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Abstract

In this thesis we propose an access control system for the peer-to-peer filesys-
tem Hyperdrive that utilizes a cryptographic capability system based approach.
The overall goal is to simplify the development of local-first software, follow-
ing the principles of prioritizing local resources instead of relying on central-
ized services. Hyperdrive can be a useful foundation for local-first software,
but it provides only very limited access control functionality. Sharing read or
write capabilities with other users is crucial for applications that enable col-
laborative work or social interactions. Fine-grained access control therefore is
a central requirement for such use cases.

Our proposed system utilizes a graph data structure for key management and
enables per-file and per-directory control of read and write permissions. Addi-
tionally, it provides a simple user system that keeps track of a user’s friends and
other contacts. It includes a system for initial key exchange and asynchronous
communication that also works with sporadic internet access. Read and write
permissions can be shared with known users, read permissions also by URL.

We implemented the proposed system as a NodeJS module and published it
as an open-source library called CertaCrypt. In addition to that, we also pub-
lished a demonstrator application, the CertaCrypt-Filemanager. It aims to im-
plement an app that, from a user perspective, looks like the web interface of a
cloud-storage solution similar to Dropbox or Google Drive, hiding the fact that
it works completely decentralized using Peer-to-Peer (P2P) technology. This
demonstrates the potential of P2P systems for implementing local-first soft-
ware that replaces Software-as-a-Service (SaaS) applications.



Kurzfassung

In dieser Arbeit stellen wir ein Zugriffskontrollsystem fiir das Peer-to-Peer
Dateisystem Hyperdrive vor, welches auf einem Cryptographic Capability Sys-
tem aufbaut. Unser Hauptziel ist es, die Entwicklung von Software, die loka-
le Ressourcen priorisiert, statt auf zentralisierte Dienste zu vertrauen, soge-
nannter Local-First Software, zu vereinfachen. Hyperdrive kann eine niitzliche
Grundlage solcher Software sein, bietet aber nur sehr begrenzte Funktionalitat
fiir die Zugriffskontrolle. Das Teilen von Lese- oder Schreibberechtigungen mit
anderen Benutzern ist von entscheidender Bedeutung fiir Anwendungen, die
kollaboratives Arbeiten oder soziale Interaktionen ermdoglichen. Feingranulare
Zugriffskontrolle ist daher eine zentrale Anforderung fiir solche Anwendungs-
falle.

Unser Ansatz organisiert kryptographische Schliissel in einem Graphen und
ermoglicht das Management von Lese- und Schreibrechten pro Datei und Ver-
zeichnis. Zusdtzlich beinhaltet unsere Arbeit ein einfaches Benutzersystem,
sowie ein System zur Verwaltung von Freunden und anderen Kontakten. Wei-
ters vereinfacht es den initialen Schliisselaustausch und inkludiert ein Pro-
tokoll fiir asynchrone Kommunikation, das auch bei sporadischem Internet-
zugang funktioniert. Lese- und Schreibberechtigungen kdnnen mit Kontakten
geteilt werden, Leserrechte auch per URL.

Das Konzept wurde als NodeJS-Modul implementiert und als Open-Source-
Bibliothek namens CertaCrypt veréffentlicht. Zusatzlich dazu haben wir auch
eine Demonstrator-Anwendung implementiert, den CertaCrypt-Filemanager.
Dieser zielt darauf ab, eine App zu implementieren, die aus der Perspektive
des Benutzers wie die Weboberfldche einer Cloud-Speicherlésung wie Drop-
box oder Google Drive aussieht, wobei die Tatsache verborgen bleibt, dass sie
vollstandig dezentralisiert mit Peer-to-Peer (P2P) Technologie arbeitet. Dies
demonstriert das Potenzial von P2P-Systemen als Grundlage fiir Local-First
Software, etwa um Software-as-a-Service (SaaS)-Anwendungen zu ersetzen.
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Chapter1
Introduction

1.1 Motivation

Modern Software-as-a-Service (SaaS) applications simplify our lives and al-
low us to work more efficiently than ever before. No wonder they gain more
and more popularity as they provide seamless real-time collaboration and al-
low us to switch from one device to another whenever we want—even if these
use a completely different hardware and software platform. Sharing our work
has become as simple as sending a URL.

However, even if the utilized service is a costly premium, enterprise-grade
product, we are buying that convenience also by giving up control. We are no
longer in control of our data and can’t be sure what that software is doing be-
sides the things we want it to do. Typically these services also require a stable
internet connection in order to work properly. Even if the colleague working
on the same document is sitting next to you and shares the same WiFi, gener-
ally all the data has to be sent to some distant server where it is processed and
sent back all the way to your colleague. With a decent internet connection that
works quite well, but it causes a huge dependency on all hardware and software
components on that path.

1.1.1 Local-First Software

This lack of control and the dependence on service providers and network con-
nectivity is causing an opposing trend in software development—a trend back
to software that works offline and towards decentralized application architec-
tures.

Kleppmann et al. [27] coined the term local-first software as a paradigm for soft-
ware that prioritizes local resources, such as local storage and the local net-
work, but also enables seamless collaboration and allows working from vari-
ous devices, while giving the users full control over their data and respecting
their privacy. Such software ideally even works when the product or service is
discontinued and the servers are shut down.

Local-first software stores all necessary data on the users’ devices and does
not rely on servers for the business logic. This vastly reduces the number of the
all-too-common loading spinners caused by the client-server latency. Servers
only fulfill a supporting role, for example by distributing data to other users
or by providing additional computing resources. As a positive side-effect, this
also reduces the operating costs for the server infrastructure as it reduces the
overall required amount of resources.

One way of achieving complete independence from service providers and back-
end servers is using Peer-to-Peer (P2P) technology. Modern P2P systems pro-
vide features such as distributed databases, filesystems, messaging systems,
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some even blockchain-based decentralized payment and long-term storage [5,
23, 25, 42]. While coming with their own set of challenges, these already fulfill
many requirements of local-first software.

1.1.2 Problem Statement

How to design and build feature-rich, reliable and resource-saving local-first
software is still an ongoing topic of research [47]. As part of that, one area with
open problems is how to manage access control for P2P applications in a way
that does not impact the availability of private data too much, while still en-
suring authenticity, confidentiality and integrity. We chose to focus on access
control for a P2P filesystem library, as sharing files is required for many types
of applications.

There are many modern implementations of P2P filesystems that each provide
a different set of features. To narrow down the possible candidates for our ac-
cess control system, we added the requirement of being a general-use open-
source library. This rules out applications with a specific usecase in mind, e.g.
Syncthing?.

The P2P technology of choice, in this work, as well as for the experiments
conducted by Kleppmann et al [27], is the Hypercore Protocol [17], formerly
known as Dat?, and its surrounding ecosystem of libraries and applications.
Hyperdrive [SRC.16] is a filesystem built using the Hypercore Protocol. For our
purposes, the best alternative to Hyperdrive we assessed is the IPFS Mutable
Filesystem [24]. But it lacks a number of features Hyperdrive provides, such as
file versioning and mounting other filesystems.

As the name suggests, the core module of the Hypercore Protocol is Hyper-
core [SRC.8], a cryptographically secured append-only log, often titled a feed,
that can be replicated over any connection that can be mapped to a stream. Each
addition is signed using an Ed25519 secret key to ensure authenticity and in-
tegrity, while the public key also serves as an address to identify the Hypercore
feed. The replication can be sparse on a per-block basis and supports push and
pull event handling strategies. This way additions can be propagated near real-
time. The P2P networking capabilities are provided by Hyperswarm [SRC.24],
which uses a Kademlia [29] based Distributed Hash Table (DHT) for peer dis-
covery. The DHT nodes are capable of distributed holepunching to create UDP
connections to peers that are behind a firewall or a router that applies Network
Address Translation (NAT).

