, a).
• Receives r′, s‖t = r ⊕ r′, and CT ← TDSPE.Enc(pk, f, L, s; t).

• Receives com1, decom0 ← ξ1
Eq(crs, a, com0, r), m′ ← ξExt(crs, a, com1) .

• Receives decom1. If s = m′ , return 1 and ⊥ otherwise.

Game Transitions The game transition section is mostly taken verbatim from [DMM+18],
but adapted for our construction as follows:

Game0 ≈ Game1: These two games are identical except that the common refer-
ence string crs is sampled uniformly at random. It works exactly as in FC and
due to lack of space it is omitted.
Game1 ≈ Game2: The two games are indistinguishable according to the fact
that the probability of ξExt to extract the wrong message out of a commitment
is negligible. It works exactly as in FC and due to lack of space it is omitted.
Game2 ≈ Game3: The indistinguishability of these games follows from the equiv-
ocability and extractability of the commitment scheme. Assume towards
contradiction that there exists an adversary A for some non-negligible function
such that

Pr |[1← GameA2]− Pr[1← GameA3]| ≥ ε(λ)

Then we can build the distinguisher against the equivocability and extractability
property of EQTDC as follows:
Reduction B(crs): B simulates the inputs of Game2 plugging crs in the public
parameters. In the simulation of the oracle OProveCred it modifies ProveCred
as follows: it evaluates the decryption M ← Dec(σ,CT) and sends M to the
challenger. In response it receives the commitment com1, then it proceeds with
the execution until it recomputes CT . If the check succeeds, then B sends M
to the challenger and it receives decom1, which is forwarded to A. B continues
with the simulation and outputs 1 if the adversary succeeds and 0 otherwise.
It is not hard to check that the reduction is efficient. We note that whenever

153

com1 and decom1 are honestly computed, the reduction perfectly simulates the
inputs that the adversary is expecting in Game2, while when ξ0

Eq and ξ1
Eq are

executed by the challenger, B faithfully simulates Game3. It follows that

Pr[1← GameA2] = Pr
[
1← B|
(com1, decom1)← Commit(crs,m)

]

and

Pr[1← GameA3] = Pr
[
1← B| com1 ← E0

Eq(crs, a);
decom1 ← ξ1

Eq(crs, a, com1,m)

]
.

Therefore, by the initial assumption, we can estimate the success probability of
the distinguisher as∣∣∣∣∣∣∣∣∣∣∣

Pr
[
1← B|
(com1, decom1)← Commit(crs,m)

]
−

Pr
[
1← B|com1 ← ξ0

Eq(crs, a),
decom1 ← ξ1

Eq(crs, a, com1,m)

]
∣∣∣∣∣∣∣∣∣∣∣
≥ ε(λ)

Since crs← {0, 1}poly(k) ≈ crs← ξ(1λ), we have∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr
[
1← B|crs← {0, 1}k,
(com1, decom1)← Commit(crs,m)

]
−

Pr


1← B|crs← ξ(1λ),
(com1)← ξ0

Eq(crs, a),
decom1 ← ξ1

Eq(crs, a, com,m)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≥ ε(λ)

which is a contradiction to the EQTDC. So, it proves our claim.
Game3 ≈ Game4: The indistinguishability of the two games comes from the
correctness of TDSPE encryption scheme and builds upon the following obser-
vations:

• In the simulation of ProveCred, the policy f associated to the ciphertext
CT is always known to the challenger (in the case it is given as in input).

• The ciphertext CT is deterministically recomputed so it must be the case
that it is generated by Enc(pk, f, .).

• The ciphertext CT is uniformly distributed on the ciphertext space: Note
that we point out that the string s′||t′ is computed as ξExt(crs, a, com0)⊕r′
and since r′ is uniformly distributed and ξExt(crs, a, com0) is independent
from r′, then s′||t′ is distributed uniformly in the set {0, 1}2k .

154

As a result, CT is always a ciphertext of the form Enc(pk, f, .), for some well-
defined policy f , uniformly distributed in its domain. Thus, by the correctness
of TDSPE, and for all the set of attributes A associated with σ and for all M ,
we have that:

• Dec(σ,Enc(pk, f, L,M)) = M if f(A) = 1.
• Dec(σ,Enc(pk, f, L,M)) =⊥, if f(A) = 0.

This implies that Game4 simulates Game3 with very intense probability.

Game4 ≈ Game5: The two games are identical following from the equivocability
and extractability of the commitment scheme. More precisely, assume towards
contradiction that there exists an adversary A for some non-negligible function
such that ∣∣∣Pr

[
1← GameA4

]
− Pr

[
1← GameA5

]∣∣∣ ≥ ε(λ)

Then we can build the distinguisher against the equivocability and extractability
property of EQTDC. The reduction looks as follows:
Reduction B(crs): B simulates the inputs of Game4 plugging crs in the public
parameters. In the simulation of VerifyCred, it modifies the algorithm as follows:
The algorithm sends r to the challenger and receive com0 in response. They
continue then with the normal execution until they send r to the challenger
and receive decom0, which is forwarded to A. B continues with the simulation
and outputs 1 if the adversary succeeds and 0 otherwise.

We note that whenever com0 and decom0 are honestly computed, B perfectly
simulates the inputs that the adversary is expecting Game4, while when ξ0

Eq
and ξ1

Eq are executed by the challenger, B faithfully simulates Game5. It follows
that

Pr
[
1← GameA4

]
= Pr

[
1← B|
(com0, decom0)← Commit(crs, r)

]
and

Pr[1← GameA5] = Pr
[
1← B| com0 ← E0

Eq(crs, a);
decom0 ← ξ1

Eq(crs, a, com0, r)

]
So, with the primary assumption, we can evaluate the success probability of
the distinguisher:∣∣∣∣∣∣∣∣∣∣∣

Pr
[
1← B|
(com0, decom0)← Commit(crs, r)

]
−

Pr
[
1← B|com0 ← ξ0

Eq(crs, a),
decom0 ← ξ1

Eq(crs, a, com0, r)

]
∣∣∣∣∣∣∣∣∣∣∣
≥ ε(λ)

which is a contradiction to the equivocability and extractability property of
EQTDC. This proves our claim.

155

Game5 ≈ Game6: The indistinguishability of these two games comes from the
overwhelming probability of ξExt to extract the correct message out of a com-
mitment computed by the adversary. Clearly, Game5 and Game6 only dif-
fer in the case that the success of the adversary is determined by the check
s = VerCom(crs, com1, decom1) in the former and by s = ξExt(crs, a, com1) in the
latter. Thus, the two games differ only whenever VerCom(crs, com1, decom1) 6=
ξExt(crs, a, com1). By the equivocability and extractability property of EQTDC
we have that

Pr[VerCom(crs, com1, decom1) 6= ξExt(crs, a, com1)] ≤ ε(λ) ,

therefore
Pr[1← GameA5]− Pr[1← GameA6] ≤ ε(λ).

(Game0 ≈ . . . ≈ Game6). As mentioned above, the adversary’s success probabil-
ity is negligibly different between each pair of neighboring experiments. Since a
polynomially-bounded sum of negligible functions is still a negligible function,
we have a negligible difference between the success probability of the adversary
in Game0 and in Game6. Thus, to prove our lemma, we only need to show that
the adversary’s advantage in Game6 is bounded by a negligible function in the
security parameter.
Intuitively, if the adversary is able to win the game with more than negligible
probability, then it would imply that the adversary can break the CPA prop-
erty of TDSPE encryption scheme with the same probability assumed to be
infeasible. More precisely, assuming towards contradiction that there exists an
adversary A such that

Pr[1← Game6] ≥ ε(λ)

Then, we can construct the reduction against the CPA of TDSPE encryption
scheme as follows.

Reduction B(pk): B plugs pk into the public parameters and declares two
random messages (r0, r1) along with the f∗. B simulates Game6 by keeping
the same lookup lists except that the oracle OIssue(Id,A), when queried on
a user Id ∈ HU only records the attributes vector A without generating the
corresponding credential. B instead generates credentials for the user Id only
upon a query Id from A to the oracle OCorrupt(Id). Credentials are generated
by querying the challenger for the related set of attributes A and setting σ to
be the answer dkΘ. The rest of Oracles remain consistent. In the simulation of
ProveCred (DelegIssue, respectively), B initially samples two random messages
(r0, r1) along with the predicates (f∗). In the simulation of ProveCred, the
challenger returns CT ∗ and B sets CT = CT ∗. When A returns com1 in the
next step, B computes m∗ ← ξExt(crs, a, com1) and returns 1 if m∗ = r1, and 0
if m∗ = r0 otherwise it flips a random coin.

156

We now show that B perfectly simulated the Game6 to A. First, we argue that
in the simulation of the oracles there is no significant difference: The decryption
algorithm is in fact no longer evaluated in OProveCred and its execution relies
on the attributes vector A associated with the input credential σ. So, it is
sufficient to generate the credentials only when the adversary corrupts a certain
user. We now point out that the ciphertext CT ∗ is correctly distributed from
the adversary’s point of view. Note that the uniform randomness r of the
ciphertext CT which is revealed to A in the last phase of the simulation is not
executed due to the early interruption of A. On the other hand, com0 is also
computed independently from r. Therefore, the randomness of CT ∗ is also
sampled uniformly at random, it follows that the ciphertext CT ∗ is also correctly
distributed according to the view of the adversary. Furthermore, it is clear that
the tuple (r0, r1) is a valid input for the challenger since the experiment requires
that all the corrupted users (thus all credentials requested to the challenger)
do not satisfy the target policy f∗. Now we provide a bound for the success
probability of the reduction in the CPA game of TDSPE encryption scheme.
By assumption we have that |Pr[1← Game6]| ≥ ε(λ), which means that with
the same probability CT ∗ = Enc(pk, f∗, L, s) = Enc(pk, f∗, L,m∗). We define
this event by guess. Note that the probability of the event guess to happen is
independent of the random coins of the challenger (both r0 and r1 are correctly
distributed), so we can rewrite the success probability of the reduction of CPA
as:

AB(k) = 1
2 −

(
Pr[1← B|b = 1 and guess] Pr[b = 1]
+ Pr[0← B|b = 0 and guess] Pr[b = 0]

)
· guess

+
(

Pr[1← B|b = 1 and guess] Pr[b = 1]
+ Pr[0← B|b = 0 and guess] Pr[b = 0]

)
· guess

Whenever the event guess does not happen we can upper bound the success
probability of the reduction by 1

2 , so, by our initial assumption, we have:

AB(k) ≥ 1
2 −

(
Pr[1← B|b = 1 and guess] Pr[b = 1]+
Pr[0← B|b = 0 and guess] Pr[b = 0]

)
ε(λ)

+1
2(1− ε(λ))

On the other hand whenever guess happens, the reduction successfully guesses
the bit of the challenger with probability 1, therefore the advantage of B is:

AB(k) ≥ 1
2 −

(
1 · ε(λ) + 1

2 · (1− ε(λ))
)
≥

1
2 −

(1
2 + 1

2 · ε(λ)
)
≥ 1

2ε(λ)

157

which is a non-negligible function in the security parameter. This is a contra-
diction to the CPA property of TDSPE and it concludes our proof.

Lemma 5.4.3 (Anonymity). Let TDSPE be a secure threshold delegatable subset predicate
encryption scheme and EQTDC be an equivocable and extractable commitment scheme, then
TDAC is anonymous.

Proof. The argumentation follows exactly the one in [DMM+18]. Therefore, we will not
recall the full proof.

Verifiable partial keys. We note that the well-formedness of the partial secret keys
issued by the single authorities can be realized by standard means, i.e., by adding a
Non-Interactive Zero-Knowledge proof (NIZK) demonstrating the well-formedness. In
our concrete approach, this would require standard Schnorr-type proofs about discrete-
logarithm relations that can be efficiently instantiated.

5.4.4 Potential Extensions
Subsequently, we discuss two potential extensions of our approach, whose detailed study
we consider as future work.
Blind issuing of attributes. Issuing credentials for attributes without the issuer learning
the attributes is a feature that is useful when encoding a user’s secret key into a credential,
when attributes should be kept private for other reasons or when users need to transfer
their attributes among credentials blindly. While the encoding of the user’s key is required
in Coconut [SAB+19] (as a private attribute, otherwise signatures are forgeable) and thus
this feature is an inherent part of the scheme we do not include user-specific secrets into
the credential. Using blind issuing for some other reason than in Coconut heavily depends
on the applications. However, we do not consider this feature as an integral feature of the
applications discussed in our work. Nevertheless, this feature can be generically added
by employing a standard two-party computation protocol. Consequently, one can achieve
this feature on top of TDAC using a similar technique as used by Coconut [SAB+19] if
needed. Informally, a user could compute a blind version of attributes using ElGamal
encryption as follows: Generate an ElGamal key-pair (d, ω = gd1), pick a random k and
compute m = {B = gk1 , c = ωk ·H(α)} and send m to the issuing authorities (along with
a NIZK proof of well-formedness). Each authority can respond with a partial key as
D = Br′i , hi = g

r′i
2 ,Ki = gxi1 · (cλ

−1
i)r′i , where r′ is randomly chosen by each authority. Now

the user can unblind the keys and compute a full key as dk = (h =
∏
i∈ST hi,

∏
i∈ST K

λi
i∏

Dd
).

Revocation. In many scenarios, the revocation of credentials represents an important
property. A straightforward solution would be to apply time discretization and, at the
beginning of each time epoch, set up the parameters anew, thus invalidating all old
credentials. This is, for instance, a common approach in group signatures [BCC+16].
Alternatively, one could also aim for accumulator-based deny-lists, i.e., one needs to

158

demonstrate that a credential is not one of the revoked ones in the current list of revoked
credentials. However, this direction is less straightforward when constructing TDAC based
on TDSPE schemes, as we do not incorporate user identifiers or user specific secrets into
the credentials. Consequently, an efficient revocation mechanism for our approach that
does not rely on re-issuing is an interesting question for future research.

5.5 Performance Evaluation

This section shows our evaluation results corresponding to the proposed scheme in terms
of computation and communication overhead.

5.5.1 Experimental Results

To experimentally analyze the performance we have implemented our TDAC system and
the underlying TDSPE. As EQTDC we use the well known construction com := H(m, r)
with H being a random oracle and r ← {0, 1}k. The benchmarks are performed on a PC
with an Intel Core i5-6200U CPU at 2.30GHz, 8GB RAM running Ubuntu 16.04.1. Our
implementation is written in Java based upon the upb.crypto library3 with mcl bindings4.
We use the pairing friendly curve BN256 which provides a security level of around 100 bit.

Selective showings. In a selective disclosure credentials application, a prover can prove
possession of a subset of credentials (attributes). That is, a prover who has obtained a
collection of credentials that include attributes, can selectively reveal his attributes. For our
evaluation, we take the execution time of each algorithm for a number of attributes of 5 and
10 over 10000 iterations. We also assume a threshold t = 2 with a total number of issuers
n = 5. We set our threshold as honest majority (n/2 < t) to prevent malicious authorities
from issuing credentials arbitrarily. For simplicity, let us assume a KeyGen algorithm
that includes both ShareKeyGen and KeyGenComb algorithms. Moreover, this KeyGen
demonstrates the issuing credentials cost in TDAC (note that credentials refer to decryption
keys in the underlying scheme). The results are shown in Table 6.2, where delegation
considers that one more attribute is added to the key. Verifying is faster than proving
credentials—due to the double-check of encryption operation in the latter. The total time
of about 5 ms necessary for the whole verification phase makes our implementation suitable
for time-critical applications like public transportation, ticketing, etc.
Moreover, the trend of increasing the effective parameters (t, q) and their effect on

computation time is shown in Fig 5.6. Since the Setup algorithm runs only once, we do
not consider the computation time of Setup. The measured computation time of KeyGen,
which includes both the ShareKeyGen and KeyGenComb algorithms, demonstrates the costs
associated with issuing credentials in TDAC. It considers a threshold t range from 2 to

3https://github.com/cryptimeleon/math
4https://github.com/cryptimeleon/mclwrap

159

https://github.com/cryptimeleon/math
https://github.com/cryptimeleon/mclwrap

Table 5.1: Execution times for TDSPE and TDAC protocols in milliseconds.
TDSPE TDAC

Se
tu

p

K
ey

Ge
n

En
c

D
ele

ga
te

D
ec

Pr
ov

eC
re

d

Ve
rif

yC
re

d

q = 10 4.5 1.65 1.70 1.2 2.45 3.13 1.80
q = 5 3 1.12 1.34 1 1.50 2.74 1.44

10 and an attribute set size range from 5 to 20 (refer to Fig 5.6(a)). In contrast, the
computation time of other algorithms remains independent of the number of authorities
(refer to Fig 5.6(b)). Observe that we evaluate our scheme using large parameters like
q = 100. Even in that case the running time of ProveCred and VerifyCred is below 10 ms,
and the total time of these algorithms is below 20 ms, which demonstrates the scalability
of our system. Because the standard deviation in our measurements is low, we chose to
omit them.

DNF formula: We recall the encoding for DNFs from Section 5.3.1 and use η to show
the number of disjunctive clauses in a DNF expression such that each clause represents
a conjunction over some subset of the attributes as Cj =

∧
i αi,j . Let us present a DNF

expression via an example: Assume, we have two clauses C1 and C2 such that the former
requires 3 attributes and the later requires 5 attributes. We denote this as η2 = (3, 5):

η2 = (3, 5) =
(
C1 =

∧
i=3

αi,1, C2 =
∧
i=5

αi,2

)
.

Suppose a user has a credential that contains five attributes q = 5. Now we show the trend
of increasing the parameter η from 2 to 10 and its effect on computation time of ProveCred
and VerifyCred algorithms (see Fig 5.5(a)). More precisely, the parameter η sets as follows:
η2 = (3, 5), η5 = (2, 3, 5, 6, 7), η7 = (2, 3, 5, 6, 7, 8, 9), and η10 = (2, 3, 4, 5, 6, 7, 8, 9, 10, 11).

Comparison with Coconut. Finally, we present an approximate comparison between
TDAC and Coconut library5 (the most relevant work) in Fig. 5.5(b). They implement
the primitives in Python with native OpenSSL as backend.6 The pairing is defined over
the BN256 curve. We take running times of ProveCred and VerifyCred protocols for the
parameter q from 2 to 10, while assuming the DNF policy as ηq (like above) for TDAC
(e.g., for q = 2 is η2 = (3, 5)) and only the required private attributes for Coconut (public

5https://github.com/asonnino/coconut
6https://github.com/dfaranha/OpenPairing)

160

https://github.com/asonnino/coconut
https://github.com/dfaranha/OpenPairing)

(a) The running times of TDAC in DNF
version (ms)

(b) Comparison between TDAC and Co-
conut (ms)

Figure 5.5: The running times of TDAC in DNF version and Coconut

attributes are revealed in plain). We mention that this is only an approximate comparison,
but is useful as an order of magnitude analysis on specific parameters.

5.5.2 Theoretical Analysis and Comparison
Subsequently, we analyze the computational and communication complexity of our approach
in order to compare it to existing approaches.

5.5.2.1 Computational Complexity

To analyze the efficiency of our TDAC scheme, we consider the number of exponentiations
required for the showing of a credential, since this will be the most frequently executed
operation. We summarize the efficiency analysis in comparison with related works in
Table 5.2. Here, q refers to the number of attributes to be certified. We denote by
EG1 the cost of an exponentiation in G1 (resp. EG2 , EGT) and P represents the cost
of a pairing computation. POK{EG2 [q + 1]} (resp. POK{P [q + 1]}) denotes the cost of
proving knowledge of q secret scalars involved in a G2 (resp. P) multi-exponentiation,
and Ver(POK) the cost of verifying this proof. To be consistent with related works, our
computation is intended for selective disclosure of attributes. This computation would be
η(qEG1 +EG2 +EGT) for a DNF expression, where η is the number of clauses in the DNF.

