
Aggregate Signatures with Versatile Randomization and
Issuer-Hiding Multi-Authority Anonymous Credentials

Omid Mir
∗

Johannes Kepler University Linz

LIT Secure and Correct Systems Lab

Linz, Austria

mir@ins.jku.at

Balthazar Bauer

IRIF, CNRS

Paris, France

Balthazar.Bauer@ens.fr

Scott Griffy

Brown University

Providence, USA

scott_griffy@brown.edu

Anna Lysyanskaya

Brown University

Providence, USA

anna_lysyanskaya@brown.edu

Daniel Slamanig

AIT Austrian Institute of Technology

Vienna, Austria

daniel.slamanig@ait.ac.at

ABSTRACT
Anonymous credentials (AC) offer privacy in user-centric identity

management. They enable users to authenticate anonymously, re-

vealing only necessary attributes. With the rise of decentralized

systems like self-sovereign identity, the demand for efficient AC

systems in a decentralized setting has grown. Relying on conven-

tional AC systems, however, require users to present independent

credentials when obtaining them from different issuers, leading

to increased complexity. AC systems should ideally support being

multi-authority for efficient presentation of multiple credentials

from various issuers. Another vital property is issuer hiding, en-

suring that the issuer’s identity remains concealed, revealing only

compliance with the verifier’s policy. This prevents unique iden-

tification based on the sole combination of credential issuers. To

date, there exists no AC scheme satisfying both properties simulta-

neously.

This paper introduces Issuer-Hiding Multi-Authority Anony-

mous Credentials (IhMA), utilizing two novel signature primitives:

Aggregate Signatures with Randomizable Tags and Public Keys and

Aggregate Mercurial Signatures. We provide two constructions of

IhMAwith different trade-offs based on these primitives and believe

that they will have applications beyond IhMA. Besides defining the
notations and rigorous security definitions for our primitives, we

provide provably secure and efficient constructions, and present

benchmarks to showcase practical efficiency.

CCS CONCEPTS
• Security and privacy→ Cryptography; Privacy-preserving
protocols.

∗
First and corresponding author; remaining authors in alphabetical order.

This work is licensed under a Creative Commons Attribution

International 4.0 License.

CCS ’23, November 26–30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0050-7/23/11.

https://doi.org/10.1145/3576915.3623203

KEYWORDS
Aggregate Signatures, Anonymous Credentials, Multi-Authority,

Issuer-Hiding, Equivalence-class signatures, Mercurial Signatures

ACM Reference Format:
Omid Mir, Balthazar Bauer, Scott Griffy, Anna Lysyanskaya, and Daniel

Slamanig. 2023. Aggregate Signatures with Versatile Randomization and

Issuer-Hiding Multi-Authority Anonymous Credentials. In Proceedings of
the 2023 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’23), November 26–30, 2023, Copenhagen, Denmark. ACM, New York,

NY, USA, 15 pages. https://doi.org/10.1145/3576915.3623203

1 INTRODUCTION
Authentication and authorization are essential and security-critical

tasks in a digital world. They are aimed to ensure that the communi-

cation partner is the one it claims to be and to enforce access control

to digital resources such as services. A central concept is that of

a digital identity, which can be seen as a collection of attributes

(e.g., name, age, nationality, gender, etc.) representing a (real-world)

entity in the digital realm.

On the Internet, a widely adopted practice is to have centralized

identity providers (IdP), e.g., Google or Meta, to maintain the digital

identity of users. Other services can then simply rely on the identity

provided by the IdP. From a privacy perspective, however, this is

problematic as users lose control over their digital identity (all their

attributes reside at the IdP), and the IdP learns all the services a

user consumes on the Internet (and data related to the use).

Already in the 1980s, Chaum [24, 25] envisioned cryptographic

techniques for creating more privacy-friendly and user-centric solu-

tions to authentication and authorization. They put users in control

of their identity and allow users to selectively reveal information

(i.e., attributes) about their digital identities in an unlinkable and

thus untraceable way. Such techniques are commonly known as

anonymous credentials (ACs), and there is a vast body of research

into different approaches to construct such AC systems [2, 3, 12, 17–

20, 27, 32, 35, 39, 49, 52, 54].

While early AC systems such as U-Prove [51] and Idemix [22] did

not see a widespread adoption, nowadays related techniques such as

direct anonymous attestation (DAA) [14, 15] and Enhanced Privacy

ID (EPID) [13] are deployed in billions of devices. Most recently,

ACs have seen adoption within the popular Signal messenger to

realize private groups [23]. They also see increasing popularity in

30

https://orcid.org/0000-0003-1691-5291
https://orcid.org/0009-0003-1469-5405
https://orcid.org/0009-0000-6016-5163
https://orcid.org/0000-0002-3567-3550
https://orcid.org/0000-0002-4181-2561
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3576915.3623203
https://doi.org/10.1145/3576915.3623203
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576915.3623203&domain=pdf&date_stamp=2023-11-21

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Omid Mir, Balthazar Bauer, Scott Griffy, Anna Lysyanskaya, and Daniel Slamanig

the form of anonymous tokens (with private or public metadata

bit) [31, 42, 56]. Among the applications are private browsing with

DDoS protection being standardized by the IETF
1
(Privacy Pass [31]

and Private Access Tokens [45]) or the PrivateStats by Facebook
2

to privately collect client-side telemetry from WhatsApp.

Decentralized identity. Like with centralized IdPs, all AC solu-

tions mentioned so far are in a centralized setting, i.e., a single party

called the issuer is issuing credentials to users. Today we however

see a trend to move away from this centralized setting towards

a decentralized identity. A popular concept in the decentralized

identity space is that of self-sovereign identity (SSI) with Sovrin
3

being a prominent example. In SSI users are collecting certified

attributes (called verifiable credentials) from different sources and
then presenting (subsets of) verifiable credentials from this col-

lection. There is an increasing push towards standardization of

this verifiable credentials concept within W3C
4
and large efforts

such as the future European data infrastructure (Gaia-X)
5
or the

European Blockchain Services Infrastructure (EBSI)
6
are adopting

this approach.

Within the verifiable credential initiative in W3C, it is also ob-

served that privacy related features are important. In particular

well-known features from AC systems such as supporting selective

disclosure and proving predicates about attributes
7
. To realize this

functionality within W3C it is intended to base this upon the BBS+

signature scheme
8
, a well-known building block for ACs currently

being standardized as the BBS variant [58] within the IETF
9
.

Privacy in a decentralized setting.The aforementioned approach

allows to preserve privacy in a setting where a user wants to show

a single verifiable credential issued by a single party. However, for

a decentralized setting, where typically a subset of a collection

of verifiable credentials from different issuers needs to be shown,

the problem of how to efficiently realize this arises. A naive way

is to conduct a parallel credential showing with all the required

verifiable credentials. However, apart from reduced efficiency, this

also has privacy implications. In particular, every verifiable creden-

tial reveals the exact issuer providing a lot of contextual partial

information, e.g., a passport issued from a certain country or a

driving license issued by a certain state reveals geographic infor-

mation. This can be highly privacy intrusive in many settings and

undermining the very objective of SSI systems [10]. Consequently,

it would be desirable to be able to show a credential in a way that it

is only revealed that it comes from one of a larger set of issuers ac-

ceptable by a verifier. A set of recent independent works introduced

a property providing this features for AC systems, which is called

issuer-hiding [6, 10, 27]. While this is a step towards countering the

above privacy issues, these works only consider single issuers and

are thus not yet suitable for a decentralized setting with multiple

issuers.

1
https://datatracker.ietf.org/wg/privacypass/about/

2
https://research.fb.com/privatestats

3
https://sovrin.org/

4
https://www.w3.org/TR/vc-data-model/

5
https://gaia-x.eu/

6
https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home

7
https://www.w3.org/TR/vc-data-model/#privacy-considerations

8
https://w3c-ccg.github.io/ldp-bbs2020/

9
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-signatures/

ACs in a decentralized setting. Due to not being directly compa-

rable as they are either only threshold or require a dedicated infras-

tructure (i.e., a transparency log, Byzantine system, or a blockchain)

and TDAC by [49] and the lack of space we defer to [47] for a dis-

cussion of existing approaches in a decentralized setting due to

Garman et al. [36], Sonnino et al. [57], Doerner et al. [33] and Rosen-

berg et al. [53].

Finally, and most related, we want to discuss the work by Hébant

and Pointcheval [40]. The authors introduced the concept of (trace-

able) Multi-Authority Anonymous Credentials (MA-ACs). Loosely

speaking, their approach to realize MA-ACs is based on so called

aggregate signatures with randomizable tags and allows to aggre-

gate showings of credentials of different issuers (but with respect to

the same tag) into one compact showing. Due to randomizability of

signatures and tags, it is possible to produce unlinkable showings.

Moreover, the tag component has a secret part representing the user

secret. While this is an interesting concept, it does not provide an

efficient way of providing the issuer-hiding (IH) feature [6, 10, 27].

There is an obvious generic way to use a succinct NIZK (i.e., a

zk-SNARK) and prove that the aggregated signature verifies for the

given attributes under a subset of issuer keys without revealing

which ones. While this can lead to an asymptotically compact solu-

tion, the prover will concretely be very expensive due to the size

of the verification keys (they are of size G3+2𝑛
2

each with 𝑛 being

the maximum number (types) of attributes) and the complexity of

the verification equation in [40] which is proven with a zk-SNARK.

Switching to non-succinct Schnorr-type NIZK obtained via Fiat-

Shamir as done in [6] (in Construction 2), however, will result in a

non-compact showing of size𝑂 (𝑛 · 𝐾) with 𝐾 being the number of

issuers used in the aggregated showing (even when ignoring the

size of the proof corresponding to the non-shown attributes).

In this paper, our goal is to efficiently combine these features and

propose the first AC system that is specifically designed to provide

multi-authority and issuer-hiding features at the same time.

Aggregate signatures.Aggregate signatures, introduced by Boneh
et al. in [9], allow to combine multiple signatures 𝜎𝑖 for messages

𝑚𝑖 and associated public keys vk𝑖 into a single signature 𝜎 , that

authenticates the entire set of messages w.r.t the set of public keys.

Ideally, the aggregated signatures is of length identical to a single

signatures and thus allows to compress a set of signatures into a

single one.

This primitive is valuable in optimizing storage and bandwidth

and minimizing cryptographic overhead in scenarios such as com-

pressing certificate chains or aggregating signatures in blockchains.

Many different variants have been proposed [4, 8, 38, 50] and we

will briefly mention some relevant schemes. Sequential aggrega-

tion, studied in [44], requires signers to interact sequentially. Syn-

chronized aggregation, examined in [1], assumes synchronization

among signers such that in every time period 𝑡 each signer only

contributes one signature at most. Indexed or tag-based aggregated

signatures, introduced in [40], allow aggregation of signatures for

different messages under different public keys if they share the

same tag or index. These signatures are useful for constructing an

AC system.

Unfortunately, existing aggregate signature schemes do not ex-

plicitly possess properties to make them amenable for the design of

31

https://datatracker.ietf.org/wg/privacypass/about/
https://research.fb.com/privatestats
https://sovrin.org/
https://www.w3.org/TR/vc-data-model/
https://gaia-x.eu/
https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home
https://www.w3.org/TR/vc-data-model/#privacy-considerations
https://w3c-ccg.github.io/ldp-bbs2020/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bbs-signatures/

Aggregate Signatures with Versatile Randomization and Issuer-Hiding Multi-Authority Anonymous Credentials CCS ’23, November 26–30, 2023, Copenhagen, Denmark

efficient decentralized AC systems with advanced properties. We

will close this gap by introducing aggregate (structure-preserving)

signatures with the ability to randomize signatures, tags, (mes-

sages,) and verification keys.

1.1 Our Contribution
Our contribution in this paper is twofold:

Aggregate signatures with randomization features. The key
technique to achieve our goal is to introduce tag-based aggregate

signatures with randomizable tags and public keys. We further ex-

tend them to additionally support randomization ofmessages resem-

bling the functionality of equivalence class signatures (SPSEQ) [35].

For both of these types of schemes we provide rigorous formal se-

curity models as well as instantiations that are provably secure in

this model. More precisely, we introduce:

Aggregate signatures with randomizable keys and tags (AtoSa10 for
short) where signatures are associated to tags (consisting of a pri-

vate and a public part) and signatures with respect to the same tag
can be aggregated. Aside from signatures, verification keys and

tags can be randomized. Tags and verification keys are defined

with respect to equivalence classes and randomization switches

between representatives of these classes.
11

Then existing signa-

tures can be adapted to ones that verify under the randomized

public keys and tags. We provide an AtoSa scheme based on the

well-known Pointcheval-Sanders (PS) signatures [52]. PS signatures

have already served as a basis for various privacy-preserving prim-

itives such as group signatures and anonymous credentials [52],

redactable [54, 55] or dynamically malleable signatures [5]. They

are very efficient and have interesting features such as support for

blind signing, i.e., signing of committed (hidden) messages, and

efficient ways of proving their knowledge.

Aggregate Mercurial Signatures with Randomizable Tags (ATMS)
extend the functionality of AtoSa to support the randomization of

messages, i.e., equivalence classes of messages similar to (SPSEQ).

This means that in addition to AtoSa existing signatures can be

adapted to verify under randomized messages (i.e., other represen-

tatives of the message class). Consequently, we obtain a version of

mercurial signatures [30] that is both aggregatable and has random-

izable tags. To the best of our knowledge, this is the first instance

of an aggregate structure-preserving signature (and, additionally

the first aggregatable SPSEQ). We provide an ATMS construction
inspired by the message-indexed SPS in [29], which on itself is a

variant of Ghadafi’s SPS [37] scheme.

Restrictions of our Constructions. We should mention that in con-

trast to standard aggregate signatures, our constructions 1) either

require that all aggregated messages and corresponding verifica-

tion keys are known before requesting the first signature or 2) to

make the same assumption as within synchronized aggregate sig-

natures [1, 41]. In particular, adapted to our setting, latter means

that every issuer ensures that for each tag only a single signature

10
The (ancient) Greek transliteration of the old Persian name Utau\a. Atossa means

“bestowing very richly” or “well trickling” or “well granting”. It refers to an Achaemenid

empress who was the daughter of Cyrus the Great, and the wife of Darius the Great.

11
This can be seen as aggregate signatures with randomizable tags as introduced in

[40] with the additional features of randomizable keys with appropriate signature

adaption.

is issued. We will present our results based on the first approach

and discuss adaptions for the second (which do not change any of

the interfaces or security definitions and proofs). Since our main

application is anonymous credentials, depending on the concrete

application scenario either the first or the second approach can be

chosen. It remains an interesting open question to get fully dynamic

signatures without any of the above assumptions.

Like other types of signatures with randomization features, we

also expect that our schemes will find applications beyond the one

presented here.

Issuer-Hiding Multi-Authority Anonymous Credentials.We

present a rigorous formal model for issuer-hiding multi-authority

anonymous credentials (IhMA). Then we present two constructions

based on AtoSa (called IhMAAtoSa) and ATMS (called IhMAATMS)

respectively, where both are concretely very efficient but offer some

trade-offs (as discussed below). Thus this represents an important

contribution to the field of ACs in that it provides a solution that

addresses the challenges of user privacy and scalability in multi-

authority (decentralizing) settings. In our constructions, obtaining

a credential amounts to obtaining signatures on desired attributes

from a set of issuers on different attributes, but under the same

tag (which can be thought of as the user’s identity in credential

schemes). Showing simply amounts to randomizing signatures from

issuers that should be shown as well as the tags and aggregating

them. Finally, one provides the aggregated signature and either

opens (subsets of) attributes or proves predicates over them along

with proof of knowledge of the secret tag part.

Supporting the issuer-hiding feature [7, 27] works roughly as

follows: Each verifier generates a so-called key-policy, which defines
a set of issuers (via their verification keys) that the verifier would

accept an (aggregated) credential from. This policy is a collection

of SPSEQ signatures on verification keys of the AtoSa or ATMS
scheme. Since the equivalence classes of the SPSEQ (the message

space) match with the key equivalence class of AtoSa and ATMS,
showing a credential then works as above, but all verification keys

of the AtoSa or ATMS are randomized, and the respective SPSEQ
signatures in the key-policy are adapted accordingly.