Using Hypercore as a base, Hyperdrive is a distributed filesystem that provides
a POSIX-like APIL. It supports streaming files as they are replicated, allowing
fast access to parts of very large files without having to completely download
them.

As a storage and networking layer for P2P applications, the Hyperdrive filesys-
tem with its range of useful features is a well-suited base for local-first soft-
ware. As an initial evaluation, we looked at what features such Hyperdrive-
based applications would likely need and what this means from a technical per-
spective. We found that the core requirements of these applications are various
ways of sharing data with other users, such as user profiles, text messages or
arbitrary files for joint work. Often also a shared space multiple users can write
to is required. When using Hyperdrive for that purpose, from a filesystem point
of view, this, therefore, requires controlling read and write permissions to files
and directories.

thttps://syncthing.net
2https://dat.foundation
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A not to be neglected difficulty when using P2P technology for local-first
software is achieving reliable availability without impacting privacy. If a user
shares some files and does want them to be available on the network, the user
either has to keep the device online and running, or has to make sure some
other seeder3 ensures its availability. In local-first software this might be an-
other permanently running device in the local network, a generous friend or a
cloud service. To keep the seeder from reading these files, a typical solution to
this is to encrypt the data.

Within the community, the need for fine grained access control has been ex-
pressed frequently, but, at the time of writing this thesis, the Github issues [26,
28, 39] resulting from these discussions are still open. Some existing applica-
tions and modules aready provide simple read- and write-access control, but
not on a per-file and directory level.

The Hypercore Protocol and its modules do not feature identity management
and leave that to the application developer. Some applications treat Hyper-
drive or Hypercore instances as equivalent to users, but a more versatile iden-
tity system could simplify the development of local-first collaborative appli-
cations a lot. There have been previous approaches for reusable identity man-
agement using Hyperdrive, dat-wot* and hyperidentity, but it seems these
projects have been abandoned. We argue that a reusable identity management
system with basic social features and possibly even an address book shared by
applications could vastly speed up the development process.

1.2 Contribution

In this thesis, we design and implement CertaCrypt, a (TypeScript) framework
that extends Hyperdrive with an access control system.

To get a better understanding of the requirements of applications built on top
of CertaCrypt, we developed the CertaCrypt-Filemanager, a proof-of-concept
P2P desktop application that allows to share files and directories, grant write
permissions to other users and implements a simple user system. Users have a
profile with a username, description and a profile picture. The ability to send
friend requests, which include read permissions to the user’s list of friends,
also implements a simple Web of Trust (WoT) and improves the discoverability
of other users. CertaCrypt features access control down to the level of single
files, including the ability of revoking read and write access for future changes.
This aims to implement an app that, from a user perspective, looks like the web
interface of a cloud-storage solution similar to Dropbox or Google Drive, hiding
the fact that it works completely decentralized using P2P technology. Both, the
framework and the user interface, are open source and available on Github (see
section 1.3).

In comparison to other applications in the field of open-source, P2P networked
file sharing and collaborative file systems, it stands out with access control on
aper-filelevel and the ability of revoking access to future changes. Also, it pro-
vides the possibility of commissioning a third party to ensure the availability
of the data, without having to provide this third party read access.

This thesis develops and implements a capability access control model [13] that
utilizes cryptographic capabilities to extend its assurances to devices and code

3In file-sharing network terminology, devices that provide complete datasets for download are
often called seeders.

4https://github.com/jayrbolton/dat-wot

5Shttps://github.com/poga/hyperidentity
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out of control of the application itself. The tree-like structure of the filesys-
tem is generalized to a graph, all access control mechanisms and the necessary
additional metadata are implemented in the form of vertices and edges. Users
and their properties are vertices and edges, and even internal communication
is represented this way.

Read capabilities are the encryption keys required to decipher the vertices and
edges, write capabilities utilize the fact that Hypercore feeds are cryptograph-
ically signed. To put it in simplified terms, write capabilities are edges to ver-
tices stored on the other user’s Hypercore feed. An exception to the capability
approach are Access Control List (ACL) rules that can be attached to edges. Since
it is impossible to control what data the other user writes to its Hypercore feed,
these have to be checked and enforced by the reading client (also called agent-
centric security [42]).

The graph is implemented using a specifically designed graph database that
directly utilizes Hypercore for its transaction log and storage engine. Queries
can be constructed using a functional approach, where the query consists of a
chain of operators that, asynchronously, either yield additional results or filter
for passed rules. This is heavily influenced by the Gremlin® query language, but
is limited to read-only operations. In addition to that, applications can define
views that aggregate data or influence query execution. To support more so-
phisticated features, edges can declare to be queried using a specific view. Most
access control features are implemented that way, including the checking and
enforcement of ACL rules.

CertaCrypt is meant as a middleware to simplify the development of collab-
orative applications that follow the local-first software principles. By using
and extending Hyperdrive and the Hypercore protocol stack with access con-
trol mechanisms, this lays a foundation for collaborative P2P applications.
The small amount of code and straightforward implementation needed for the
CertaCrypt-Filemanager shows that this work largely fulfills its purpose.

1.3 Code Repositories

Our work is split into multiple libraries and applications, each distributed as a
separate code repository:

m The CertaCrypt framework
https://github.com/fsteff/certacrypt

® HyperObjects, a transaction-log based object store
https://github.com/fsteff/hyperobjects

®m The graph database HyperGraphDB
https://github.com/fsteff/hyper-graphdb

B An extension to the graph database that implements most of the access
control capabilities
https://github.com/fsteff/certacrypt-graph

B Adrop-in replaceable module that provides the cryptographic primitives
https://github.com/fsteff/certacrypt-crypto

m CertaCrypt-Filemanager, the demonstrator application
https://github.com/fsteff/certacrypt-filemanager

6https://tinkerpop.apache.org/gremlin.html
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® HyperPubSub, a Hypercore protocol extension that allows peers to publish
messages on specific topics or subscribe to them
https://github.com/fsteff/hyperpubsub

The appendix “Project Code References” [SRC.1, ... SRC.7] contains specific Git
commit hashes of the source code versions used in this thesis.

1.4 Structure

m Chapter 2 discusses how similar access control systems work and analyzes
scientific literature and other related projects.

m Chapter 3 describes the inner workings of Hyperdrive and the Hypercore
Protocol, also catching up to the latest versions that were developed in par-
allel to our work.

m Chapter 4 discusses the concepts, requirements and considerations on how
to achieve the desired features.

m Chapter 5 describes the technical details on how the concepts were actually
implemented. This chapter also covers the graph database that was built as
a foundation for the access control system.

m Chapter 6 evaluates unsolved potential security threats and open problems.
Further, it includes benchmarks for features that we expected to potentially
cause performance bottlenecks.

® Chapter 7 concludes with a summary of our findings and explains possible
future improvements.


https://github.com/fsteff/hyperpubsub

Chapter 2
Related Work

Completely decentral architectures, such as the desired model of P2P based
local-first software, require their access control models to have properties
which are not compatible to conventional centralized access control systems.
Based on the different requirements of the respective architectures, manifold
approaches have been proposed and implemented.

In general, the various approaches can be categorized based on their assump-
tions of how trustworthy other devices in the network are. In controlled envi-
ronments, such as locally running software or enterprise networks, it is typi-
cally assumed that the machine and the code enforcing the access control sys-
tem can be trusted. In that case access control follows a rule-based approach
that either executes requests from authorized clients or denies unauthorized
ones.

In the context of local-first software that, for availability purposes, distributes
data to other clients and service providers of limited trustworthiness, these
other parties cannot be trusted to correctly apply access control rules. To en-
sure the high privacy standards local-first software promises, such software
should also make sure that private data is not processed without permission.