5.5.2.2 Communication Complexity

We analyze the communication complexity and the size of element exchanged (bandwidth
consumed). The communication complexity is expressed as functions of the threshold
number of authorities t and q being an upper bound on the number of attributes. More
precisely, IssueCred depends on the number of authorities, while ProveCred and VerifyCred

161

0

1

2

3

4

5

1 2 3 4 5 6

Decrypt Encrypt ProvCerd

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

q = 5 q = 10 q = 15 q = 20

t= 2

t = 5

t = 7

t = 10

(a) KeyGen based on (t, q)

0

1

2

3

4

5

6

7

8

9

10

q = 5 q = 10 q =20 q =30 q =40 q =50 q =70 q =80 q =90 q =100

Decrypt

Encrypt

ProvCerd

verifycred

(b) Other algorithms based on q

Figure 5.6: The running times of KeyGen (i.e., issuing credentials in TDAC) and other
algorithms (ms)

Table 5.2: Computational complexity
Presentation proof cost

ProveCred VerifyCred

FC [DMM+18] 11P + 5(q − 1)EG1+ (5q + 1)EG1 + EGT
(5q + 1)EG1 + EGT

Coconut [SAB+19] 3EG1 + POK{EG2 [q + 1]} Ver(POK) + 2P
TDAC 2P + qEG1 + EG2 + EGT qEG1 + EG2 + EGT

algorithms are only dependent on the number of attributes. As an example, we calculate the
size (in bytes) of each message exchanged in the credentials scheme for five attributes q = 5
and the threshold t = 2 in Table 5.3. We use SHA-2 as hash function (for commitments)
which has output size of 32 bytes. Moreover, the sizes in bytes of elements of the bilinear
groups are |G1| = 64, |G2| = 128, and |GT | = 384.
We evaluate the trend of increasing the effective parameters (t, q) and their effect on

communication complexity of showing and issuing credentials in our construction with
related works in relation to q (from q = 5 to q = 20) in Fig 5.7(a). Compared to FC, our
showing is at least 50% smaller. Compared to Coconut, TDAC is comparable. Regarding
issuing credentials, we show this evaluation only between TDAC and Coconut in Fig 5.7(b).
Note that both TDAC and Coconut linearly depend on the number t threshold authorities.
However, in TDAC it does not depend on q and we have a communication size of about
40% compared to Coconut, even in the case we assume q = 1 (which is the best case for
Coconut, as it linearly grows with q).

162

0

1000

2000

3000

4000

5000

6000

7000

8000

q = 5 q = 10 q = 15 q = 20

TDAC

FC

Coconut

(a) Showing (indep. of t)

0

500

1000

1500

2000

2500

3000

3500

4000

t = 2&q = 5 t = 5&q = 7 t =7&q = 10

Coconut

TDAC

(b) Issuing

Figure 5.7: The transaction size of the verification and the issuing algorithm (bytes)

Table 5.3: Communication complexity in bytes (t = 2 and q = 5)
Schemes.Transaction Complexity Size(bytes)

TDAC.IssueCred (2|G1|, |G2|)t 520
TDAC.ProveCred (q)|G1|+ |GT |+ |G2|

+2|Zp|+ 2|Hash| 974
FC.IssueCred 11|G1| 726
FC.ProveCred (5q + 1)|G1|+ |GT |

+2|Zp|+ 2|Hash| 2232
Coconut.IssueCred t(3|G1|) + (q + 2)|G1|+ 1650

POK{(2q + 2)|Zp|+ (q + 1)|G1|}
Coconut.ProveCred 3|G1|+ |G2|+

POK{(q + 1)|Zp|+ 1|G2|} 652

Communication rounds. For issuing credentials, both schemes Coconut and TDAC are
similar as they need a single round communication between a user and t+ 1 authorities.
Moreover, they are non-interactive in terms of interaction between authorities, which means
authorities do not need to interact with each other. For showing credentials, TDAC requires
a 3-round interactive protocol. In contrast, Coconut can be a non-interactive protocol
(assuming the Fiat-Shamir heuristic). Communication rounds of showing credentials of FC
scheme is similar to TDAC.

The attribute and parameters domain. TDAC construction has compact parameters
(constant size) independent of the number of attributes. The attribute domain is unbounded

163

as we can compute all Yi in our TDSPE scheme by means of hashing as Yi = H(αi) or
Yi = H(αi||vi) for some attribute name αi and value vi to map these values to group
elements in G1. Clearly, attributes (and values) here can be an arbitrary bit string. In
Coconut, they also use hash functions to map an arbitrary bit string to G and Zp. However,
Coconut does not provide constant size parameters as public keys and parameters grow
linearly with to the number of attributes (this is also the case for FC).

5.5.3 Comparison

We provide a qualitative comparison of TDAC with some of the most prominent AC schemes
in Table 6.3.5 by means of selected criteria. In particular, by Threshold Issuance (TI), we
denote whether multiple authorities are involved in the issuing credentials protocol and a
credential can be aggregated using partial credentials issued by a subset of authorities. Note,
the authorities do not need to communicate with each other in this phase (a non-interactive
way). Here, × denotes that they are not designed for use in a multi-authority setting.

Table 5.4: Comparison of some popular credential schemes (q is the number of attributes).
Scheme TI Express Delegate Security |Cred|

FC [DMM+18] × CNF/DNF × X 11
U-Prove [PZ11] × S × × O(q)
CL [CL04] × R × X O(q)
Idemix [BCHB+09] × R × X O(q)
GGM [GGM14a] × S × X 2
CDD [CDD17] × S X X O(q)
Coconut [SAB+19] X R × × 2
TDAC X DNF/S X X 2

Moreover, we compare the expressiveness (Express) of the supported policies, where R
denotes for arbitrary relations over attributes, S stands the selective disclosure of attributes,
CNF as well as DNF represents conjunctive and disjunctive normal form respectively.
With |Cred| we represent the size of the credential. By Security, we show whether the
proposed schemes provide a formal model and rigorous security proofs.
Briefly summarizing Table 6.3.5, we see that TDAC improves on the computational

overhead by presenting the most efficient constructions in terms of credential size and verifi-
cation among the most well-known ACs [CL04], [PZ11], [GGM14a] and idemix [BCHB+09].
Also, other schemes have larger credentials, where often their size grows linearly with the
number of attributes. Moreover, they are not delegatable.
Coconut [SAB+19] extends these related schemes and presents a short, aggregatable,

and randomizable credential scheme, allowing threshold issuing. However, compared to
TDAC, Coconut suffers from a lack of formal security definitions and proofs. Moreover,

164

TDAC is the only scheme that supports threshold issuing and delegatable credentials and
still offers compact credentials and reasonable performance.
Finally, for a fair comparison, we should mention that although various AC schemes

without our features are more expressive and in particular allow to prove arbitrary relations
over attributes, this is not a huge limitation. Firstly, this allows us to avoid potentially
costly zero-knowledge proofs and secondly TDAC still supports fairly complex functionalities
(i.e., DNF formulas). Moreover, we believe that this functionality is sufficient for a host of
applications, and in particular access control, where it is typically not required to prove
relations over attributes, but the proof of possession of attributes (aka selective showing)
is sufficient.

165

6 Privacy-Preserving, Single Sign-On

As mentioned in the introduction, in current single sign-on authentication schemes on the
web, users are required to interact with identity providers securely to set up authentication
data during a registration phase and receive a token (credential) for future access to services
and applications. This type of interaction can make authentication schemes challenging in
terms of security and availability. From a security perspective, a main threat is theft of
authentication reference data stored with identity providers. An adversary could easily
abuse such data to mount an offline dictionary attack for obtaining the underlying password
or biometric. From a privacy perspective, identity providers are able to track user activity
and control sensitive user data. In terms of availability, users rely on trusted third-party
servers that need to be available during authentication.

We propose a novel decentralized privacy-preserving single sign-on scheme through the
Decentralized Anonymous Multi-Factor Authentication (DAMFA), a new authentication
scheme where identity providers no longer require sensitive user data and can no longer track
individual user activity. Moreover, our protocol eliminates dependence on an always-on
identity provider during user authentication, allowing service providers to authenticate users
at any time without interacting with the identity provider. It also offers enhanced security
by ensuring that users do not need to store sensitive information on their personal devices.
This feature becomes particularly beneficial when a user’s device gets compromised.

Our approach builds on threshold oblivious pseudorandom functions (TOPRF) to
improve resistance against offline attacks and uses a distributed transaction ledger to
improve availability. We prove the security of DAMFA in the universally composable
(UC) model by defining a UC definition (ideal functionality) for DAMFA and formally
proving the security of our scheme via ideal-real simulation. Finally, we demonstrate the
practicability of our proposed scheme through a prototype implementation.

6.1 Building blocks
We begin by introducing the building blocks necessary to build a privacy-preserving SSO.

6.1.1 Oblivious Pseudo-random Function (OPRF)

This primitive is taken from [JL09,JKKX17] as follows:

An oblivious pseudo-random function (OPRF), cf. [JL09] is a protocol involving
two parties: a sender and a receiver. It securely computes Fk (x) where both x

167

Key and server initialization. A random key k ← Zp is secret shared using Shamir’s scheme with
parameters n, t; each server Si, i ∈ [n], receives a share ki. Also, they use a hash function as Hg : M → G.
Threshold oblivious computation of Fk (x):

• On input x, user U picks r ← Zp and computes A := Hg (x)r; it chooses a subset SR of [n] of size
t+ 1 and sends to each server Si, i ∈ SR, the value A and the subset SR.

• Upon receiving the message A from U, server Si verifies that A ∈ G and, upon successfuly
verification, responds with bi := Aλi·ki where λi is a Lagrange interpolation coefficient for index i
and subset SR.

• When U receives messages bi from each server Si, i ∈ SR, U outputs the value

H
(
x,
(∏

i∈SR bi
)1/r)

as the result of Fk (x).

Figure 6.1: (n, t)-threshold computation in a TOPRF protocol [JKKX17]

and k are inputs of the sender and receiver, respectively. The protocol ensures
that no party learns anything other than the input holder, who learns Fk (x).
A threshold OPRF (TOPRF, cf. [JKKX17]) is an extension of the OPRF

that enables a group of servers to secret-share a key k for a pseudo-random
function (PRF) F . The servers use a shared PRF evaluation protocol to allow
the user to compute Fk (x) on an input x. In this setting, both x and k remain
secret if no more than t out of n servers are corrupted (see Fig. 6.1).

A formal definition of the TOPRF protocol as a realization of the TOPRF functionality
is given in Fig. 6.2. Note that we just duplicate these functionalities so that readers can
easily follow our ideal functionality and construction (for more details see [JKKX17]).

6.1.2 Public Append-Only Ledger

A ledger allows us to keep a list of public information and maintains the integrity of the
dataset. It guarantees a consistent view of the ledger for every party. Every user can insert
information into the ledger and, once some data is uploaded, nobody can delete or modify
it. Moreover, the ledger assures the correctness of pseudonyms and guarantees that no one
can impersonate another participant to release information. Furthermore, it distributes
up-to-date data to all participants. In this chapter, we construct our system using a public
append-only ledger (blockchain). There are already some works constructing advanced
applications based on this assumption, such as [SCG+14, GGM14b, FVY14]. Yang et
al. [YAXY19] formally define a public append-only ledger which we use for constructing
our DAMFA system (see Fig. 6.3).

168

Assume tx(p, S) and T (p, x) are undefined for all p, x, S.

Initialization.
• On message (Init, sid, SI) from S, ignore if |SI| 6= n or S is active. Otherwise, mark S as “active”

and if no record 〈sid, [. . .]〉 exists, let t∗ = Corrupted be the subset of SI that is corrupted. If t∗ ≤ t
then picks any previously unused label p and records 〈sid, SI, p〉. Sends (Init, sid, S, SI, p) to A∗.

• On message (Init, sid,A∗, p) from A∗, check that p is a label that has not been used before, record
〈A∗, p〉 and return (Init, sid,A∗, p) to A∗.

• On message (InitComplete, sid, S) from A∗, retrieve tuple 〈sid,SI, p〉. Ignore the message if there is
no such tuple, S /∈ SI, or not all servers in SI are active. Otherwise, send (InitComplete, sid) to S
and mark S as “initialized”.

Evaluation.
• On message (Eval, sid, ssid,SE, x) from P ∈ {U,A∗}, retrieve 〈sid, SI, p〉 if P = U or 〈A∗, p〉 if

P = A∗. Ignore the message if there is no such tuple or if |SE| 6= t + 1. Otherwise, record
〈ssid, P, p, SE, x〉 and send (Eval, sid, ssid, P,SE) to A∗.

• On message (SndrComplete, sid, ssid, S) from A∗, retrieve tuple 〈sid, SI, p〉. Ignore the message if
there is no such tuple, if S /∈ SI, or if S is not initialized. Otherwise, set tx (p, S)++ (or set it to 1
if tx (p, S) is undefined) and send (SndrComplete, sid, ssid) to S.

• On message (RcvComplete, sid, ssid, P = {U,A∗} , p∗) from A∗, retrieve 〈ssid, P, p, SE, x〉. Ignore
the message if there is no such tuple or if any of the following conditions fail: (i) if p∗ = p then
|{S ∈ SI | tx (p, S) > 0}| > t, (ii) if all servers in SE are honest then p∗ = p. Otherwise, if p∗ = p
then set tx (p, S) – – for any t + 1 distinct S ∈ SI s.t. tx (p, S) > 0. Then, if T (p∗, x) is defined,
send (Eval, sid, T (p∗, x)) to P . Otherwise, pick ρ ← {0, 1}l and set T (p∗, x) := ρ. Finally, send
(Eval, sid, ssid, ρ) to P .

Figure 6.2: Functionality FTOPRF [JKKX17]

6.1.3 Dynamic Accumulators
A dynamic accumulator is a fundamental concept that enables the accumulation of a
substantial set of values into a single quantity known as the accumulator. Each value
within the accumulator has a corresponding witness, serving as evidence that certifies
the presence of that value in the accumulator. The proof of showing that a value is part
of an accumulator can be zero-knowledge proof, which reveals neither the value nor the
witness to the verifier. Camenisch et al. [CKS09] define a concrete construction of dynamic
accumulators with the five algorithms AccSetup, AccAdd, AccUpdate, AccWitUpdate, and
AccVerify:

• AccSetup: This is the algorithm to output the public parameters. Select bilinear
groups ppBM = (q,G,GT , e, g) with a prime order p and a bilinear map e. Select
g ∈ G. Select γ ∈ Zp. Generate a key pair msk and pk for a secure signature scheme.
Compute and publish {p,G, T, e, g, g1 = gγ1 , . . . , gn = gγn , gn+2 = gγ

n+2
, . . . , g2n =

gγ
2n} and z = e(g, g)γn+1 as the public parameters.

• AccAdd(skA, i, accV , stateU). Compute ω =
∏j 6=i
j∈V gn+1−j+i and a signature σi on gi ‖

169

FB executes the following steps with parties {PAi1, . . . ,PAin} and an ideal adversary S as follows:
• Initialize. Initialize creates an empty list Lp in the beginning.
• Store. On input (Store,PAii, nymo

u,M), checks that nymo
u is a valid pseudonym for PAii, then stores

the tuple (nymo
u,M) to Lp and declares to S that a new item was appended to the list Lp.

• Retrieve. On input (Retrieve,PAii), returns the list Lp to PAii.

Figure 6.3: Functionality FB [YAXY19]

i under signing key sk. The algorithm outputs witi = (ω, σi, gi), an updated accumu-
lator value accV ∪i = accV · gn+1−i, and stateU∪i = (U ∪ {i}, g1, . . . , gn, gn+2, . . . , g2n).

• AccUpdate: This is the algorithm to compute the accumulator using the public
parameters. The accumulator accV of V is computed as

accV =
∏
i∈V

gn+1−i

• AccWitUpdate: This is the algorithm to compute the witness that values are included
in an accumulator, using the public parameters. Given V and the accumulator accV ,
the witness of values i1, . . . , ik in U is computed as

ω′ = ω ·
∏
j∈V/Vω gn+1−j+i∏
j∈Vw/V gn+1−j+i

• AccVerify: This is the algorithm to verify that values in U are included in an
accumulator, using the witness and the public parameters. Given accV , stateU , and
ω, accept if

e(gi, accV)
e(g, ω) = z

As Camenisch et al. [CKS09] point out, the purpose of an accumulator is to have accumulator
and witnesses of size independent of the number of accumulated elements.

6.2 Decentralized Anonymous Multi-Factor Authentication
(DAMFA)

We build a new practical Decentralized Anonymous Multi-Factor Authentication scheme
(DAMFA), where the process of user authentication no longer depends on a single trusted
third party. The scheme also permits services where authenticating users remain anonymous
within a group of users. Subsequently, our scheme does not require the IdP to be online
during the verification. To protect the private key of their user, we use personal identity
agents as auxiliary devices that participate in a threshold secret sharing scheme to store
the distributed private key of the user.

170

Figure 6.4: A system model of the DAMFA scheme

6.2.1 System Model

The overall system model of DAMFA is shown in Fig. 6.4. The protocol is executed between
four participants:

• User U: A user who wants to access various services offered by different service
providers. During the registration phase (which runs only once), U obtains a biometric
template Bio from a sensor and chooses a password pw. In the authentication phase,
users U interact with a set of personal identity agents to authenticate themselves in
an anonymous manner.

• Personal identity agent PAi: We associate each user with a set of personal agents
which are auxiliary devices that assist a user in creating a credential for authentication.
These personal agents remain under the administrative control of their associated
users, who can freely choose where to run them. For example, they could be run on a
smart home controller, at a cloud provider, or even on a mobile phone. U generates a
private key and executes threshold secret sharing on the private key to generate secret
shares of that private key. The user stores the secret shares among their personal
agents such that each PAi has one share of the overall secret key.

• Service provider (verifier) SP: These are the service providers (untrusted and dis-
tributed servers) that require authentication from a user U. After verifying a user’s
credentials, they provide access to the corresponding service.

• Identity provider IdP: The identity provider is an entity that issues credentials to users.
These credentials grant permission to use specific services by proving membership of

171

a specific permission group (e.g., clients, employees, department members, account
holders, subscribed users, etc.).

In addition, users act as nodes in the blockchain network: They collaboratively maintain a
list of credentials in a public ledger (blockchain) and enforce a specific credential issuing
policy when adding to that list. For more details on how these steps work we refer to
subsection High-Level description 6.2.3.

6.2.2 Threat Model

In order to demonstrate the security of the proposed protocol, we determine the capabilities
and possible actions of an attacker. We consider a PPT attacker who has perfect control
of the communication channels. They can eavesdrop all messages in public channels and
also modify, add, and remove messages on the network. The attacker can, at any time,
corrupt (t− 1) of the user’s agents (no more than threshold t), in which case the attacker
knows all the long-term secrets (such as private keys or master shared keys).
In the proposed protocol, we consider some privacy requirements such as unlinkability,

identity privacy, and user data privacy: Unlinkability means that an adversary cannot
distinguish a user who is authenticating from any (other) user who has authenticated in the
past. Identity privacy means that an adversary cannot determine if a given authentication
credential belongs to a specific user. User data privacy means that an adversary cannot learn
anything about the user’s sensitive authentication data (i.e., biometric data, password).

6.2.3 High-Level View

To build a fully decentralized authentication architecture, we need to setup a small
distributed shared database (to store (protected) credentials) between nodes. Data is
highly available, but nobody has control over the database. Furthermore, users would
never want to modify data in the past. User data needs to be immutable, and data should
be publicly accessible. We employ a public append-only ledger in order to fulfill our
requirements. A ledger (blockchain) maintains the integrity of the dataset and guarantees
a consistent view of the data for every party. Every participant can append information
to the ledger and, once uploaded, nobody can delete or modify the data. One of our
goals is that users are relieved from the burden of storing all their sensitive data on their
personal devices. Instead, they can rely on the protection offered by the ledger and other
cryptography tools, which leads to storing the data securely.

Definition 58 (DAMFA). A DAMFA system consists of a global transaction ledger instead
of a single party representing the organization. Moreover, the DAMFA scheme consists of
the following phases:

• Setup: In the setup phase, we define the public parameters and execute the following
algorithm: U generates a private key and executes threshold secret sharing (TSS) on

172

the private key to generate shares of that secret. The user stores the secret shares
among their personal agents (similar to the initialization of TOPRF [JKKX17], done
via a distributed key generation for discrete-log-based systems, e.g. [GJKR99]).

• Registration: In the registration phase, the user U first selects a password pw and
collects their biometric Bio at a sensor. Then, U runs the TOPRF protocol by
interacting with personal agents to reconstruct the TOPRF secret key. After that,
the IdP issues a membership credential that shows that U is a valid member (e.g.,
employee, account holder, subscribed user, etc). For this purpose, U sends a request
with a pseudonym and a (non-interactive) zero-knowledge proof (NIZK) which
indicates they are the owner of the pseudonym (they know the secret key that
belongs to the pseudonym) and authenticate themself to the IdP. Then, U receives a
membership credential which is a signature on their pseudonym.

The user U creates a pseudonym nymo
u and verification information, namely a protected

credential PCi, by encrypting the membership credential with some attributes and the
TOPRF secret key. Subsequently, U computes a NIZK proof that (1) the credential
PCi and the pseudonym contain the same secret key and (2) proof of knowledge of
the signature on attributes which is issued by the ID provider (i.e. she has valid
group membership). Note that the user can execute these actions in an offline state
because no interaction with the public ledger is required. Finally, nodes accept the
credential to the ledger if and only if this proof is valid.