For the IhMAATMS scheme, instead of directly signing attributes,

we use the framework of Fuchsbauer et al. [35]. Here the signature

scheme is used to sign set commitments to attribute sets. Moreover,

in order to prove the anonymity of this construction as an additional

contribution we introduce a generalization of the decisional uber

assumption family by Boyen [11] along with an interactive version.

Using this approach is however not straightforward as we have

to make set commitments compatible with the message space of

our ATMS. While IhMAAtoSa and IhMAATMS share a common aim,

the differences in constructions entail certain trade-offs in terms of

functionality and efficiency:

• Credential size: The IhMAATMS scheme can yield a fixed-sized

credential, while the IhMAAtoSa scheme does not achieve this

without utilizing Zero Knowledge Proof of Knowledge (ZKPOK)
of signatures.

• Efficiency: The IhMAATMS scheme is more efficient at showing

and verifying credentials compared to the IhMAAtoSa scheme.

• Need for a trusted party: The IhMAATMS scheme requires a

trusted party, while the IhMAAtoSa scheme does not. This is

32

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Omid Mir, Balthazar Bauer, Scott Griffy, Anna Lysyanskaya, and Daniel Slamanig

because IhMAATMS relies on a trusted party to hold a trapdoor to

generate set commitments, whereas IhMAAtoSa does not require
such a trusted party.

• Expressiveness: The IhMAATMS supports revealing a subset of

attributes from a set of attributes per issuer, i.e., selective disclo-

sure per issuer. The IhMAAtoSa scheme only supports a single

attribute for each credential. Consequently, it only supports se-

lective disclosure over all issuers. However, both schemes allow

for proving arbitrary predicates over signed messages.

Overall, the choice of the concrete construction depends on the

specifics of the use case or application and priorities set in the

overall system.

1.2 Comparison of IhMA with Previous Work
We have already discussed that there is only one dedicated MA-AC

scheme [40]. This is however not issuer-hiding (IH) and as men-

tioned, adding IH comes with a significant overhead. In Table 1, we

compare our IhMA approaches to other schemes in the literature

that provide the IH feature [6, 10, 27] and for comparison we use the

naive approach to achieve MA, i.e., parallel showings of single cre-

dentials, which we indicate by ≈. We compare them in terms of the

size of credential |Cred|, communication cost of showing |Show|,
and computational cost of showing Show for user (P) and verifier

(V). We provide concrete analysis for our schemes’ communication

cost in our full version [47]. To ensure a fair comparison between

the schemes, we consider a typical case of 𝑘 out of 𝑛 attributes from

𝐾 out of 𝑁 issuers where 𝑛 is the total number of attributes given

to the user by 𝑁 issuers, and 𝑘 is the number of attributes involved

in the showing (and 𝐾 the number of issuers involved).

With respect to credential size |Cred|, the naive approach to

MA leads to 𝑂 (𝐾) complexity. Our IhMAATMS scheme maintains

a constant credential size even when there are 𝐾 > 1 issuers, while

our IhMAAtoSa scheme has 𝑂 (𝐾) credentials. However, we can

aggregate credentials and then during showing apply a ZKPOK of

a PS signature, which allows us to reduce the credential size to a

constant size. In contrast, others have a credential size linear in the

number of issuers 𝐾 .

In terms of communication cost in showing (|Show|), our schemes

require sending the randomized vks of the𝐾 issuers, along with two

signatures (one for the credential and one for the key policy), over-

all giving𝑂 (𝐾). In [6], the communication size is based on sending

𝐾 blinded credentials and 𝐾 blinded signatures in the key policy

and provide a ZKPOK of having correctly done so. The scheme in

[10] is similar to [6], but the size of the policy is fixed. Finally, in the

scheme described in [27], one needs to prove knowledge of 𝐾 out

of 𝑁 verification keys (a linear sized OR statement) and sends them

along with 𝐾 credentials. Note that the size of ZKPOK includes

many group elements and significantly more than only transferring

𝐾 verification keys, as it is the case for our constructions.

When it comes to the computational cost of showing, i.e., Show (P)
and Show (V), our IhMAAtoSa scheme has aminimal computational

cost for provers as they only need to perform a small/constant

number of operations for aggregation, along with 𝐾 exponenti-

ations for randomizing the verification keys vk. Our IhMAATMS
scheme involves additional computation in the creation of a wit-

ness for set commitments corresponding to undisclosed attributes

(a multi-exponentiation of 𝑂 (𝑢)). In [6], this cost includes proving

knowledge of 𝑘 signatures (in the key policy), 𝐾 credentials, and 𝑘

disclosed attributes. Similarly, [10] requires the computation of gen-

erating witness for their aggregator (accumulator) on 𝐾 credentials,

proving knowledge of 𝑘 credential, but it does not need to prove

knowledge of signatures in the policy. Moreover, in [27], proving

knowledge of 𝐾-out-of-𝑁 verification keys is necessary, along with

the computation of generating witness on undisclosed attributes

for set commitments on 𝐾 credentials. Again, the cost of ZKPOK
for credentials or committed attributes is significantly more expen-

sive than in our case, which is needed only to prove a secret key

and some multi-exponentiation for creating witness. We should

mention here that by leveraging ZKPOK, arbitrary relationships

can be proved on attributes.

In summary, while the efficiency of different schemesmay appear

to be close asymptotically, our IhMA approaches are significantly

more efficient than existing approaches while providing both prop-

erties simultaneously. Indeed, we only need𝑂 (𝑘) group operations

in G𝑖 . In contrast, other schemes require proving knowledge of

signatures or keys, which is significantly more expensive.

2 PRELIMINARIES
Notation. We use BG = (𝑝,G1,G2,G𝑇 , 𝑒, 𝑃, 𝑃) ← BGGen(1_) to
denote a bilinear group generator for asymmetric type 3 groups,

where 𝑝 is a prime of bitlength _. When applying a scalar 𝑎 com-

ponentwise to a vector T ∈ G𝑛
1
we write T𝑎 = (𝑇𝑎

1
,𝑇𝑎

2
, . . . ,𝑇𝑎𝑛). We

write [𝑥]R to denotes denote representative 𝑥 of the equivalence

class for given relation R. Given a finite set 𝑆 , we denote by 𝑥 ← 𝑆

or 𝑥
$← 𝑆 the sampling of an element uniformly at random from 𝑆 .

For an algorithm A, let 𝑦 ← A(𝑥) be the process of running A on

input 𝑥 with access to uniformly random coins and assigning the

result to 𝑦. With AB
we denote that A has oracle access to B. We

use ⟨O⟩ to denote oracles defined in games and use 𝜖 to indicate a

negligible function. We assume all algorithms are polynomial-time

(PPT) unless otherwise specified and public parameters are an im-

plicit input to all algorithms in a scheme.

Indexed Diffie-Hellman Message Space M𝐻
iDH [29]. Given a

bilinear group (G1,G2,G𝑇 , 𝑝, 𝑒, 𝑔, 𝑔) ← BGGen(1_), an index set

I, and a random oracle 𝐻 : I → G1,M𝐻
iDH is an indexed Diffie-

Hellman (DH) message space ifM𝐻
iDH ⊂ {(𝑖𝑑, �̃�) | 𝑖𝑑 ∈ I,𝑚 ∈

Z𝑝 , �̃� = (𝐻 (𝑖𝑑)𝑚, 𝑔𝑚) ∈ G1 ×G2} and the following index unique-
ness property holds: for all (𝑖𝑑, �̃�) ∈ M𝐻

iDH, (𝑖𝑑
′, �̃� ′) ∈ M𝐻

iDH,

𝑖𝑑 = 𝑖𝑑 ′ ⇒ �̃� = �̃� ′. One can define the equivalence class for

each message �̃� = (𝑀, 𝑁) ∈ ˜M𝐻
iDH, as EQ iDH (𝑀, 𝑁) = {(𝑀𝑟 , 𝑁) |

∃ 𝑟 ∈ Z𝑝 }. One can efficiently decide subset membership by check-

ing 𝑒 (𝑀, 𝑃) = 𝑒 (ℎ, 𝑁). The uniqueness property guarantees that no

two messages use the same index, which needs to be ensured by

signers. We use the Camenisch-Stadler notation [21] for ZKPOK.
Please refer to the full version for complete definitions [47].

3 AGGREGATE SIGNATURES WITH
RANDOMIZABLE KEYS AND TAGS

Now we introduce a novel primitive named AtoSa where one can
aggregate signatures of different messages under different keys

33

Aggregate Signatures with Versatile Randomization and Issuer-Hiding Multi-Authority Anonymous Credentials CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Table 1: Comparison of AC schemes in MA setting (𝑛: Attributes; 𝑘: Disclosed attributes, 𝑢: Undisclosed attributes, 𝑁 : Total
issuers in policy, 𝐾 : issuers in showing)

[27]
‡

[10]
★★

[6]
★★ IhMAAtoSa IhMAATMS

IH ✓ ✓ ✓ ✓ ✓
MA ≈ ≈ ≈ ✓ ✓

|Cred | 𝑂 (𝑁) 𝑂 (𝑁) 𝑂 (𝑁) 𝑂 (𝑁)★ 𝑂 (𝑁)★
|Show| 𝑂 (𝐾 · 𝑁) 𝑂 (𝑘 · 𝐾) 𝑂 (𝑘 · 2𝐾) 𝑂 (𝐾) 𝑂 (𝐾)
Show (P) 𝑂 (𝐾𝑢𝑁) 𝑂 (𝑘 · 𝐾) 𝑂 (𝑘 · 2𝐾) 𝑂 (𝐾)† 𝑂 (𝑢 · 𝐾)
Show (V) 𝑂 (𝐾𝑘𝑁) 𝑂 (𝑘 · 𝐾) 𝑂 (𝑘 · 2𝐾) 𝑂 (𝑘) 𝑂 (𝑘 · 𝐾)
★

We present the scheme in a way that supports ad-hoc attribute/issuer aggregation, but for fixed signatures, a constant size credential is achievable. For

ATMS we will show how to achieve this in Section 5.2.

★★ 𝐾 refers to proving knowledge of 𝐾 credentials and 𝐾 signatures of key policy in Showing.

†
Since the ad-hoc aggregation cost is negligible, it is skipped here. Also, without considering IH, it becomes𝑂 (1) .
‡
This scheme uses standard assumptions in the ROM while other schemes use the GGM.

only if they are associated with the same tag (consisting of a private

and a public part). Moreover, apart from allowing randomizing sig-

natures, verification keys as well as tags can be randomized. Unlike

mercurial signatures, our AtoSa scheme does not allow for random-

ization of messages. Tags and verification keys are defined with

respect to equivalence classes and randomization switches between

representatives of these classes. We introduce a comprehensive

formal model and a construction which as a starting point takes PS
signatures [52]. For our AtoSa scheme we show how to integrate

tags into PS signatures, use the above discussed features to make

them aggregatable, and show that the key-randomization features

of PS signatures (cf. [26] with Δ2 = 0) applies to our modification.

3.1 Formal Definitions
The public key randomization is similar to that of mercurial sig-

natures [30], which allow to define equivalence classes on the key

space [vk]Rvk , [sk]Rsk . Let a tag be (𝜏,T), where 𝜏 and T are the se-

cret and public parts of tag respectively. For the tag randomization,

we define equivalence classes [T]R𝜏 ([𝜏]R𝜏 for secret parts) on the

tag space T similar to [vk]Rvk and [sk]Rsk as:

R𝜏 =

{
(T′,T) ∈ (G∗

1
)ℓ × (G∗

1
)ℓ | ∃` ∈ Z∗𝑝 : T′ = T`

(𝜏 ′, 𝜏) ∈ (Z∗𝑝)ℓ × (Z∗𝑝)ℓ | ∃` ∈ Z∗𝑝 : 𝜏 ′ = 𝜏 · `

}
We denote the space of all tags as T and the messages space is

Z𝑝 . In contrast to SPSEQ (and mercurial) signatures, we do not

consider equivalence classes on the message space for AtoSa.

Definition 1 (Aggregate Signatures with Randomizable Public Keys
and Tag (AtoSa)). An AtoSa for parameterized equivalence rela-

tions R𝜏 , Rsk and Rvk, consists of the following algorithms:

Setup(1_) → pp: On input the security parameter _, output the

public parameters pp.
KeyGen (pp) → (sk, vk): On input the public parameters pp, out-

put a key pair (sk, vk).
VKeyGen (sk): On input a secret key sk, output a verification key

vk.
GenAuxTag(𝑆) → ({aux𝑗 }𝑗 ∈[𝑛] , (𝜏,T)): Given a message-key set

𝑆 = {(𝑚 𝑗 , vk𝑗) 𝑗 ∈[𝑛] }, output auxiliary data {aux𝑗 }𝑗 ∈[𝑛] cor-
related to (vk𝑗 ,𝑚 𝑗) and a tag pair (𝜏,T), where all vk𝑗 should
be distinct.

Sign(sk𝑗 , 𝜏, aux𝑗 ,𝑚 𝑗) → 𝜎 𝑗 : On input a secret key sk𝑗 , tag’s secret
𝜏 , auxiliary data aux𝑗 andmessage𝑚 𝑗 ∈ Z𝑝 , output a signature
𝜎 𝑗 for (𝜏,T) and𝑚 𝑗 under the verification key vk𝑗 .

Verify(vk𝑗 ,T,𝑚 𝑗 , 𝜎 𝑗) → {0, 1}: Given a verification key vk𝑗 , tag’s
public T, message𝑚 𝑗 and signature 𝜎 𝑗 , output 1 if 𝜎 𝑗 is valid

relative to vk𝑗 ,𝑚 𝑗 and T, and 0 otherwise.

AggrSign(T, {(vk𝑗 ,𝑚 𝑗 , 𝜎 𝑗)}ℓ𝑗=1) → 𝜎 : Given ℓ signatures, (𝜎 𝑗)𝑗 ∈[ℓ]
for messages (𝑚 𝑗)𝑗 ∈[ℓ] under verification keys, (vk𝑗)𝑗 ∈[ℓ] on
the same tagT, output an aggregate signature𝜎 on all messages

M = (𝑚 𝑗)𝑗 ∈[ℓ] under the tag T and aggregated verification

key avk = (vk𝑗)𝑗 ∈[ℓ] .
VerifyAggr(avk,T,M, 𝜎) → {0, 1}: Given an aggregated verifica-

tion key avk, tag T, messagesM and signature 𝜎 , output 1 if 𝜎

is valid relative to avk,M and T, and 0 otherwise.

ConvertTag(T, `) → T′: On input a tag T and randomness `,

output a new randomized tag T′ ∈ [T]R𝜏 .
RndSigTag(vk,T,𝑚, 𝜎, `) → (𝜎 ′,T′): (Randomize Signature and

Tag together) Given a signature 𝜎 on a message 𝑚 under

tag T and vk, and randomness `. Return a randomized sig-

nature and tag (𝜎 ′,T′) s.t Verify(vk,T′,𝑚, 𝜎 ′) = 1, where

T′ ← ConvertTag(T, `).
ConvertSK(sk, 𝜔) → sk′: On input a sk and key converter 𝜔 ,

output a new secret key sk′.
ConvertVK(vk, 𝜔) → vk′: On input a vk and key converter 𝜔 ,

output a new public key vk′.
ConvertSig(vk,𝑚,T, 𝜎, 𝜔) → 𝜎 ′: On input a vk, message𝑚, tag T,

signature 𝜎 , and key converter 𝜔 , return a new signature 𝜎 ′

s.t Verify(vk′,T,𝑚, 𝜎 ′) = 1, where vk′ ← ConvertVK(vk, 𝜔).

We note that VKeyGen is only required in the security definition

and is never used in the construction. Although the signer receives

the tag secret key 𝜏 , we replace this with a ZKP in our IhMA scheme.

3.2 Security Definitions
Correctness. We require that honest signatures verify as expected,

but need to consider all the randomizations and aggregation.