2.1 Cryptographic Capability Systems

Wherever confidentiality is required in a possibly untrustworthy environment,
cryptography is an obvious answer to that problem. Encrypting confidential
data allows to decouple the storage and access to data from the capability of
reading it. Digital signature algorithms further can be used to ensure authen-
ticity and integrity, even without the writer of the data and the reader having
to directly communicate with each other.

Early systems that utilize cryptography to implement a capability access con-
trol model for distributed environments have been around for quite some time.
More simple cryptographic filesystems for local use even longer. A good exam-
ple is CNFS, proposed and implemented by Harrington et al. (2003) [20], which
separates read, write and integrity check capabilities by using an authenticated
encryption scheme that uses multiple symmetric keys.

When each file is encrypted using a separate symmetric key, that results in
a need for efficient key management and key distribution. A straight forward
approach is encrypting these keys using asymmetric cryptography, separately
per file and recipient, such that only the owner of the private key has access to
it. But even if hybrid approaches to this are used, like encrypting a secret key
and then using that one with symmetric cryptography, this introduces quite an
overhead in performance and complexity.

A common property for capability access control models is transitive read ac-
cess, meaning that read access to a directory implies read access to all of its
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content. For cryptographic capability systems this is easily implemented by
storing the encryption keys of a directory’s content as metadata attached to
the directory, which in turn drastically simplifies key management.

Different approaches to key management include the use of key derivation,
attribute-based encryption and proxy re-encryption schemes. In the context
of access control, these are typically designed for distributed file systems or
databases, such as for scalable cloud architectures and are targeted at very spe-
cific use cases. This makes it difficult, if not impossible, for these models to be
applied to completely decentralized application architectures. To list a few ex-
amples, notable research in this area includes CloudHKA [12], a Bell-LaPadula
based cryptographic capability security model for cloud environments, Sush-
mita Ruj et al.’s proposal [41] for an attribute-based encryption powered de-
centralized access control scheme, and Shuhua Wu et al.’s access control sys-
tem for e-medicine [50] based on key derivation for implementing hierarchical
user privileges.

One of the most widely adopted early software projects that uses a crypto-
graphic capability access control model is Tahoe-LaFS [49]. It serves as a dis-
tributed data store, specifically designed as a backup system that gives the
storage providers only a minimum set of privileges. It differentiates write-,
read- and verify-capability keys that form a hierarchy where each lower capa-
bility is cryptographically derived from the higher one. Storage providers only
need the verify-capability that allows to check a file’s integrity. Depending on
whether the file is an immutable or mutable file, this is either means checking
a cryptographic hash or a digital signature. A read-capability consists of the
verify-capability key in addition to the encryption key, which in turn can be
derived from an asymmetric private key that is used as write-capability.

2.2 Blockchain-based Access Control

In the last years, the big trend in P2P software are decentralized apps that
use blockchain and associated smart contract systems. Aside from payment,
this can also be applied to other areas, such as for identity management using
Decentralized Identifiers (DID) [19] and also for managing access control. This
allows to eliminate single points of failure without having to give up techniques
that otherwise would require centralized services. Blockchains can be utilized
as global databases and smart contracts can be implemented to serve requests
or alter data stored there.

The degree of adoption of blockchain-technology used for access control
ranges from simply utilizing blockchains for storing and propagating access
control rules [43, 45, 52] to smart contracts that manage multi-party autho-
rization and proxy re-encryption schemes [3].

For the target of building local-first software, this however is only of limited
use, as these access control systems do not work offline and do not prioritize lo-
cal resources. While not being directly applicable, these still are noteworthy ac-
cess control models and could be useful for similar decentral applications that
do not need offline functionality.
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2.3 Related Projects

From a conceptual point of view, the project most similar to the proposed sys-
tem is Peergos!. It is an end-to-end encrypted, P2P file storage with an inte-
grated social network and additional viewers and editors for various kinds of
files. It is based on InterPlanetary File System (IPFS)? and features access con-
trol for reading and writing data, using a graph data structure for key man-
agement [22], which is based on the cryptree model described in [18]. It uses a
tree of symmetric keys to implement transitive read access and an additional
tree that manages asymmetric key pairs for write access. The verify capabil -
ity is provided by IPFS, as data is identified by its hashed value. For managing
user identities the developers run a central user registry for friend discovery
that stores unique usernames and associated IPFS addresses, effectively im-
plementing their own Public Key Infrastructure (PKI).

CoBox3 is a Hypercore-based filesystem for collaboration and backup purposes.
It uses a crypto-encoder4 approach to encrypt whole Hypercore feeds with a
secret key and a modified Hyperdrive implementation> that supports multiple
writers. This allows to create shared secret filesystems, but does not give the
ability to control read or write access to single files or directories.

Textile Threads DB [42] is a distributed document-store database built on
IPFS. It combines multiple cryptographically signed, single-writer append-
only logs, similar to Hypercore, to achieve write-access capabilities using only
single-writer data structures. It uses a multi-layered encryption approach for
different levels of read access. Write access is achieved by specifying which logs
are part of the DB, restricted by an appended ACL.

GUN DBY is a distributed graph database that features an access control sys-
tem based on cryptographic capabilities. It is designed for web applications and
communicates using WebRTC. Every user has an elliptic-curve key pair that can
be used for signing data, effectively implementing a verify capability. Private
data can be encrypted either by using another user’s public key, or by deriving
the encryption key from a secret passphrase. Write access is managed by creat-
ing certificates that contain rules specifying where the other users are allowed
to write to. Conflicting parallel writes are resolved using custom Conflict-free
Replicated Data Types (CRDT).

PushPin? is a virtual cork-board app that was developed in the course of a re-
search project [47] on how to build P2P applications that follow the local-first
software principles. It is built on Hypercore and a CRDT called Automerge to
enable seamless collaboration without sacrificing the ability to work offline.
It does not encrypt the data and therefore has no read access control mech-
anisms aside the requirement of the knowledge of the Hypercore public keys.
Also, it has no mechanisms to limit what a user with write permissions is able to
modify. Since each user has its own Hypercore instance to write to and PushPin
does not have any mechanism to communicate requests and responses, user
interactions are sent using an Outbox methodology that requires the recipient’s
client to read messages from the sender’s Hypercore. Our work, from a logical
view, works very similar and uses a comparable approach we also refer to as
Outbox.

thttps://peergos.org/

2IPFS is a content-addressed P2P data storage, see https://IPFS.io/

3https://cobox.cloud, https://gitlab.com/coboxcoop
4https://gitlab.com/coboxcoop/crypto-encoder

Shttps://gitlab.com/coboxcoop/kappa-drive

Shttps://docs.textile.io/threads/

7https://gun.eco/

8https://automerge.github.io/pushpin/
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Chapter 3

Hyperdrive and the Hypercore Protocol

The Hypercore Protocol [17] is an umbrella term and organization for a modu-
lar P2P data network built around Hypercore. It is a collection of open-source
building blocks that mostly work independently of each other, but used in com-
bination they can play to their strengths. Modules that provide basic function-
ality, such as network and local filesystem access, implement specific inter-
faces. These modules can be drop-in replaced with others that provide the same
API. The Hyperdrive P2P filesystem itself is a building block that is built on Hy-
percore. This means it does not come with a networking stack, and instead re-
quires the developer to choose which one to use. Technically, that allows it to be
used without any networking layer if the application does not need P2P func-
tionality. Usually, applications that use the Hypercore Protocol building blocks
utilize Hyperswarm, a DHT based networking layer that discovers and connects
to peers around the globe. This modularity enables Hypercore-based building
blocks to be used in the browser, but the lack of plain TCP- and UDP-based
networking in browsers limits the networking capabilities required for com-
pletely decentralized P2P networks. For example, it is possible to use WebRTC!
data channels as an alternative to Hyperswarm, but this still requires signaling
servers for peer discovery and to initiate connections.