• Authentication: The user U attempts to access the services of a SP in an anonymous
and unlinkable way. SP authenticates the user if and only if the user provides a
valid credential. First, a service provider sends an authentication request (which
is a signature) to U. The user inserts the password pw∗ and the biometric Bio∗
and runs the TOPRF protocol by interacting with personal agents to reconstruct
the TOPRF secret value. U first scans the public ledger to obtain the accumulator
AC, which is a set PC = {PC1, . . . ,PCn} consisting of all credentials belonging to a
specific IdP. Then, U finds their own protected credential PC∗i within this set (via the
pseudonym nymo

u). U decrypts PC∗i using the TOPRF secret key and recovers the
initial credential (a signature from IdP). U presents the credential under a different
pseudonym nymv

u by proving in zero-knowledge that (1) they know a credential PCi
on the ledger from IdP, (2) the credential opens to the same secret key as their own
pseudonym nymv

u, and (3) they prove possession of a membership credential from IdP
(the signature), cf. [GGM14b]. SP scans the public ledger to obtain the accumulator
AC which is a set PC = {PC1, . . . ,PCn} consisting of all credentials belonging to
a specific organization. Then, it checks the validity of the candidate credential by
finding the candidate credential in the set PC∗i ∈ PC and checking proof of knowledge
on the credential and pseudonym.

173

6.2.4 The DAMFA Functionality

We formally define the proposed scheme’s security by presenting its ideal functionality
that is implemented via a trusted party FTOPRF with a public ledger. All communication
take place through this ideal trusted party. In the UC framework [CHK+05,CDT19], there
may be some copies of the ideal functionality running in parallel. Each one is supposed to
have a unique session identifier (SID). Each time a message is sent to a specific copy of
functionality, such that this message contains the SID of the copy that is intended for. As
noted in [JKKX17], we also use the ticketing mechanism, which ensures that in order to test
a password and biometric guess, the attacker must impersonate t+ 1 agents. To this end,
they define a counter tx(p,PAi) for each PAi ∈ SI in which the parameter p is also used to
identify it. In addition, when an agent PAi ∈ SI completes its interaction, the functionality
increases the counter tx(p,PAi). On the other hand, when a user, either honest or corrupt,
completes an interaction that is associated to PAi, tx(p,PAi) decreases by 1. It ensures
that for any honest agent PAi, the number of user-completed OPRF evaluations with PAi
is no more than the number of agent-completed OPRF evaluations of PAi. It sets t + 1
agent tickets for accessing the proper TOPRF result by reducing (non-zero) ticket counters
tx(p,PAi) for an arbitrary set of t+ 1 agents in SI. The ideal functionality as:

Registration

• Upon receiving (Reg, sid,SI, pw,Bio) for |SI| = PAin from U, records this message and
sends (Reg,U, sid, SI) to A∗ (Ignores other Reg cmd). Computes a secret key K using
TOPRF protocol FTOPRF and if |SI ∩ CorrSrv| ≥ t+ 1 then sends (K, pw,Bio) to A∗.

• Upon receiving (SReg, sid,PAi) from A∗, if a record 〈Reg,U, sid,SI, pw,Bio〉 exists and
PAi ∈ SI then marks PAi as active and sends (SInit, sid) to PAi.

• Upon receiving (UReg, sid) from A∗, if the record 〈Reg,U, sid, SI, pw,Bio〉 exists and
all agents in SI are marked active, then runs a commitment scheme FCom and an
encryption FEnc to get (τi, γi) respectively, and sets the pseudonym as nymo

u = τi and
PCi = γi as the credential. It records 〈nymo

u,PCi,U, SI,K〉, sends (sid, nymo
u,PCi)

and (RegComplete, sid,SI) to its public ledger and A∗ respectively.

Authentication

• Upon receiving (Auth, sid, ssid, SR, pw′,Bio′) for |SR| = t + 1 from U∗, retrieves
〈Reg,U, sid, SI, pw,Bio,K〉, records

〈
Auth,U∗, sid,SI,SR, pw, pw′,Bio,Bio′

〉
and sends

(Auth,U∗, sid, ssid, SR) to A∗. Ignores future Auth commands involving the same ssid.

• Upon receiving (SAuth, sid, ssid,PAi) from A∗, if PAi ∈ SR is marked active then sets
tx(PAi)++ (sets it to 1 if it is undefined) and sends (SAuth, sid, ssid) to PAi.

174

Password and Biometric Test

• After receiving (TestPwBio, sid,PAi, pw∗,Bio∗) from A∗, if tx(PAi) > 0 then sets
tested(pw) = tested(pw∗) and (Bio) = tested(Bio∗) ∪ PAi and tx(PAi) := tx(PAi)− 1,
retrieves 〈Reg,U,SI, pw,Bio,K〉 and if |SI∩(tested(pw∗)∧tested(Bio∗)∪CorrSrv)| ≥ t+1
and if pw∗ = pw and Bio = Bio∗, then returns sk to A∗ and marks the record
compromised and responses to A∗ with “correct guess”, else returns FAIL.

Authentication for Service Provider

• GetCredList(): Every participant can obtain all data in the public ledger of the trusted
party via submitting a “retrieve” request to FDAMFA. SP then retrieves the intended
credential PCi issued by nymo

u from FTOPRF and accepts functionality’s assertion only
if PCi ⊂ PC.

• Key generation: Upon receiving (UAuth, sid, ssid, Pi, SR, sk) for |SR| = t + 1 from
A∗, if there is a record

〈
Auth, P, sid, ssid,SI,SR, pw,Bio, pw′,Bio′

〉
, where P ∈ {U,SP}

then do:
– If this record is compromised so that pw∗ = pw and Bio∗ = Bio or (SR ⊆ CorrSrv),

then output (sid, sk) to player Pi.
– Else, if this record is fresh, and if there is a record (P, pw′,Bio′, sk′) with pw′ = pw

and Bio′ = Bio, then sends sk′ (a random key) to player Pi.
– In any other case, picks a random key sk and sends (sid, sk) to Pi.

Definition 59 (Secure DAMFA). Let Π be a probabilistic polynomial time protocol for
the DAMFA functionality. We say that Π is secure if for every PPT real world adversary
A attacking DAMFA, there exists a PPT ideal world simulator S such that for both the
real and ideal world interactions, outputs of registration and authentication phases are
computationally indistinguishable: RealA(1λ) ≈ IdealS(1λ).

6.2.5 Our Construction
We build our protocol using existing building blocks 6.1 and basic primitives in the
Preliminaries. In fact, it is a generic structure that can be realized using an anonymous
credential. Here we have tried to choose and combine them wisely, leading to efficient
construction.

Setup Phases
We select a bilinear pairing e : G1 × G2 → GT that is efficiently computable, non-
degenerate, and three groups with prime order p. We let g1 and g2 be generators of G1
and G2 respectively, and gt = e(g1, g2) the generator of GT . Note that it is assumed to
support one-way Bio-hash function H1() which resolves the recognition error of general

175

hash functions [JLG04]. We consider two additional hash functions as H2 : M → {0, 1}λ
and Hg : M → G1. We publish params← (G1,G2, g1, g2, p, hnym, H1, H2, Hg) as the set of
system parameters where hnym ∈ G1. The user U generates a private key K, then executes
a secret sharing construction scheme on K to create secret keys for each personal agent
〈k1, k2, . . . , kn〉 ← TSS(K). U stores secret shares among personal agents.

Registration Phase
To register a user to the system, U first chooses a password pw and scans her biometric
impression Bio at the sensor. Then, U runs the following steps to register herself in the
system.

• A user runs TOPRF protocol [JKKX17] with agents to compute the secret value
usk = FK(pw,Bio) as follows:
– The user U picks a random number r ∈ Zp and computes A = Hg(pw, H(Bio))r

and sends the message M1 = {A} to all PAi.
– Upon receiving the message M1 = {A} from the user, each PAi computes
bi = Aki = Hg(pw, H1(Bio∗))λi·ki·r by Lagrange interpolation coefficients and
secret key ki (s.t. K =

∑
i∈SR λi · ki). They return the message M2 = {bi} to U.

– After receiving all the messages bi from personal agents, U computes: C =∏
i∈SR b

r−1
i = Hg(pw, H1(Bio))K → usk = h(pw, C).

• In order to obtain a membership credential from IdP, we use PS signatures proto-
col [PS16b] to derive a signature on a hidden committed message as follows:
– KeyGen(pp): The IdP runs this algorithm to generate private and public keys.

This algorithm selects (x, y, y1)← Zp, computes (X,Y, Y1)→ (gx1 , g
y
1 , g

y1
1) and

(X ′, Y ′, Y ′1)→ (gx2 , g
y
2 , g

y1
2), and sets sk → (X, y, y1) and pk → (g1, g2, Y,X ′, Y ′).

– Protocol. A user first selects a random r2 ← Zp and computes C = gr21 · Y usk,
which is a commitment on her secret key. She then sends C to the IdP. They both
run a proof of knowledge of the opening of the commitment (authentication).
If the signer is convinced, the IdP selects a random u ← Zp and returns
σ ← (σ1 = gu1 , σ2 = (X · C · Y m

1)u). The user can now unblind the signature σ
and get a valid signature over her secret key and the message m1 by computing
σ ← (σ1, σ2/(σ1)r2) described in [PS16a].

– Verify. To verify this signature, the user can execute this algorithm and compute:
Verify(pk,m, σ): e(σ1, X ′ · Y ′

usk · Y ′m1
1) = e(σ2, g2).

• CreatePC. The user generates a protected credential with TOPRF secret key usk
derived from the password and the biometric: U picks a random number s ∈ Zp to
generate a pseudonym as nymo

u = gs1 · husknym and computes an El-Gamal encryption of
the credential σ with secret TOPRF values usk into a ciphertext as: PCi = [σ]usk.

176

• Proof. A NIZK proof of knowledge of the credential (PS signature [PS16b]) works as
follows: U selects random r3, t1 ← Zp and computes σ′ ← (σr31 , (σ2 · σt11)r3). U sends
σ′ = (σ′1, σ′2) to the verifier and carries out a zero-knowledge proof of knowledge
(such as the Schnorr’s interactive protocol) of m, usk and t1 such that:

π = ZKPoK


(s,m1, t1, usk) : nymo

u = gs1 · husknym ∧ PCi = Encusk(σ)

∧ e(σ′1, Y)usk · e(σ′1, g2)t1 · (σ′1, Y1)m1 = e(σ′2, g2)
e(σ′1, X)

 .
• At the end of this phase, U submits the resulting values (PCi, π, nymo

u) to the public
ledger nodes where π is a proof of knowledge on the nymo

u and the PCi. If the signature
verifies successfully, output 1, otherwise 0. The nodes should accept values to the
ledger if this algorithm returns 1.

Authentication Phase
In this phase, a user authenticates herself to the service provider and establishes a session
key with the service provider. The following steps are executed by U, PAi, and SP:

• First of all, the server chooses a secret key y ← Zp and computes Z ← gy1 . Then, SP
generates a signature σs on message Z (i.e. Schnorr’s signature [Sch90]) using its
secret key and sends the message M1 = {Z, σs} to the user.

• When receiving a pair (Z, σs), the client verifies whether σs is valid on message
Z under the SP’s public key. If σs is valid, U inserts pw∗ and scans her personal
biometric impression Bio∗ at the sensor.

• The user interacts with personal agents and runs the necessary steps to compute
the TOPRF protocol FK(Bio∗, pw∗) = usk = h(pw∗,

∏
i∈SR b

r−1
i). Then, U decrypts

ciphertext [σ]usk with the TOPRF secret key usk to recover the credential σ.

• Show. The user generates a NIZK π to demonstrate that the credential is well-
formed and corresponds to her pseudonym’s secret values. This proof establishes
three key points: (1) she possesses a credential on the ledger from the IdP, (2)
the credential contains the secret key linked to her pseudonym, and (3) she has
possession of a valid credential (signature). To achieve this, we utilize the bilinear
maps accumulator [CKS09] to accumulate the group elements g1, . . . , gn instead of
using integers 1, . . . , n. Additionally, we employ Camenisch et al.’s efficient zero-
knowledge proof of knowledge, such as Schnorr’s protocol [Sch90,FS86], to verify
that a committed value is within the accumulator. Further details on how this proof
functions can be found in [CKS09,CMZ14b].
U runs the following steps to authenticate herself:
– The user selects a random number r4 ∈ Zp to generate a pseudonym nymv

u =
gr41 · husknym for communication with service providers.

177

– U picks random numbers d, t2 ← Zp and computes a randomized commitment
credential (like in the previous step) as σ′ ← (σr21 , (σ2 · σt21)r2).

– Then, U calculatesD = gd1 , a secret session key SK = Zd = gy·d1 and Hmac(SK, D, Z).
– For a set of credentials PC, U computes an accumulator and witness as AC =

Accumulate(pp,PC) and ω = GenWitness(pp,PC,PC∗i), carries out a zero-knowledge
proof of knowledge of the credential, and outputs the following proof of knowl-
edge π such that:

ZKPoK


(usk, ω, d, t2,m, r4) : AccVerify(pp,AC, ω) = 1 ∧

e(σ′1, Y)usk · e(σ′1, g2)t2 · (σ′1, Y)m = e(σ′2, g2)
e(σ′1, X) ∧

PCi = Encusk(σ) ∧D = gd1 ∧ nymv
u = gr41 · h

usk
nym

 .

Finally, U sends the message M4 = {nymv
u, D,Hmac, π} to the service provider.

• After receiving the message M4 = {nymv
u, D,Hmac, π} from the user, the service

provider first scans through the ledger to obtain a set PC consisting of all credentials
belonging to IdP. First, SP computes the accumulator AC = Accumulate(pp,PC).
Then, it verifies that π = 1 is the aforementioned proof of knowledge on PCi and
nymv

u using the known public values. If the proof verifies successfully, output 1, SP
computes the session key as follows: SK = Dy = gy·d1 .

Then, SP computes Hmac∗(SK, D, Z) and checks Hmac = Hmac∗. If π = 1 and Hmac holds,
SP accepts SK as the session key and also the user is authentic.

Note that we can simply send σ′ alongside the message of the proof of knowledge. With
this, we can prove the construction is a Σ-protocol (see [PS16b] to see how proof of
knowledge of PS signature works). Moreover, users do not need to store sensitive data in
their devices (i.e., data can be protected using the key extracted using a password and
biometrics and stored in a ledger for simple accessibility).

Theorem 6.2.1. Our proposed protocol is secure against any non-uniform PPT adversary
corrupting t − 1 many personal agents PAi by assuming that the El-Gamal encryption,
zero knowledge proof of signature, and the TOPRF protocol are secure and also the hash
function is collision resistant.

Proof Sketch. Our construction DAMFA is modular and relies directly on the TOPRF
and the zero-knowledge proof. The security is then straightforwardly inherited from those
algorithms:

The credential security requires that no adversary is able to present a credential (guess
passwords and biometrics) and generate a session key, which they have not had any access
to. If we use a TOPRF on passwords and biometric of users, then the security properties
of TOPRF would make it hard to guess. The proof is once again two-fold:

178

• First, the authentication is done through a zero-knowledge proof. At this step, either
the adversary presents an invalid credential or manages to build a valid proof. Hence,
the adversary breaks the soundness of the underlying proof of knowledge we used, or
otherwise, uses a valid credential.

• At this step, we now assume the adversary wins by using a valid credential. We now
rely on the obliviousness of the TOPRF. We interact with a TOPRF challenge to
answer every adversarial request, and at the end, we can use the (valid) credential
output by the adversary to break the TOPRF obliviousness, which leads to the
conclusion.

Anonymity. During the registration phase, when a user reveals her pseudonym but does
not (intentionally) reveal her secret key usk, no adversary should learn any information
about the secret key or the identity. Besides, during the authentication phase, a user proves
her credential using zero-knowledge proof, which reveals no additional information about
her secret key and identity to the SP.

Proof is as follows. The simulator S is essentially an ideal-world adversary that interacts
with the functionality FDAMFA and the environment ξ. We also assume that our zero-
knowledge proof of signature includes an efficient extractor and a simulator and also
the signature is unforgeable. In order to ensure that the environment’s perspective in
the ideal-world is indistinguishable from its perspective in the real-world, the simulator
must interact with the real-world adversary A by emulating all other entities for A′. The
simulator closely follows the actions of adversary A′ in most aspects.

Description of the simulator. Once the adversary registers a new user to the system
via storing a tuple (nymo

u,PCi, πi) to the bulletin board, the simulator registers this user
in the ideal world via the following process. It makes an interface between honest parties
in the real world (which is U and n − t + 1 personal agents PAi where i = t, . . . , n wlog.
since all personal agents in our scheme are same) and corrupted parties in the ideal-world
(which are SP and t personal agents PAic where ic = (1, . . . , t). The simulator behaves as:

Registration

• Upon receiving (Reg, sid,U,SI) from FDAMFA, ignores it if |SI| 6= PAn. Otherwise,
records 〈U, sid,SI〉 and sends (Send, (sid, 0),U,PAi, SI) to A′ for all PAi ∈ SI. If FTOPRF
sends (K, pw,Bio), records it.
Remark 4. S simulates PAic in the ideal world, and receives whatever they receive
from FDAMFA.

• Upon receiving (sid, PAic, PCi, nymo
u, πi) from A′ for some PAi ∈ SI, S checks its

records to see if it has information about (U, kic, nymo
u) in its list of users. If such

a user with nymo
u exists, S retrieves the associated key K for (U, kic, nymo

u) and

179

proceeds accordingly. The simulator then employs the knowledge extractor to obtain
usk. If it is not on the list, S follows the protocol to register nymo

u as a user by
choosing a random password pw∗ and Bio∗. It generates secret shares k′ic on K for
each corrupted personal agent, records 〈Reg,U, sid, SI, pw∗,Bio∗, kic,K〉 and sends
〈kic〉 to PAic ∈ SI and A′.

• Upon receiving (RegComplete, sid,SI) from A′, retrieves
〈Reg,U, sid, SI, pw∗,Bio∗, kic,K〉, computes a pseudonym nymv

u and a credential PC′i =
h · gusk where uskic = FK(pw∗,Bio∗). It records

〈
nymv

u,PC′i,U, SI, uskic
〉
and sends

(sid, PC′i, nymv
u, πi) to its public ledger and A′ where πi is proof of knowledge. S

stores (pw∗,Bio∗,K, uskic, nymv
u,PC′i, πi) in its list of credentials.

Remark 5. When an honest user initiates the process of obtaining a credential
through the functionality, the simulator generates a credential and employs the sig-
nature of the knowledge extractor to simulate the corresponding proof. Afterward, it
forwards the credential (PC′i, πi, nymv

u) to the ledger.

Authentication

• Upon receiving (Auth,U∗, sid, ssid,SR) where |SR| ≥ t+ 1 from A′, retrieves〈
nymv

u,PC′i,U,SI, uskic
〉
corresponding to U as stored in the registration phase. If

there is a set (Bio, pw,K) stored in the registration phase and uskic is defined, then
executes the TOPRF protocol with each personal agent using the password pw∗ and
Bio∗ and receives ρic = T (p, (pw∗,Bio∗)) from FTOPRF and sends (Auth, sid, ssid,U,SR)
to A′.

• Upon receiving (Auth, sid, ssid,U, ρic) from FTOPRF, S recovers SR and uskic corre-
sponding to U as stored during the registration phase in the database (ignores this
message if no corresponding tuples exist). S checks ρic = uskic and if each PAic used
the correct corresponding shareic = (uskic , kic) values. Ignores this message if either
of the following conditions fails: if ρic = uskic then |S|tx(p, S) > 0| > t or all servers
in SR are honest. Otherwise, sends (Auth, sid,SR, pw∗,Bio∗, sk) to FDAMFA where sk
is a random secret key and sets for (flag, pw∗,Bio∗, sk) as follows:
– Case 1: Shares shareic = (ρic, kic) are employed by the adversary in the real

protocol. S detects this by verifying that uskic = ρic. Therefore, S sets
(flag, pw∗,Bio∗, sk) = (1, ., .) and sends (uskic, kic) in its database to FDAMFA
where uskic, kic was sent by FDAMFA.

– Case 2: Otherwise, incorrect uskic, kic employed by the adversary in the real pro-
tocol. S detects this by verifying that uskic 6= ρic. So, S sets (flag, pw∗,Bio∗, sk) =
(0, ., .) and defines x as the set of values pw and Bio in the dictionary such that
T (p∗, (pw,Bio)) is defined. For every x in lexicographic order, sets v := T (p∗, x)
and checks if v = uskic. If so, sets (flag, pw∗,Bio∗, sk) := (2, x, sk∗) and breaks
the loop. If the above loop processes all pw and Bio without breaking, sets
(flag, pw∗,Bio∗, sk) = (0, ., .).