Unforgeability. We model unforgeability following the ideas in

the chosen-key model [9, 46], where the adversary A is given a

single public key vk′ and access to a signing oracle on the challenge

key. The adversary wins if the aggregate signature, 𝜎 , is a valid

aggregate signature on a vector of messages M = (𝑚1, . . . ,𝑚𝑛)

34

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Omid Mir, Balthazar Bauer, Scott Griffy, Anna Lysyanskaya, and Daniel Slamanig

under keys (vk1, . . . , vk𝑛), and 𝜎 is nontrivial, i.e., the adversary

did not request a signature on a𝑚 𝑗 for vk𝑗 = vk′ or more precisely

where vk𝑗 is in the same equivalence class as the challenge key vk′.
A has the power to choose all public keys except the challenger’s

public key vk′. For our instantiation, however, we have to work in

a slightly weakened model which is equivalent to the certified-keys

model [43, 44]. In this setting the A registers pairs of (vk, sk) with
exception of the challenge key. Tomodel this, we have the adversary

output the secret keys of the verification keys they provide in our

security games. In the real world, such a key registration can be

realized by requiring issuers to prove knowledge of their sk, which
in the formal analysis allows a reduction to extract the secret key.

Definition 2 (Unforgeability). An AtoSa signature is unforgeable
if for all PPT algorithmsA having access to the oracleOSign() , there
exists a negligible function 𝜖 such that: Pr[ExpUnfAtoSa,A (_) =
1] ≤ 𝜖 (_) where the experiment ExpUnfAtoSa,A (_) is defined in

Fig. 1 and 𝑄 is the set of queries that A has issued to the OSign.

Privacy guarantees. Similar to mercurial signatures [30], we de-

fine the following privacy notion for randomized keys vk and tags:

Definition 3 (Public key class-hiding). For all PPT adversaries A,

and pp← Setup(1_) there exists a negligible 𝜖 such that:

Pr

(vk1, sk1) ← KeyGen(pp) ; (vk0

2
, sk0

2
) ← KeyGen(pp) ;

𝑟
$← Z𝑝 ; vk12 = ConvertVK(vk1, 𝑟) ; sk12 = ConvertSK(sk1, 𝑟) ;

𝑏 ← {0, 1};𝑏′ ← ASign(sk1,·),Sign(sk𝑏
2
,·) (vk1, vk𝑏2) : 𝑏′ = 𝑏

 ≤
1

2

+𝜖 (_)

Definition 4 (Tag class-hiding). For all PPT adversaries A there

is a negligible function 𝜖 (·) such that

Pr

[
𝑏 ← {0, 1},BG← BGGen(1_),T← T ,T(0) ← T ,

T(1) ← [T]R , 𝑏∗ ← A(BG,T,T(𝑏)) : 𝑏∗ = 𝑏

]
−1
2

≤ 𝜖 (_)

The tag class-hiding property for R𝜏 is implied by the DDH as-

sumption.

The following definition guarantees that a signature with tag T on a

message𝑚 under vk output by ConvertSig and fed into RndSigTag
produces a uniformly random signature under a uniformly random

tag (from the respective tag class) and uniformly random key (from

the respective key class).

Definition 5 (Origin-hiding of ConvertSig). For all _, and pp ∈
Setup(1_), for all (vk,𝑚, 𝜎,T, 𝜔, `), if Verify(vk,T,𝑚, 𝜎) = 1, and

(𝜔, `) ∈ (Z∗𝑝)2, then (𝜎 ′,T′) ← RndSigTag(vk,T,𝑚,ConvertSig(vk,
𝑚,T, 𝜎, 𝜔), `) outputs uniformly random elements in signature

space and [T]R𝜏) such that Verify(vk′,T′,𝑚, 𝜎 ′) = 1, and vk′
$←

ConvertVK(vk, 𝜔) is a uniformly random element of [vk]Rvk .

We also require a similar definition for ConvertTag and the tag

randomization:

Definition 6 (Origin-hiding of ConvertTag). For all _, for all pp ∈
Setup(1_), for all (vk,𝑚, 𝜎,T, `), if Verify(vk,T,𝑚, 𝜎) = 1, and

` ∈ Z∗𝑝 , then (𝜎 ′,T′) ← RndSigTag(vk,ConvertTag(T, `),𝑚, 𝜎, `)
outputs uniformly random elements in the signature space and

[T]R𝜏 such that Verify(vk,T′,𝑚, 𝜎 ′) = 1.

3.3 Construction
We construct the AtoSa scheme based on the PS signature [52].

We can observe that to make PS signatures (ℎ𝑖 , 𝑠𝑖) aggregateable,
we need the ℎ𝑖 components to be identical for all signatures to be

aggregated. While in the original PS construction ℎ is a random

element independently chosen during signing, this can be emulated

in AtoSa by generatingℎ for all signatures via a hash function based
on some common information embedded in aux. For example, aux,
could be a concatenation of all the messages and the tag. This

technique was implicitly used in Coconut [57] and Camenisch et

al. [16], and has recently been formalized by Crites et al. in [29].

We note that we should be careful when computing ℎ, i.e., in

choosing aux, as in PS signatures one can forge signatures when

obtaining two signatures on two different messages with respect

to the same element ℎ. To prevent forgeries when aiming to ag-

gregate signatures, a unique base ℎ for a set of messages signed

under the same tag is required. Therefore, we compute ℎ as a hash

of a concatenation of the messages to be signed and corresponding

verification keys, denoted as aux. This approach ensures that every

signer computes signatures on the same base ℎ. We also introduce

a new definition and function:

Aux binding. To ensure this property of ℎ while making our

construction modular, we define a straightforward property of

GenAuxTag(𝑆), i.e., no adversary can “open” an aux to two mes-

sages for the same signer. This definition is paired with the function

VerifyAux which is called by Sign.

Definition 7 (Aux binding). We split aux into a preimage and an

opening: (𝑐, 𝑜). For all PPTA, and pp← Setup(1_) and (sk, vk) ←
VKeyGen(1_) there exists a negligible 𝜖 such that:

Pr

(ℎ, aux = (𝑐, 𝑜), aux = (𝑐 ′, 𝑜 ′), 𝜏,𝑚, 𝜏 ′,𝑚′) ← A(vk);
VerifyAux(sk, (𝑐, 𝑜), 𝜏,𝑚) = 1

∧ VerifyAux(sk, (𝑐 ′, 𝑜 ′), 𝜏 ′,𝑚′) = 1;

𝑐 = 𝑐 ′ ∧ ([𝜏]R𝜏 ≠ [𝜏 ′]R𝜏 ∨𝑚 ≠𝑚′)

≤ 𝜖 (_)

We will then hash the preimage, 𝑐 in our construction to reduce to

the GPS assumption [29] effectively. The 𝑜 value in this definition

may seem unnecessary, but it will become useful whenwe introduce

our IhMA construction in Section 5. We’ve left aux binding out of

our definition and rather defined it in our construction in order

to make our definition more generic as aux binding is simply a

propertywe use in the proof to ensure that our construction satisfies

the definition of AtoSa.

Synchronicity assumption. We note that when we do not want

to fixmessages and verification keys in aux beforehand, thenwe can
make assumption as in synchronized aggregate signatures [1, 41]

and require each signer to only issue a single signature per tag. In
this case aux only contains the tag and in the construction below

we set 𝑐 = 𝑃𝜌1 | |𝑃𝜌2 and Definition 7 is trivially satisfied.

We involve the tag in signatures by exponentiating the compo-

nentℎwith the secret part of the tagℎ𝜌 and compute the component

𝑠 using this value, which clearly can be checked via a pairing with

the tag’s public part and verified like a standard PS signature. More-

over, AtoSa allows the randomization of tag, vk and signatures via a
change of representatives tag, vk and a matching signature update.

35

Aggregate Signatures with Versatile Randomization and Issuer-Hiding Multi-Authority Anonymous Credentials CCS ’23, November 26–30, 2023, Copenhagen, Denmark

ExpUnfAtoSa,A (_) :

• 𝑄 := ∅; pp← Setup(1_) ;
• (vk′, sk′) ← KeyGen(pp) ;
• (𝑗 ′, avk =

(
vk𝑗

)
𝑗∈[ℓ] , 𝑎sk = (sk𝑗)𝑗∈[ℓ]\𝑗′ ,M∗ = (𝑚∗𝑗)𝑗∈[ℓ] , (𝜏∗,T∗), 𝜎∗) ← AO (pp, vk

′)
• (vk∗𝑗) :=

(
VKeyGen

(
sk𝑗

))
𝑗∈[ℓ]\𝑗′ ,

return: ©«
VerifyAggr (avk,T∗, 𝜎∗,M∗) = 1 ∧ ∀𝑗 ∈ [ℓ], 𝑗 ≠ 𝑗 ′ :

[vk∗𝑗]Rvk = [vk𝑗]Rvk ∧ [vk
′]Rvk = [vk𝑗′]Rvk

∧ ∀(𝑚,T) ∈ 𝑄 :𝑚 ≠𝑚∗𝑗 ∨ [T]R𝜏 ≠ [T∗]R𝜏

ª®®¬

OSign (𝑚, aux, (𝜏,T)) :
• 𝜎 ← Sign(sk′, 𝜏, aux,𝑚)
• 𝑄 = 𝑄 ∪ {𝑚,T},

return 𝜎

Figure 1: Experiment ExpUnfAtoSa,A (_)

Our construction. The construction is as follows:

Setup(1_): Run BG = (𝑝,G1,G2,G𝑇 , 𝑃, 𝑃, 𝑒) ← BGGen(1_) with
a prime number order 𝑝 , where 𝑃 is a generator of G1, 𝑃 a

generator ofG2. Pick𝐻 as a hash function:𝐻 : {0, 1}∗ → G1.
Output public parameters pp = {BG, 𝐻 }.

KeyGen (pp): Choose (𝑥,𝑦1, 𝑦2)
$← Z𝑝 and set the secret key

sk = (𝑥,𝑦1, 𝑦2) and verification key vk = (𝑌1 = 𝑃𝑦1 , 𝑌2 =

𝑃𝑦2 , 𝑋 = 𝑃𝑥).
VKeyGen (sk): On input a secret key sk = (𝑥,𝑦1, 𝑦2), output vk =

(𝑌1 = 𝑃𝑦1 , 𝑌2 = 𝑃𝑦2 , 𝑋 = 𝑃𝑥).
GenAuxTag(𝑆): Given a set 𝑆 = {(𝑚 𝑗 , vk𝑗)𝑗 ∈[ℓ] }, choose (𝜌1, 𝜌2)

$←
Z𝑝 , set 𝑐 = 𝑃𝜌1 | |𝑃𝜌2 | | (𝑚 𝑗 , vk𝑗)𝑗 ∈[ℓ] . Next set all aux𝑗 =

(𝑐,⊥). Compute ℎ = 𝐻 (𝑐) and output aux and a tag pair

(𝜏 = (𝜌1, 𝜌2),T = (𝑇1 = ℎ𝜌1 ,𝑇2 = ℎ𝜌2)).
VerifyAux(sk, aux, 𝜏,𝑚 𝑗) Parse aux as (𝑐, 𝑜). Check that 𝜏 ∈ 𝑐 (i.e.,

that 𝑐 has the form 𝑃𝜌1 | |𝑃𝜌2 | |...) and (𝑚 𝑗 , vk) ∈ 𝑐 where vk
is a verification key related to sk (in the same equivalence

class). Also check that no other vk𝑗 in aux has the same

equivalence class as sk. This can be done by checking that

𝑌2 = 𝑌

𝑦
2

𝑦
1

1
and that 𝑋 = 𝑌

𝑥
𝑦
2

2
. If these checks pass, it means

that this is in the same equivalence class as the verifier’s key.

If the check doesn’t pass, it means the vk𝑗 is not in the same

equivalence class.

Sign(sk𝑗 , 𝜏, aux𝑗 ,𝑚 𝑗): Given a sk𝑗 = (𝑦1𝑗 , 𝑦2𝑗 , 𝑥 𝑗), 𝜏 , aux𝑗 and a

message𝑚 𝑗 . If VerifyAux(sk𝑗 , aux𝑗 , 𝜏,𝑚 𝑗) ≠ 1 return⊥. Else,
parse aux as (𝑐, 𝑜) and compute ℎ = 𝐻 (𝑐) and output:

𝜎 𝑗 =
(
ℎ′, 𝑠 𝑗

)
=
(
ℎ′ = ℎ𝜌1 , 𝑠 𝑗 = (ℎ𝜌1)𝑥 𝑗+𝑦1𝑗 ·𝑚 𝑗 · (ℎ𝜌2)𝑦2𝑗

)
Verify(vk𝑗 ,T,𝑚 𝑗 , 𝜎 𝑗): Given a vk𝑗 , tag T = (𝑇1,𝑇2), message𝑚 𝑗

and signature 𝜎 𝑗 , parse 𝜎 𝑗 as
(
ℎ′, 𝑠 𝑗

)
and return 1 if the

following checks hold and 0 otherwise:

𝑒 (ℎ′, 𝑋 · 𝑌𝑚1

1
)𝑒 (𝑇2, 𝑌2) = (𝑠 𝑗 , 𝑃) ∧ 𝑇1 = ℎ′ ≠ 1G

AggrSign(T, {(vk𝑗 ,𝑚 𝑗 , 𝜎 𝑗)}ℓ𝑗=1): Given ℓ valid signatures such that
∀𝑗 ∈ [ℓ], 𝜎 𝑗 = (ℎ′, 𝑠 𝑗) for𝑚 𝑗 under vk𝑗 and the same tag

T, where 𝑗 ∈ [ℓ], outputs an aggregate signature 𝜎 on the

messages M = (𝑚 𝑗)𝑗 ∈[ℓ] under the tag T and aggregated

verification key avk = (vk𝑗)𝑗 ∈[ℓ] as: 𝜎 ′ =
(
ℎ′, 𝑠 ′ =

∏ℓ
𝑗=1 𝑠 𝑗

)
.

VerifyAggr(avk,T,M, 𝜎): Given an avk, tag T, messages M and

aggregate signature 𝜎 = (ℎ′, 𝑠), it outputs 1 if the following

checks holds and 0 otherwise:

𝑒
©«ℎ′,

∏
𝑗 ∈[ℓ]

𝑋 𝑗 · 𝑌
𝑚 𝑗

1𝑗

ª®¬ 𝑒 ©«ℎ𝜌2 ,
∏
𝑗 ∈[ℓ]

𝑌2𝑗
ª®¬ = 𝑒

(
𝑠, 𝑃

)
∧𝑇1 = ℎ′ ≠ 1G

ConvertTag(T, `) → T′: On input a tag T and randomness `,

output a randomized tag T′ = T` = (𝑇 `
1
,𝑇
`

2
).

RndSigTag(vk,T,𝑚, 𝜎, `) → (𝜎 ′,T′): Given a signature 𝜎 on mes-

sage𝑚 under a valid tag T and vk, and randomness `. Return

a randomized signature 𝜎 ′ and a randomized tag:

𝜎 ′ =
(
ℎ′` , 𝑠`

)
, T′ ← ConvertTag(T, `)

where is a valid signature for a new tag representative T′ ∈
[T]R𝜏 .

ConvertSK(sk, 𝜔): On input sk and a key converter𝜔 ∈ Z∗𝑝 , output
a new secret key sk′ as sk′ = sk · 𝜔 .

ConvertVK(vk, 𝜔): On input vk and a key converter 𝜔 ∈ Z∗𝑝 , out-
put a new public key as vk′ = vk𝜔 .

ConvertSig(vk,𝑚,T, 𝜎, 𝜔): On input a vk, message 𝑚, signature

𝜎 , tag T, and key converter𝜔 ∈ Z∗𝑝 , return a new signature𝜎 ′

s.t.Verify(vk′,T,𝑚, 𝜎 ′) = 1, where vk′
$← ConvertVK(vk, 𝜔)

as follows: 𝜎 ′ = (ℎ′, 𝑠 ′ = 𝑠𝜔).
The correctness of our construction follows from inspection. We

formally show the unforgeability and privacy notations.

Theorem 8 (Unforgeability). Our construction achieves the
EUF-CMA security stated in Def 2, under the hardness of GPS as-
sumption, in the random oracle model.

Theorem 9 (Privacy). Our construction is origin-hiding of Con-
vertSig, origin-hiding of RndSigTag, tag class hiding and has public
key class-hiding based on Def. 5, Def. 6, Def. 4, and Def. 3, respectively.