Around the year 2020, the Hypercore Protocol organization grew out of the Dat
Project [34], a framework built for sharing large sets of data, when the release
of Hypercore version 9 and other modules introduced a large set of breaking
changes. The most prominent change concerned the network discovery mech-
anism, which was switched from a combination of DNS and the BitTorrent
Mainline DHT to the specifically designed Hyperswarm DHT. Another impor-
tant improvement was the use of more robust end-to-end encryption using
the NOISE framework [38]. In literature Dat is often used synonymous with its
most prominent usecase, the Hyperdrive filesystem [21, 40].

Our work is based on the latest stable releases during development, Hypercore
v9 and Hyperswarm v2. The recently released Hypercore vio and Hyperswarm
v3/v4 add a range of useful new features that were not yet available during the
research and implementation of this thesis project. For more details on that
topic see section 3.5.

In December 2022 the Hypercore Protocol organization went through another
rebranding. The main developers founded a new company called Holepunch and
renamed the organization to match the new brand. Many Github repositories?
and the documentation3 have been moved to new websites and the previous
URLs forward to the new locations. To maintain consistency in this thesis, we
still use the name Hypercore Protocol.

The rapid progress of the protocol improvements made some of the referenced
documentation obsolete and not every change has been documented properly.

thttps://webrtc.org/
2https://github.com/holepunchto
3https://docs.holepunch.to
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Many citations that explain Dat and Hypercore can only be seen as explanations
of the fundamental principles and no longer represent an exact specification of
the more recent versions. In some cases we were not able to find up-to-date
documentation. To support our claims concerning these cases, the appendix
“Hypercore-Protocol Code References” contains a list of references to Git code
repositories that implement the stated features. These are cited as [SRC.XY].

3.1 Hypercore

As the core building block and the fundamental data structure other mod-
ules are built on, Hypercore [SRC.8] feeds are append-only logs of binary data
chunks. Internally, the content is represented by signed merkle hash trees [30,
31], which allow verifying the integrity and authenticity of single entries inde-
pendently of the rest of the feed [37]. A Hypercore feed can be addressed by an
Ed25519 [9] public key whose private counterpart is used for signing the data,
this way the knowledge of the feed also allows verifying the contents. The Hy-
percore module includes a mechanism for reading (or checking-out) a feed at
a given version, with the version number being the index of the last appended
block. Other modules utilize this for providing versioned data structures with
very little structural overhead.

Hypercore includes its own wire protocol [36] for replicating data between
peers and a file format [51] for efficiently storing the data on disk. Storage is
not limited to the local filesystem. Any module that implements the random-
access-storage [SRC.20] interface can be used, such as the temporary in-
memory random-access-memory [SRC.21] module, or even random-access-
s3 [SRC.22] for AWS S3% buckets.

The wire protocol can be conveyed over any binary duplex stream, but network-
ing capabilities have to be provided by other means, e.g. by using Hyperswarm.
This transport agnostic protocol is used to exchange information what Hyper-
core feed blocks peers can provide and which ones they need, as well as for the
exchange of these blocks. At its core, the replication protocol isbased on WANT,
HAVE and REQUEST messages [36]. As their names suggest, these messages
signal what blocks a peer is missing, can provide for download and wants to
download from the recipient. WANT and HAVE messages can contain a range or
number of referred blocks. REQUEST messages only specify one block at a time.
Transmitted Hypercore blocks are sent using dedicated DATA messages. Peers
first communicate which blocks they have and which ones they need. Only then
a peer can send a request for downloading a block of data. Multiple blocks of a
feed can be requested and received from different peers in parallel and, if possi-
ble, Hypercore randomly requests data from multiple peers to evenly distribute
the load. When a new block is written or a peer has received a block another one
has requested, this can be signaled by sending a HAVE message. This allows
distributed live streaming of Hypercore feeds.

To prevent a potentially malicious peer from eavesdropping the discovery
mechanism and downloading previously unknown feeds, a discovery key is
used. The discovery key is derived from the public key using a cryptographic
hash function [SRC.11]. A peer must know the public key when requesting blocks
from another peer. To make sure this is the case, both send a cryptographic
proof as part of the initial handshake [SRC.12].

The replication stream between two peers is end-to-end encrypted. With ev-
ery session an ephemeral Curve25519 [7] session key pair is generated for

4https://aws.amazon.com/de/s3/
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this purpose. This is used for the initial handshake and key exchange, Hy-
percore v9 uses the NOISE protocol framework [38] for a Noise_XX_25519_-
ChaChaPoly_BLAKE2b handshake [SRC.12]. The replication stream is then en-
crypted using the exchanged session key and the XSalsa20 [8] cipher [SRC.12].

Hypercore version 9 has the major restriction that feeds require a linear his-
tory, which means that there must not be different versions of a block with the
same index. The typical solution to make sure this never happens, is that the
private key and thus the ownership of a feed is never shared between multi-
ple devices. An application that requires multiple devices writing to the same
Hypercore-based data structure should use multiple Hypercore feeds.

3.2 Hyperdrive

Hyperdrive [SRC.16] implements a filesystem on top of Hypercore. It mimics
the NodeJS filesystem API>, which is modeled on standard POSIX functions. De-
pending on choice of the lower-level modules for persisting and creating Hy-
percore feeds, the files and directories can either be synchronized with the local
filesystem or stored in a more efficient format. Through Hyperspace, a Hyper-
drive instance can also be mounted to the local filesystem, but only on Linux
and Mac OS (FUSE). In addition to standard filesystem functions, it also pro-
vides versioning and the ability of mounting other Hyperdrive filesystems to a
directory, similar to symbolic links [35].

Internally, Hyperdrive uses two Hypercore feeds, one key/value store [SRC.17]
for storing the metadata and one linear-memory [SRC.19] for the actual file
contents. This separation makes it possible to sparsely download files and en-
ables fast metadata lookups. Mounting other Hyperdrive filesystems internally
adds additional Hypercore feeds [SRC.18]. Unlike the structure suggests, ran-
dom access writes to a file do not overwrite the linear memory in-place and
instead cause the whole file to be re-written and appended to the content feed.
This means editing large files is very inefficient. Solutions to this problem, such
as using Linux-style inodes, have been proposed and experimented with, but
at the time of writing this thesis, didn’t make it into Hyperdrive [35].

The single writer and linear history limitation of Hypercore also affects Hy-
perdrive. Previous attempts of solving this problem replaced the metadata feed
key/value store with Hyperdb [11], which combines multiple Hypercore feeds to
one key/value store and resolves write conflicts using vector clocks. However,
the development of Hyperdb and therefore also this approach was dropped in
favor of the more flexible and low level multi-writer functionality introduced
with Autobase [SRC.35], an, at the time of writing, experimental module that
combines multiple causally-linked Hypercore 10 [SRC.9] feeds into one lin-
earized append-only-log.

3.3 Hyperswarm

Hyperswarm is a P2P networking stack for connecting peers that are interested
in the same topic. At its core it uses a Kademlia [29] based DHT [SRC.26], that
tracks the peers for every topic. A topic is a 32-byte buffer, usually generated
by applying a hash function to some data. For example, when used in combi-
nation with Hypercore, the topic is the discovery key. In addition to that, Hy-
perswarm applies distributed UDP holepunching techniques to connect peers

5Shttps://nodejs.org/api/fs.html
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that are behind a NAT or firewall [17]. When setting up a connection, Hyper-
swarm tries both TCP and UDP [SRC.28]. The first that succeeds is continued
to be used. On top of UDP, the uTP (uTorrent Transport Protocol) [33] provides
ordered and reliable delivery, congestion control and low latency. In the local
network, peers can also be discovered using multicast DNS [SRC.25]. This al-
lows Hyperswarm to be used without internet connection if both peers are in
the same network.