180

• On receiving (Auth, sid, ssid, SR, x = {pw∗,Bio∗}) from party P ∈ (U,A′) and (Auth, sid,
ssid, P, ρic) from A′, recovers uskic corresponding to U as stored in step 1. It ig-
nores this message if either of the following conditions fails: If ρic = uskic then
|S|tx(p, S) > 0| > t or if all servers in SR are honest. Otherwise, picks T (p∗, x) ←
{0, 1}l if it has not been defined and sends (Auth, sid, ssid, T (p∗, x)) toA′. If ρic = uskic
(without resulting in the failure of conditions) then adds every PAi ∈ SR to tested(x)
and sends (TestPwBio, sid,PAi, pw∗,Bio∗) to FDAMFA. If FDAMFA replies sk, then
records it.
Remark 6. In the ideal world, FDAMFA utilizes the ideal user-provided password and
biometric test. If the adversarial personal agents in the real world behave honestly,
it implies that the simulator has provided correct pairs (uski, ki). As a result, the
calculated credentials and pseudonyms will be valid and stored in the ledger, as they
are computed using the genuine password and biometric information. However, if
the personal agents act maliciously in the real world, the simulator (S) would have
detected this during the previous step and provided incorrect pairs to FDAMFA in the
ideal world. Consequently, the responses in both worlds would be invalid.

• Upon receiving (Auth, sid, ssid, SR, nymv
u,PCi) from FDAMFA, S forwards 〈nymv

u,PCi〉
to the A′ in the real world.

The Indistinguishability

• GameReal. This is the real world, the system constructed in this work is run between
n− t+ 1 honest parties and t parties controlled by the adversary.

• Game1. This is identical to GameReal except that the encryption generated in the
registration phase by honest users is replaced with a simulated one. Indistinguisha-
bility between GameReal and Game1 comes from the El-Gamal encryption security
properties.

• Game2. This is identical to Game1 except that in TOPRF, each share (bi and usk)
generated by honest users using an actual password pw and biometric Bio is replaced
by pw∗ and Bio∗ chosen randomly. Since, S does not have the correct password
and biometric. Indistinguishability between Game1 and Game2 comes from the
indistinguishability of the TOPRF algorithm and TSS construction.
– Reduction 1: The security of TOPRF ensures that an adversarial personal agent,

acting as a sender, cannot differentiate between the receiver’s (simulated user’s)
genuine input, consisting of a password pw and biometric data Bio, and any
other randomly chosen pair of password pw∗ and biometric Bio∗. This property
guarantees user privacy and data confidentiality.

– Reduction 2: The security of TSS guarantees that if fewer than the threshold
number of agents are compromised, they cannot reconstruct the secret or
verify if the shares are associated with the same secret. Consequently, the

181

Table 6.1: Comparison of Public Ledger Instantiations
Properties Namecoin Ethereum (Rinkeby)

Initial Data Size ≈ 5.08 GB ≈ 5.3 GB
Initial Sync Time ≈ 3h ≈ 3h
Cost 0.069 USD 0.0225 USD
Confirmation Time 10 min / 2 h a few seconds / 3 min

adversary cannot efficiently distinguish this behavior from a real scenario without
compromising one more agent, making offline attacks less feasible.

• Game3. This game is identical to Game2 except that an authentication response
(nymv

o and PC∗i) which are two random group elements generated by the adversary
will be rejected if the extracted secret key does not fulfill the requirements. Indistin-
guishability between Game2 and Game3 comes from the verified consistency of the
bilinear pairing algorithm and the simulation breaks the soundness of the underlying
proof of knowledge we used before (assuming that there is no hash collision).

• Game4. This is the world simulated by S. It is not hard to check that Gameideal is
identical to Game4.

We already known that the possibility of TOPRF and ZKPoK proofs to break is negligible.

6.3 Implementation

In this section, we illustrate the practicability of the proposed protocol. To this end,
we provide the public ledger part which is realized by well-known blockchains, namely
Namecoin and Ethereum. The results are summarized in Table 6.1. Here, Initial data size
shows the size of the blockchain needed for downloading and storage. Initial sync time is
the time required to sync and connect to the blockchain. Confirmation time is the time
required to confirm that the data are uploaded in the blockchain.

6.3.1 Namecoin implemention

The public ledger can be implemented by a blockchain system. One way to realize a public
ledger is to use the Namecoin blockchain. Namecoin allows registering names and stores
related values in the blockchain which is a securely distributed shared database. It also
enables a basic feature to query the database and to retrieve the list of existing names and
associated data. Thus, we can store credentials, scan them based on namespace and then
verify them. We execute the following steps in order to participate in the Namecoin system
and store credentials by the namecoin id as pseudonyms:

182

• We need to install a Namecoin client that has a full copy of the Namecoin blockchain
and keep it in sync with the P2P network by fetching and validating new blocks
from connected peers. We use implementation of the Namecoin client [tea16], which
can be controlled by HTTP JSON-RPC, command line, or graphical interface. It
spontaneously connects to the Namecoin network and downloads the blockchain.

• The Namecoin client also creates the user’s wallet which includes the private key of
Namecoin address of the user.

• To save credentials in the blockchain, the user needs to register a namespace “id/name”
as the owner of the name by paying a very small fee (0.0064 USD as of March 2018).
An id name can be registered using the Namecoin graphical interface or commands
“name_new” and “name_firstupdate”. The following description shows how the id
name in Namecoin namespace is registered and how those names can be accessed.
namecoind name-new id/3608a30756b0...

The output will look like this:
["0e0e03510b0b0b7dbba6e301e519693f6
8062121b29f3cd3a6652c238360d0d0",
"9f213ff4a582fd65"]

This transaction shows a hashed version of the name, salted with a random value
(which is “9f213...” for transaction ID “0e0e0351...”).

• The user can store arbitrary data as descriptions (which contains a credential) for
Namecoin keys using JSON format: the following codes can be a simple example of
the JSON value of an identity name:
namecoind name_firstupdate id/3608...

Output:
{ "description" : "28790de641755e77d1
3382229156f5c26a9dd8a9673006b...",
"namecoin" : "NBvmSUQbRGu..." }

• Subsequently, the update has been confirmed and transactions have been added to
the blockchain. The user has a fully valid credential. To show the credential, SP
scans through the list of added names and retrieves all credentials via a graphical
interface or commands like the following code:
namecoind name_list

Output:
[{ "name" : "id/3608a30756b07e...",
"value" : "28790de641755e77d13382
229156f5c26a9dd8a9673006b15...",

183

"address" : "NBvmSUQbRGunCS...",
"expires_in" : 36000 }]

Cost. Initially, a reasonable transaction fee of either 0.00 or 0.01 NMC is charged. We
can choose this fee based on how fast we want to process a transaction.

Latency. Namecoin and Bitcoin both attempt to generate blocks every 10 minutes; on
average, it takes nearly 5 minutes to see the data appear on the blockchain. In practice, it
then takes the necessary time to solidify the transactions and the data to be verified. For
Namecoin, it takes about 2 hours to confirm that the data are uploaded in the blockchain
(12 confirmations). That is why name_firstupdate will only be accepted after a mandatory
waiting period of 12 additional blocks.

Remark 7. Note that these costs and delays occur only once during the setup and reg-
istration phases. They do not affect the authentication phase. Thus, we focus on the
computation time of the authentication phase that is frequently used in the authentication
system (see Sections 6.3.3).

6.3.2 Ethereum

Ethereum allows us to test our decentralized application on a local blockchain; we use a
test network called Rinkeby to build our decentralized application. We can connect to the
Ethereum blockchain and even perform operations such as mine blocks, send transactions
and deploy smart contracts by running an Ethereum node.

• We run the Ethereum wallet (minst or geth command line) in order to access to
Ethereum protocol and deploy our smart contract.

• To start, we need to sink the Rinkeby network locally and download blockchain which
takes a few hours.

• Create an account:
Enter a password for your Rinkeby
account by geth command line or
Ethereum graphic (Minst).

Geth Version: 1.8.1-stable
creates an account using geth
command: geth account new

• Next, obtain some Ether so that transactions can be sent. Since we used the Rinkeby
testnet, their Ether can be obtained for free at the faucet website. Ether is used to
pay transaction fees.

184

• We can deploy smart contracts to store our credentials and names into them. For
this purpose, we write our first smart contract in Solidity (Solidity is a high-level
contract language that is planned to target the Ethereum Virtual Machine (EVM))
and deploy it through Mist. A simple example code is:

pragma solidity 0.4.2

contract Test {
string public NYM;
string public Z;

function Test(string $-NYM$,string $-Z$)
{
v1 = $-NYM$;
v2 = $-Z$;
}
}

• We can also see the option to watch previously deployed contracts and tokens. We
can click on "Watch Contracts" bottom and enter the contract’s name and contract
address.

Cost. All transactions need some amount of gas to motivate processing. A transaction
fee is between 0 to 0.000424 ETHER (as of March 2018) depending on how fast we want
to approve the blockchain transaction.

Latency. Ethereum creates a new block every few seconds so that the data will appear
on the blockchain instantly. As mentioned in Ethereum Blog, 10 confirmations is sufficient
to achieve a similar security degree as that of 6 confirmations in Bitcoin. It takes around 3
minutes to confirm the transaction/data. Note that these costs and delays occur only once
during the setup and registration phases.

6.3.3 Performance of the Authentication System

We now examine the performance of our anonymous authentication system. There are
two main steps: the registration phase and the authentication phase. However, since
time-critical operations in both registration and authentication phases are the same,
we concentrate our evaluation on the efficiency of these processes. These processes in-
clude OPRF, issuing/receiving a credential, and proving knowledge of the signature and
pseudonym. To simplify the evaluation criteria of the experiment results, we only assume
a simple policy with a threshold t = 2 for two agents. The experiment is based on a laptop
with Intel Core i5-6200U CPU 2.30GHz, 8.00 GB RAM, and 64-bit Ubuntu OS in Java 8 ,

185

Table 6.2: Performance of the authentication protocol
Sub-Protocol Duration

OPRF 30 ms
ProveNym 6 ms
IssCred 25 ms
ProveCred 33 ms

Table 6.3: Comparison of single sing-on schemes.
Schemes Decent. PV OA Anony. MF FD SD

SAML [One19] × × G# G# X × ×
OpenID [RR06] × × G# G# × × ×
PRIMA [ABS18] × × G# G# × × ≈
IRMA [AvdBH+17] X ≈ G# X × X
EL PASSO [ZKS+20] ≈ X G# X × X
NextLeap [Hal17] X × G# G# X × X
DAMFA X X X X X

building upon the upb.crypto library1 [BBB+18]. This library offers elliptic curve math and
several useful building blocks for the anonymous credential like Sanders signatures [PS16b],
Pedersen’s commitment [Ped91], Nguyen’s accumulator [Ngu05], Shamir secret sharing,
generalized Schnorr protocols, proofs of partial knowledge [CDS94], Damgård’s technique
for concurrently black-box secure Sigma protocols, the Fiat-Shamir heuristic [FS86]. Ta-
ble 6.2 shows the computational performances of the protocols over 50 iterations. For
issuing and proving protocols in such a way that a certain policy is satisfied by a credential,
we assume equality of two attributes as Policy: StuID = "11111" and GENDER = "male"
and credential: certifying only these attributes.

6.3.4 Computational and Communication complexity
We analyze the communication and the computation complexity of our proposed protocol
using the size of each element exchange involved in our protocol, the number of expo-
nentiation needed for issuing a credential (executed only once in the registration phase)
and the proving of a credential (the most frequently executed phase), respectively. We
show the following efficiency analysis in Table 6.4. r, t, EG1 and P denote the number of
attributes that can be certified, the number of agents that need to be connected, the cost of
exponentiation in G1 and the cost of a pairing computation, respectively. By POK{EG1 [n]}
(resp. POK{P [n]}), we denote the cost of proving knowledge of n secrets involved in a

1Available at https://github.com/cryptimeleon

186

https://github.com/cryptimeleon

Table 6.4: DAMFA computation and communication complexity
Trans. TOPRF IssueCred ProveCred

User PAi User IdP User SP
Compu. 2 EG1 EG1 (r + 1)EG1 + POK{EG1 [r + 1]} 2EG1 + V er(POK) 2EG1 + POK{P [r + 1]} Ver(POK)
Comm. (2t)|G1| |G1|+ |POK| 2|G1|+ |POK|

multi-exponentiation (resp. pairing-product) equation, and Ver(POK) indicates the cost
of verifying this proof.

6.3.5 Comparison

We provide a comparison of DAMFA with some of the most popular SSO schemes in Table
6.3 2. We compare DAMFA with the above schemes in terms of Decentralization (Decent.),
Passive verification (PV), Multi-Factor (MF), (semi-) Formal Definitions (FD), Anonymity
(Anony.), and Selective Disclosure (SD) attributes. Decent denotes the decentralization
of the SSO schemes (i.e., user authentication process no longer depends on a trusted
third party). We provide this by applying a distributed transaction ledger and the blind
issuing protocol. PV shows that service providers can verify users (who have registered a
particular credential) without requiring interaction with an identity provider. We fulfill this
property using a distributed transaction ledger and anonymous credentials. Anonymity
guarantees that no one can trace or learn information about the user’s identity during
the authentication process. We fulfill this property by applying NIZNP + SP signature +
Pseudonym. Here, denotes that it is infeasible for IdP’s to track users’ sign-on activity
onto different SPs. Also, it shows that it is impossible to correlate multiple accounts
created from the same credential on different SPs. Subsequently, G# indicates that either
IdP’s or SPs can create a correlation between different accounts of the same user. FD
demonstrates if proposed schemes provide a formal security definition. In this case, DAMFA
is the only scheme that provides a formal security definition and proof. SD allows
to disclose a subset of user attributes and proves statements about their attributes. Finally,
to protect the user’s private information against offline (OA) attacks, we use the TOPRF
primitive. Here, G# means that other related schemes are resistant against offline attacks as
long as IdP does not compromise or the theft/loss/corruption of a user’s device does not
happen when they use this device as 2FA token. means that resistance to offline attacks

2Anonymity: NextLeap relies on unlinkable credentials. However, blinded credentials should be stored at
IdP, which allows IdP to perform user tracking. Also, in PRIMA, sign-on across multiple SPs can be
linked. Other schemes do not support unlinkable credentials. —Offline attacks G#: the related schemes
only fulfilled offline attack if IdP is honest. In IRMA, the user’s device (i.e., IRMA app) should be
secure to provide OA and anonymity. Otherwise, any adversary who gets these can simply impersonate
the user (we addressed this open problem in IRMA). — Selective disclosure: PRIMA supports proving
statements about attributes, particularly when they are displayed as extra attributes signed by IdP.
— Passive verification ≈: In IRMA, SPs still require to interact with an IRMA API server during the
authentication.

187

is satisfied even in the presence of a corrupted IdP or user’s device.

6.4 Summary
In this chapter, we proposed a decentralized authentication and key exchange system
DAMFA (SSO scheme) under TOPRF protocol and standard cryptographic primitives. The
proposed scheme builds upon a trustworthy global append-only ledger that does not rely
on a trusted server. DAMFA fulfills the following properties:

• Decentralization property means the process of user authentication no longer depends
on a trusted party (or a trusted device). To realize such a distributed ledger, we
propose using the blockchain system already in real-world use with Ethereum or
Namecoin instead of using a single-party for authentication process. Furthermore,
with the help of other primitive like TOPRF, users are relieved of the responsibility to
store their sensitive data, such as password, biometric, a single secret key or credentials.
This significant advancement not only enhances security but also minimizes the risk
of personal device compromise.

• Passive verification means that service providers who have access to the shared ledger
can verify users without requiring interaction with an identity provider.

• Single sign-on property ensures that a user logs in with a single ID into the identity
provider and then gains access to any of several related systems. So, users do not
need to register with each service provider individually.

• Anonymity guarantees that no one can trace or learn information about the user’s
identity during the authentication process. Finally, we evaluated that our protocol is
efficient and practical for authentication systems.

Moreover, we provided comparison of our scheme (DAMFA) with some of the most prominent
SSO schemes. To demonstrate a more detailed analysis of the performance of our scheme,
we analyzed the communication and the computation complexity of our proposed protocol
using the size of each elements exchange involved in our protocol and the number of
exponentiation, respectively. We proved our construction’s security via ideal-real simulation,
showing the impossibility of offline dictionary attacks. Finally, we demonstrated that our
protocol is efficient and practical through a prototypical implementation and implemented
the public ledger using Ethereum and Namecoin blockchains.

188

7 Recovery of Encrypted Mobile Device
Backups (IDs)

Including electronic identity (eID) such as passports or driving licenses in smartphones
transforms them into a single point of failure: loss, theft, or malfunction would prevent
their users even from identifying themselves e.g. during travel. Therefore, a secure backup
of such identity data is paramount, and an obvious solution is to store encrypted backups on
cloud servers. Unfortunately, users will be highly unlikely to remember a cryptographically
strong password in the – typically rare but then crucial – case of recovering their eID onto
a new device. In this chapter, we propose a new secret key reconstruction protocol that
allows clients to recover their secret key from a partially trusted server using biometric
authentication (e.g. fingerprint) and auxiliary devices. To this end, we build upon recently
popular Password-Protected Secret Sharing (PPSS) schemes with a Fuzzy Extractor to
recover the secret key required for decrypting backups from multiple key shares and a
biometric identifier. We prove the security of our proposed protocol in the random oracle
model where parties can be corrupted separately at any time. The user’s biometric and
secret keys remain safe as long as both the server and the auxiliary device are not corrupted
at the same time. An initial performance analysis shows that it is efficient for this use case.

7.1 Introduction
Moving various aspects of electronic identity (eID) into mobile devices is a growing
trend; the standardization of international mobile driving licenses (mDLs) [ISO] and
photo ID documents [HRM16] are already being implemented on smartphones1 as well
as mobile payment wallets [GHR+15] and tokens for two-factor authentication2. Other
(less security-critical) aspects include loyalty cards for shops, public transport tickets, or
for simple age verification in various use cases [BBG+13, HRM16, SE16]. The general
approach is to transform these elements of eID from formerly physical cards into (often
hardware-backed) software components on mobile devices, e.g. as so-called ’secure applets’
or ’trusted applications’ kept in a tamper-resistant environment to potentially increase
both usability and security [BBG+13,NEA14]. However, this trend also creates a major
single point of failure. Loss, theft, or simple malfunction of the smartphone becomes highly

1Our research group is currently implementing a prototype of the Austrian mobile driving license on
Android smartphones with off-line verification, strong privacy guarantees, and scalable revocation.
Details will be published in future work.

2E.g. by implementing the FIDO U2F or UAF protocols on smartphones with fingerprint sensors.

189

problematic when the user relies on the smartphone for identification and payment as well
as communication. It is therefore clear that all such critical elements need to be backed
up, allowing owners to recover them on a new device if necessary — potentially under
time pressure and outside of their normal, trusted environments (e.g. when losing a device
during travel).
Informally, we define our main user scenario as follows: An individual, Alice, using her

smartphone as a digital identity such as a passport and credit card wallet. The smartphone
regularly creates a backup of all encrypted data, including payments and eID data. If her
phone is stolen, she needs to acquire a new, compatible device and restore her private eID
and payment data within a short time frame, probably under great stress. She should
have the ability to recover her secret key to use her private eID data. Note that certain
additional complexities, such as locking/wiping/revoking her stolen phone, paying for her
new device before recovering the virtual wallet, or verifying the authenticity of the new
device (which can be a challenging task even for previously used devices [HRM16]), are
out of the scope of the current work.
To date, the problem of backing up smartphones (not specifically eIDs) has been

typically approached with implicitly trusted cloud services by the respective device or OS
manufacturer. Although these services may potentially be made secure with significant
technical effort (cf. the recent public presentation of the Apple cloud keystore [Krs16]), they
still require complete trust in the operator. Although an organization may try to prevent
itself from being able to extract previously stored key material with tamper-resistant
hardware, the implementations, and processes for new backups can always be changed
without users being able to notice. Adding current issues of legal uncertainty in various
countries concerning key escrow and encryption regulations, we argue that this level of
trust in a for-profit company subject to a (potentially foreign) legal and political system is
misplaced, especially with the implications of handling eIDs.
In this chapter, we try to reduce the required level of trust in cloud services for the

backup and recovery of security- and privacy-critical data on smartphones, with a particular
focus on the use case of eIDs. The obvious (and naive) approach is to directly derive
a cryptographic key from a user-provided password and locally encrypt/decrypt and
sign/verify all backup data before sending it to the cloud service. In this case, the service
provider would only need to be trusted for providing availability, but not for keeping
confidentiality of the stored data (and integrity violations could at least be detected).
Current approaches to full-device backup typically use such a method (including both the
Android and iOS platforms at this time). However, the well-known difficulty of remembering
passwords with high entropy [YBAG04] is even more of a problem for recovery of eID: such
a recovery password would only be used very rarely (if at all) and often under duress. At
the same time, it needs to be of higher entropy than typical login passwords, because it is
the only element keeping a rogue (or legally compelled) service provider from violating the
confidentiality of the backup data by simply brute-forcing a weak password. Therefore, a
simple password-based key derivation function (PKDF) does not seem to be an appropriate
solution and on-device encryption methods have already been extended by including a

190

hardware-based key part in the derivation function (first on iOS, now also on Android
platforms).
Unfortunately, for decrypting backup data on a new device during recovery, we cannot

rely on a trusted execution environment (TEE) or other secure hardware to be in possession
of a key part to contribute during key derivation, as we assume the original device (from
which the backup had been created) to be completely unavailable (Alice’s phone was stolen).
Our approach, therefore, relies on the following two aspects to enable authenticated recovery
from partially trusted cloud services:

• The owner authenticates biometrically, and these biometric identifiers are part of the
key derivation function based on a fuzzy extractor. Individuals, therefore, do not
have to remember strong passwords. However, we do not assume biometric identifiers
(specifically fingerprint data within the scope of this chapter) to be confidential
against sufficiently dedicated adversaries.