The proofs of Theorem 9 and Theorem 8 are provided in the full

version [47].

4 AGGREGATE MERCURIAL SIGNATURES
WITH RANDOMIZABLE TAGS

We now present an aggregate mercurial signature with random-

izable tags (ATMS). Similar to AtoSa, (see Def. 1), one can aggre-

gate mercurial signatures of different messages under different

keys under the same tag and randomize those signatures, public

keys, and tags. ATMS differs from AtoSa by in addition support-

ing equivalence classes on the message space. This further allows

the randomization of messages, leading to a feature known from

36

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Omid Mir, Balthazar Bauer, Scott Griffy, Anna Lysyanskaya, and Daniel Slamanig

structure-preserving signature on equivalence classes (SPSEQ) and,

more precisely, mercurial signatures.

To achieve the aggregation property, we follow the strategy pre-

sented by Crites et al. in context of threshold SPS [29], where

the authors define a so called Indexed Diffie-Hellman message

space M𝐻
iDH. But the main problem with this approach, as it is

defined over both groups, is that we can not define indistinguish-

able equivalence classes over G𝑘
1
×G𝑘

2
, since spanning both groups

makes DDH easy and would yield trivial linkability. Note that given

both ((𝑀1, 𝑀2), (𝑁1, 𝑁2)) and ((𝑀 ′
1
, 𝑀 ′

2
), (𝑁 ′

1
, 𝑁 ′

2
)), one can easily

link them together by checking that 𝑒 (𝑀1, 𝑁
′
2
) = 𝑒 (𝑀2, 𝑁

′
1
) and

𝑒 (𝑀 ′
1
, 𝑁2) = 𝑒 (𝑀 ′

2
, 𝑁1) hold. So we adaptM𝐻

iDH and define a new

message space called a Tag-based DHmessage spaceM𝐻
TDH and its

corresponding EQ relation. We essentially define one equivalence

class per group and tie them together via the message, the tag, and

an index obtained via some auxiliary information (similar to the aux
in the case of AtoSa). Indeed we adapt the Diffie-Hellman message

spaceMDH to a Tag-based DH message spaceM𝐻
TDH for a tuple

(aux, ℎ,T, 𝑀, 𝑁), which includes a tag T with auxiliary data aux
(instead of the 𝑖𝑑).

This new message space then allows us to aggregate and de-

fine an equivalence (EQ) relation which gives an indistinguishable

message space.

4.1 Formal Definitions
We begin our definitions by introducing Tag-based DH message

spaceM𝐻
TDH and give an instantiation in the random oracle model

(ROM). Then we define a new EQ relation regarding this message

spaceM𝐻
TDH, and finally, we define our new primitive ATMS.

A Tag-based DHmessage space. We adapt the message indexing

technique introduced by [29] (cf. Def. 2) to tags:

Definition 10 (A Tag-based DH message space (M𝐻
TDH)). Let 𝐻

be a random oracle. For the aux and tag T = (ℎ𝜌𝑖)𝑖∈[𝑘] , we define
M𝐻

TDH as a tag based DH message space, if the following property

hold: For the messages vector (M,N) = (𝑀1, . . . , 𝑀𝑘 , 𝑁1, . . . , 𝑁𝑘)
there exists𝑚𝑖 ∈ Z𝑝 s.t. for each tuple (aux,𝑇𝑖 = ℎ𝜌𝑖 , 𝑀𝑖 = 𝑇𝑚𝑖

𝑖
, 𝑁𝑖 =

𝑃𝑚𝑖), the following holds: 𝑒 (𝑀𝑖 , 𝑃) = 𝑒 (𝑇𝑖 , 𝑁𝑖).
We provide an instantiation in Fig. 2. Let us assume WLOG a mes-

sage vector with the length 𝑘 = 2 as m = (𝑚1,𝑚2), this can be

generalized to any length 𝑘 > 1.

M𝐻
TDH (T = (ℎ𝜌1 , ℎ𝜌2), aux,m) :
• ℎ ← 𝐻 (aux)
• for 𝑖 ∈ [2]:

– 𝑀𝑖 ← ℎ𝑚𝑖𝜌𝑖

– 𝑁𝑖 ← 𝑃𝑚𝑖

• return (M,N)

𝐻 (aux) :
• If𝑄𝐻 [aux] =⊥:
• 𝑟 $← Z𝑝
• 𝑄𝐻 [aux] ← 𝑃𝑟 :=

ℎ

• return𝑄𝐻 [aux]

Figure 2: Tag based Diffie-Hellman message space in ROM

Equivalence relations (EQ) overM𝐻
TDH. Let the message space

M𝐻
TDH be defined as (M,N) = (𝑀1,𝑀𝑘 , 𝑁1, . . . , 𝑁𝑘) ∈ (G∗1)

𝑘 ×
(G∗

2
)𝑘 such that for (ℎ,T), and 𝑖 ∈ [𝑘]: 𝑒 (𝑀𝑖 , 𝑃) = 𝑒 (𝑇𝑖 , 𝑁𝑖). Now

we can define a family of equivalence relations IR
ℓ
so that for any

ℓ with 1 < 𝑘 ≤ ℓ . We define the following equivalence relation

RTDH ∈ IRℓ and the equivalence class [(M,N)]RTDH of a message

vector with size 𝑘 . More concretely, for a fixed bilinear group BG
and (𝑘, ℓ), we define RTDH ∈ IRℓ as follows:

Definition 11 (Equivalence relations ofM𝐻
TDH message spaces). If

vectors of a pair (M,N) ∈ (G∗
1
)𝑘 × (G∗

2
)𝑘 is a message vector from

M𝐻
TDH, then the equivalence relations [(M,N)]RTDH defined as

RTDH =

{
(M,N), (M′,N′) ∈ (G∗

1
× G∗

2
)𝑘 × (G∗

1
× G∗

2
)𝑘 ⇔ ∃(`,𝜐) ∈ Z∗𝑝 :

M′ = M`𝜐 ,N′ = N𝜐

}
Note that the EQ relation for an aggregate signature on a set of

vectorsM = ((M𝑗 ,N𝑗))𝑗 ∈[ℓ] is the family (set) of relation as above,

while all vectors use the same randomnessM = ((M`𝜐

𝑗
,N𝜐

𝑗
))𝑗 ∈[ℓ] .

For instance, the 𝑗 ’th message vector (M𝑗 ,N𝑗) ∈ [(M,N)]R 𝑗

TDH
is

in the class R 𝑗TDH ∈ IR
ℓ
and if one more signature-message pair is

added to the set, we have R 𝑗+1TDH ∈ IR
ℓ
, where 𝑗 + 1 < ℓ . Moreover,

we consider the EQ relation for verification keys vk and Tag similar

to AtoSa and indicate as Rvk and R𝜏 as stated in Def. 3.1. We again

denote by T the space of all tags and present the ATMS in Def. 12.

Definition 12 (Aggregate Mercurial Signatures with Randomizable
Tag (ATMS)). An ATMS scheme, associated with the parameterized

equivalence relations IR
ℓ
, RTDH, R𝜏 and Rvk, and also message

spaceM𝐻
TDH consists of the algorithms:

Setup(1_) → pp: On input the security parameter _, output the

public parameters pp.
KeyGen (pp) → (sk, vk): On input the public parameters pp, out-

put a key pair (sk, vk).
VKeyGen (sk): On input a secret key sk, output a verification key

vk.
GenAuxTag(𝑆) → (aux𝑗 , (𝜏,T)): Given a set 𝑆 =

((
M𝑗 ,N𝑗

)
, vk𝑗

)
𝑗 ∈[𝑛]

of messages and keys, output auxiliary data aux𝑗 and a tag

pair (𝜏,T) where 𝜏 is the secret part and T is the public part

of tag and all vk𝑗 should be distinct.

Sign(sk𝑗 , 𝜏, aux𝑗 , (M𝑗 ,N𝑗)) → 𝜎 𝑗 : On input a secret key sk𝑗 , tag’s
secret 𝜏 , auxiliary data aux𝑗 and message vector (M𝑗 ,N𝑗) ∈
M𝐻

TDH, output a signature 𝜎 𝑗 under the 𝜏 , vk𝑗 and (M𝑗 ,N𝑗).
Verify(vk𝑗 ,T, (M𝑗 ,N𝑗), 𝜎 𝑗) → {0, 1}: Given a verification key vk𝑗 ,

tag’s public T, message vector (M𝑗 ,N𝑗) and signature 𝜎 𝑗 ,

output 1 if 𝜎 𝑗 is valid relative to vk𝑗 , (M𝑗 ,N𝑗) and T, and 0

otherwise.

VerifyTag(T, 𝜏, 𝜎) → {0, 1}: Given a tag’s public T, tag’s secret
signature 𝜎 , output 1 if T is valid relative to 𝜎 , and 𝜏 , and 0

otherwise.

AggrSign(T, (vk𝑗 , (M𝑗 ,N𝑗), 𝜎 𝑗)ℓ𝑗=1) → 𝜎 ′ Given ℓ signed mes-

sages (M𝑗 ,N𝑗) in 𝜎 𝑗 under vk𝑗 for 𝑗 ∈ [ℓ] and the same tag

T, output a signature𝜎 on themessagesM = ((M𝑗 ,N𝑗))𝑗 ∈[ℓ]
under the tag T and verification key avk = (vk𝑗)𝑗 ∈[ℓ] .

VerifyAggr(avk,T,M, 𝜎) → {0, 1}: Given a verification key avk,
tag T, messages M and signature 𝜎 , output 1 if 𝜎 is valid

relative to avk,M and T, and 0 otherwise.

ConvertTag(T, `) → T′: On input a tag T and randomness `, out-

put a randomized tag T′ ∈ [T]R𝜏 (i.e., a new representative

of tag).

37

Aggregate Signatures with Versatile Randomization and Issuer-Hiding Multi-Authority Anonymous Credentials CCS ’23, November 26–30, 2023, Copenhagen, Denmark

ChangRep((M,N), 𝜎,T, (`,𝜐)) → (𝜎 ′,T′): On input a represen-

tative (M,N) ∈ [(M,N)]RTDH , T ∈ [T]R𝜏 , signature 𝜎 and

randomness (`,𝜐), return a new signature ((M′,N′),T′, 𝜎 ′),
where M′ = M`𝜐 ∧ N′ = N𝜐 ∈ [(M,N)]RTDH and T′ ←
ConvertTag(T, `) are the new representatives and 𝜎 ′ is valid
for (M′,N′) and [T]R𝜏 .
This will also apply for a set representativeM such that one

can get a new set representativeM′ by scaling all message

with the same (`,𝜐).
ConvertSK(sk, 𝜔) → sk′: On input a sk and key converter 𝜔 ,

output a new secret key sk′.
ConvertVK(vk, 𝜔) → vk′: On input a vk and key converter 𝜔 ,

output a new public key vk′.
ConvertSig(vk,T, (M,N), 𝜎, 𝜔) → 𝜎 ′: On input a vk, message vec-

tor (M,N), signature with tag (𝜎,T), and key converter𝜔 , re-
turn a new signature 𝜎 ′ such thatVerify(vk′,T, (M,N), 𝜎 ′) =
1, where vk′ ← ConvertVK(vk, 𝜔).

The VerifyTag and VKeyGen are only used for the security game.

4.2 Security Definitions
Correctness. As usual we require that honest signatures verify as

expected, but need to consider all the randomizations as well as the

aggregation.

Unforgeability. The unforgeability game follows the unforgeabil-

ity definition of AtoSa (see Def. 2). It is slightly modified to fit

with our additional EQ relation (Def. 11), i.e., unforgeability is de-

fined with respect to message classes and in addition need to check

VerifyTag.

Definition 13 (Unforgeability). An ATMS is unforgeable if for all

PPT A having access to the oracle OSign() there exists a negligi-
ble function 𝜖 s.t: Pr[ExpUnfATMS,A (_) = 1] ≤ 𝜖 (_) where the

experiment ExpUnfATMS,A (_) is defined in Fig. 3 and 𝑄 is the set

of queries that A has issued to OSign() .

Privacy guarantees. Similar as in Section 3, we consider the

privacy notations Origin-hiding of ConvertSig, and Public key class-
hiding (it is the same as Def. 3). We note that all definitions can

be updated due toM𝐻
TDH message space (receptively EQ relations

ofM𝐻
TDH) instead of the vector M. Origin-hiding of ConvertSig

definition can be updated straightforwardly as follows:

Definition 14 (Origin-hiding of ConvertSig for ATMS). For all _,
and pp ∈ Setup(1_), for all (vk, (M,N), 𝜎,T, 𝜔,𝜐, `), if Verify(vk,T,
(M,N), 𝜎) = 1, and (𝜔,𝜐, `) ∈ (Z∗𝑝)3, then𝜎 ′ ← ChangRep((M,N),
ConvertSig(vk,T, (M,N), 𝜎, 𝜔),T, (𝜐, `)) outputs a uniformly ran-

dom element in the respective space s.t.Verify(vk′,T′, (M′,N′), 𝜎 ′) =
1, where vk′

$← ConvertVK(vk, 𝜔) outputs a uniformly random el-

ement of [vk]Rvk .

However, since this is a variant of SPSEQ we consider the adap-
tion property similar to [35] below, an additional property which

guarantees that signatures from ChangRep and Sign are identically

distributed. This definition also covers Origin-hiding ofConvertTag.

Definition 15 (Perfect Adaption of Signatures). An ATMS scheme

perfectly adapts signatures if for all (vk,T, (M,N), 𝜎, `,𝜐)with (M,N) ∈
M𝐻

TDH ∧ Verify(vk,T, (M,N), 𝜎) = 1 ∧ (`,𝜐) ∈ Z∗𝑝 we have that

the output of (𝜎 ′,T′) ← ChangRep(𝜎, (M,N),T, (`,𝜐)) is a uni-

formly random element in the respective space, conditioned on

Verify(vk,T` , (M`𝜐 ,N𝜐), 𝜎 ′) = 1.

4.3 Construction
Our construction is inspired by the message-indexed SPS by Crites

et al. [29], which is a variant of Ghadafi’s SPS [37]. We use the tag-

based message definitionM𝐻
TDH (Def. 10) instead of the message-

indexed (Def. 2). For simplicity, we assume a message vector with

the length 𝑘 = 2 as (M,N) = ((𝑀1, 𝑀2), (𝑁1, 𝑁2)), but this can be

straightforwardly generalized to any length 𝑘 > 1. Similar to the

construction in Section 3.3, we again need aux binding to make this

particular construction work.

Definition 16 (Aux binding for ATMs). We split aux into a preim-

age and an opening: (𝑐, 𝑜). For all PPTA, and pp← Setup(1_) and
(sk, vk) ← VKeyGen(1_) there exists a negligible 𝜖 such that:

Pr

(aux = (𝑐, 𝑜), aux = (𝑐′, 𝑜′), 𝜏, (M,N), 𝜏 ′, (M′,N′)) ← A(vk) ;
VerifyAux(sk, (𝑐, 𝑜), 𝜏, (M,N)) = 1

∧ VerifyAux(sk, (𝑐′, 𝑜′), 𝜏 ′, (M′,N′)) = 1∧
𝑐 = 𝑐′ ∧ (𝜏 ≠ 𝜏′ ∨ (M,N) ≠ (M′,N′))

 ≤ 𝜖 (_)
Synchronicity assumption. Same as in Section 3.3, instead of

fixing messages and verification keys in aux, we can make same

assumption as in synchronized aggregate signatures and simply set

𝑐 = 𝑃𝜌1 | |𝑃𝜌2 in the construction below and Definition 7 is trivially

satisfied.

Our construction. The construction is as follows:

Setup(1_): Run BG = (𝑝,G1,G2,G𝑇 , 𝑃, 𝑃, 𝑒) ← BGGen(1_) with
a prime number order 𝑝 , where 𝑃 a generator of G1, 𝑃 a

generator of G2 and 𝐻 a hash function: 𝐻 : {0, 1}∗ → G1,
output pp = (G1,G2,G𝑇 , 𝑃, 𝑃, 𝐻).