3.4 Access Control in Hyperdrive

The one major missing feature we identified in our evaluation of Hyperdrive is
fine grained access control. As previously explained, granting write access to
Hyperdrive is severely limited by the linear history requirement of Hypercore.
Read access is only restricted by the requirement of the knowledge of the Hy-
percore’s public key. But for building Hyperdrive based local-first software, we
want per-file control of read and write permissions. A user might want to share
directories or single files and grant write access to them. We argue that this is
a must-have for a universally usable P2P filesystem.

Within the community, the need for access control has been expressed fre-
quently, but, at the time of writing this thesis, the Github issues® resulting from
these discussions are still open. Various ways of solving this need for access
control have been explored and published, but these do not provide the flexi-
bility and the features we require.

One simple, built-in method for limiting read access to a Hyperdrive filesystem
is creating multiple instances and creating symbolic links to mount them into
a hierarchy of drives. Read access is then controlled by only sharing the indi-
vidual public keys with those who are supposed to have read access. However,
this only provides very limited flexibility and might only be suitable for certain
applications.

Linking multiple instances of Hyperdrive can also be used for implementing
simple write access permissions, but this limits the number of writers per di-
rectory to the one that owns the Hyperdrive instance. Some applications and
modules, such as Multifeed” and Multi-Hyperbee? utilize one or more Hyper-
core feeds per device. This requires additional functionality for merging simul-
taneous writes and potential conflicts. One solution to this problem is Hyper-
merge?, an application of a CRDT for JSON-like documents on top of Hyper-
core. But since Hyperdrive uses a different data structure, this cannot be applied
here without extensive changes. A partial solution for Hyperdrive is Multi-
Hyperdrive!©, which allows merging multiple Hyperdrive filesystems into one.
These approaches have in common that it is only possible to grant write access
to a drive as a whole, not to individual directories or files.

Achieving reliable availability for Hyperdrive-based local-first software can be
challenging, especially when it comes to privacy concerns. If a user shares some
files and does want them to be available on the network, the user either has to
keep the device online and running, or has to make sure some other seeder en-
sures its availability. In local -first software this might be another permanently

6https://github.com/hypercore- protocol/hyperdrive/issues/190,
https://github.com/dat-ecosystem-archive/datproject-discussions/issues/80,
https://github.com/dat-ecosystem-archive/DEPs/issues/21
7https://github.com/kappa-db/multifeed
8https://github.com/tradle/multi- hyperbee
9https://github.com/automerge/hypermerge
0https://github.com/RangerMauve/multi-hyperdrive
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running device in the local network, a generous friend or a paid cloud service.
But a third party seeder should not be able to read the data. This means, in addi-
tion to read- and write permissions, it should be possible to grant the permis-
sion to download data without being able to read it. We categorize this replicate
capability as part of the access control system. For more details on the require-
ments to our access control system see section 4.1.

3.5 New and Upcoming Features and Versions

The latest enormous step of advancements in the Hypercore Protocol, built
around the protocol changes of Hypercore version 10 and Hyperswarm version
4, introduced quite anumber of features that simplify access control and multi-
writer data structures. Hypercore v10 had its first stable release on 2022-08-
16 and other related modules followed shortly after. At the time of writing this
thesis, only few higher-level modules in the ecosystem have been upgraded to
support these new foundations.

The protocol improvements are hugely centered around the support of multi-
ple writers. The most prominent new feature for Hypercore is the truncation or
fork of the log, for example to be able to roll back a write operation in case of a
write conflict [SRC.9]. Hypercore v10 also provides first-class support for sym-
metric encryption of the feed contents. By the previously introduced terminol -
ogy, this implements a replicate capability when only the public key is shared
with third party seeders. The new version has gone through a lot of refactor-
ing and now has a much cleaner API that, among other things, moved from
callback-based asynchronous functions to JavaScript async and Promise based
processing. On the downside, this means that upgrading existing applications
requires a lot of code adaptations.

The newly introduced module Autobase [SRC.35] links multiple causally-linked
Hypercore instances into a single, Hypercore-like linearized view, which sim-
plifies creating distributed, multi-writer data structures. This is achieved by
embedding vector clocks into each appended block that track the latest known
length of all other feeds. This solves most problems that come with parallel
writes, but write conflicts are still possible. What to do in the event of a write
conflict is left to the higher-level code, as this is heavily dependent on the ap-
plication.

Hyperswarm had two version increments within a few months. Version 3 added
NOISE protocol [38] based end-to-end transport encryption and vastly im-
proved the holepunching capabilities [SRC.27]. Previously this end-to-end en-
cryption was part of the replication protocol, leaving the peer discovery part
in plaintext. The DHT implements security-hardening features based on s-
kademlia [4] and improves the user’s privacy by only sharing IP addresses after
approval by the peer itself [SRC.30].

With the version 4 of Hyperswarm, for UDP-based connections, uTP has been
replaced by the UDX protocol [SRC.31] that implements reliable, multiplex, and
congestion controlled streams over UDP and was specifically developed for Hy-
perswarm.

Hyperdrive version 11 is going trough what seems to be almost a complete re-
write [SRC.23]. But, at the time of writing, apart of the use of Hyperbee [SRC.34]
instead of Hypertrie [SRC.17] as its metadata storage, no new features are im-
plemented. For future work, implementing an access control system on top of
this much cleaner and simpler re-write of Hyperdrive can be expected to be
much easier than what had to be done for our implementation.
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The development of Hypercore 10 has happened independently and parallel to
this work. We expect that it will provide a very good foundation for future work
in the area of local-first software.



Chapter 4

Concept

The overall goal of this work is to simplify building applications that follow the
principles of local-first software. These principles were introduced by Klepp-
mann et al. [27] as a paradigm for software that prioritizes local resources, such
as local storage and the local network, but also enables seamless collaboration
and allows working from various devices, while giving the users full control
over data and honoring privacy.

How to design and build feature-rich, reliable and resource-saving local-first
software is still an ongoing topic of research [47]. This implies there is no es-
tablished set of best-practice rules or guide on how to build such software.
These principles require careful consideration of how to design the application
architecture and what underlying technology to use.

The first consideration is how the general data structure of the access control
system should look like. In terms of graph theory, filesystems can be seen as
trees where files are vertices and their names are represented as labels on the
edges between them. This abstraction of a directed, labeled graph data struc-
ture is easily extensible and makes it simple to apply algorithms that are typ-
ically used for graphs. Additional attributes on edges can provide semantic
meaning and context. This flexibility allows us to unify almost every aspect
of the access control system into one large graph. This graph is stored on a
dedicated Hypercore feed, independent of the Hyperdrive filesystem. In other
words, the graph is used for managing the encryption keys to the Hyperdrive
files and their metadata. Our approach goes as far as that the core functionality
is implemented in the form of a specialized graph database.

Another general architecture consideration that influences most other design
decisions, is how clients or peers communicate changes, events and requests.
An example for a cryptographic capability system would be key exchange, such
as providing encryption keys for read access. If such communication between
two peers is only possible though direct connections, both have to be online at
the same time. But a typical user cannot be expected to keep its devices online
and running all the time. To circumvent this problem, our approach is to write
everything to the user’s graph, including all kinds of communication. This in-
troduces a few constraints on what type of communication is practically usable
or even possible at all. For protocols that require a large number of round-trips,
this introduces potentially unacceptable latency. It also means that all com-
munication is public and therefore has to be protected appropriately. On the
positive side, such a completely asynchronous architecture comes with the ad-
vantage that the latest writes to the log, and therefore also communication be-
tween two clients, can easily be relayed or temporarily stored by a third party
and both clients do not need to be online at the same time. In the example of
the CertaCrypt-Filemanager, for each of the user’s friends, the Hypercore that
stores the graph is completely downloaded and then provided to others. This
vastly improves the availability of the communication data if a user has many
friends.