• To increase the entropy of the resulting cryptographic key, an additional key part
is added to the key derivation, akin to the device-specific, hardware-based keys
currently used for on-device encryption. As we cannot rely on a single secure
hardware component to be available, we split this key into shares that need to be
combined during recovery. For instance, Alice can keep one of these shares online in a
cloud service, and carry a second one printed as a QRcode with her during traveling
or on an auxiliary device.

Recently proposed Password-Protected Secret Sharing (PPSS) schemes allow a user
to reconstruct a high-entropy secret from a single (human-memorable) password, by
communicating with at least t+ 1 honest servers (among n possible ones) where the best
attacks are online brute force attacks [FK00,BJSL11,JKK14,CEN15]. However, they still
suffer from some problems, for example, inefficiency. This is because the PPSS schemes
need to communicate with n servers and potentially rely on computationally complex
operations like zero-knowledge proofs [JKKX16,JKK14]. In addition, the schemes are not
usable for our main scenario, as the user still needs to remember her password until the
recovery phase.
To address these problems, we propose a new construction to restore the secure key.

In our protocol, the user can securely recover the secret key to newly got devices using
biometric and fuzzy extractor cryptography. In the security analysis section, we show that
the proposed scheme is secure against different kinds of attacks. In the end, we illustrate
the efficiency of our protocol in the performance section.

Our major contributions are as follows:

• We design a new architecture and protocol to reconstruct a secret encryption/de-
cryption/signature key for cloud backup using biometric authentication and a fuzzy
extractor.

191

• To the best of our knowledge, the new protocol is the first provably-secure secret key
reconstruction protocol with biometrics in case the user’s mobile device gets stolen.
Similar to PPSS schemes, our scheme allows eliminating a trusted server as well as
removing the secure element required to keep the secret key.

• Third, we illustrate a formal security model for our proposed protocol. Then, we
carry out a detailed security analysis to show the proposed protocol is provably secure
and satisfies the security requirements of this cloud backup architecture.

• In the performance section, we demonstrate that our protocol is more efficient than
the PPSS schemes and practical for cloud backup environments.

7.2 Building block and Notations

In the proposed protocol, we use the elliptic curve diffie-hellman problem to exchange
information securely and also use a fuzzy extractor with biometrics to reconstruct the secret
key. To ensure consistency with conventional elliptic curve notation, we adopt additive
notation in this chapter (see Table 7.1 for our notations used in this chapter). Consequently,
we consider the following discrete logarithm problems (DLP) based on an elliptic curve.

7.2.1 Mathematical Problems

Elliptic Curve Discrete Logarithm Problem (ECDLP): For two points P,Q ∈ G,
it is difficult to find integer x ∈ Zq to fulfill equation Q = x · P .

Elliptic Curve Diffie-Hellman Problem (ECDH): Given two points R,Q ∈ G1, the
goal of the ECDH problem is to calculate point xy ·P in polynomial time, where Q = y ·P ,
R = x · P and x, y are two unknown elements in Zq.

7.2.2 Fuzzy Extractor

The fuzzy extractor is provided by Dodis et al. [DRS04]. In this section, we briefly describe
the basic concepts and the notions related to the fuzzy extractor system.

Definition 60 (Fuzzy Extractor). A fuzzy extractor is presented with two procedures
(Gen,Rep). The fuzzy extractor is formally defined as follows:

• (Gen) receives biometric B entered by the user, then the procedure will output a
random string σ and a random auxiliary string ϑ. Note that, (Gen) is a probabilistic
generation procedure.

192

• (Rep) receives a close biometric entered B∗ and the random auxiliary string ϑ, then the
procedure will recoverσ. Note, (Rep) is a definitive reproduction procedure. In other
words, if dis(B,B∗) ≤ t. where t is the difference tolerance. Then, Rep(B∗, ϑ) = σ.

We store ϑ to recover σ from the biometric, when B and B∗ are adequately close, the string
σ can be reproduced entirely. Then, we can use σ as an encryption/authentication key. A
strong fuzzy extractor can extract L = | σ | nearly random bits and the probability to
guess the biometric key data σ ∈ {0, 1}L by an attacker is approximately 1

2L .

7.3 System Model
7.3.1 Network Model
The system model of the proposed protocol for a cloud backup architecture includes four
types of participants: a mobile user Ui, an authentication server AS as well as F as an
auxiliary device.

• AS: It is responsible for the registration of users and providing general information
to the registered users. In addition, it generates the global system parameters.

• Ui: A mobile user who sends an authentication request message to the auxiliary
device and AS. After user’s verification, users gets their information from AS and
the auxiliary device. Then they use this information to restore their secret key using
the biometrics.

• F : Auxiliary device of the user (such as a laptop, smartphone or a tablet). It helps
the user by providing some auxiliary information to return the secret key.

Table 7.1: The notions

Symbol Description

σ Master key of the user
SK = h(σ.Ppubu) Secret key of the user
y private key of the user
Ppubu = y · P Public key of the user
dAS Private key of the authentication server
Ppubs = dAS · P Public key of the authentication server
K Private key of the device
PpubF = K · P Public key of the device
h() A one-way hash function
H() A one-way Bio-hash function
Enck()/Deck An encryption/decryption function

193

Note that users can select several devices to keep the same information on them
where users can recover the secret key if one of these devices is online.

7.3.2 Threat Model
In order to prove the security of our protocol, we determine the capabilities and possible
actions of the attacker. For this purpose, we categorize the adversary into three classes
depending on the various types of data accesses. Finally, we will show our scheme is secure
under the strongest attacker A3.
A1: We consider a probabilistic polynomial-time (ppt) attacker that has perfect control

of the communication channels: can eavesdrop on all transformation messages in the public
channels, and also modify, change, remove, and add to the network.
A2: The attacker can at any time attempt to corrupt a party, in which case the attacker

knows all the long-term secrets (such as private keys or master shared keys)
A3: This attacker gets all the internal state information related to a communication

entity, including the long-term key of either the AS or the auxiliary device.
Since we assume that the original smartphone is no longer available and there is no

custom data stored on the new device, we do not consider any adversary inside either the
old or the new smartphone (no hardware modification or malware) within the scope of this
chapter. We explicitly assume the mobile device to be secure, including its user interaction
channels [May14].
To clarify the threat model, a user Ui can initiate the creation of an account with

username and biometric with the authentication server AS and the device F to restore a
secret SK protected with biometric Bi and some extra information. We assume that if
at least either the authentication server or the device is honest, the biometric Bi and the
secret key SK remain secure from the adversary. If both AS and F are corrupted, the
adversary has access to all information stored on them, multiple reconstruction queries may
be going on concurrently. Thus, the best chance for the adversary to obtain the secret key
is attacking the user’s biometric (False match). However, in the security analysis section,
we show that if the user chooses a strong and appropriate biometric match threshold, the
possibility that the adversary extracts the secret key is near zero. Nevertheless, in our
threat model, we consider that one of the authentication servers or the device is honest.

7.4 The Proposed Scheme
Based on the fuzzy extractor [DKRS06,DRS04], we present the notion of the secret key
reconstruction using biometrics when users lose their phones as a new concept in the area
of cloud backup. The proposed protocol consists of two phases: In the initialization phase,
where the proposed protocol operations and system setup are defined, we assume that the
authentication server stores a table for each user (before their lost their phone), and also
the secret key was SK = h(σ.y.P) which the user wants to restore. The reconstruction
secret key phase will be in online mode with the authentication server and the auxiliary

194

device. Some notions used during the chapter and a system setup used in the proposed
protocol are described as following below:

7.4.1 Assumptions

Our protocol requires an assumption: the authentication server can register its public
key and then the user can look up the public key. This is a reasonable assumption in
the reconstruction phase because there is only one authentication server. In addition,
the authentication server and the device include the maximum number of reconstruction
requests, which ensures no online guessing attack.

7.4.2 System Setup Phase

AS executes the following steps to generate the system private key and the system param-
eters.

• AS chooses two large prime numbers p, q, an elliptic curve E(Fp) defined on Fp for
example Curve25519, and a generator P with the order q.

• AS randomly chooses an element dAS ∈ Zq as the private key and computes the
corresponding public key PpubAS = dAS · P .

• AS selects two secure hash functions h : {0, 1}∗ → Z∗q for instance SHA3-512 and
one-way Bio-hash function H().

• AS publishes {p, q, E(Fp), P, PpubAS} and saves dAS secretly.

7.4.3 Initialization

The goal of users is to generate a key SK so that they can recover it with the help of
the authentication server, just using their biometrics. The user thus runs an initialization
protocol with the authentication server and the auxiliary device. Finally, users end up
with a random key SK and some information. As shown in Figure 7.1, the following steps
are executed by users, AS and F .

The users imprint their personal biometric impression Bi on a sensor. Then, Ui computes
(σ, ϑ) = Gen(Bi), where σ is the random secret key the user wants to use to reconstruct
the secret key SK and the auxiliary string ϑ for the commitment which is used to restore
secret σ. Then, the user generates (ϑF , ϑS)←− ShareGen(ϑ) such as [CEN15,Sha79b], and
L = h(H(Bi) ‖ ϑF) then shares these ϑS , ϑF among AS and F respectively and sends L
only to AS. In addition, Ui computes Com = h(σ, ϑ, SK,Ppubu = y · P) and like auxiliary
string makes the split of hash value Com as (CS , CF) ←− ShareGen(Com). Finally, Ui
sends the set of CS and ϑS to the AS and also sends other parts CF and ϑF encrypted to
the auxiliary device as following:

195

Figure 7.1: Initialization Phase

• Ui generates a random element ri and computes the scalar multiplication A =
H(Bi) · ri ·P sends it to F . Upon receiving A from the user, F computes b = K ·A =
K ·H(Bi) · ri · P using the secret key K and returns b to Ui.

• After receiving the messages b from the auxiliary device, Ui computes

C = r−1
i · b = H(Bi) ·K · P (7.1)

D = h(C) (7.2)
V = EncD(CF , ϑF). (7.3)

At the end, the data V is stored on the auxiliary device and also the server creates a
account with the values {CS , ϑS , Ppubu , L} for each user.

7.4.4 Reconstruction Phase
In the initialization phase, we assume that all the communications were safe, and the data
is not modified during the communication. In the reconstruction phase, the adversary has
control over the network and can forward, alter, delay, replay, or delete any message. The
adversary can also provide fake data and may corrupt either the authentication server or
the device. The user needs to restore the secret key for a new device in order to restore eID.
First, the user sends the authentication request to the auxiliary device and receives part of
information ϑF and CF from F . Then, the user sends an authentication message to the
authentication server in order to verify the user. After verification by the authentication

196

server, the user receives another part of information ϑS and CS . In the end, the user can
compute SK by combining received information. As shown in Figure 7.2, the following
steps are executed by the user, AS and F .

• The user generates random number rj and computes A = rj ·H(Bi) · P . Then, Ui
sends a request authentication A to the auxiliary device M1 = {A}. Then, the user
and the device make use of the following steps to send the other part of auxiliary
number ϑF and part of commitment information Com CF , so the auxiliary device
calculates:

b = K ·A = K · rj ·H(Bi) · P (7.4)

Finally, the auxiliary device sends M2 = {b, V } to the user.

• After receiving the message from the device, the user computes:

C = r−1
j · b = H(Bi) ·K ·G (7.5)

D = h(C) (7.6)
{CF , ϑF } = DecD{V }. (7.7)

• Ui generates the verification code by inserting his biometric and computes L∗ =
h(H(Bi) ‖ ϑF). Then, the user encrypts EncpubAS{L∗, A, T1} where T1 is the current
time-stamp. Ui sends the login request M3 = {EpubAS (L∗, A)T1} to the AS.

• After receiving the authentication message from the user, AS acquires the current
timestamp T2 and checks if (T2−T1) > 4, where 4 is the maximum time interval for
transmission delay. If so, then AS rejects the login request; otherwise decrypts the
message and checks L∗ = L holds, the user is authenticated and then AS continues
calculations:

S = dAS .A (7.8)
ω = Ench(S)(ϑS , CS) (7.9)
H2 = h(ϑS , CS , S, PpubAS , ω) (7.10)

Finally, AS sends the message M4 = {PpubAS , H2, ω} to the user.

• Upon receiving the message M4 = {PpubAS , H2, ω}, Ui computes

S∗ = H(Bi) · rj · PpubAS (7.11)
{ϑS , CS} = Dech(S∗)(ω) (7.12)

H∗2 = h(ϑS , CS , S∗, PpubAS , ω). (7.13)

Then it checks whether H2 and H∗2 are equal. If they are not equal, Ui terminates
the session, otherwise, the user combines ϑS and ϑF to reconstruct the shared ϑ.
Also user combines CS and CF to reconstruct Com.

197

• The user computes Rep(B∗i , ϑ) = σ If the value of ϑ is changed, robust fuzzy extraction
detects it immediately. The user computes the secret key as SK = h(σ · Ppubu) and
Com∗ = h(σ, ϑ, SK,Ppubu = y · P). Finally, it checks whether Com∗ = Com holds
or not. If it holds, the secret key is correct.

Figure 7.2: Reconstruction Phase

7.5 Security Analysis

We illustrate our protocol is provably secure in a strong security model and prove all security
requirements under the random oracle model [BPR00b,CK01,MN15]. The adversary tries
to retrieve the user’s secret key from the authentic messages and AS database. Generally,
we will demonstrate that our scheme is secure against secret key attacks and other related
attacks.

198

7.5.1 Security Model

In the security model, we analyze the security of the proposed scheme by the attacker A3
to demonstrate that the possibility of breaking the secret key in our scheme is negligible.
In this case, the attacker has the ability to compromise one of the authentication servers
or devices and reveal their private key [AFP05,MMK17]. The adversary’s capabilities are
modeled by the various following queries. Before we mention the queries, we introduce
two types of participants in our scheme: the Mobile Pi, and the authentication server AS.
Note that

∏p
Pi

and
∏s
AS are the instances p and s of Pi and ASi, respectively. These are

explained as the oracles.
The formal security of the retrieve secret key model is based on a game involving a challenger
C and a polynomial time adversary A, which will be described below. During the game,
the attacker A is permitted to make the following queries that are responded to by the
challenger C.
h(m): C maintains a list Lhi , which is initialized empty. Upon receiving the query, C

checks if L h i contains (m, r). If so, C returns r to A; otherwise, C picks a number r
randomly, stores (m, r) in Lhi and returns r to A .

Execute (
∏p
Pi
,
∏s
AS): It is performed by A in order to get the messages transmitted among

two truthful parties. This is modeled as an eavesdropping attack.

Send (
∏p
Pi
,
∏s
AS): This query is appropriate for modeling an active attack. A has the

ability to modify the message transmitted and send it to a parties instance
∏p
Pi

and
∏s
AS

and waits to receive a response message.

Corrupt (P): This query models corruption ability of the adversary A. It produces the
private key of the participant P which can be AS or F and also stolen/obtained data
stored into them.

Test (
∏p
Pi
): This oracle query is defined to simulate symmetric secret keys semantic

security. Upon receiving the query, C chooses a random bit b ∈ {0, 1}. If b = 1, C returns
the secret key of

∏p
Pi

to A; otherwise (b = 0), C generates a random number and returns
it to A .

Semantic security, In the random model, the adversary is challenged in an experiment
to distinguish between an instance’s real user secret key SK and a random number. After
carrying out the above queries, A makes its guess b′ of b generated in Test-query. We say A
breaks the security of the scheme, if A correctly guess b′ and wins the game where b′ = b.

Let SuccP denote the event in which the adversary can successfully guess as b′ and wins
the game. The advantage of A in breaking the security of the protocol is defined to be:
AP = [2 · Pr[SuccP]− 1]. We say that our proposed protocol provides reasonable security

199

if the advantage AP ≤∈ is negligible.

Theorem 7.5.1 (Encryption/Decryption Secret Key Security). Considering the assump-
tions, our scheme is provably secure against a polynomial-time adversary for deriving the
secret key of a user in the random oracle model.The probability that the adversary breaks
the secret key security of the proposed scheme P by A is

AP ≤
q2
h

|HASH|
+ 2 · qs ·max{(

1
2l , εbm ·

1
2m)}+ 2 · AECDLPP (t)

Where qh, qsend, |HASH|, and AECDLPP (t) define the number of Hash queries, the number
of Send queries, the range space of the hash function and the advantage of A in breaking
the ECDLP problem respectively. Let l =| σ | and m =| ϑF |, | ϑS |, the length of string in
the biometrics key σ and ϑF (or ϑS) respectively.

Figure 7.3: False match rate (FMR) and False non match rate (FNMR) evaluation using
fuzzy extractor and fingerprint on FVC2000 1a database [AJH07].

7.5.2 Security Proof of the Protocol
Security Proof: We assume, there is a PPT algorithm C that can break a one-way hash
function and ECDLP on the problem by cooperating with the adversary. We denote a
sequence of games Gamei, where i = [0, 4]. Suppose, Succi defines the event where the
adversary gets success in guessing the bit b in Gamei and wins the game. The game will
start from Game0 as a real attack against the proposed scheme P and ends with the game
Game4 that maintains a negligible advantage of breaking the recovery secret key security
of the proposed scheme.

Game0 This game represents the real attack by the adversary A against the protocol P
in the random oracle model. At the beginning of this game, the bit b is chosen at random.
By definition, we have

AP = [2 · Pr[SuccP]− 1]

200

Game1: In this game, we simulate all the oracles (Execute, Send, and Test oracles) for
each query and keep three lists to store the answers to the oracles. A has to make a
decision whether the output of Test is the real secret key or a random number. From the
simulation, we can see that the transcript distribution of the game Game0 and Game1 are
indistinguishable from the real experiment. Therefore, message eavesdropping cannot help
to increase the winning possibility of the A’s game. We have,

Pr[Succ0] = Pr[Succ1]

Game2: In this game, we simulate all the oracles in game Game1, except that we halt all
executions in which a collision occurs in the transcript. It transforms Game1 into Game2 by
adding the simulation of both the Send and Hash oracles. Game2 creates an active attack
where the adversary tries a participant into accepting a forged message. The adversary calls
several Hash queries to find the hash collisions. Thus, the games Game1 and Game2 are
indistinguishable unless the collusions of group points and hash value happen. According
to the birthday paradox result [BMP00b] gives the following:

Pr[Succ1]− Pr[Succ2] ≤ q2
h

2 · |HASH|

Game3 This game Game2 is converted to Game3 by simulating the corrupt oracle and
getting long-term key and data stored from AS or F . Then, the attacker tries to obtain the
secret key SK by guessing the values σ. Note that a strong fuzzy extractor is used in our
protocol P, which can extract at most l nearly random bits. The guessing probability of the
biometric key σε{0, 1}L by A is approximately 1

2l [DRS04,ODG15]. Furthermore, we should
consider the possible accidental guessing of a “false positive” case with probability εbm. For
instance, as shown in Finger 7.3, the authors used the fuzzy extractor on the fingerprint
database for results and analysis. Obviously, if the user chooses an appropriate threshold
of around 10, we can obtain a high level of security against offline guess attacks. The
possibility that a false match happens is approximately 0 and 70 percent usability [AJH07].