KeyGen(pp): Given pp, sample sk = (𝑥,𝑦1, 𝑦2, 𝑧1, 𝑧2)
$← (Z∗𝑝)5,

and vk = (𝑋 = 𝑃𝑥 , 𝑌1 = 𝑃
𝑦1 , 𝑌2 = 𝑃

𝑦2 , 𝑍1 = 𝑃
𝑧1 , 𝑍2 = 𝑃

𝑧2).
VKeyGen (sk): Given sk = (𝑥,𝑦1, 𝑦2, 𝑧1, 𝑧2), return vk = (𝑋 =

𝑃𝑥 , 𝑌1 = 𝑃
𝑦1 , 𝑌2 = 𝑃

𝑦2 , 𝑍1 = 𝑃
𝑧1 , 𝑍2 = 𝑃

𝑧2).
GenAuxTag(𝑆): Given a set 𝑆 = {(M𝑗 ,N𝑗 , vk𝑗)𝑗 ∈[𝑛] }, choose (𝜌1, 𝜌2)

$← Z𝑝 , set 𝜏 = (𝜌1, 𝜌2),T = (𝑇1 = ℎ𝜌1 ,𝑇2 = ℎ𝜌2), and
𝑐 =

(
𝑃𝜌1 | |𝑃𝜌2 | | (N𝑗 , vk𝑗)𝑗 ∈[𝑛]

)
, where ℎ = 𝐻 (𝑐) and aux𝑗 =

(𝑐, 𝑜 =⊥).
VerifyAux(sk, aux, (𝜏1, 𝜏2), ((𝑀1, 𝑀2), (𝑁1, 𝑁2))) : Extract (𝑇1,𝑇2),

parse aux as (𝑐, 𝑜). Check that ((M,N), [VKeyGen(sk)]) ∈
aux (i.e., 𝑐 = ...| | ((M,N), [VKeyGen(sk)]) | |...) s.t no other

vk in aux related to sk and check that (𝑇1,𝑇2) = (ℎ𝜏1 , ℎ𝜏2) .
Compute ℎ := 𝐻 (𝑐) . Output ∧2

𝑖=1 𝑒 (𝑀𝑖 , 𝑃) = 𝑒 (ℎ𝜏𝑖 , 𝑁𝑖).
Sign

(
sk𝑗 , 𝜏, aux𝑗 , (M,N)

)
: Given a sk𝑗 , 𝜏, aux𝑗 = (𝑐,⊥), and mes-

sage (M,N) = ((𝑀1, 𝑀2), (𝑁1, 𝑁2)) ∈ M𝐻
TDH. Parse 𝜏 as

(𝜌1, 𝜌2). Run VerifyAux(sk, aux, 𝜏, (M,N)) and verify that

this outputs 1. If so compute ℎ = 𝐻 (𝑐) and output a sig-

nature as:

𝜎 = (ℎ,𝑏 =
∏
𝑗 ∈[2]

ℎ𝜌 𝑗 ·𝑧 𝑗 , 𝑠 = (ℎ𝑥 ·
∏
𝑗 ∈[2]

𝑀
𝑦 𝑗
𝑗
)) .

Verify(vk,T, (M,N), 𝜎): Given a vk, tag T = (𝑇1 = ℎ𝜌1 ,𝑇2 = ℎ𝜌2),
message (M,N) and signature 𝜎 = (ℎ,𝑏, 𝑠) return 1 if the

38

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Omid Mir, Balthazar Bauer, Scott Griffy, Anna Lysyanskaya, and Daniel Slamanig

ExpUnfATMS,A (_) :

• 𝑄 := ∅; pp← Setup(1_) ;
• (vk′, sk′) ← KeyGen(pp) ;
• (𝑗′, avk =

(
vk𝑗

)
𝑗∈[ℓ] , ask = (sk𝑗)𝑗∈[ℓ]\𝑗′ ,M∗ = ((M∗𝑗 ,N

∗
𝑗
))𝑗∈[ℓ] ,T∗, 𝜏∗, 𝜎∗) ← AO (pp, vk′)

• (vk∗
𝑗
:= VKeyGen(sk𝑗))𝑗∈[ℓ], 𝑗≠𝑗′ Return:

©«
VerifyAggr

(
avk,T∗, 𝜎∗,M∗

)
= 1 ∧ VerifyTag(T∗, 𝜎∗, 𝜏∗) ∧ ∀𝑗 ∈ [ℓ], 𝑗 ≠ 𝑗′ :

[vk∗𝑗]Rvk = [vk𝑗]Rvk ∧ [vk
′]Rvk = [vk𝑗′]Rvk∧

∀((M,N),T) ∈ 𝑄 : [(M,N)]RTDH ≠ [(M∗𝑗 ,N
∗
𝑗)]RTDH ∨ [T]R𝜏 ≠ [T∗]R𝜏

ª®®®¬

OSign ((𝜏,T), aux, (M,N)) :
• 𝜎 ← Sign(sk′, 𝜏, aux, (M,N))
• 𝑄 = 𝑄 ∪ {(M,N),T},

Return 𝜎

Figure 3: Experiment ExpUnfATMS,A (_)

following holds and 0 otherwise:

𝑒 (ℎ,𝑋)
∏
𝑗 ∈[2]

𝑒 (𝑀𝑗 , 𝑌𝑗) = 𝑒 (𝑠, 𝑃) ∧ 𝑒 (𝑏, 𝑃) =
∏
𝑗 ∈[2]

𝑒 (𝑇𝑗 , 𝑍 𝑗)

2∧
𝑗=1

𝑒 (𝑇𝑗 , 𝑁 𝑗) = 𝑒 (𝑀𝑗 , 𝑃)

VerifyTag(T, 𝜏, 𝜎): Given 𝜏 = (𝜏1, 𝜏2), 𝜎 = (ℎ,𝑏, 𝑠), output 1 if

𝑇𝑖 = ℎ
𝜏𝑖
for all 𝑖 ∈ {1, 2}, and 0 otherwise.

AggrSign(T, (vk𝑖 , (M𝑖 ,N𝑖), 𝜎𝑖)ℓ𝑖=1): Given ℓ valid signatures 𝜎𝑖 =

(ℎ,𝑏𝑖 , 𝑠𝑖) for (M𝑖 ,N𝑖) under vk𝑖 and the same tag T for 𝑖 ∈
[ℓ], return ⊥ if all ℎ are not the same, else output a signature

𝜎 on the messagesM = ((M𝑖 ,N𝑖))𝑖∈[ℓ] under the tag T and

aggregated verification key avk = (vk1, . . . , vkℓ) as follows:
𝜎 =

(
ℎ,𝑏 ′ =

∏ℓ
𝑖=1 𝑏𝑖 , 𝑠

′ =
∏ℓ
𝑖=1 𝑠𝑖

)
.

VerifyAggr(avk,T,M, 𝜎): Given avk = (vk1, . . . , vkℓ), tagT = (𝑇1 =
ℎ𝜌1 ,𝑇2 = ℎ

𝜌2), messagesM and signature 𝜎 = (ℎ,𝑏, 𝑠), check
if the following checks holds and 0 otherwise:∏

𝑖∈[ℓ]
𝑒 (ℎ, �̂�𝑖)

∏
𝑗∈[2]

𝑒 (𝑀𝑖 𝑗 , 𝑌𝑖 𝑗) = 𝑒 (𝑠, 𝑃) ∧ 𝑒 (𝑏, 𝑃) =
∏
𝑖∈[ℓ]

∏
𝑗∈[2]

𝑒 (𝑇𝑗 , 𝑍𝑖 𝑗)∧
𝑗∈[2]∧𝑖∈[ℓ]

𝑒 (𝑇𝑗 , 𝑁𝑖 𝑗) = 𝑒 (𝑀𝑖 𝑗 , 𝑃)

ConvertTag(T, `) → T′: On input a tag T and randomness `,

output a randomized tag T′ = (ℎ𝜌1` , ℎ𝜌2`).
ChangRep(𝜎, (M,N),T, (`,𝜐)): On input a representative (M,N)

∈ [(M,N)]RTDH , T ∈ [T]R𝜏 , signature 𝜎 = (ℎ,𝑏, 𝑠), and
(`,𝜐) ∈ (Z∗𝑝)2, output:

𝜎 ′ =
(
ℎ′ ← ℎ`𝜐 , 𝑏 ′ ← 𝑏` , 𝑠 ′ ← 𝑠`𝜐 ,T′ ← ConvertTag(T, `)

)
,

which is a valid signature for new representatives (M`𝜐 =

M′,N𝜐 = N′) ∈ [(M,N)]RTDH and T′ = (ℎ𝜌1` , ℎ𝜌2`) ∈
[T]R𝜏 .

ConvertSK(sk, 𝜔) → sk′: On input a sk and key converter𝜔 ∈ Z∗𝑝 ,
output a new secret key as sk′ = sk · 𝜔 .

ConvertVK(vk, 𝜔) → vk′: On input a vk and key converter 𝜔 ∈
Z∗𝑝 , output vk

′ = vk𝜔 = (𝑋𝜔 , 𝑌𝜔
1
, 𝑌𝜔

2
, 𝑍𝜔

1
, 𝑍𝜔

2
).

ConvertSig(vk, (M,N), 𝜎,T, 𝜔) → 𝜎 ′: On input a vk, message

(M,N), signature 𝜎 with tag T, and key converter 𝜔 ∈ Z∗𝑝 ,
returns a new signature 𝜎 ′ as: 𝜎 ′ = (ℎ,𝑏𝜔 , 𝑠𝜔).

Note that one can reduce the number of paring operations in

VerifyAggr by using batching verification techniques (cf. [34]).

Theorem 17 (Privacy). Our construction is origin-hiding of Con-
vertSig (Def. 5), public key class-hiding (Def. 3), and provides perfect
adaption of signatures (Def. 15).

Theorem 18 (Unforgeability). Our construction is EUF-CMA
secure regarding the definition 13 in the generic group model for
Type-III bilinear groups.

The proofs of Theorem 18 and Theorem 17 are provided in the full

version [47].

5 APPLICATION TO AC
As our core application we present Issuer-Hiding Multi-Authority

Anonymous Credentials (IhMA). In a multi-authority setting [40],

credentials come from ℓ-different credential issuers. Naively, the

showing of credentials requires ℓ-independent credentials to be

shown. This can be overcome [40] by leveraging aggregate signa-

tures, obtaining a compact AC systemwith compact-size credentials,

and showing costs. However, verifying a user’s credentials needs

knowledge of all issuers’ verification keys, which might violate

user privacy. Thus, in the vein of [6] we introduce the issuer-hiding

property for multi-authority credentials. We recall that here the

verifier can define a set of acceptable issuers in an ad-hoc manner.

Then a user can prove that the subset of credentials shown were

issued by acceptable issuers without revealing which credential cor-

responds to which issuer. This is an important feature, especially in

multi-authority settings where disclosing issuer keys can reveal too

much information compared to a single issuer setting and already

lead to identification of the user.

5.1 Formal Definition
Our definition supports multiple users (𝑢 𝑗)𝑗 ∈[ℓ] and multiple cre-

dential issuers (CI𝑗)𝑗 ∈[ℓ] . An issuer can generate a key pair of secret
and verification keys (𝑖sk, 𝑖vk) via IKeyGen(). Similarly, users runs

UKeyGen() to generate a user key pair (𝑢sk, 𝑢vk). Each issuer can

then issue a credential (cred) on an attribute (𝑎) or attribute-set

(A) to a user who can verify the received credential locally. Indeed,

when we use AtoSa, we consider an attribute 𝑎 (i.e., the attribute

set includes only one attribute); when we use ATMS, we consider
an attribute set, A. We use the notation A, to define security and

formal definitions for consistency of definitions.

Users can then use the CredAggr algorithm to aggregate all cre-

dentials and create a single credential valid for all attributes and

verification keys. To define the set of accepted issuers, a verifier

generates a key-policy 𝑝𝑜𝑙 usingGenPolicies (it is known as Presen-

tation policies in [6]), which can be checked for well-formedness by

39

Aggregate Signatures with Versatile Randomization and Issuer-Hiding Multi-Authority Anonymous Credentials CCS ’23, November 26–30, 2023, Copenhagen, Denmark

everyone. Finally, with an aggregate credential (disclosing a subset

attributes 𝐷) and some key-policy 𝑝𝑜𝑙 from the verifier, a user uses

Show to derive a proof, which a verifier can verify.

Definition 19 (Issuer-Hiding Multi-Authority Credentials (IhMA)).
An IhMA is defined by the following algorithms/protocols:

• Setup: On input a security parameter _, output public parameters

pp (implicit input to all algorithms) .

• IKeyGen: Generate a key pair (𝑖sk, 𝑖vk) for an issuer 𝑖 .

• UKeyGen: Take a message-key set 𝑆 , generate a user key pair

(𝑢sk, 𝑢vk) which acts as user’s identity and auxiliary data aux.
• Issuance: In this protocol, an issuer 𝑖 associated to (𝑖sk, 𝑖vk) cre-
ates a credential cred on an attributes-set A to a user 𝑢 associated

to (𝑢sk, 𝑢vk) as follows:
[CredObtain(𝑢sk, 𝑖vk,A) ↔ CredIssue(𝑖sk, 𝑢vk,A)] → cred

• CredAggr: Take as input a 𝑢sk of user and a list of credentials

(𝑖vk,A𝑖 , cred𝑖) for 𝑖 ∈ [ℓ] and output an aggregated credential

cred of attributes-set {A𝑖 }𝑖∈[ℓ] :

CredAggr
(
𝑢sk, {(𝑖vk,A𝑖 , cred𝑖)}𝑖∈[ℓ]

)
→ cred

• GenPolicies: A verifier with the secret key 𝑣sk can define policies

defining sets of issuers {ivk}𝑖∈[𝑛] they are willing to accept for

certain Show sessions, we have:

GenPolicy(𝑣sk, {ivk}𝑖∈[𝑛]) → 𝑝𝑜𝑙, where 𝑛 ≤ ℓ
Note that 𝑝𝑜𝑙 defines the sets of accepted issuers by a verifier, but

not which attributes a verifier needs to disclose. Thus, 𝑝𝑜𝑙 can

be reused for multiple contexts, reducing the number of policies.

• Show: In this protocol, a user 𝑢 with (𝑢sk, 𝑢vk) runs CredShow
and interacts with a verifier running CredVerify to prove that

she owns a valid credential cred on disclosed attribute sets 𝐷 ⊆
{A𝑖 }𝑖∈[ℓ] issued respectively by one or some credential issuers

in 𝑝𝑜𝑙 :[CredShow(𝑢sk, 𝑝𝑜𝑙, {(𝑖vk,A𝑖)}𝑖∈[ℓ] , cred, 𝐷) ↔
CredVerify(𝑝𝑜𝑙, (𝑖vk𝑖)𝑖∈[ℓ] , 𝐷)

]
→ (0, 1)

Due to the lack of space we refer to the full version [47] for our

security model.

5.2 Constructions
Now we are ready to describes our two constructions of IhMA, the
first being based on AtoSa (Def. 1) and SPSEQ [35] and the second

based on ATMS (Def. 12), a set commitment scheme SC [35, 48], and

SPSEQ . To enhance users’ privacy and prevent issuers from learn-

ing attributes issued by other issuers, we change how aux for the
signatures is computed. In particular, we commit to the attributes

(messages) instead of including them in plaintext. For example, this

can be achieved using a hash-based commitment scheme, where a

commitment value 𝑐 is generated by computing 𝑐 := 𝐻 ′(𝑎, 𝑟) with
𝐻 ′ being a hash function modeled as a random oracle, 𝑎 being the

attributing being committed to, and 𝑟 a sufficiently large random

value. When issuing a credential, users can reveal the relevant mes-

sage (attribute) 𝑎, the opening 𝑜 , and the commitment value 𝑐 . The

signer then verifies if the 𝑐 is correct for 𝑎 and 𝑜 before issuing the

corresponding credential. We modify GenAuxTag(S) and VerifyAux
in AtoSa and ATMS as follows:

• GenAuxTag(S): Given 𝑆 = {(𝑚 𝑗 , vk𝑗)𝑗 ∈[ℓ] }, choose (𝜌1, 𝜌2)
$←

Z𝑝 , set 𝑐 = 𝑃
𝜌1 | |𝑃𝜌2 | | (𝑐𝑚 𝑗

| |vk𝑗)𝑗 ∈[ℓ] , where 𝑐𝑚 𝑗
is a hash com-

mitment to 𝑗 ’th message and all vk are distinct. Output aux =

(𝑐, 𝑜 𝑗) and tag 𝜏 = ((𝜌1, 𝜌2), (𝑇1 = ℎ𝜌1 ,𝑇2 = ℎ𝜌2)) with ℎ = 𝐻 (𝑐).
• VerifyAux(sk, aux, 𝜏,𝑚 𝑗) Parse aux as (𝑐, 𝑜). Check that 𝜏 ∈ 𝑡 (i.e.,
that 𝑐 has the form: 𝑃𝜌1 | |𝑃𝜌2 | |...) check that 𝑐 𝑗 exists such that

(𝑐 𝑗 , vk) ∈ 𝑡 and Open(𝑐 𝑗 , 𝑜,𝑚 𝑗) = 1 where vk is a verification

key related to sk (in the same equivalence class). Also check that

no other vk in aux has the same equivalence class as sk.