15
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The initial and work-in-progress concepts of CertaCrypt have been published
as part of the Github repository [15] throughout their development. These con-
cept documents helped to keep the complexity under control, for the develop-
ment of the software, as well as a vehicle for explaining ideas during discus-
sions.

4.1 Requirements

The target of modeling an application architecture for the envisioned access
control system, fulfilling the principles of local-first software and providing
an easy-to-use framework, comes with a long list of requirements and addi-
tional properties that would be nice to have. To formulate these requirements
in a more tangible way, the following points out the core motivation behind all
design decisions in the form of an example.

Imagine an application that provides the workflow and the features of a mod-
ern, cloud-based file manager, such as Dropbox or Google Drive. It allows to
fluently switch between devices and collaborate with friends or colleagues, but
is also handy for personal backups and provides file versioning. In case the
internet connection is not reliable, it works offline and later distributes the
changes once the connection works again. If a friend shares a large collection of
photos and videos, it is not necessary to download all of it to view them, instead
it only downloads what is required. Videos are streamed and therefore can be
played immediately after the first frames are received. Read and write access
to single files or entire directories can be controlled by selecting the contacts
from an address book. If files are shared with strangers or persons that do not
yet use this application, an invitation link can be generated.

In contrast to comparable cloud services, that application runs entirely on the
user’s devices. Instead of data centers as the central hub for all data flows, the
communication is sent over the shortest route from one device to the other.
There is no central authority that might stop providing a service or that can
decide that certain files are against their policy. However, this means that the
files will not be available to others in case all of the user’s devices are offline.
To solve that problem, commercial service providers or generous friends can
be tasked to keep that data available. To make this possible everything is en-
crypted. That means potentially less trustworthy service providers or all too
curious friends are not able to see the contents of the files or their metadata.

From a technical perspective, these objectives come with a lot of requirements.
Most of them can already be solved by using Hyperdrive, but as explained in
section 3.4, Hyperdrive is very limited in terms of access control. We identified
the following requirements for the access control system:

m File-level control over read access by encrypting data and metadata intro-
duces the problem of how to efficiently distribute the encryption keys. Ide-
ally, sharing only a single key gives read access to a defined set of files.
For simplicity, the access control system has a transitive read access policy
where read access to a directory implies access to all of its content.

®m Permissions need to be revocable, at least for future changes. This means
after read permissions are revoked, future writes to the filesystem have to
be encrypted with keys the affected user does not have access to. If this user
also had write permissions, future writes to the shared drive must not be
possible, but previous writes should not be lost.
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m A shared directory has one owner and only this user must be allowed to
make changes to the permissions. Support for additional administrators
would be nice-to-have, but is not essential and therefore can be seen as a
possible future improvement.

®m Hyperdrive features built-in versioning. The access control system there-
fore should support this as well.

In order to fulfill the principles of local-first software and to provide a pleasant
user experience, the implementation should provide additional features:

m The application has to work without internet connection. This implies that
all written data needs to be communicated asynchronously. For commu-
nication between users, request-response mechanisms typical for client-
server applications have to be avoided, as temporarily bad or non-existing
internet connection would introduce extreme latency.

®m The internal data structure should allow sparse replication, such that even
for metadata, only what is necessary needs to be downloaded.

m The ability to write to a shared filesystem while being offline rules out the
existence of locking mechanisms. Simultaneous writes to files and directo-
ries, as well as possibly unavoidable write conflicts need to be handled.

m Since Hyperdrive and the Hypercore Protocol do not provide a user system,
at least a simple one needs to be implemented. A built-in list of contacts and
friends can serve as a decentral WoT and is essential for comfortable user
experience.

4.2 Capability-based Access Control

In a broader context, capability-based access control is often used for operat-
ing systems on the kernel level, such as for KeyKOS [10] and EROS [44]. There, a
capability is a token a process can use to access the associated resource. In com-
parison to role-based access control or similar models, this allows very fine
grained control and can be independent of the user the process is assigned to.
In this type of capability system this is assured by the kernel.

With cryptographic capabilities, instead of having an entity that verifies a
passed token, access control is assured using cryptography. For example for
read access this can be implemented by encrypting the data with a symmetric
cipher and the encryption key serves as the capability.

4.2.1 Replicate and Verify Capability

The knowledge of the public key of a Hypercore enables to find peers that serve
its content, to download it from them and to verify its authenticity. CertaCrypt
uses a separate Hypercore for its graph database, so in order to replicate all data
of a user, this feed’s public key has to be known in addition to the Hyperdrive
public key. This capability is not bound to single files or directories, but effec-
tively to all data of the user. If multiple users have write access to a directory,
the public keys of these users are separate capabilities.
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4.2.2 Read Capability

As already explained, the read capability of a file or directory is the secret key
of a symmetric cipher. Our choice fell to ChaCha20 [6], a stream cipher that can
be used like a block cipher in counter mode. For more details on the choice of
cipher see section 5.2.

The Hyperdrive-internal metadata cannot be encrypted at Hypercore block
level. To allow random access, the internal prefix tree data structure has to be
in plaintext, so we only encrypt the metadata. As this would reveal filename
and hierarchy, encrypted files are written to a single hidden directory in Hy-
perdrive, using only numeric IDs as filenames. The actual filenames and paths
are stored as labels on the edges of the graph.

To simplify the key management, read access to a directory implies read access
to all of its contents. This transitive read access is implemented by appending
the read capabilities to edges that refer to the contained files and directories.

4.2.3 Write Capability

Direct write access to a Hypercore is only possible using its corresponding pri-
vate key, which therefore can be referred to as a direct write capability. This key
must not be shared between devices, so data written by another user has to be
stored on this user’s Hypercore. In order to permit write access to a directory,
the owner has to refer to a vertex stored on the other user’s Hypercore, which in
turn can be modified to have edges to newly written files. In comparison to the
other capabilities, this indirect write capability is a combination of the other
Hypercore’s private key and the fact that the feed is referred to.

4.2.4 Example

Figure 4.1 visualizes the three different types of CertaCrypt capabilities. The
graph vertices are stored on the Hypercore feed in the form of a transaction-log
based object store where each object/vertex has a numeric ID. The transaction
information is in plain text, the vertices are each encrypted using an individual
key.

With the knowledge of the Hypercore’s public key, the replicate capability, it is
possible to decode the transactions. The transaction information contains the
mapping of vertex IDs to their corresponding block number, this way a reader
holding only the replicate capability is able to decode where the graph vertices
are stored in the log, but cannot read their content.

In this example, the file vertex in block 0 was written prior to the directory ver-
tex in block 3. The directory vertex has an edge to the file. This edge not only
contains the filename, but also the encryption key. The directory also refers to
another directory in a separate Hypercore feed. In other words, someone else
has indirect write access. When queried, these two directories are merged into
one view that contains both files.



4 Concept 19

Hypercore Feed #1

block 0 | blocks 1.2 | block 3 replicate capability: public key
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data | transaction info | data

Figure 4.1: CertaCrypt Capabilities
4.3 Threat Model

4.3.1 Actors and Components

In contrast to client-server applications, an actor in the proposed system can
have multiple roles at once. Such roles can be the owner of a filesystem, a writ-
ing participant of a shared drive, the reader of shared files, a seeder of files, the
contacts of a user and also a node in the DHT.

Figure 4.2 shows the major components of the CertaCrypt-Filemanager, ex-
cluding the user interface. All data structures CertaCrypt reads and writes, in-
cluding the filesystem and the graph, are stored in Hypercore feeds, which
serve as an important layer of abstraction. The networking capabilities and
the storage layer are provided by HyperSpace, which can be run as a separate

CertaCrypt-Filemanager (Backend)

CertaCrypt

Access Control System HyperSpace Client

Hyper-GraphDB !
Graph Database . HyperSpace Daemon

Hyp_erdrive ! OS Interface
P2P Filesystem :
HyperObjects i
Data Store : Hypercore
HyperSwarm
1 | _Append-only-log & Network & Discovery
Hypercore RPC-Stubs : Transmission Protocol

Figure 4.2: Major CertaCrypt-Filemanager (Backend) Components
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daemon process. The HyperSpace RPC client only provides stubs of Hypercore
feeds.