Furthermore, the adversary needs to guess ϑF or ϑS to find string value ϑ (since each of
AS or F only has one part of the value ϑ). As a whole, if the length of the string ϑF or
ϑS is m =| ϑF |, | ϑS | bits, the guessing probability under this case is at most

Pr[Succ2]− Pr[Succ3] ≤ qs ·max{(
1
2l , εbm ·

1
2m)}

Game4: In the last game, the notion of this security feature is that the adversary A cannot
obtain the secret encryption key even if A can run corrupt oracle models. The adversary
A goal is to compute the secret key SK in the above case by asking Execute

∏p
Pi
,
∏s
AS

queries and corresponding hash queries.
The session transcripts M3 = {PpubAS , H2, ω} and M2 = {V, b} are available to the

adversary where V = Ench(D){ϑF , CF } and b = K · A = K · H(Bi)rj · P . A should
ask Hash query to win, and ECDLP problem is broken. However, the secret key SK

201

is computed as SK = h(σ · y · P), and computing SK using these values and available
transcripts is computationally infeasible to the adversary. Thus, in this case, the adversary
needs to solve the ECDLP problem to compute the secret key SK.
As a result, the game Game3 and the game Game4 are indistinguishable as long as the

ECDLP assumption holds, due to the random self-reducibility of the ECDLP problem.
We can obtain SK in the list La with the probability 1

qh
. Let t′ be the running time in all,

and we can see that t′ = O(t+ (qs + qe)Tpm) where Tpm denotes the elliptic curve point
multiplication operation in ECC and qe Execution queries. So we have

Pr[Succ3]− Pr[Succ4] ≤ O(qh · AECDLPp (t′))

In addition, whatever the bit b involved in the Test-query, the answer is random. Therefore,
A gains no advantage to guess the correct bit b, we get, Pr[Succ4] = 1/2 From first equation,
note that

1
2 · Ap =| Pr[Succ0]− 1

2 |

From all the games, we have

| Pr[Succ0]− 1
2 |≤

q2
h

2|HASH| +max{qs(
1
2l , εbm ·

1
2m)}+O(qh · AECDLPp (t′)

Thus, using two Equations above, we have

AP ≤
q2
h

|HASH|
+ 2 · qs ·max{(

1
2l , εbm ·

1
2m)}+ 2 · AECDLPP (t)

7.5.3 Discussion

Security of Key Recovery: In the proposed scheme, the secret key SK = h(σ ·Ppubu) is
established to encrypt/ decrypt eID data. To compute the secret key, the adversary needs
to know the biometrics of the user and secret value ϑ at the same time. On the other hand,
according to the proof of Theorem 1, the adversary cannot compute these values without
breaking the ECDLP problem, hash function, and compromising the security of both the
authentication server and the device. Thus, the security of the secret key is ensured in the
proposed scheme.

Although we assume that at least one of the authentication servers or the device should be
honest to remains the security of the secret key. However, even if both of them are corrupt,
the adversary only has a chance to find biometric by false matching. Nevertheless, as
shown in figure 7.3, if we select a suitable threshold for example T = 10 in this experiment,
the probability to find a false match happens is near zero.

Stolen Verifier Attack: In our scheme, {CS , ϑS , Ppubu = y.P, L} is stored in a verifier

202

table for each of the users that is maintained by the authentication server. However, even if
the adversary has access to the information, he cannot obtain any secret information of Ui
without knowing biometrics and ϑF . The security of this information is ensured through
the usage of the Elliptic Curve Discrete Logarithm Problem (ECDLP) and a robust hash
function. As a result, our scheme could withstand the stolen verifier attack.

Impersonation Attack: Suppose, the adversary wants to pass the fake login message
EPpubAS {L = h(H(Bi) ‖ ϑF)} to the authentication server. According to the proof of
Theorem 1, the adversary cannot successfully pass a fake login message because they
do not possess the secret values ϑF and biometric Bi. Even if the adversary obtains ϑF
by compromising the device, they can only conduct an online brute-force attack with
the authentication server (to verify whether the guessed biometric is correct or not). It’s
important to note that timestamps are utilized to prevent replay attacks. Therefore, our
proposed protocol can effectively resist user impersonation attacks.

Privileged Insider Attack: In the registration phase, the authentication server AS
stores a random string ϑS and {Ppubu = y.P, L = h(H(Bi) ‖ ϑF)}. Based on Theorem 1,
it is very difficult for the authentication provider AS to get the user’s master key σ without
the knowledge of their biometric and ϑF even if it uses off-line guessing attacks because
the length of ϑ string is large [DKRS06]. Thus, our scheme is secure against privileged
insider attacks.

Modification Attack: In the reconstruction phase, all messages from the device and AS
are protected under the Diffie Hellman keys D and S and also hash function H1 and H2.
Thus, the user can discover any modification about the response message by checking if
hash values hold. Therefore, the proposed protocol can resist the modification attack.

7.6 Performance

In this section, we analyze the performance of the proposed scheme. We compute the
computation cost in the reconstruction phase, and also we compare our scheme with some
of the most efficient related works Abdalla et al. [ACNP16], Jarecki et al. [JKKX16],
Bagherzandi et al. [BJSL11], Jarecki et al. [JKK14], Camenisch et al. [CLN12], and
Camenisch et al. [CLLN14]. For the convenience of evaluating computational cost, let
Tecc, Th, Ts, Thp, Te be the time cost of executing an elliptic curve point multiplication, hash
function operation, an encryption/decryption operation, a hash to point function operation,
and an exponentiation operation respectively. We also presume that the execution time
needed for a fuzzy extractor in the worst case is almost equal to an elliptic curve point
multiplication [HKLS14]. Thus, the user phone in the proposed scheme needs to apply
four elliptic curve point multiplication operations, seven general hash function operations
one encryption/decryption operation: 4.Tecc + 7.Th + 1Ts. Also, the verifier requires to

203

Table 7.2: Comparison between our protocol and PPSS schemes
Scheme (t+1,n) ROM/STD Client Inter-server Msg. Commun. Complexity

Client|Server
[CLN12] (2,2) Std/ROM CRS PKI 8 O(1) O(1)
[JKK14] any ROM CRS none 2 O(n) 2t+3|3
[BJSL11] any ROM PKI PKI 3 O(n) 8t+17|16
[CLLN14] any ROM Std PKI 10 O(n2) 14t+24|7t+28
[JKKX16] any ROM CRS none 2 O(n) t+2|1
Our (2,2) ROM CRS/PKI none 2 O(1) O(1)

carry out one elliptic curve point multiplication operation, one decryption operation, and
two general hash function operations as 1.Tecc + 2.Th + 1.Ts. Mobile devices should carry
out one elliptic curve point multiplication operation as 1.Tecc. Instead, in Abdalla et
al.’s One-More-Gap-Diffie-Hellman-based PRF protocol [ACNP16] which is quite similar
to the first protocol from [JKKX16] the user needs to compute one hash to point, two
exponentiations, and one hash function for each server connection (client cost is t + 2
exponentiations). This means that the user should compute (m+ 1)Te +mTh + Thp which
m = t+ 1 is the number of the honest servers.

In Table 7.2, to compare the computational complexity with related works, we extended
the table from [JKK14]. The last column counts (multi)exponentiations in a prime-order
group performed by the client and each server in the reconstruction protocol. The costs in
the PPSS schemes refer to an optimistic scenario with no adversarial interference. The
“total comm.” column counts the number of transmitted group elements and objects of
length polynomial in the security parameter. The "msgs column" indicates the number of
messages per server.

7.6.1 Analysis

In recent years many research papers have implemented cryptography operations, we use
the results of execution timings for different operations introduced in [XWW+17,HKLS14].
The hardware platform is a Windows 7 64-bit PC, Intel Core i5-3210M CPU of 2.5 GHz,
8GB RAM, they obtain the running time for cryptographic operations using MIRACAL, a
standard cryptographic library [MIR15].
The existing experimental values of these operations are one hash operation requires
0.068 ms (millisecond), one block encryption/decryption requires 0.56 ms, one modular
exponentiation requires 3.043 ms, and one scalar multiplication on an elliptic curve
requires 2.501 ms. Thus, the user execution time in the proposed scheme is almost
4 × 2.501 + 7 × 0.068 + 0.56 = 11.04. In addition, verifier execution time is about
1×2.501+2×0.068+0.56 = 3.197 (ms) and for the device side, this time is 1×2.501 = 2.501
(ms).

Table 7.3 indicates the computational performance of the reconstruction phase with
various thresholds. On the other hand, we ignore operations other than exponentiations

204

Figure 7.4: User’s runtime of various protocols (ms)

and elliptic curve point multiplications because their cost is insignificant in the comparison.
The threshold is the number of servers that need to be honest among all the servers. This
number depends on the implementation of the protocol. For example, we consider three
different thresholds for showing the performance of the relevant works. Note that this is
the minimum computations for the user, it can be more according to the number of the
server response to the user. According to Figure 7.4, we can see that the improvements
of the proposed scheme over relevant works are impressive on the user side. Moreover,
the costs of the related works increased rapidly by raising the threshold. It is clear that
the proposed scheme has less computation cost than related schemes. So, our scheme is
suitable for resource-constrained smart devices.

7.7 Summary

In this chapter, we proposed a new protocol to retrieve the secret key (when a smartphone
is lost or stolen, which means the user has also lost the secret key) in order to restore
encrypted eID from a cloud backup server. Our proposed scheme allows a mobile user
to access multiple eID services from cloud service providers with a new mobile device
without the need to completely re-enroll in their eID system, which improves usability.
Moreover, our protocol only uses biometric authentication for the user, so they do not
need to remember their password. Security analysis shows that the proposed scheme is
secure under a realistic threat model, which includes adversarial control of cloud services.
Finally, we showed that the computation costs of the proposed protocol are reasonably

205

Table 7.3: Computation costs comparison (millisecond)
(n, t) Threshold

Schemes (9-18) (5-10) (3-6)

[CLLN14] User 150 Te ≈ 456.45 94Te ≈ 286.04 66Te ≈ 200.83
Server 91Te ≈ 276.91 63Te ≈ 191.70 49Te ≈ 149.10

[JKK14] User 21Te ≈ 63.90 13Te ≈ 39.55 9Te ≈ 27.38
Server 3Te ≈ 9.12 3Te ≈ 9.12 3Te ≈ 9.12

[BJSL11] User 89Te ≈ 270.82 57Te ≈ 173.45 41Te ≈ 124.76
Server 16Te ≈ 48.68 16Te ≈ 48.68 16Te ≈ 48.68

[CLN12]
User 19Te ≈ 57.81 _ _
Server 1 26Te ≈ 79.11 _ _
Server 2 30Te ≈ 91.29 _ _

[JKKX16] User 11.Te ≈ 33.47 7.Te ≈ 21.30 5.Te ≈ 15.21
Servers 9.Te ≈ 27.38 5.Te ≈ 15.21 3.Te ≈ 9.12

Our
User 3.Tecc + Tfe ≈ 10 _ _
Device 1.Tecc ≈ 2.50 _ _
Server 1.Tecc ≈ 2.50 _ _

cheap to make it practical on current mobile devices. Thus, the proposed scheme is more
feasible and appropriate than previously proposed PPSS protocols concerning security and
usability for recovering eID on mobile devices.

206

8 Practical Realization (Implementation)

8.1 Introduction

The AC python prototype 1 provides an implementation of the anonymous credentials
methods together, primitives, and protocols used and proposed throughout the thesis.
With its modular and flexible design, the package offers a unified interface called ’ac.py’
that provides a seamless API for working with various anonymous credential schemes while
meeting the basic requirements.

The package is further enhanced by two modules: utils and zkp, which offer fundamental
functionality and zero-knowledge proofs for other modules, respectively. Additionally, two
folders, primitives and protocols, contain cryptographic primitives (a set of primitives
explained in each chapter and the preliminaries chapter, which can be used to build
custom anonymous credential systems) and AC protocols (i.e., DAC, TDAC, IhMAATMS,
and IhMAAtoSa), respectively.

Although AC protocols share a common aim in providing an AC interface, the differences
in their constructions entail certain trade-offs in terms of functionality and efficiency, as
discussed in Table 8.1. We compare them in terms of the multi-authority setting MA,
issuer hiding IH, and threshold setting Th. For instance, DAC supports generic delegation,
while TDAC is designed for the controlled delegation with more restricted delegation power.
IhMAATMS and (IhMAATMS are designed for multi-authority settings and provide IH while
they do not provide delegation. More details on the trade-offs between the schemes are
explained in the respective chapter.

Table 8.1: Comparison of our AC schemes

Del MA IH Th

Chapter 3 (IhMAATMS) × X X ×
Chapter 3 (IhMAAtoSa) × X X ×
Chapter 4 (DAC) X × × ×
Chapter 5 (TDAC) X × × X

Overall, the choice of the concrete construction depends on the specific use case or
application and the priorities set in the overall system.

1https://github.com/mir-omid/AC-Package

207

https://github.com/mir-omid/AC-Package

8.2 Architecture
The anonymous credential package is composed of several modules and components as
described below:

ac_package/
primitive/

atosa.py
amts.py
set_commit.py
spe_enc.py
spseq_uc.py
spseq_signs.py

protocols/
mac_atosa.py
mac_amts.py
dac.py
tdac.py

zkp.py
utils.py
ac.py

tests/

As mentioned, the "primitives" folder contains the primitives required for the anonymous
credential system, while the "protocols" folder contains modules that implement the
anonymous credential protocols. Additionally, an easy way to learn how to use the library
is to explore the tests (including tests for all components). To describe the remaining
aspects of the library, we provide the following information:

• utils.py: Provides basic functions and utilities required by other modules.

• amts.py: Implements the ATMS scheme with the randomization of keys, tags, mes-
sages, and signatures.

• atosa.py: Provides a class implementation of the AtoSa scheme with the randomization
of keys and tags.

• spseq-uc.py: Implements SPSEQ-UC signatures, which are used in delegatable anony-
mous credentials (DAC).

• spe-enc.py: Provides a class implementation of a threshold delegatable subset predi-
cate encryption TDSPE scheme.

• spseq-signs.py: Implements SPSEQ signatures (i.e., FHS [FHS19] and Mercurial
[CL19]).

208

• set-commit.py: Provides an implementation of set commitments. Additionally, the
module implements a cross-set commitment, enabling the aggregation of witnesses
across multiple commitments into a single witness. It also includes a variant of set
commitment that allows set commitments in tag-based Diffie-Hellman messages.

• zkp.py: Provides a variant of Schnorr-style proofs used in our protocols, such as
the Schnorr proof (non-interactive using the Fiat-Shamir heuristic) of statements
ZK(x,m1, ...,mn;h = P x ∧ hm1

1 , . . . , hmnn) and a generalized version of Damgard’s
technique that extends interactive proof for obtaining malicious-verifier interactive
zero-knowledge proofs of knowledge, among others.

We provide detailed documentation of each module in the tests folder, which explains the
details of the modules and how to use them.

8.3 Dependencies

Our library is based upon the bplib library2 and petlib 3 with OpenSSL bindings4 to
improve speed. We use the popular pairing friendly curve BN256 which provides efficient
type 3 bilinear groups at a security level of around 100 bits.

8.4 AC Interfaces (APIs)

Now let’s look at the AC interface that provides a set of basic methods that are required
by an anonymous credential system. The methods are as follows:

• setup: This abstract method is used to set up the anonymous credential system and
generate public parameters.

• user-keygen: This method is a default implementation for user key generation.

• nym-gen: This method creates a pseudonymous for the user public key.

• isuser-keygen: This method is a default implementation for issuers’ key generation.

• issue-cred: This abstract method is used to issue a credential for a user.

• proof-cred: This abstract method is used to generate proof for a credential.

• verify-proof : This abstract method is used to verify the validity of a proof.
2https://github.com/gdanezis/bplib
3https://github.com/gdanezis/petlib
4https://github.com/dfaranha/OpenPairing

209

https://github.com/gdanezis/bplib
https://github.com/gdanezis/petlib
https://github.com/dfaranha/OpenPairing

The AC interface encompasses four distinct concrete implementations, each possessing
its own set of unique properties. However, despite their differences, the methods within
these implementations share a common structure for keys and attributes. In this shared
structure, messages are represented as vectors of strings, while keys are represented as
vectors of integers. These concrete implementations are as follows:

• dac: This implementation provides additional methods for delegation.
– delegator ↔ delegatee: Create a delegatable credential from user U to a user R.

• tdac: This implementation provides additional methods for delegation and threshold.

– agg-cred: Aggregate the threshold number of credentials and create a single
credential.

– delegate: Create a delegatable credential (non-interactive) from user U to a user
R.

• mac-atosa and mac-atms: This implementation provides an implementation of AC
system.

– gen-policies: Generate keys policies for issuer hiding.
– agg-cred: Aggregate different credentials from various issuers.

Note that each implementation of a protocol may have its own unique approaches and
methods. For instance, in the case of the tdac, its setup phase and credentials issuing are
designed to work in a threshold setting. On the other hand, the mac-atosa and mac-atms
protocols are used to perform showing credentials with respect to IH, each with its own
distinct characteristics and benefits.

8.5 Summary
In summary, the Python package implements the anonymous credentials, primitives, and
protocols mentioned in this thesis. The package includes all the necessary building blocks
to construct these new protocols and showcase their practical applications and proof of
concept. It provides an abstract interface for AC systems, primitives that can be utilized
to construct custom credential systems, and concrete implementations of the AC interface
for four distinct anonymous credential systems. This package aims to demonstrate the
practicality of AC systems, ensure consistency and clarity in presenting the new anonymous
credentials, and provide guidance on integrating and connecting them.

210

9 Conclusion

In this thesis, we address the need for privacy-enhancing technologies in the context of
digital identity. While digital credentials play a crucial role in enabling access to various
online and offline services, relying on centralized identity providers raises concerns regarding
user privacy and data security. To mitigate these issues, we propose using Anonymous
Credentials (AC) as a foundation for authentication and authorization, allowing individuals
to retain control over their personal information.
The research focuses on several key aspects, leading to the development and optimiza-

tion of AC schemes. First, we introduce the concept of Issuer-Hiding Multi-Authority
Anonymous Credentials (IhMA), which addresses the need for independent credentials
from multiple issuers without disclosing the issuers’ identities. This protects user privacy,
especially in decentralized settings. The proposed solution involves the development of two
new primitives: Aggregate Signatures with Randomizable Tags and Public Keys (AtoSa)
and Aggregate Mercurial Signatures (ATMS), which enhance the functionality of IhMA by
providing aggregation, randomization, and tag capabilities.

Additionally, we present a novel Delegatable Anonymous Credential (DAC) scheme that
allows credential owners to delegate their credentials while ensuring attributes, anonymity,
and the ability to restrict further delegations. The DAC credentials remain of constant
size, and the scheme utilizes Structure-Preserving Signatures on Equivalence Classes
on Updatable Commitments (SPSEQ-UC) to achieve unlinkable showings and public
randomization.
Furthermore, we introduce Threshold Delegatable Anonymous Credentials (TDAC),

representing the first decentralized and delegatable AC system with threshold issuance. The
scheme leverages a Threshold Delegatable Subset Predicate Encryption (TDSPE) scheme,
enabling partial decryption keys to be issued by multiple authorities and supporting users’
generation of full decryption keys.
We propose a decentralized scheme that combines AC systems and Oblivious Pseudo-

random Function (OPRF) with Multi-Factor Authentication (MFA) to address privacy-
preserving single sign-on. This eliminates the reliance on a single trusted third party for
user authentication and allows for anonymous authentication within user groups.

Lastly, we present a secure protocol for recovering encrypted mobile device backups (eID)
in case of smartphone loss or malfunction. Using a Fuzzy Extractor, clients can leverage
biometric authentication and auxiliary devices to recover their secret keys from partially
trusted servers.
The proposed solutions are accompanied by rigorous security definitions, formalized

notations, efficient instantiations, and performance benchmarks based on implementation.

211

This research contributes to the development of privacy-preserving technologies for digital
identity, offering practical and secure approaches to protect user privacy while enabling
the benefits of digital credentials in various domains.

Open Issues and Future Work.

• Anonymous credentials in the standard model: While we have made significant progress
in the field of anonymous credentials (AC), there are still several open issues that
merit further investigation. One important area of future work is the exploration of
AC schemes in the standard model. Currently, our AC constructions rely on idealized
assumptions such as random oracles and GGM models. Extending the study of AC
schemes to the standard model would provide a more rigorous analysis of their security
properties and strengthen their practical applicability.

• ACs based on post-quantum cryptography: As quantum computing continues to advance,
it is crucial to explore the development of AC schemes that are resistant to attacks
from quantum adversaries. Future work can focus on investigating and designing AC
protocols that are based on post-quantum cryptographic primitives, such as short and
randomizable signatures based on post-quantum hard problems.