In our IhMA schemes, tags are user identities and are used to verify

the user before issuing attributes.

5.2.1 AtoSa based IhMA Construction in Fig. 4. Here, every issuer

creates a credential (signature) 𝜎1𝑖 on an attribute 𝑎𝑖 for the user 𝑢

with tag 𝜏 (and the respective aux) verified with 𝑖vk by the AtoSa
scheme. We cannot reveal the secret part of the tag to signers

(issuers) as this would violate the security of the user. To obtain

a credential through the Issuing protocols, a user is required to

disclose the public parts of tag as identity to the issuer and then

authenticate their identity via a ZKPOK.

Interactive signing. We can adapt the signing in a way that sign-

ers (issuers) don’t learn (𝜌1, 𝜌2) as follows:

• 𝑢 sends (aux, (ℎ,T), 𝜋), where aux = 𝑃𝜌1 | |𝑃𝜌2 | | (𝑐𝑚𝑖
, vk𝑖)𝑖∈[𝑛]

and

𝜋 = ZKPOK {(𝜌1, 𝜌2) : 𝑇1 = ℎ𝜌1 ∧𝑇2 = ℎ𝜌2 ∧ 𝑢1 = 𝑃𝜌1 ∧ 𝑢2 = 𝑃𝜌2 }.
• Signer (issuer) checks if proof 𝜋 is valid and if so outputs

(ℎ′ = ℎ𝜌1 , 𝑠 = (ℎ𝜌1)𝑥 𝑗+𝑦1𝑗 ·𝑚 𝑗 · (ℎ𝜌2)𝑦2𝑗)

We note that this interactive signing outputs signatures that are

identical to that output by Sign and this is used in Issuance. For the
Show protocol, we assume that verifier(s) have signed all accepted

issuer keys using an SPSEQ scheme [35]. A user 𝑢 can take 𝑝𝑜𝑙 and

the set of disclosed credentials 𝐷 , aggregates the respective cre-

dentials (signatures) and randomizes the aggregated signature and

tag. We note that alternatively, a user could already after Issuance
aggregate all credentials to a constant-size (single) credential and

then in Show protocol can provide a ZKPOK of the signature and

selectively disclose the required attributes (as originally done for

PS signatures in [52]). This also yields constant size credentials as

noted in Table 1. We stick with the former approach here as it is

more efficient for showing credentials, but one can easily switch

to the other option. Moreover, In IhMAAtoSa, only one attribute

per vk can be issued. However, if an issuer needs to issue multiple

attributes, they can easily generate multiple vks.
To hide the issuer’s keys, 𝑢 randomizes them using a random 𝜔

and adapts the signature for these randomized keys usingConvertSig.
So far, we have created a compact randomized credential (proof)

for attributes in 𝐷 where issuer verification keys of this signature

are hidden. The next step is to show that these random verifica-

tion keys correspond to those keys signed by the verifier (using

SPSEQ signatures) in 𝑝𝑜𝑙 . In this direction, 𝑢 first collects signa-

tures in 𝑝𝑜𝑙 according to issuer keys that are needed in the proof.

Then 𝑢 runs ChangRep of SPSEQ to randomize messages (which

are issuer public keys) and signatures with the same randomness

𝜔 used in convert, i.e., randomized keys. Randomized issuer keys

in a credential match with the messages signed by verifier in 𝑝𝑜𝑙 .

40

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Omid Mir, Balthazar Bauer, Scott Griffy, Anna Lysyanskaya, and Daniel Slamanig

Finally, 𝑢 uses the randomized tag as a pseudonym for communica-

tion and provides a ZKPOK of secret part of tag (secret keys and

randomness) used in the credentials.

5.2.2 ATMS based IhMA Construction in Fig. 5. We use the frame-

work in [35] in which one can combine mercurial or SPSEQ with a

set commitment such that a credential is a signature on set com-

mitment SC. One can then open a subset of messages from this

commitment while randomizing both set commitment and signa-

ture together. This provides unlinkability and selective disclosure

at the same time (see [35]). Unlike the previous construction, we

can aggregate credentials immediately after receiving them and

have a constant-size credential but still avoid zero-knowledge proof

of a signature in showing protocol (because of compatibility of EQ

message relation of ATMS and SC randomization).

In the Show protocol, similar to the previous construction, 𝑢

first collects the signatures required to prove the attributes 𝐷 from

𝑝𝑜𝑙 . Then, for issuer-hiding similar to AtoSa it randomizes these

SPSEQ signatures usingChangRep of SPSEQ with𝜔 . For preparing

a proof for 𝐷 , a user (𝑢) randomizes issuer verification keys in

credentials using ConvertVK and converts the ATMS signature

using ConvertSigwith𝜔 . Subsequently,𝑢 randomizes the signature

with a tag using ChangRep. Finally, 𝑢 opens a subset of attributes

𝐷 from the set commitments. Now a verifier can check if these

attributes are in the set commitments signed by some issuers in

𝑝𝑜𝑙 . Same as in the first construction, since all issuer keys are

randomized due to the SPSEQ signature the issuers are hidden. We

run a ZKPOK to prove that 𝑢 knows all secret values related to the

randomized tag like before. The only point left is the signing of set

commitments, which is defined in one source group in [35], but we

need both groups. Subsequently, we show how one can combine

set commitments with a tag-based DH message space.

Set commitments for M𝐻
TDH. The main point here is that we

need to convert the set commitments space toM𝐻
TDH, which can

be smoothly done as follows: In addition to credentials issuers, we

also define a Trusted Authority TA who holds the trapdoor 𝛼 of

the set commitment scheme and can create commitments for the

attributes of users who want to register in the system. WLOG, let

us for simplicity assume only one attribute set A = (A, [), where
we have a fixed constant [which is never opened in practice and it

is the same for all (it is just required for anonymity). It works as:

• The user sends a tag T and aux to TA.
• TA computes a set commitment in both groups (C = (𝐶1,𝐶2), Ĉ =

(𝐶1,𝐶2)) (i.e., (M,N)) with tag, where (𝐶2,𝐶2) are dummy com-

mitments for a fixed constant [and the other one for the (real)

attribute set A. More precisely: TA computes the commitment

in G1 to base ℎ𝜌𝑖 and the one in G2 in base 𝑃 : 𝐶1 = (ℎ𝑓A (𝛼))𝜌1 ,
𝐶1 = 𝑃 𝑓A (𝛼) , 𝐶2 = (ℎ[)𝜌2 and 𝐶2 = 𝑃[such that such that we

have

∧
𝑖∈[2] 𝑒 (𝑇𝑖 ,𝐶𝑖) = 𝑒 (𝐶𝑖 , 𝑃), where ℎ = 𝐻 (𝑐), aux = (𝑐, 𝑜),

𝑐 = 𝑃𝜌1 | |𝑃𝜌2 | | (𝑐A𝑖
| |vk𝑗)𝑗 ∈[2] , returns (C, Ĉ). Note that 𝑐A :=

𝐻 ′(A, 𝑟).
Note that 𝛼 is a trapdoor kept by TA, but TA does not need to

know (𝜌1, 𝜌2) (e.g., 𝐶𝑖 be computed as (𝑇1) 𝑓A (𝛼)). A multiparty

computation protocol can also be used to hide other user details

from TA. A user can first randomize set commitment exactly like

our tag-based message with (`,𝜐) as (C`𝜐 , Ĉ𝜐) and use𝜐 as opening

information to open any subset values from 𝐶1 and still verify as

follows: verifying the OpenSubset works 𝑒 (𝑃,𝐶1) = 𝑒 (𝑃 𝑓𝐷 (𝛼) ,𝑊).
Consequently, we do not need any fundamental change on SC
construction, and it works as stated in [48]. In our construction, we

make it explicit as:

• SC.Commit3 (A, 𝛼,T, ℎ) → ((C, Ĉ),𝑂): On input a set A = (A, [),
T and ℎ, compute a commitment: 𝐶1 = (𝑇 𝑓A (𝛼)

1
), 𝐶1 = 𝑃 𝑓A (𝛼) ,

𝐶2 = (𝑇[
2
) and 𝐶2 = 𝑃[, output ((C, Ĉ),𝑂) with 𝑂 ←⊥.

Now, we can use the same technique as AtoSa to not reveal (𝜌1, 𝜌2)
to issuers when signing the above commitments (C, Ĉ) as follows:
Interactive signing. We can adapt the signing in a way that sign-

ers (issuers) don’t learn (𝜌1, 𝜌2) as follows:
• 𝑢 sends (aux,T, (C, Ĉ), 𝜋), where
𝜋 = ZKPOK{(𝜌1, 𝜌2) : 𝑇1 = ℎ𝜌1∧𝑇2 = ℎ𝜌2∧𝑢1 = 𝑃𝜌1∧𝑢2 = 𝑃𝜌2 },
where 𝑃𝜌1 and 𝑃𝜌2 are in aux.
• Signer (issuer) checks if proof 𝜋 is valid and if so outputs

(ℎ = 𝐻 (𝑐), 𝑏 =
∏
𝑇
𝑧𝑖
𝑖
, 𝑠 = (ℎ𝑥 ·∏𝑖∈[2] (𝐶𝑖)𝑦𝑖)).

Again we note that this interactive signing outputs signatures that

are identical to that output by Sign and this is used in Issuance.

Achieving constant-size credentials. This can be achieved by

following these steps: 1) Users can obtain the (ℎ𝛼𝑖) values from
the TA instead of the commitments. 2) During the issuing phase,

users can aggregate all the credentials received from issuers. 3) The

commitments can then be recomputed using randomness and the

obtained information, eliminating the need to store them. Note that

in this case the size of the |Show| operation will become linear

with respect to 𝑁 instead of 𝐾 .

Theorem 20. The above IhMA constructions in Fig. 5 and in Fig. 4
are correct, unforgeable, anonymous, and issuer-hiding.

To prove the anonymity of ATMS, we need to define a variant

of the uber assumption, which we present in the full version [47]

along with the proof of Theorem 20. Moreover, in the full ver-

sion [47] we discuss how additional features can be obtained via

slight modifications of the so far presented approaches.

6 IMPLEMENTATION AND EVALUATION
In the following we present our evaluation based on a Python li-

brary in which we implement our primitives ATMS and AtoSa as
well as our IhMA protocols (Fig. 5 and Fig. 4). Our implementation

is based upon the bplib library
12

and petlib
13

with OpenSSL bind-

ings
14
. We use the popular pairing friendly curve BN256 which

provides efficient type 3 bilinear groups at a security level of around

100 bits. Our measurements have been performed on an Intel Core

i5-6200U CPU at 2.30GHz, 16GB RAM running Ubuntu 20.04.3.

Benchmark of Primitives. Table 2 shows the mean of the execu-

tion time of each algorithm over 500 runs such that AggrSign and

VerifyAggr are computed assuming two signers (𝑛 = 2); the other al-

gorithms are independent of 𝑛. ChR/Rnd stands for ChangRep and

signature randomization (RandSign) for the ATMS and AtoSa, re-
spectively. PC stands for Pre-Computation, and in ATMS it includes

12
https://github.com/gdanezis/bplib

13
https://github.com/gdanezis/petlib

14
https://github.com/dfaranha/OpenPairing

41

https://github.com/gdanezis/bplib
https://github.com/gdanezis/petlib
https://github.com/dfaranha/OpenPairing

Aggregate Signatures with Versatile Randomization and Issuer-Hiding Multi-Authority Anonymous Credentials CCS ’23, November 26–30, 2023, Copenhagen, Denmark

- Setup(1_) : Run ppAtoSa ← Σ1 .Setup(1_) ∧ ppSPSEQ ← Σ2 .Setup(1_) , output pp = (ppAtoSa, ppSPSEQ) . The attribute space is Z𝑝 .
- UKeyGen(pp, S) : Run ({aux𝑗 }, (𝜏,T)) ← GenAuxTag(pp, 𝑆) , and return (𝑢sk = 𝜏,𝑢vk = T, {aux𝑗 }) to 𝑢.
- IKeyGen(pp) : Generate (sk, vk) $← Σ1 .KeyGen(pp) , return (𝑖sk = sk, 𝑖vk = vk) to an issuer 𝑖 .

- Issuance: On input (T, aux𝑖 , 𝑎𝑖) , 𝑢 and each issuer 𝑖 act as follows for an attribute 𝑎𝑖 :

• 𝑢 sends (T, aux𝑖 , 𝜋) , to an issuer 𝑖 , where 𝜋 is a zero knowledge proof that the user knows the secret part of the given tag.

• Issuer checks 𝜋 is valid and runs 𝜎𝑖 ← Σ1 .Sign(𝑖sk,T, aux𝑖 , 𝑎𝑖) and outputs (𝜎𝑖 , 𝑎𝑖) to 𝑢 or aborts if Sign outputs ⊥.
• 𝑢 takes (𝑖vk, cred𝑖 = (𝑎𝑖 , 𝜎𝑖))𝑖∈[ℓ] , checks Σ1 .Verify(𝑖vk, 𝑎𝑖 , cred𝑖)𝑖∈[ℓ] , and saves cred = {cred𝑖 = (𝜎𝑖 , 𝜏),A}𝑖∈[ℓ] , where A = (𝑎𝑖)𝑖∈[ℓ] .

- Gen-Policies: Generate a key pair (𝑣sk, 𝑣pk) ← Σ2 .KeyGen(pp) , run 𝜎2𝑖 ← Σ2 .Sign(𝑣sk, 𝑖vk) for 𝑖 ∈ 𝐼 where 𝑖vk is a message vector for SPSEQ , return 𝑝𝑜𝑙 =

(𝑣vk, (𝑖vk, 𝜎2𝑖)𝑖∈[𝐼]) .
- Show: On input cred = {(𝜎𝑖 , 𝜏,A)𝑖∈[ℓ] }, 𝑝𝑜𝑙 = (𝑣vk, (𝑖vk, 𝜎2𝑖)𝑖∈[𝐼]) , an 𝐷 (a set of attributes) from 𝑛 ⊆ 𝐼 issuers (|𝐷 | = 𝑛), 𝑢 prepares a proof for 𝐷 as:

(1) Run 𝜎 ← Σ1 .AggrSign(T, (𝑖vk, 𝑎𝑖 , 𝜎𝑖))𝑖∈[𝐷] with avk = {𝑖vk}𝑖∈[𝐷] . For 𝜔 ∈ Z∗𝑝 , run avk′ ← Σ1 .ConvertVK(avk, 𝜔) , 𝜎′ ← Σ1 .ConvertSig(avk, 𝐷,T, 𝜎,𝜔) , and
randomize (𝜎′′,T′) ← Σ1 .RandSign(vk,T,𝑚, 𝜎′, 𝜐) for 𝜐 ∈ Z∗𝑝 .

(2) Run (𝜎′
2𝑖 , avk

′) $← Σ2 .ChangRep(M𝑖 = vk𝑖 , 𝜎2𝑖 , 𝜔)𝑖∈[𝑛] where avk′ is the same as avk′ ← Σ1 .ConvertVK.
(3) Prove in zero knowledge that the user knows the secret key for the tag T′, yielding 𝜋 , send (𝜎′′,Nym = T′, 𝜎′

2𝑖 , 𝜋)𝑖∈[𝑛] to a verifier V.
- CredVerify: Output 1, if 𝜋 ∧ Σ1 .VerifyAggr(avk′,T′, 𝐷, 𝜎′) ∧ Σ2 .Verify(𝑣vk,M, 𝜎′

2
) = 1, whereM = avk′ and T′ = Nym. Output 0 if this check fails.