4.3.2 Assets

For a P2P filesystem the main assets are the files—both content and metadata.
This also includes the file sizes, modification times, owners, writers, directory
paths and access control settings. File contents and metadata should be confi-
dential, have guaranteed integrity and need to be kept available. Especially en-
suring availability can be a challenging task, as this includes the discoverability
of the file in the DHT.

For some malicious actors it could also be interesting which users actually read
or share files. It could even be of interest which users look up the directory
structure. Another asset is a user’s network of contacts and information about
what these users share with each other.

4.3.3 Unauthorized Reads

Anyone who has knowledge of a CertaCrypt-protected Hyperdrive can request
the data it stores from other peers. A malicious or overly curious actor could try
toread files or metadata without authorization. This is prevented as all file con-
tents, metadata and graph vertices are encrypted. Read authorization is syn-
onymous to possessing the secret key(s) required to decrypt the data.

4.3.4 Unauthorized Writes

An attacker who disguises itself as a seeder could try to modify the distributed
data by changing the content of the Hypercore feeds. This is already mitigated
by Hypercore. A peer that receives data validates the signature that has to be
sent as part of the Hypercore metadata. Hypercore internally creates a merkle
tree, a tree of cryptographic hashes of all blocks, whose root node is signed us-
ing the Hypercore’s private key.

4.3.5 Invalid Data

A main difficulty with a multi-writer data structure based on multiple Hyper-
core feeds, is that it is not possible to control what other users write to their
feeds. Data read from another feed always has to be checked for protocol and
format violations. If write access to a directory is granted by adding an edge to
the other user’s graph, the vertices there can contain anything. The vertices on
this sub-graph can have edges to the graph of a third party, what effectively
would mean that this third party also has write access to the directory. To limit
what a sub-graph is allowed to contain, access control rules can be appended to
any edge. When the directory contents are read, the query engine of the graph
database checks if the other user’s graph is compliant with these rules and re-
moves all vertices from the result set that violate them. Typically these rules
limit the sub-graph to be stored on one Hypercore only. This prevents the other
user from giving write access to a third party.
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4.3.6 Data out of Context and False Attribution

The unidirectional structure of the graph allows assigning existing sub-graphs
to other directories. This potentially takes the contents out of context and gives
them a different meaning. Such an attack could cause the victim to get into per-
sonal or legal trouble. This could be solved by adding references from child ver-
tices to their parents, e.g. from files to their parent directories. The current im-
plementation does not protect against such attacks, but this could be added as
a future improvement.

4.3.7 Stolen Capabilities

The use of cryptographic capabilities when sharing read access also has the
drawback that these capabilities could be stolen or passed to someone else, for
example using social engineering techniques or malicious software on a user’s
device. Partially, this is mitigated by a mechanism that is required for the revo-
cation of read permissions (see section 4.6). In order to ensure future changes
cannot be read if a read permission is revoked, all files and their parent direc-
tory vertices are encrypted with new encryption keys each time they are written
to. If the encryption key of a single file or directory is stolen, future changes to
the affected files are not readable. Files and directories that are shared by URL
need a mechanism to update the capabilities to the new encryption keys. For
this purpose not the keys to the files themselves are shared, but instead spe-
cial share vertices are created. If the shared URL is stolen or passed to a third
party, that consequentially gives read access to the shared files, including fu-
ture changes. In case the attack is detected, the share can be marked as revoked
and does not get updated on future changes.

Write capabilities ideally never leave the Hyperspace daemon. In case a pri-
vate key is stolen, the affected user is completely compromised. Write permis-
sions to other user’s filesystems can be revoked, but other shared data has to
be treated as possibly malicious.

4.3.8 Denial of Service against the Network

Amalicious actor might want to disrupt a running application or the availability
of data. There is a huge variety of attack vectors for denial of service attacks
when working with P2P software.

Hyperswarm v2 [SRC.26] utilizes a custom implementation of the Kademlia
DHT, which is vulnerable to several attacks that allow modifying and disrupt-
ing the lookup of values [4]. With Hyperswarm v3 [SRC.27] a range of defense
mechanisms on the network layer is introduced, based on the improved S-
Kademlia [4]. This includes more robust DHT routing, node-ID assignment
based on a crypto puzzle and lookup over multiple disjoint paths.

Unfortunately, the Hyperspace module [SRC.33] we use for the CertaCrypt-
Filemanager only works with the older version 2 and might therefore be sus-
ceptible to denial of service and other DHT related attacks. Mitigating this
would require extensive modifications to this module and our initial effort to do
so! was dropped due to a lack of resources. This is an important task for future
work.

1The abandoned fork can be found at https://github.com/fsteff/hyperspace.
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4.3.9 Denial of Service against the Client

When a malicious actor gets a victim to read data from a Hypercore, it is al-
most impossible to know if the amount of data stored there is legitimate or
an attempt to overload the application. This also applies to the proposed sys-
tem, which contains a few relatively resource-heavy mechanisms that an at-
tacker might exploit. The current implementation does not have any protection
mechanisms against such attacks.

Another form of denial of service is when a writer in a shared directory, ma-
liciously or unintentionally, overwrites files without providing the content to
other peers. A possible solution to this would be to offer older file versions if
the latest one is not available. The current implementation does not provide a
dedicated API for listing and reading versions of files in shared directories. The
effort for implementing this should be modest, but due to a lack of resources it
is left for future work.

4.3.10 Necessary Assumptions

This thesis mostly focuses on the core aspects of the proposed access control
system and relies on a large number of different components. These compo-
nents are carefully selected, but a major security flaw in one dependency might
compromise the whole system. In order to keep the scope of this thesis within
feasible bounds, we need to make the following assumptions:

® Thelocal device and the operating system can be trusted to work as expected
and the device does not contain any malicious software. This also means
that files written by the application are not modified.

m The Hypercore protocol stack is secure against remote code execution and
correctly validates data integrity.

m This work, as well as the Hypercore protocol, makes heavy use of crypto-
graphic primitives provided by libsodium. We have to assume the utilized
library to provide the promised level of security.

m The utilized JavaScript modules work as expected and do not behave ma-
liciously. According to Github?, the CertCrypt-Filemanager depends on 331
NPM modules. Given our limited resources it would be infeasible to do an
in-depth check of all these packages.

4.4 |dentity and Communication

As shown in figure 4.3, every user has a set of vertices that are accessible to
everyone with the knowledge of the User URL, which contains the user’s Hy-
percore public key and points to a vertex. This Public Root vertex only serves
as an entry point and has edges to the other vertices that fulfill separate func-
tions. The User Identity contains a Curve25519 [7] public key that can be used
for initial key exchange and is used for the Outbox feature. The Profile contains
a JavaScript Object Notation (JSON) encoded user profile that contains user-
defined information such as username, a short description and a URL to a pro-
file image. The Pre-Shared Vertices are utilized to bootstrap write access to di-
rectories. Other users can refer to them in order to grant write access. For more
details on pre-shared vertices see section 4.5.2.

2https://github.com/fsteff/certacrypt- filemanager/network/dependencies
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Figure 4.3: Public Vertices of a User

4.4.1 Social Graph

CertaCrypt maintains an address book for keeping track of known and trusted
contacts, also called friends. From the graph database (see section 5.1.2) point
of view, it is a single vertex with edges to the other users’ Public Root vertices.
The user can send a friend request to other users. This request contains a URL
that grants read access to the address book and can be seen as a request to do
the same. This aims to implement a very simple WoT and improves the discov-
erability of users, but also has the drawback that the shared users’ profiles and
identities are passed without their explicit consent. Therefore, even if that in-
formation is encrypted and only accessible to those users who have knowledge
of the User URL, the profile and identity of a user have to be seen as publicly
accessible.