• Revocation in anonymous credentials: In terms of functionalities, extending our AC
system with revocation mechanisms is also an interesting direction to explore. In many
scenarios, the revocation of credentials represents an important property; however,
revocation mechanisms pose a significant challenge in designing anonymous credential
systems. Consequently, efficient revocation mechanisms for our approach that do not
rely on re-issuing is an interesting question for future research.

• Fully dynamic aggregate signatures: Another interesting open question is whether it is
possible to ATMS and AtoSa signatures in Chapter 3 in a fully dynamic setting, i.e.,
there are no assumptions about prior knowledge of messages and verification keys, nor
requirement for a stateful issuer to keep track of the signed information aux.

• Exploring new application for our new primitives: In addition to addressing the open
issues mentioned above, another interesting future work can also focus on exploring
new applications for the novel primitives developed in this thesis. The AtoSa and
ATMS primitives have versatile features that extend the functionality of signatures.
Investigating and identifying new domains where these primitives can be effectively
utilized would expand the scope of anonymous credentials and their impact on privacy-
preserving technologies.

212

Bibliography

[ABS18] Muhammad Rizwan Asghar, Michael Backes, and Milivoj Simeonovski. Prima:
privacy-preserving identity and access management at internet-scale. In 2018
IEEE International Conference on Communications (ICC), pages 1–6. IEEE,
2018.

[ACNP16] Michel Abdalla, Mario Cornejo, Anca Nitulescu, and David Pointcheval. Ro-
bust password-protected secret sharing. In European Symposium on Research
in Computer Security, pages 61–79. Springer, 2016.

[AFG+16] Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and
Miyako Ohkubo. Structure-preserving signatures and commitments to group
elements. 29(2):363–421, April 2016.

[AFP05] Michel Abdalla, Pierre-Alain Fouque, and David Pointcheval. Password-
based authenticated key exchange in the three-party setting. In International
Workshop on Public Key Cryptography, pages 65–84. Springer, 2005.

[AGH10] Jae Hyun Ahn, Matthew Green, and Susan Hohenberger. Synchronized
aggregate signatures: new definitions, constructions and applications. pages
473–484, 2010.

[AHS11] Gergely Alpár, Jaap-Henk Hoepman, and Johanneke Siljee. The identity
crisis. security, privacy and usability issues in identity management. arXiv
preprint arXiv:1101.0427, 2011.

[AJH07] Arathi Arakala, Jason Jeffers, and K Horadam. Fuzzy extractors for minutiae-
based fingerprint authentication. Advances in Biometrics, pages 760–769,
2007.

[AMMM18] Shashank Agrawal, Peihan Miao, Payman Mohassel, and Pratyay Mukherjee.
Pasta: Password-based threshold authentication. In ACM Conference on
Computer and Communications Security (CCS), pages 2042–2059. ACM,
2018.

[AvdBH+17] Gergely Alpár, Fabian van den Broek, Brinda Hampiholi, Bart Jacobs, Wouter
Lueks, and Sietse Ringers. Irma: practical, decentralized and privacy-friendly
identity management using smartphones. HotPETs 2017, 2017.

213

[BB18] Johannes Blömer and Jan Bobolz. Delegatable attribute-based anonymous
credentials from dynamically malleable signatures. pages 221–239, 2018.

[BBB+18] Kai Bemmann, Johannes Blömer, Jan Bobolz, Henrik Bröcher, Denis Diemert,
Fabian Eidens, Lukas Eilers, Jan Haltermann, Jakob Juhnke, Burhan Otour,
Laurens Porzenheim, Simon Pukrop, Erik Schilling, Michael Schlichtig, and
Marcel Stienemeier. Fully-featured anonymous credentials with reputation
system. In Proceedings of the 13th International Conference on Availability,
Reliability and Security (ARES 2018), number 42, pages 1–10. IEEE, 2018.

[BBG+13] Patrik Bichsel, Bud Bruegger, Alberto Crespo Garcia, Thomas Gross, André
Gutwirth, Moritz Horsch, Detlef Houdeau, Charles Bastos Rodriguez, and
Tarvi Martens. Survey and analysis of existing eid and credential systems.
Deliverable D32.1, Apr 2013.

[BBH06] Dan Boneh, Xavier Boyen, and Shai Halevi. Chosen ciphertext secure public
key threshold encryption without random oracles. In Cryptographers’ Track
at the RSA Conference, pages 226–243. Springer, 2006.

[BCC04] Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous
attestation. pages 132–145, 2004.

[BCC+09] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna
Lysyanskaya, and Hovav Shacham. Randomizable proofs and delegatable
anonymous credentials. pages 108–125, 2009.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, and Jens
Groth. Foundations of fully dynamic group signatures. pages 117–136, 2016.

[BCET21a] Dmytro Bogatov, Angelo De Caro, Kaoutar Elkhiyaoui, and Björn Tackmann.
Anonymous transactions with revocation and auditing in hyperledger fabric.
In International Conference on Cryptology and Network Security, pages
435–459. Springer, 2021.

[BCET21b] Dmytro Bogatov, Angelo De Caro, Kaoutar Elkhiyaoui, and Björn Tackmann.
Anonymous transactions with revocation and auditing in hyperledger fabric.
In Cryptology and Network Security - 20th International Conference, CANS,
volume 13099, pages 435–459. Springer, 2021.

[BCHB+09] Patrik Bichsel, Jan Camenisch, Tom Heydt-Benjamin, Dieter Sommer, and
Greg Zaverucha. Cryptographic protocols of the identity mixer library. 2009.

[BCL16] Julien Bringer, Hervé Chabanne, and Roch Lescuyer. Software-only two-factor
authentication secure against active servers. In International Conference on
Cryptology in Africa (AFRICACRYPT), pages 285–303. Springer, 2016.

214

[BDFG20] Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Efficient polynomial
commitment schemes for multiple points and polynomials. Cryptology ePrint
Archive, Report 2020/081, 2020. https://eprint.iacr.org/2020/081.

[BDLP98] Jørgen Brandt, Ivan Damgård, Peter Landrock, and Torben P. Pedersen. Zero-
knowledge authentication scheme with secret key exchange. 11(3):147–159,
June 1998.

[BEK+20] Jan Bobolz, Fabian Eidens, Stephan Krenn, Daniel Slamanig, and Christoph
Striecks. Privacy-preserving incentive systems with highly efficient point-
collection. pages 319–333, 2020.

[BEK+21] Jan Bobolz, Fabian Eidens, Stephan Krenn, Sebastian Ramacher, and Kai
Samelin. Issuer-hiding attribute-based credentials. In International Confer-
ence on Cryptology and Network Security, pages 158–178. Springer, 2021.

[BELO15] Joshua Baron, Karim El Defrawy, Joshua Lampkins, and Rafail Ostrovsky.
Communication-optimal proactive secret sharing for dynamic groups. pages
23–41, 2015.

[BF20] Balthazar Bauer and Georg Fuchsbauer. Efficient signatures on randomizable
ciphertexts. pages 359–381, 2020.

[BFGP22] Daniel Bosk, Davide Frey, Mathieu Gestin, and Guillaume Piolle. Hidden
issuer anonymous credential. Proc. Priv. Enhancing Technol., 2022(4):571–
607, 2022.

[BFPV11] Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud.
Signatures on randomizable ciphertexts. pages 403–422, 2011.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and
verifiably encrypted signatures from bilinear maps. pages 416–432, 2003.

[BHKS18] Michael Backes, Lucjan Hanzlik, Kamil Kluczniak, and Jonas Schneider.
Signatures with flexible public key: Introducing equivalence classes for public
keys. pages 405–434, 2018.

[BJDF16] Alberto Blanco-Justicia and Josep Domingo-Ferrer. Privacy-aware loyalty
programs. Computer Communications, 82:83–94, 2016.

[BJS10] Lujo Bauer, Limin Jia, and Divya Sharma. Constraining credential usage in
logic-based access control. pages 154–168, 2010.

[BJSL11] Ali Bagherzandi, Stanislaw Jarecki, Nitesh Saxena, and Yanbin Lu. Password-
protected secret sharing. In Proceedings of the 18th ACM conference on
Computer and Communications Security, pages 433–444. ACM, 2011.

215

https://eprint.iacr.org/2020/081

[BM92] Steven M. Bellovin and Michael Merritt. Encrypted Key Exchange: Password-
Based Protocols SecureAgainst Dictionary Attacks. In Proceedings of the
IEEE Symposium on Security and Privacy (S&P). IEEE, 1992.

[BM93] Steven M. Bellovin and Michael Merritt. Augmented Encrypted Key Ex-
change: A Password-based Protocol Secure Against Dictionary Attacks and
Password File Compromise. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), pages 244–250. ACM, 1993.

[BMP00a] Victor Boyko, Philip MacKenzie, and Sarvar Patel. Provably Secure Password-
authenticated Key Exchange Using Diffie-Hellman. In Proceedings of the
International Conference on Theory and Application of Cryptographic Tech-
niques (EUROCRYPT), pages 156–171. Springer, 2000.

[BMP00b] Victor Boyko, Philip MacKenzie, and Sarvar Patel. Provably secure password-
authenticated key exchange using diffie-hellman. In Advances in Cryptol-
ogy—Eurocrypt 2000, pages 156–171. Springer, 2000.

[Boy08] Xavier Boyen. The uber-assumption family (invited talk). pages 39–56, 2008.

[BP13] Fabrice Benhamouda and David Pointcheval. Verifier-based password-
authenticated key exchange: New models and constructions. IACR Cryptology
ePrint Archive, 2013:833, 2013.

[BPR00a] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated Key
Exchange Secure Against Dictionary Attacks. In Proceedings of the Interna-
tional Conference on Theory and Application of Cryptographic Techniques
(EUROCRYPT), pages 139–155. Springer, 2000.

[BPR00b] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated
key exchange secure against dictionary attacks. In Advances in Cryptol-
ogy—EUROCRYPT 2000, pages 139–155. Springer, 2000.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. pages 62–73, 1993.

[BS22] Dan Boneh and Victor Shoup. A graduate course in applied cryptography.
2022.

[BSW07] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-
based encryption. pages 321–334, 2007.

[Cam17] Dell Cameron. Over 560 Million Passwords Discovered in Anonymous Online
Database (2017), 2017.

216

[Can00] Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. Cryptology ePrint Archive, Report 2000/067, 2000.
https://eprint.iacr.org/2000/067.

[CCD+17] Jan Camenisch, Liqun Chen, Manu Drijvers, Anja Lehmann, David Novick,
and Rainer Urian. One TPM to bind them all: Fixing TPM 2.0 for provably
secure anonymous attestation. pages 901–920, 2017.

[CDD17] Jan Camenisch, Manu Drijvers, and Maria Dubovitskaya. Practical UC-secure
delegatable credentials with attributes and their application to blockchain.
pages 683–699, 2017.

[CDHK15] Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf
Kohlweiss. Composable and modular anonymous credentials: Definitions and
practical constructions. pages 262–288, 2015.

[CDL+20] Jan Camenisch, Manu Drijvers, Anja Lehmann, Gregory Neven, and Patrick
Towa. Short threshold dynamic group signatures. pages 401–423, 2020.

[CDM00] Ronald Cramer, Ivan Damgård, and Philip D. MacKenzie. Efficient zero-
knowledge proofs of knowledge without intractability assumptions. pages
354–372, 2000.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial
knowledge and simplified design of witness hiding protocols. In Advances in
Cryptology – CRYPTO ’94, volume 839 of LNCS, pages 174–187. Springer,
1994.

[CDT19] Jan Camenisch, Manu Drijvers, and Björn Tackmann. Multi-protocol uc and
its use for building modular and efficient protocols. IACR Cryptol. ePrint
Arch., 2019:65, 2019.

[CEN15] Jan Camenisch, Robert R Enderlein, and Gregory Neven. Two-server
password-authenticated secret sharing uc-secure against transient corrup-
tions. In IACR International Workshop on Public Key Cryptography, pages
283–307. Springer, 2015.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In
Annual International Cryptology Conference, pages 19–40. Springer, 2001.

[Cha85] David Chaum. Security without identification: transaction systems to make
big brother obsolete. Communications of the ACM, 28(10):1030–1044, 1985.

[Cha07] Melissa Chase. Multi-authority attribute based encryption. pages 515–534,
2007.

217

https://eprint.iacr.org/2000/067

[CHK+05] Ran Canetti, Shai Halevi, Jonathan Katz, Yehuda Lindell, and Phil MacKen-
zie. Universally Composable Password-based Key Exchange. In Proceedings
of the Annual International Conference on Theory and Applications of Cryp-
tographic Techniques (EUROCRYPT), pages 404–421. Springer, 2005.

[CK01] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and
their use for building secure channels. In International Conference on the
Theory and Applications of Cryptographic Techniques, pages 453–474. Springer,
2001.

[CKLM13] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn.
Succinct malleable NIZKs and an application to compact shuffles. pages
100–119, 2013.

[CKLM14a] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meikle-
john. Malleable Signatures: New Definitions and Delegatable Anonymous
Credentials. In IEEE Computer Security Foundations Symposium (CSF),
pages 199–213. IEEE, 2014.

[CKLM14b] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn.
Malleable signatures: New definitions and delegatable anonymous credentials.
pages 199–213, 2014.

[CKP+22] Elizabeth Crites, Markulf Kohlweiss, Bart Preneel, Mahdi Sedaghat, and
Daniel Slamanig. Threshold structure-preserving signatures. Cryptology
ePrint Archive, Paper 2022/839, 2022. https://eprint.iacr.org/2022/
839.

[CKS09] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An accumulator
based on bilinear maps and efficient revocation for anonymous credentials.
In International Workshop on Public Key Cryptography, page 481. Springer,
2009.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revocation. pages
93–118, 2001.

[CL03] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient
protocols. pages 268–289, 2003.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous
credentials from bilinear maps. pages 56–72, 2004.

[CL06] Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. pages
78–96, 2006.

218

https://eprint.iacr.org/2022/839
https://eprint.iacr.org/2022/839

[CL19] Elizabeth C. Crites and Anna Lysyanskaya. Delegatable anonymous creden-
tials from mercurial signatures. pages 535–555, 2019.

[CL21] Elizabeth C. Crites and Anna Lysyanskaya. Mercurial signatures for variable-
length messages. 2021(4):441–463, October 2021.

[CLK21] Aisling Connolly, Pascal Lafourcade, and Octavio Perez Kempner. Improved
constructions of anonymous credentials from structure-preserving signatures
on equivalence classes. Cryptology ePrint Archive, Report 2021/1680, 2021.
https://eprint.iacr.org/2021/1680.

[CLLN14] Jan Camenisch, Anja Lehmann, Anna Lysyanskaya, and Gregory Neven.
Memento: How to reconstruct your secrets from a single password in a
hostile environment. In International Cryptology Conference, pages 256–275.
Springer, 2014.

[CLN12] Jan Camenisch, Anna Lysyanskaya, and Gregory Neven. Practical yet
universally composable two-server password-authenticated secret sharing. In
Proceedings of the 2012 ACM conference on Computer and communications
security, pages 525–536. ACM, 2012.

[CLN15] Jan Camenisch, Anja Lehmann, and Gregory Neven. Optimal distributed
password verification. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pages 182–194. ACM, 2015.

[CLPK22] Aisling Connolly, Pascal Lafourcade, and Octavio Perez Kempner. Improved
constructions of anonymous credentials from structure-preserving signatures
on equivalence classes. In IACR International Conference on Public-Key
Cryptography, pages 409–438. Springer, 2022.

[CMZ14a] Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha. Algebraic MACs and
keyed-verification anonymous credentials. pages 1205–1216, 2014.

[CMZ14b] Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha. Algebraic macs
and keyed-verification anonymous credentials. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security (CCS),
pages 1205–1216. ACM, 2014.

[CPZ20] Melissa Chase, Trevor Perrin, and Greg Zaverucha. The signal private group
system and anonymous credentials supporting efficient verifiable encryption.
pages 1445–1459, 2020.

[CRS+21] Valerio Cini, Sebastian Ramacher, Daniel Slamanig, Christoph Striecks, and
Erkan Tairi. Updatable signatures and message authentication codes. pages
691–723, 2021.

219

https://eprint.iacr.org/2021/1680

[CS97] Jan Camenisch and Markus Stadler. Efficient group signature schemes for
large groups (extended abstract). pages 410–424, 1997.

[DGS+18] Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo
Valsorda. Privacy pass: Bypassing internet challenges anonymously. PoPETs,
2018(3):164–180, 2018.

[DKL+23] Jack Doerner, Yashvanth Kondi, Eysa Lee, LaKyah Tyner, et al. Threshold
bbs+ signatures for distributed anonymous credential issuance. Cryptology
ePrint Archive, 2023.

[DKRS06] Yevgeniy Dodis, Jonathan Katz, Leonid Reyzin, and Adam Smith. Robust
fuzzy extractors and authenticated key agreement from close secrets. In
Annual International Cryptology Conference, pages 232–250. Springer, 2006.

[DMM+18] Dominic Deuber, Matteo Maffei, Giulio Malavolta, Max Rabkin, Dominique
Schröder, and Mark Simkin. Functional credentials. 2018(2):64–84, April
2018.

[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to
generate strong keys from biometrics and other noisy data. In International
conference on the theory and applications of cryptographic techniques, pages
523–540. Springer, 2004.

[FGHP09] Anna Lisa Ferrara, Matthew Green, Susan Hohenberger, and Michael Øster-
gaard Pedersen. Practical short signature batch verification. pages 309–324,
2009.

[FHS15] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Practical round-
optimal blind signatures in the standard model. pages 233–253, 2015.

[FHS19] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Structure-
preserving signatures on equivalence classes and constant-size anonymous
credentials. 32(2):498–546, April 2019.

[Fis05] Marc Fischlin. Communication-efficient non-interactive proofs of knowledge
with online extractors. pages 152–168, 2005.

[FK00] Warwick Ford and Burton S Kaliski. Server-assisted generation of a strong
secret from a password. In Proceedings IEEE 9th International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises (WET
ICE 2000), pages 176–180. IEEE, 2000.

[FKS17] Daniel Fett, Ralf Küsters, and Guido Schmitz. The web SSO standard
openid connect: In-depth formal security analysis and security guidelines.
In Computer Security Foundations Symposium (CSF), pages 189–202. IEEE,
2017.

220

[FMA14] Nils Fleischhacker, Mark Manulis, and Amir Azodi. A modular framework for
multi-factor authentication and key exchange. In International Conference
on Research in Security Standardisation, pages 190–214. Springer, 2014.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Conference on the Theory and
Application of Cryptographic Techniques (Eurocrypt), pages 186–194. Springer,
1986.

[Fuc11] Georg Fuchsbauer. Commuting signatures and verifiable encryption. pages
224–245, 2011.

[FVY14] Conner Fromknecht, Dragos Velicanu, and Sophia Yakoubov. A Decentralized
Public Key Infrastructure with Identity Retention. IACR Cryptology ePrint
Archive, 2014.

[Gem15] Gemalto. 2014 Year of mega breaches & identity theft: Findings from the
breach level index, 2015.

[GGM14a] Christina Garman, Matthew Green, and Ian Miers. Decentralized anonymous
credentials. 2014.

[GGM14b] Christina Garman, Matthew Green, and Ian Miers. Decentralized Anonymous
Credentials. In The Network and Distributed System Security Symposium
(NDSS). Internet Society, 2014.

[Gha16] Essam Ghadafi. Short structure-preserving signatures. pages 305–321, 2016.

[GHR+15] Mohsen Guizani, Daojing He, Kui Ren, Joel JP Rodrigues, Sammy Chan,
and Yan Zhang. Security and privacy in emerging networks: Part ii [guest
editorial]. IEEE Communications Magazine, 53(8):40–41, 2015.

[GJKR99] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. Se-
cure distributed key generation for discrete-log based cryptosystems. In
International Conference on the Theory and Applications of Cryptographic
Techniques (Eurocrypt), pages 295–310. Springer, 1999.

[GJKR07] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure
distributed key generation for discrete-log based cryptosystems. 20(1):51–83,
January 2007.

[GK10] Adam Groce and Jonathan Katz. A new framework for efficient password-
based authenticated key exchange. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), pages 516–525. ACM, 2010.

221

[GL03] Rosario Gennaro and Yehuda Lindell. A framework for password-based
authenticated key exchange. In International Conference on the Theory
and Applications of Cryptographic Techniques (Eurocrypt), pages 524–543.
Springer, 2003.

[GL06] Oded Goldreich and Yehuda Lindell. Session-key generation using human
passwords only. Journal of Cryptology, 19(3):241–340, 2006.

[GP16] Vindu Goel and Nicole Perlroth. Yahoo Says 1 Billion User Accounts Were
Hacked, 2016.

[Gro15] Jens Groth. Efficient fully structure-preserving signatures for large messages.
pages 239–259, 2015.