Figure 4: Our IhMA scheme (Σ1 and Σ2 denote AtoSa and SPSEQ [35], respectively)

- Setup(1_) : Run ppATMS ← Σ1 .Setup(1_) ∧ ppSPSEQ ← Σ2 .Setup(1_) ∧ ppSC ← SC.Setup, output pp = (ppATMS, ppSPSEQ , ppSC) .

- IKeyGen(pp) : Generate (sk, vk) $← Σ1 .KeyGen(pp) , return (𝑖sk = sk, 𝑖vk = vk) to an issuer 𝑖 .

- UKeyGen(pp, 𝑆) : Run ((𝜏,T), aux) ← GenAuxTag(𝑆) , and return (𝑢sk = 𝜏,𝑢vk = T) to 𝑢.
Then, TA and 𝑢 interact to computes ((Ĉ𝑖 ,C𝑖)𝑖∈[ℓ]) ← SC.Commit3 (A𝑖 , 𝛼,T) , for all attribute sets.

- Issuance: The interaction between an issuer 𝑖 and a user 𝑢 for one attribute-set A ∈ Zp and (C, Ĉ) acts as follows:
• 𝑢 hands over (T, (C, Ĉ), aux𝑖 , 𝜋) to an issuer 𝑖 , where 𝜋 is zero knowledge proof the secret parts of the tag.

• An issuer 𝑖 checks that the proof is correct, then runs 𝜎 ← Σ1 .Sign(𝑖sk,T, aux𝑖 , (C, Ĉ)) , and outputs (A,T, 𝜎) = cred𝑖 .
• 𝑢 takes (𝑖vk, cred𝑖) for 𝑖 ∈ [ℓ], checks Σ1 .Verify(𝑖vk,T, (C𝑖 , Ĉ𝑖), 𝜎𝑖)𝑖∈[ℓ] = 1, and outputs

{cred = (𝜎𝑖 , 𝜏), (A𝑖 ,C𝑖 , Ĉ𝑖)𝑖∈[ℓ] }.
- Gen-Policies: Generate a key pair (𝑣sk, 𝑣pk) ← Σ2 .KeyGen(pp) , run 𝜎2𝑖 ← Σ2 .Sign(𝑣sk, 𝑖vk) for 𝑖 ∈ 𝐼 , return 𝑝𝑜𝑙 = (𝑣vk, (𝑖vk, 𝜎2𝑖)𝑖∈[𝐼]) .
- Show: On input cred = {(𝜎𝑖 ,𝑢sk,A𝑖)𝑖∈[ℓ] }, 𝑝𝑜𝑙 = (𝑣vk, (𝑖vk, 𝜎2𝑖)𝑖∈[𝐼]) , and 𝐷 ⊆ A from 𝑛 ⊆ 𝐼 issuers, 𝑢 prepares a proof for 𝐷 as:

(1) Run (𝜎′
2𝑖 , avk

′) ← Σ2 .ChangRep(M𝑖 = vk𝑖 , 𝜎2𝑖 , 𝜔)𝑖∈[𝑛] for 𝜔 ∈ Z∗𝑝 .
(2) Run 𝜎 ← Σ1 .AggrSign(T, (𝑖vk, (C𝑖 , Ĉ𝑖), 𝜎𝑖))𝑖∈[𝑛] . Convert credentials and issuer keys

avk′ ← Σ1 .ConvertVK(avk, 𝜔) and 𝜎′ ← Σ1 .ConvertSig(avk, (C, Ĉ), 𝜎,T, 𝜔) .
(3) Run (𝜎′,T′) $← Σ1 .ChangRep(𝜎, (M𝑖 ,N𝑖)𝑖∈[𝑛] ,T, (`,𝜐)) for (`,𝜐) , where (M𝑖 ,N𝑖) = (C𝑖 , Ĉ𝑖) , and 𝜎′ is valid for (C′𝑖 = C`𝜐

𝑖
, Ĉ′𝑖 = Ĉ𝜐

𝑖
)𝑖∈[𝑛] . Create witnesses for

attributes𝑊𝑗 ← SC.OpenSubset(𝐶1𝑗 , 𝐴 𝑗 ,𝑂 𝑗 , 𝑑 𝑗) for 𝑗 ∧ 𝑑 𝑗 ∈ 𝐷 . Aggregate witness𝑊 ← SC.AggregateAcross({𝐶1𝑗 , 𝑑 𝑗 ,𝑊𝑗 }𝑗∈[ℓ]) , randomize𝑊 ′ ←𝑊 `𝜐
.

(4) Prove in zero knowledge that the user knows the secret key for the tag T′, yielding 𝜋 , send (𝜎′,𝑊 ′,T′, 𝜎′
2𝑖 , 𝜋,M = {(C′𝑖 , Ĉ′𝑖) })𝑖∈[𝑛] to V.

- CredVerify: Output 1, if 𝜋 ∧ Σ1 .VerifyAggr(avk′,T′,M, 𝜎′) ∧ Σ2 .Verify(𝑣vk,M, 𝜎′
2
) ∧ SC.VerifySubset(C′, 𝐷,𝑊 ′) = 1, whereM = avk′ is verified by 𝑣vk.

Figure 5: Our IhMA scheme (Σ1 and Σ2 denote ATMS and SPSEQ [35], respectively)

converting messages to theM𝐻
TDH message space and generating

tags. While in AtoSa, PC includes generating tags and aux using
Pedersen commitment, but note that one could also use a hash based

commitment instead. We can observe that signing is faster than

verifying the signature – due to the pairing operation in the latter.

Moreover, verification of ATMS is slower than AtoSa because of

additional pairing operations that are needed to check if messages

are inM𝐻
TDH. We increase the number (𝑛) of signers from 2 to 10

Table 2: Running times for ATMS and AtoSa (ms)

PC Sign Verify Convert ChR/Rnd AggrSign VerifyAggr

AtoSa 6 2,5 8,4 4 2,7 0.005 9

ATMS 8.6 3 33 5,4 7,4 0.01 72

and show the running time in Fig. 6. Since aggregation is almost

free (for 𝑛 = 10 is 0.05 ms), we omit it. We should also note that the

result are stated without considering VerifyAux algorithm.

IhMA Benchmarks. IhMA is based upon Schnorr-style discrete

logarithm ZKPOK. Our library supports Damgård’s technique [28]

Figure 6: Running times of VerifyAggr in ATMS& AtoSa (ms)

for obtaining malicious-verifier interactive zero-knowledge proofs

of knowledge during the showing and also NIZK obtained via the

Fiat-Shamir heuristic. We interpret signers as issuers here and also

show 𝑛 as a number of issuers involved in Showing. For example,

𝑛 = 2 means showing two credentials from 2 different issuers.

Issuing. This protocol does not depend on 𝑛, and results are as

follows: 1) For IhMA based on AtoSa, including generation of sig-

nature, tag, user keys, and aux, it takes 8 ms. 2) For IhMA based

42

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Omid Mir, Balthazar Bauer, Scott Griffy, Anna Lysyanskaya, and Daniel Slamanig

on AtoSa, including generation of tag and encoding messages to

M𝐻
TDH, with two attributes in each credential it takes 10 ms.

Showing. Fig. 7a shows the runtime of showing for IhMA based

on AtoSa. In this experiment, we increase the number of issuers

𝑛 from 2 to 10 and assume that all attributes are disclosed during

verification (the worst-case scenario). Each issuer issues only one

attribute, giving a total of 𝑛 attributes. Fig. 7b shows the time for

showing a credentials of IhMA based on ATMS. Here, we have a
different setting; we can encode a set of attributes in a credential as

we use set commitments. For our evaluation, we have the following

parameters: 𝑛 represents the number of the issuer, 𝑡 the number of

attributes in each set (each credential issued), 𝑑 < 𝑡 is the number

of disclosed attributes from each attribute set 𝐴 in the respective

commitment 𝐶 . Here we increase 𝑛 from 2 to 10, set 𝑡 = 2, and

𝑑 = 1. The total disclosed attributes length |𝐷 | = 𝑑 · 𝑛 and the total

attribute |𝐴| = 𝑛 · 𝑡 range from 2 to 10 and 4 to 20, respectively.

(a) Running times of IhMAAtoSa (b) Running times of IhMAATMS

Figure 7: Running times of IhMA (ms)

7 CONCLUSION AND OPEN QUESTIONS
This paper introduces the Issuer-Hiding Multi-Authority Anony-

mous Credentials (IhMA). MA means proving possession of at-

tributes from multiple independent credential issuers requires the

presentation of independent credentials. Meanwhile, Ihmeans veri-

fying a user’s credential does not require disclosing multiple issuers’

public keys. Our proposed solution involves the development of

two new signature primitives with versatile randomization features

which are independent of interest: 1) Aggregate Signatures with

Randomizable Tags and Public Keys (AtoSa) and 2) Aggregate Mer-

curial Signatures (ATMS), which extend the functionality of AtoSa
to support the randomization of messages additionally.

Open Questions and Future Work. Finally, we still have several
open questions that merit further investigation. 1) An interesting

open question is whether it is possible to present constructions in

a fully dynamic setting, i.e., there are no assumptions about prior

knowledge of messages and verification keys, nor requirement for a

stateful issuer to keep track of the signed information aux. 2) Revo-
cation is another intriguing avenue. While issuer revocation in our

scheme is straightforward, as revoked issuers can be excluded from

the key policy, user revocation poses greater challenges. The user

revocation within our framework, and for issuer-hiding anonymous

credentials in general, are an interesting future work.

Acknowledgements. This work has in part been carried out within

the scope of Digidow, the Christian Doppler Laboratory for Private

Digital Authentication in the Physical World. Omid Mir acknowl-

edge financial support by the Austrian Federal Ministry for Digital

and Economic Affairs, the National Foundation for Research, Tech-

nology and Development, the Christian Doppler Research Associ-

ation, 3 Banken IT GmbH, ekey biometric systems GmbH, Kepler

Universitätsklinikum GmbH, NXP Semiconductors Austria GmbH

and Co KG, Österreichische 24 Staatsdruckerei GmbH, and the State

of Upper Austria. Daniel Slamanig was supported by the European

Commission through ECSEL Joint Undertaking (JU) under grant

agreement n
◦
826610 (Comp4Drones), the European Union through

the Horizon Europe research programme under grant agreement

n
◦
101073821 (Sunrise) and by the Austrian Science Fund (FWF)

and netidee SCIENCE under grant agreement P31621-N38 (Profet).

Anna Lysyanskaya and Scott Griffy are supported by NSF Awards

2247305, 2154941 and 2154170, as well as funding from the Peter G.

Peterson Foundation and Meta.

REFERENCES
[1] Jae Hyun Ahn, Matthew Green, and Susan Hohenberger. 2010. Synchronized

aggregate signatures: new definitions, constructions and applications. In ACM
CCS 2010, Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov (Eds.).

ACM Press, 473–484. https://doi.org/10.1145/1866307.1866360

[2] Man Ho Au, Willy Susilo, and Yi Mu. 2006. Constant-Size Dynamic k-TAA. In

SCN 06 (LNCS, Vol. 4116), Roberto De Prisco and Moti Yung (Eds.). Springer,

Heidelberg, 111–125. https://doi.org/10.1007/11832072_8

[3] Foteini Baldimtsi and Anna Lysyanskaya. 2013. Anonymous credentials light.

In ACM CCS 2013, Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.).

ACM Press, 1087–1098. https://doi.org/10.1145/2508859.2516687

[4] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. 2007. Unrestricted

Aggregate Signatures. In ICALP 2007 (LNCS, Vol. 4596), Lars Arge, Christian
Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki (Eds.). Springer, Heidelberg,

411–422. https://doi.org/10.1007/978-3-540-73420-8_37

[5] Johannes Blömer and Jan Bobolz. 2018. Delegatable Attribute-Based Anony-

mous Credentials from Dynamically Malleable Signatures. In ACNS 18 (LNCS,
Vol. 10892), Bart Preneel and Frederik Vercauteren (Eds.). Springer, Heidelberg,

221–239. https://doi.org/10.1007/978-3-319-93387-0_12

[6] Jan Bobolz, Fabian Eidens, Stephan Krenn, Sebastian Ramacher, and Kai Samelin.

2021. Issuer-Hiding Attribute-Based Credentials. In International Conference on
Cryptology and Network Security. Springer, 158–178.

[7] Jan Bobolz, Fabian Eidens, Stephan Krenn, Sebastian Ramacher, and Kai Samelin.

2022. Issuer-Hiding Attribute-Based Credentials. Cryptology ePrint Archive,

Report 2022/213. https://eprint.iacr.org/2022/213.

[8] Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum. 2007.

Ordered Multisignatures and Identity-Based Sequential Aggregate Signatures,

with Applications to Secure Routing. Cryptology ePrint Archive, Report 2007/438.

https://eprint.iacr.org/2007/438.

[9] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. 2003. Aggregate and

Verifiably Encrypted Signatures from Bilinear Maps. In EUROCRYPT 2003 (LNCS,
Vol. 2656), Eli Biham (Ed.). Springer, Heidelberg, 416–432. https://doi.org/10.

1007/3-540-39200-9_26

[10] Daniel Bosk, Davide Frey, Mathieu Gestin, and Guillaume Piolle. 2022. Hidden

Issuer Anonymous Credential. Proc. Priv. Enhancing Technol. 2022, 4 (2022),

571–607. https://doi.org/10.56553/popets-2022-0123

[11] Xavier Boyen. 2008. The Uber-Assumption Family (Invited Talk). In PAIRING 2008
(LNCS, Vol. 5209), Steven D. Galbraith and Kenneth G. Paterson (Eds.). Springer,

Heidelberg, 39–56. https://doi.org/10.1007/978-3-540-85538-5_3

[12] Stefan Brands. 2000. Rethinking Public Key Infrastructures and Digital Certificates:
Building in Privacy. MIT Press, Cambridge-London. http://www.credentica.com/

the_mit_pressbook.html

[13] Ernie Brickell and Jiangtao Li. 2012. Enhanced Privacy ID: A Direct Anonymous

Attestation Scheme with Enhanced Revocation Capabilities. IEEE Trans. Depend-
able Secur. Comput. 9, 3 (2012), 345–360. https://doi.org/10.1109/TDSC.2011.63

[14] Ernest F. Brickell, Jan Camenisch, and Liqun Chen. 2004. Direct Anonymous

Attestation. InACMCCS 2004, Vijayalakshmi Atluri, Birgit Pfitzmann, and Patrick

McDaniel (Eds.). ACM Press, 132–145. https://doi.org/10.1145/1030083.1030103

[15] Jan Camenisch, Liqun Chen, Manu Drijvers, Anja Lehmann, David Novick, and

Rainer Urian. 2017. One TPM to Bind Them All: Fixing TPM 2.0 for Provably

Secure Anonymous Attestation. In 2017 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, 901–920. https://doi.org/10.1109/SP.2017.22

[16] Jan Camenisch, Manu Drijvers, Anja Lehmann, Gregory Neven, and Patrick Towa.