[GRWZ20] Sergey Gorbunov, Leonid Reyzin, Hoeteck Wee, and Zhenfei Zhang. Point-
proofs: Aggregating proofs for multiple vector commitments. pages 2007–2023,
2020.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for
bilinear groups. pages 415–432, 2008.

[Hal17] Harry Halpin. Nextleap: Decentralizing identity with privacy for secure
messaging. In Proceedings of the 12th International Conference on Availability,
Reliability and Security, pages 1–10, 2017.

[HJ12] Dick Hardt and Michael Jones. The oauth 2.0 authorization framework:
Bearer token usage. 2012.

[HKLS14] Debiao He, Neeraj Kumar, Jong-Hyouk Lee, and R Sherratt. Enhanced
three-factor security protocol for consumer usb mass storage devices. IEEE
Transactions on Consumer Electronics, 60(1):30–37, 2014.

[HP22] Chloé Hébant and David Pointcheval. Traceable constant-size multi-authority
credentials. In Clemente Galdi and Stanislaw Jarecki, editors, Security
and Cryptography for Networks - 13th International Conference, SCN 2022,
Amalfi, Italy, September 12-14, 2022, Proceedings, volume 13409 of Lecture
Notes in Computer Science, pages 411–434. Springer, 2022.

[HRM16] Michael Hölzl, Michael Roland, and René Mayrhofer. Real-world identification:
Towards a privacy-aware mobile eid for physical and offline verification. In
Proceedings of the 14th International Conference on Advances in Mobile
Computing and Multi Media, pages 280–283. ACM, 2016.

[HRMM18] Michael Holzl, Michael Roland, Omid Mir, and René Mayrhofer. Bridging
the gap in privacy-preserving revocation: Practical and scalable revocation of
mobile eids. In Proceedings of the 33rd Annual ACM Symposium on Applied

222

Computing, SAC ’18, page 1601–1609, New York, NY, USA, 2018. Association
for Computing Machinery.

[HRMM20] Michael Hölzl, Michael Roland, Omid Mir, and René Mayrhofer. Disposable
dynamic accumulators: toward practical privacy-preserving mobile eids with
scalable revocation. International Journal of Information Security, 19(4):401–
417, 2020.

[HS14] Christian Hanser and Daniel Slamanig. Structure-preserving signatures on
equivalence classes and their application to anonymous credentials. pages
491–511, 2014.

[HS21] Lucjan Hanzlik and Daniel Slamanig. With a little help from my friends:
Constructing practical anonymous credentials. In Proc. of CCS ’21, pages
2004–2023. ACM, 2021.

[HW15] Debiao He and Ding Wang. Robust biometrics-based authentication scheme
for multiserver environment. IEEE Systems Journal, 9(3):816–823, 2015.

[HW18] Susan Hohenberger and Brent Waters. Synchronized aggregate signatures
from the RSA assumption. pages 197–229, 2018.

[HXB+14] Xinyi Huang, Yang Xiang, Elisa Bertino, Jianying Zhou, and Li Xu. Robust
multi-factor authentication for fragile communications. IEEE Transactions
on Dependable and Secure Computing, 11(6):568–581, 2014.

[ILV11] Malika Izabachène, Benoît Libert, and Damien Vergnaud. Block-wise P-
signatures and non-interactive anonymous credentials with efficient attributes.
pages 431–450, 2011.

[ISO] ISO/IEC 18013-5. Personal identification – ISO-compliant driving licence –
Part 5: Mobile driving licence (mDL) application.

[JKK14] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-optimal
password-protected secret sharing and t-pake in the password-only model. In
International Conference on the Theory and Application of Cryptology and
Information Security, pages 233–253. Springer, 2014.

[JKKX16] Stanislaw Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. Highly-
efficient and composable password-protected secret sharing (or: how to protect
your bitcoin wallet online). In IEEE European Symposium on Security and
Privacy (EuroS&P), pages 276–291. IEEE, 2016.

[JKKX17] Stanisław Jarecki, Aggelos Kiayias, Hugo Krawczyk, and Jiayu Xu. TOPPSS:
Cost-minimal Password-Protected Secret Sharing based on Threshold OPRF.
In International Conference on Applied Cryptography and Network Security,
pages 39–58. Springer, 2017.

223

[JKSS16] Stanislaw Jarecki, Hugo Krawczyk, Maliheh Shirvanian, and Nitesh Saxena.
Device-enhanced password protocols with optimal online-offline protection.
In Proceedings of the ACM on Asia Conference on Computer and Communi-
cations Security (ASIA CCS), pages 177–188. ACM, 2016.

[JKSS18] Stanislaw Jarecki, Hugo Krawczyk, Maliheh Shirvanian, and Nitesh Saxena.
Two-Factor Authentication with End-to-End Password Security. In Interna-
tional Conference on Practice and Theory of Public Key Cryptography (PKC).
Springer, Cham, 2018.

[JL09] Stanislaw Jarecki and Xiaomin Liu. Efficient Oblivious Pseudorandom Func-
tion with Applications to Adaptive OT and Secure Computation of Set
Intersection. In Proceedings of the Conference on Theory of Cryptography
(TCC), pages 577–594. Springer, 2009.

[JLG04] Andrew Teoh Beng Jin, David Ngo Chek Ling, and Alwyn Goh. Biohashing:
two factor authentication featuring fingerprint data and tokenised random
number. Pattern recognition, 37(11):2245–2255, November 2004.

[KL17] Dmitry Khovratovich and Jason Law. Sovrin: digital identities in the
blockchain era, 2017.

[KLAP20] Hyoseung Kim, Youngkyung Lee, Michel Abdalla, and Jong Hwan Park.
Practical dynamic group signature with efficient concurrent joins and batch
verifications. Cryptology ePrint Archive, Report 2020/921, 2020. https:
//eprint.iacr.org/2020/921.

[KMMS17] Jonathan Katz, Matteo Maffei, Giulio Malavolta, and Dominique Schröder.
Subset predicate encryption and its applications. pages 115–134, 2017.

[Krs16] Ivan Krstić. Behind the scenes’ ios security talk, 2016.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption support-
ing disjunctions, polynomial equations, and inner products. pages 146–162,
2008.

[Lin11] Yehuda Lindell. Anonymous authentication. Journal of Privacy and Confi-
dentiality, 2(2), 2011.

[LLY13] Kwangsu Lee, Dong Hoon Lee, and Moti Yung. Aggregating CL-signatures
revisited: Extended functionality and better efficiency. pages 171–188, 2013.

[LMPY16] Benoît Libert, Fabrice Mouhartem, Thomas Peters, and Moti Yung. Practical
“signatures with efficient protocols” from simple assumptions. pages 511–522,
2016.

224

https://eprint.iacr.org/2020/921
https://eprint.iacr.org/2020/921

[LMRS04] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Se-
quential aggregate signatures from trapdoor permutations. pages 74–90,
2004.

[LOS+06] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters.
Sequential aggregate signatures and multisignatures without random oracles.
pages 465–485, 2006.

[LW11] Allison B. Lewko and Brent Waters. Decentralizing attribute-based encryption.
pages 568–588, 2011.

[MAR18] Mustafa A Mustafa, Aysajan Abidin, and Enrique Argones Rúa. Frictionless
authentication system: Security & privacy analysis and potential solutions.
arXiv preprint arXiv:1802.07231, 2018.

[May14] Rene Mayrhofer. An architecture for secure mobile devices. Security and
Communication Networks, 2014.

[MBG+23] Omid Mir, Balthazar Bauer, Scott Griffy, Anna Lysyanskaya, and Daniel
Slamanig. Aggregate signatures with versatile randomization and issuer-
hiding multi-authority anonymous credentials. 2023. https://eprint.iacr.
org/2023/1016.

[MIR15] MIRACALć. Multiprecision integer and rational arithmetic cryptographic
library,”, 2015.

[MMHN18] Omid Mir, René Mayrhofer, Michael Hölzl, and Thanh-Binh Nguyen. Recov-
ery of encrypted mobile device backups from partially trusted cloud servers.
In Proceedings of the 13th International Conference on Availability, Reliability
and Security, pages 1–10, 2018.

[MMK17] Omid Mir, Jorge Munilla, and Saru Kumari. Efficient anonymous authen-
tication with key agreement protocol for wireless medical sensor networks.
Peer-to-Peer Networking and Applications, 10(1):79–91, 2017.

[MN15] Omid Mir and Morteza Nikooghadam. A secure biometrics based authen-
tication with key agreement scheme in telemedicine networks for e-health
services. Wireless Personal Communications, 83(4):2439–2461, 2015.

[MRM20] Omid Mir, Michael Roland, and René Mayrhofer. Damfa: Decentralized
anonymous multi-factor authentication. In Proceedings of the 2nd ACM
International Symposium on Blockchain and Secure Critical Infrastructure,
BSCI ’20, page 10–19, 2020.

[MRM22] Omid Mir, Michael Roland, and René Mayrhofer. Decentralized, privacy-
preserving, single sign-on. Security and Communication Networks, 2022:1–18,
2022.

225

https://eprint.iacr.org/2023/1016
https://eprint.iacr.org/2023/1016

[MSBM23] Omid Mir, Daniel Slamanig, Balthazar Bauer, and René Mayrhofer. Practical
delegatable anonymous credentials from equivalence class signatures. Proc.
Priv. Enhancing Technol., 2023(3):488–513, 2023.

[MSM+18] Sinisa Matetic, Moritz Schneider, Andrew Miller, Ari Juels, and Srdjan
Capkun. DelegaTEE: Brokered Delegation Using Trusted Execution Environ-
ments. In 27th USENIX Security Symposium, pages 1387–1403, 2018.

[MSM23] Omid Mir, Daniel Slamanig, and René Mayrhofer. Threshold delegatable
anonymous credentials with controlled and fine-grained delegation. IEEE
Transactions on Dependable and Secure Computing, pages 1–16, 2023.

[NEA14] Thomas Nyman, Jan-Erik Ekberg, and N Asokan. Citizen electronic iden-
tities using tpm 2.0. In Proceedings of the 4th International Workshop on
Trustworthy Embedded Devices, pages 37–48. ACM, 2014.

[Ngu05] Lan Nguyen. Accumulators from bilinear pairings and applications. In
Topics in Cryptology – CT-RSA 2005, volume 3376 of LNCS, pages 275–292.
Springer, 2005.

[OBM+18] Aleksandr Ometov, Sergey Bezzateev, Niko Mäkitalo, Sergey Andreev, Tommi
Mikkonen, and Yevgeni Koucheryavy. Multi-factor authentication: A survey.
Cryptography, 2(1):1, 2018.

[ODG15] Vanga Odelu, Ashok Kumar Das, and Adrijit Goswami. A secure biometrics-
based multi-server authentication protocol using smart cards. IEEE Transac-
tions on Information Forensics and Security, 10(9):1953–1966, 2015.

[One19] OneLogin, Inc. SAML Toolkits, 2019.

[OT09] Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical predicate encryp-
tion for inner-products. pages 214–231, 2009.

[Pau12] Ian Paul. LinkedIn Confirms Account Passwords Hacked, 2012.

[Ped91] Torben Pryds Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In Annual International Cryptology Conference
(Crypto), pages 129–140. Springer, 1991.

[PS16a] David Pointcheval and Olivier Sanders. Short randomizable signatures. pages
111–126, 2016.

[PS16b] David Pointcheval and Olivier Sanders. Short randomizable signatures. In
Cryptographers’ Track at the RSA Conference, pages 111–126. Springer, 2016.

226

[PZ08] David Pointcheval and Sébastien Zimmer. Multi-factor Authenticated Key
Exchange. In 6th International Conference on Applied Cryptography and
Network Security (ACNS), pages 277–295. Springer, 2008.

[PZ11] Christian Paquin and Greg Zaverucha. U-prove cryptographic specification
v1. 1. Technical Report, Microsoft Corporation, 2011.

[RPJ+18] Vera Rimmer, Davy Preuveneers, Wouter Joosen, Mustafa A Mustafa, Aysa-
jan Abidin, Enrique Argones Rúa, et al. Frictionless Authentication Systems:
Emerging Trends, Research Challenges and Opportunities. arXiv preprint
arXiv:1802.07233, 2018.

[RR06] David Recordon and Drummond Reed. Openid 2.0: a platform for user-
centric identity management. In Proceedings of the second ACM workshop on
Digital identity management, pages 11–16, 2006.

[RWGM22] Michael Rosenberg, Jacob White, Christina Garman, and Ian Miers. zk-
creds flexible anonymous credentials from zksnarks and existing identity
infrastructure. Cryptology ePrint Archive, 2022.

[SAB+19] Alberto Sonnino, Mustafa Al-Bassam, Shehar Bano, Sarah Meiklejohn, and
George Danezis. Coconut: Threshold issuance selective disclosure credentials
with applications to distributed ledgers. 2019.

[San20] Olivier Sanders. Efficient redactable signature and application to anonymous
credentials. pages 628–656, 2020.

[San21] Olivier Sanders. Improving revocation for group signature with redactable
signature. pages 301–330, 2021.

[SCG+14] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous
payments from bitcoin. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P), pages 459–474. IEEE, 2014.

[Sch90] Claus-Peter Schnorr. Efficient Identification and Signatures for Smart Cards.
In Proceedings of the Annual International Cryptology Conference on Advances
in Cryptology (CRYPTO), pages 239–252. Springer, 1990.

[SE16] Kris Shrishak and Asst Prof Dr Zekeriya Erkin. Enhancing the privacy of users
in eid schemes through cryptography. Literature Survey, Delft University of
Technology, Delft, page 45, 2016.

[Sha79a] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–
613, November 1979.

227

[Sha79b] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–
613, 1979.

[SJSN14] Maliheh Shirvanian, Stanislaw Jarecki, Nitesh Saxena, and Naveen Nathan.
Two-factor authentication resilient to server compromise using mix-bandwidth
devices. In Network and Distributed System Security Symposium (NDSS),
2014.

[SKI10] SeongHan Shin, Kazukuni Kobara, and Hideki Imai. Anonymous password-
authenticated key exchange: New construction and its extensions. IEICE
transactions on fundamentals of electronics, communications and computer
sciences, 93(1):102–115, 2010.

[tea16] Namecoin team. Namecoind, sourcecode of the namecoin-client reference
implementation, August 2016.

[VYT05] Duong Quang Viet, Akihiro Yamamura, and Hidema Tanaka. Anonymous
password-based authenticated key exchange. In Proceedings of the Interna-
tional Conference on Cryptology in India (INDOCRYPT), pages 244–257.
Springer, 2005.

[WCW+17] Ding Wang, Haibo Cheng, Ping Wang, Xinyi Huang, and Gaopeng Jian.
Zipf’s law in passwords. IEEE Transactions on Information Forensics and
Security, 12(11):2776–2791, 2017.

[XWW+17] Qi Xie, Duncan S Wong, Guilin Wang, Xiao Tan, Kefei Chen, and Liming
Fang. Provably secure dynamic id-based anonymous two-factor authenticated
key exchange protocol with extended security model. IEEE Transactions on
Information Forensics and Security, 12(6):1382–1392, 2017.

[YAXY19] Rupeng Yang, Man Ho Au, Qiuliang Xu, and Zuoxia Yu. Decentralized
blacklistable anonymous credentials with reputation. Computers & Security,
85:353–371, 2019.

[YBAG04] Jeff Yan, Alan Blackwell, Ross Anderson, and Alasdair Grant. Password
memorability and security: Empirical results. IEEE Security and privacy,
2(5):25–31, 2004.

[YHCL15] Xun Yi, Feng Hao, Liqun Chen, and Joseph K Liu. Practical threshold
password-authenticated secret sharing protocol. In European Symposium on
Research in Computer Security, pages 347–365. Springer, 2015.

[YZ08] Jing Yang and Zhenfeng Zhang. A new anonymous password-based authenti-
cated key exchange protocol. In International Conference on Cryptology in
India (INDOCRYPT), pages 200–212. Springer, 2008.

228

[ZKS+20] Zhiyi Zhang, Michał Król, Alberto Sonnino, Lixia Zhang, and Etienne Rivière.
El passo: Privacy-preserving, asynchronous single sign-on. arXiv preprint
arXiv:2002.10289, 2020.

[ZXSM17] Rui Zhang, Yuting Xiao, Shuzhou Sun, and Hui Ma. Efficient multi-factor
authenticated key exchange scheme for mobile communications. IEEE Trans-
actions on Dependable and Secure Computing, page 1, 2017.

229

	Introduction
	Background
	Anonymous Credentials
	Decentralizing Anonymous Credentials
	Delegatable Anonymous Credentials

	Human-Factors Authentication
	Recovery of Encrypted Mobile Device Backups (IDs)

	Related Works
	Anonymous Credentials
	Decentralizing Anonymous Credentials
	Delegatable Anonymous Credentials

	Human-Factors Authentication
	Single-Factor (Password) Authentication Key Exchange
	Multi-Factor Authentication
	Anonymous Authentication

	Recovery of Encrypted Mobile Device Backups (IDs)

	Contribution
	Chapter 3: Issuer-Hiding Multi-Authority Credentials
	Chapter 4: Efficient Delegatable Anonymous Credentials
	Chapter 5: Threshold Delegatable Anonymous Credentials
	Chapter 6: Privacy-Preserving Single Sign-On
	Chapter 7: Recovery of Encrypted Mobile Device Backups (IDs)
	Chapter 8: Practical Realization (Implementation)
	Publication History
	Other Contribution

	Structure of this Thesis

	Preliminaries
	Notation
	Computational Assumptions
	Bilinear Pairing
	Basic Cryptographic Primitives
	Digital Signature Schemes
	Pointcheval-Sanders (PS) Signatures
	Ghadafi SPS
	Message-Indexed Ghadafi SPS
	Signatures on Equivalence Classes
	Mercurial Signatures

	Public-Key Encryption Schemes
	Predicate Encryption

	Commitment Schemes
	Equivocable and Extractable Commitments
	Pedersen Commitments
	Set Commitment

	Zero-Knowledge Proofs of Knowledge
	Secret Sharing

	Computational Models.

	Issuer-Hiding Multi-Authority Credentials
	Comparison of IhMA with Previous Work
	Aggregate Signatures with Randomizable Keys and Tags
	Formal Definitions
	Security Definitions
	Construction

	Aggregate Mercurial Signatures With Randomizable Tags
	Formal Definitions
	Security Definitions
	Construction

	Application to AC
	Formal Definition
	Security Definitions
	Constructions
	AtoSa based IhMA Construction in Fig. 3.6.
	ATMS based IhMA Construction in Fig. 3.7.

	Additional Properties

	Implementation and Evaluation
	Bandwidth Analysis of our IhMA Schemes

	Summary

	Delegatable Anonymous Credentials
	High Level Idea of Our Approach
	Practical Example Application
	Comparison with Previous Work
	SPSEQ on Updatable Commitments
	Formal Definitions
	Security Definitions
	Construction

	Cross-Set Commitment Aggregation
	Delegatable Anonymous Credentials
	Security of DAC
	Construction of DAC

	Implementation and Evaluation
	Theoretical Analysis and Comparison
	Computational Complexity
	Communication Complexity

	Summary

	Threshold Delegatable Anonymous Credentials
	High Level Idea of Our Approach
	Practical Application Scenarios
	Threshold Delegatable Subset Predicate Encryption
	Formal Definitions
	Security Definition
	TDSPE Construction

	Threshold Delegatable Anonymous Credentials
	Formal Definition
	Security Definition
	Construction
	Potential Extensions

	Performance Evaluation
	Experimental Results
	Theoretical Analysis and Comparison
	Computational Complexity
	Communication Complexity

	Comparison

	Privacy-Preserving, Single Sign-On
	Building blocks
	Oblivious Pseudo-random Function (OPRF)
	Public Append-Only Ledger
	Dynamic Accumulators

	Decentralized Anonymous Multi-Factor Authentication (DAMFA)
	System Model
	Threat Model
	High-Level View
	The DAMFA Functionality
	Our Construction

	Implementation
	Namecoin implemention
	Ethereum
	Performance of the Authentication System
	Computational and Communication complexity
	Comparison

	Summary

	Recovery of Encrypted Mobile Device Backups (IDs)
	Introduction
	Building block and Notations
	Mathematical Problems
	Fuzzy Extractor

	System Model
	Network Model
	Threat Model

	The Proposed Scheme
	Assumptions
	System Setup Phase
	Initialization
	Reconstruction Phase

	Security Analysis
	Security Model
	Security Proof of the Protocol
	Discussion

	Performance
	Analysis

	Summary

	Practical Realization (Implementation)
	Introduction
	Architecture
	Dependencies
	AC Interfaces (APIs)
	Summary

	Conclusion