2020. Short Threshold Dynamic Group Signatures. In SCN 20 (LNCS, Vol. 12238),

43

https://doi.org/10.1145/1866307.1866360
https://doi.org/10.1007/11832072_8
https://doi.org/10.1145/2508859.2516687
https://doi.org/10.1007/978-3-540-73420-8_37
https://doi.org/10.1007/978-3-319-93387-0_12
https://eprint.iacr.org/2022/213
https://eprint.iacr.org/2007/438
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.56553/popets-2022-0123
https://doi.org/10.1007/978-3-540-85538-5_3
http://www.credentica.com/the_mit_pressbook.html
http://www.credentica.com/the_mit_pressbook.html
https://doi.org/10.1109/TDSC.2011.63
https://doi.org/10.1145/1030083.1030103
https://doi.org/10.1109/SP.2017.22

Aggregate Signatures with Versatile Randomization and Issuer-Hiding Multi-Authority Anonymous Credentials CCS ’23, November 26–30, 2023, Copenhagen, Denmark

Clemente Galdi and Vladimir Kolesnikov (Eds.). Springer, Heidelberg, 401–423.

https://doi.org/10.1007/978-3-030-57990-6_20

[17] Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf

Kohlweiss. 2015. Composable and Modular Anonymous Credentials: Defini-

tions and Practical Constructions. In ASIACRYPT 2015, Part II (LNCS, Vol. 9453),
Tetsu Iwata and Jung Hee Cheon (Eds.). Springer, Heidelberg, 262–288. https:

//doi.org/10.1007/978-3-662-48800-3_11

[18] Jan Camenisch and Anna Lysyanskaya. 2001. An Efficient System for Non-

transferable Anonymous Credentials with Optional Anonymity Revocation. In

EUROCRYPT 2001 (LNCS, Vol. 2045), Birgit Pfitzmann (Ed.). Springer, Heidelberg,

93–118. https://doi.org/10.1007/3-540-44987-6_7

[19] Jan Camenisch and Anna Lysyanskaya. 2003. A Signature Scheme with Efficient

Protocols. In SCN 02 (LNCS, Vol. 2576), Stelvio Cimato, Clemente Galdi, and

Giuseppe Persiano (Eds.). Springer, Heidelberg, 268–289. https://doi.org/10.1007/

3-540-36413-7_20

[20] Jan Camenisch and Anna Lysyanskaya. 2004. Signature Schemes and Anonymous

Credentials from Bilinear Maps. In CRYPTO 2004 (LNCS, Vol. 3152), Matthew

Franklin (Ed.). Springer, Heidelberg, 56–72. https://doi.org/10.1007/978-3-540-

28628-8_4

[21] Jan Camenisch and Markus Stadler. 1997. Efficient Group Signature Schemes

for Large Groups (Extended Abstract). In CRYPTO’97 (LNCS, Vol. 1294), Bur-
ton S. Kaliski Jr. (Ed.). Springer, Heidelberg, 410–424. https://doi.org/10.1007/

BFb0052252

[22] Jan Camenisch and Els Van Herreweghen. 2002. Design and Implementation of

The Idemix Anonymous Credential System. In ACM CCS 2002, Vijayalakshmi

Atluri (Ed.). ACM Press, 21–30. https://doi.org/10.1145/586110.586114

[23] Melissa Chase, Trevor Perrin, and Greg Zaverucha. 2020. The Signal Private

Group System and Anonymous Credentials Supporting Efficient Verifiable En-

cryption. In ACM CCS 2020, Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni

Vigna (Eds.). ACM Press, 1445–1459. https://doi.org/10.1145/3372297.3417887

[24] David Chaum. 1985. Security Without Identification: Transaction Systems to

Make Big Brother Obsolete. Commun. ACM 28, 10 (1985), 1030–1044. https:

//doi.org/10.1145/4372.4373

[25] David Chaum. 1986. Showing Credentials Without Identification: Signatures

Transferred BetweenUnconditionally Unlinkable Pseudonyms. In EUROCRYPT’85
(LNCS, Vol. 219), Franz Pichler (Ed.). Springer, Heidelberg, 241–244. https://doi.

org/10.1007/3-540-39805-8_28

[26] Valerio Cini, Sebastian Ramacher, Daniel Slamanig, Christoph Striecks, and

Erkan Tairi. 2021. Updatable Signatures and Message Authentication Codes.

In PKC 2021, Part I (LNCS, Vol. 12710), Juan Garay (Ed.). Springer, Heidelberg,

691–723. https://doi.org/10.1007/978-3-030-75245-3_25

[27] Aisling Connolly, Pascal Lafourcade, and Octavio Perez Kempner. 2022. Improved

constructions of anonymous credentials from structure-preserving signatures on

equivalence classes. In IACR International Conference on Public-Key Cryptography.
Springer, 409–438.

[28] Ronald Cramer, Ivan Damgård, and Philip D. MacKenzie. 2000. Efficient Zero-

Knowledge Proofs of KnowledgeWithout Intractability Assumptions. In PKC 2000
(LNCS, Vol. 1751), Hideki Imai and Yuliang Zheng (Eds.). Springer, Heidelberg,

354–372. https://doi.org/10.1007/978-3-540-46588-1_24

[29] Elizabeth Crites, Markulf Kohlweiss, Bart Preneel, Mahdi Sedaghat, and Daniel

Slamanig. 2022. Threshold Structure-Preserving Signatures. Cryptology ePrint

Archive, Paper 2022/839. https://eprint.iacr.org/2022/839 https://eprint.iacr.org/

2022/839.

[30] Elizabeth C. Crites and Anna Lysyanskaya. 2019. Delegatable Anonymous Cre-

dentials from Mercurial Signatures. In CT-RSA 2019 (LNCS, Vol. 11405), Mitsuru

Matsui (Ed.). Springer, Heidelberg, 535–555. https://doi.org/10.1007/978-3-030-

12612-4_27

[31] Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo

Valsorda. 2018. Privacy Pass: Bypassing Internet Challenges Anonymously.

PoPETs 2018, 3 (2018), 164–180. https://doi.org/10.1515/popets-2018-0026

[32] Dominic Deuber, Matteo Maffei, Giulio Malavolta, Max Rabkin, Dominique

Schröder, and Mark Simkin. 2018. Functional Credentials. PoPETs 2018, 2 (April
2018), 64–84. https://doi.org/10.1515/popets-2018-0013

[33] Jack Doerner, Yashvanth Kondi, Eysa Lee, abhi shelat, and LaKyah Tyner. 2023.

Threshold BBS+ Signatures for Distributed Anonymous Credential Issuance.

Cryptology ePrint Archive, Paper 2023/602. https://doi.org/10.1109/SP46215.

2023.00120 https://eprint.iacr.org/2023/602.

[34] Anna Lisa Ferrara, Matthew Green, Susan Hohenberger, and Michael Østergaard

Pedersen. 2009. Practical Short Signature Batch Verification. In CT-RSA 2009
(LNCS, Vol. 5473), Marc Fischlin (Ed.). Springer, Heidelberg, 309–324. https:

//doi.org/10.1007/978-3-642-00862-7_21

[35] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. 2019. Structure-

Preserving Signatures on Equivalence Classes and Constant-Size Anonymous

Credentials. Journal of Cryptology 32, 2 (April 2019), 498–546. https://doi.org/10.

1007/s00145-018-9281-4

[36] Christina Garman, Matthew Green, and Ian Miers. 2014. Decentralized Anony-

mous Credentials. In NDSS 2014. The Internet Society.

[37] Essam Ghadafi. 2016. Short Structure-Preserving Signatures. In CT-RSA 2016
(LNCS, Vol. 9610), Kazue Sako (Ed.). Springer, Heidelberg, 305–321. https://doi.

org/10.1007/978-3-319-29485-8_18

[38] Rishab Goyal and Vinod Vaikuntanathan. 2022. Locally Verifiable Signature

and Key Aggregation. Cryptology ePrint Archive, Report 2022/179. https:

//eprint.iacr.org/2022/179.

[39] Lucjan Hanzlik and Daniel Slamanig. 2021. With a Little Help from My Friends:

Constructing Practical Anonymous Credentials. In ACM CCS 2021, Giovanni
Vigna and Elaine Shi (Eds.). ACM Press, 2004–2023. https://doi.org/10.1145/

3460120.3484582

[40] Chloé Hébant and David Pointcheval. 2022. Traceable Constant-Size Multi-

authority Credentials. In Security and Cryptography for Networks - 13th Inter-
national Conference, SCN 2022, Amalfi, Italy, September 12-14, 2022, Proceedings
(Lecture Notes in Computer Science, Vol. 13409), Clemente Galdi and Stanislaw

Jarecki (Eds.). Springer, 411–434. https://doi.org/10.1007/978-3-031-14791-3_18

[41] Susan Hohenberger and Brent Waters. 2018. Synchronized Aggregate Signa-

tures from the RSA Assumption. In EUROCRYPT 2018, Part II (LNCS, Vol. 10821),
Jesper Buus Nielsen and Vincent Rijmen (Eds.). Springer, Heidelberg, 197–229.

https://doi.org/10.1007/978-3-319-78375-8_7

[42] Ben Kreuter, Tancrède Lepoint, Michele Orrù, andMariana Raykova. 2020. Anony-

mous Tokens with Private Metadata Bit. In CRYPTO 2020, Part I (LNCS, Vol. 12170),
Daniele Micciancio and Thomas Ristenpart (Eds.). Springer, Heidelberg, 308–336.

https://doi.org/10.1007/978-3-030-56784-2_11

[43] Kwangsu Lee, Dong Hoon Lee, and Moti Yung. 2013. Aggregating CL-Signatures

Revisited: Extended Functionality and Better Efficiency. In FC 2013 (LNCS,
Vol. 7859), Ahmad-Reza Sadeghi (Ed.). Springer, Heidelberg, 171–188. https:

//doi.org/10.1007/978-3-642-39884-1_14

[44] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. 2006.

Sequential Aggregate Signatures and Multisignatures Without Random Oracles.

In EUROCRYPT 2006 (LNCS, Vol. 4004), Serge Vaudenay (Ed.). Springer, Heidelberg,
465–485. https://doi.org/10.1007/11761679_28

[45] Anna Lysyanskaya. 2022. Security Analysis of RSA-BSSA. Cryptology ePrint

Archive, Report 2022/895. https://eprint.iacr.org/2022/895.

[46] Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. 2004. Se-

quential Aggregate Signatures from Trapdoor Permutations. In EUROCRYPT 2004
(LNCS, Vol. 3027), Christian Cachin and Jan Camenisch (Eds.). Springer, Heidel-

berg, 74–90. https://doi.org/10.1007/978-3-540-24676-3_5

[47] Omid Mir, Balthazar Bauer, Scott Griffy, Anna Lysyanskaya, and Daniel Slamanig.

2023. Aggregate Signatures with Versatile Randomization and Issuer-Hiding

Multi-Authority Anonymous Credentials. Cryptology ePrint Archive (2023).
[48] Omid Mir, Daniel Slamanig, Balthazar Bauer, and René Mayrhofer. 2023. Practical

Delegatable Anonymous Credentials From Equivalence Class Signatures. Proc.
Priv. Enhancing Technol. 2023, 3 (2023), 488–513. https://doi.org/10.56553/popets-

2023-0093

[49] Omid Mir, Daniel Slamanig, and René Mayrhofer. 2023. Threshold Delegatable

Anonymous Credentials with Controlled and Fine-Grained Delegation. IEEE
Transactions on Dependable and Secure Computing (2023).

[50] Gregory Neven. 2008. Efficient Sequential Aggregate Signed Data. In EURO-
CRYPT 2008 (LNCS, Vol. 4965), Nigel P. Smart (Ed.). Springer, Heidelberg, 52–69.

https://doi.org/10.1007/978-3-540-78967-3_4

[51] Christian Paquin and Greg Zaverucha. 2013. U-Prove Cryptographic Specification

V1.1 (Revision 3). https://www.microsoft.com/en-us/research/publication/u-

prove-cryptographic-specification-v1-1-revision-3/

[52] David Pointcheval and Olivier Sanders. 2016. Short Randomizable Signatures. In

CT-RSA 2016 (LNCS, Vol. 9610), Kazue Sako (Ed.). Springer, Heidelberg, 111–126.

https://doi.org/10.1007/978-3-319-29485-8_7

[53] Michael Rosenberg, Jacob White, Christina Garman, and Ian Miers. 2022.

zk-creds: Flexible Anonymous Credentials from zkSNARKs and Existing Iden-

tity Infrastructure. Cryptology ePrint Archive, Report 2022/878. https:

//eprint.iacr.org/2022/878.

[54] Olivier Sanders. 2020. Efficient Redactable Signature and Application to Anony-

mous Credentials. In PKC 2020, Part II (LNCS, Vol. 12111), Aggelos Kiayias, Markulf

Kohlweiss, Petros Wallden, and Vassilis Zikas (Eds.). Springer, Heidelberg, 628–

656. https://doi.org/10.1007/978-3-030-45388-6_22

[55] Olivier Sanders. 2021. Improving Revocation for Group Signature with Redactable

Signature. In PKC 2021, Part I (LNCS, Vol. 12710), Juan Garay (Ed.). Springer,

Heidelberg, 301–330. https://doi.org/10.1007/978-3-030-75245-3_12

[56] Tjerand Silde and Martin Strand. 2022. Anonymous tokens with public meta-

data and applications to private contact tracing. In International Conference on
Financial Cryptography and Data Security. Springer, 179–199.

[57] Alberto Sonnino,Mustafa Al-Bassam, Shehar Bano, SarahMeiklejohn, andGeorge

Danezis. 2019. Coconut: Threshold Issuance Selective Disclosure Credentials

with Applications to Distributed Ledgers. In NDSS 2019. The Internet Society.
[58] Stefano Tessaro and Chenzhi Zhu. 2023. Revisiting BBS Signatures. In Annual In-

ternational Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 691–721.

44

https://doi.org/10.1007/978-3-030-57990-6_20
https://doi.org/10.1007/978-3-662-48800-3_11
https://doi.org/10.1007/978-3-662-48800-3_11
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1145/586110.586114
https://doi.org/10.1145/3372297.3417887
https://doi.org/10.1145/4372.4373
https://doi.org/10.1145/4372.4373
https://doi.org/10.1007/3-540-39805-8_28
https://doi.org/10.1007/3-540-39805-8_28
https://doi.org/10.1007/978-3-030-75245-3_25
https://doi.org/10.1007/978-3-540-46588-1_24
https://eprint.iacr.org/2022/839
https://eprint.iacr.org/2022/839
https://eprint.iacr.org/2022/839
https://doi.org/10.1007/978-3-030-12612-4_27
https://doi.org/10.1007/978-3-030-12612-4_27
https://doi.org/10.1515/popets-2018-0026
https://doi.org/10.1515/popets-2018-0013
https://doi.org/10.1109/SP46215.2023.00120
https://doi.org/10.1109/SP46215.2023.00120
https://eprint.iacr.org/2023/602
https://doi.org/10.1007/978-3-642-00862-7_21
https://doi.org/10.1007/978-3-642-00862-7_21
https://doi.org/10.1007/s00145-018-9281-4
https://doi.org/10.1007/s00145-018-9281-4
https://doi.org/10.1007/978-3-319-29485-8_18
https://doi.org/10.1007/978-3-319-29485-8_18
https://eprint.iacr.org/2022/179
https://eprint.iacr.org/2022/179
https://doi.org/10.1145/3460120.3484582
https://doi.org/10.1145/3460120.3484582
https://doi.org/10.1007/978-3-031-14791-3_18
https://doi.org/10.1007/978-3-319-78375-8_7
https://doi.org/10.1007/978-3-030-56784-2_11
https://doi.org/10.1007/978-3-642-39884-1_14
https://doi.org/10.1007/978-3-642-39884-1_14
https://doi.org/10.1007/11761679_28
https://eprint.iacr.org/2022/895
https://doi.org/10.1007/978-3-540-24676-3_5
https://doi.org/10.56553/popets-2023-0093
https://doi.org/10.56553/popets-2023-0093
https://doi.org/10.1007/978-3-540-78967-3_4
https://www.microsoft.com/en-us/research/publication/u-prove-cryptographic-specification-v1-1-revision-3/
https://www.microsoft.com/en-us/research/publication/u-prove-cryptographic-specification-v1-1-revision-3/
https://doi.org/10.1007/978-3-319-29485-8_7
https://eprint.iacr.org/2022/878
https://eprint.iacr.org/2022/878
https://doi.org/10.1007/978-3-030-45388-6_22
https://doi.org/10.1007/978-3-030-75245-3_12

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Comparison of IhMA with Previous Work

	2 Preliminaries
	3 Aggregate Signatures with Randomizable Keys and Tags
	3.1 Formal Definitions
	3.2 Security Definitions
	3.3 Construction

	4 Aggregate Mercurial Signatures With Randomizable Tags
	4.1 Formal Definitions
	4.2 Security Definitions
	4.3 Construction

	5 Application to AC
	5.1 Formal Definition
	5.2 Constructions

	6 Implementation and Evaluation
	7 Conclusion and Open Questions
	References