Since all communication is stored on the graph, the recipient of a request has
to be aware of the sender’s Hypercore feed and periodically look for incoming
messages. This can cause difficulties establishing communication between two
parties that both do not know the other’s identity. In that case, both need to
share their User URL via a separate channel and only after both parties have
manually added the other user to their address book, the communication can
work in both directions. Sharing the address book with others simplifies that. If
the two parties have a mutual friend, sharing the User URL on other channels is
no longer necessary and communication is possible immediately. Analogously,
if only one party knows the other’s identity, only this one has to share its User
URL over another channel.

The CertaCrypt-Filemanager adds further mechanisms for improving that sit-
uation and makes compromises in favor of the usability of the application, es-
pecially for easing the onboarding process of new users.

m If a user manually adds another user to their address book by inserting the
User URL, a friend request is sent without further user interaction. This in-
tends to increase the density and connectivity of the graph between users.

m After a friend request has been sent, the User URL of the sender is sent
to the recipient using a Hypercore Protocol extension called HyperPub-
Sub [SRC.7]. This way only one user has to know the other’s identity. It uti-
lizes existing Hypercore replication streams, as well as dedicated Hyper-
swarm connections, to implement a P2P PubSub system. The CertaCrypt-
Filemanager subscribes to messages sent to a topic that is derived from
the User Identity. The message is encrypted using libsodium’s sealed box3
method using the recipient’s public key (User Identity). This stops possibly

3https://doc.libsodium.org/public-key_ cryptography/sealed_boxes
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malicious actors from eavesdropping the friend requests a user receives.
When the CertaCrypt-Filemanager receives such a message containing a
User URL, this user is automatically added to the list of contacts, but not
to the address book. This enables communication between the two parties
if only one knows the identity of the other. The downside of this approach is
that this opens an attack vector for social engineering or phishing attempts,
as the user cannot verify the identity of the sender of such a PubSub mes-
sage. An attacker might try to impersonate someone the user knows in the
real world and invite the user to a shared directory containing malicious
files. As previously stated, this is a compromise taken in favor of usability
of the demonstrator application.

4.4.2 Outbox

The architectural decision to write all communication to the graph comes with
the challenge of how to make sure the message contents and the metadata,
such as the recipient of a message, are only visible to that user and nobody else.
If there was no previous communication, how can the capabilities required to
read the vertices containing the messages be exchanged, and how does the re-
cipient know where to look for messages?

The P2P social network Secure Scuttlebutt* writes private chat messages to the
public feed, but encrypts them using the public key of the recipient and a newly
generated ephemeral key pair [1]. To read the messages, others have to at-
tempt to decrypt the data with their private key on a trial-and-error basis. A
very similar approach to this can be implemented using the sealed box method
libsodium provides.

Seen from the recipient’s perspective, every user has an inbox that contains the
messages the inboxes’ owner sent to others. From the user’s perspective these
are outgoing messages, therefore we call it the Outbox. As shown in figure 4.3,
the Outbox is a publicly accessible vertex referred to by the Public Root.

From the perspective of a developer using CertaCrypt, it would be logical to have
a single inbox to read from, instead of having to poll other user’s Outboxes. An
approach to achieve this is to introduce a layer of abstraction that hides the
Outboxes. The Outbox vertex has edges to the vertices that contain the initial
communication attempts, but they do not specify the recipient. By utilizing a
sealed box to create a secret edge to a pre-shared vertex (see section 4.5.2), the
recipient is invited to write to the user’s graph. This way the communication,
from a logical point of view, can take place in one shared graph.

Since this single inbox would involve quite some complexity, the following
simpler alternative was considered as well. Instead of referring to pre-shared
vertices and thus creating a shared communication graph, each user has its
own graph. The Outbox vertex works the same as for the previous approach.
Its edges each contain a sealed box that contains the read capability to read the
communication graph.

Both approaches have in common that, similar to private messages in Secure
Scuttlebutt, users have to try to decrypt the sealed boxes to find out whether
these are sent to them or if the recipient is someone else. For the first approach,
additionally some sort of Inbox request is required, as messages can only be sent
after therecipient invites the sender to its inbox. This disadvantage, paired with
the additional complexity, led to a decision in favor of the simpler second ap-
proach.

4https://scuttlebutt.nz/
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4.5 Collaboration Spaces

The local-first principles require that data can be written even if the device is
completely offline. If a directory has multiple writers, that means it is possible
that multiple parties write to a file simultaneously, without having any way of
communicating that to each other. Logically, completely preventing such write
conflicts while being offline is not achievable, at least not without severely re-
stricting the functionality of the filesystem. Instead, CertaCrypt aims for even-
tual consistency [48], to achieve a consistent state for all readers at some point
intime. For an extension of Hyperdrive this means that with the same informa-
tion, the same state of the underlying Hypercores, all readers share an identical
view on the filesystem.

Parallel, asynchronous and lock-free writes to a nested structure of files and
directories can cause all sorts of write conflicts, not limited to writes to the
same file. For example, if one user deletes a directory and the other adds afile to
that directory, how should that conflict be resolved? Even cloud-based storage
providers that offer local filesystem synchronization, such as Dropbox>, often
fall back to manual conflict resolution in case of conflicting writes they cannot
automatically resolve.

We argue that a fully automatic conflict resolution strategy can only be
application-specific, as complex, nested structures of interrelated files for
storing application data are quite common. The design of an optimal and fully
automatic conflict resolution strategy would go beyond the scope of this thesis.
Instead, we introduce a very simple approach in section 4.5.1.

One possible way to solve the problem of conflicting writes would be the use of
CRDTs. However, the area of CRDT's for concurrent filesystems is still an area of
active research. A recent example is ElmerFS, Valliant et al. state several open
problems with their current approach [46].

With the use case of the CertaCrypt-Filemanager in mind, this work simplifies
the whole topic of write access to directories into what we call a Collaboration
Space. In order to rule out a large number of edge cases, this limits the scope
of supported operations and defines a conflict resolution strategy that is pri-
marily designed for usescases where users manually share files. On the graph,
a collaboration space is a special type of vertex that, by itself, does not repre-
sent a file or directory, but instead refers to a set of directories that are merged
using an aggregate view when queried. Each vertex in this set represents a user
with write permissions and therefore are separate sub-graphs that have to be
stored on this user’s Hypercore feed.

Instead of defining fine-grained permissions per file or directory using an ACL,
the graph structure a user is allowed to create can be limited using a set of rules
that are attached to the edges on the graph. This also allows limiting the write
permission to a single file. Since the owner of the filesystem can only define
these rules on the root vertex of the collaboration space, write access permis-
sions are defined per collaboration space. From a filesystem point-of -view this
is still equivalent to a directory. If a sub-directory needs different rules, a sep-
arate collaboration space can be created.

4.5.1 Conflict Resolution

The chosen conflict resolution strategy is one of the simplest deterministic al-
gorithms we came up with and only relies on the date and time of the last mod-

Shttps://help.dropbox.com/en-us/files-folders/share/conflicted-copy
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ification. If there are multiple files with the same name, the one with the lat-
est timestamp wins. In the unlikely case of two files having the same times-
tamp, the order in which the users were granted write access defines the win-
ner. When a file or directory is deleted, this file is replaced with a tombstone
vertex, but only in the sub-graph of the writer. If a query returns a file and a
tombstone with the same name and the tombstone has a larger timestamp, the
file is removed from the result set.

Resolving conflicts caused by a deleted directory turned out to be more difficult
than initially expected:

m If a directory is deleted and in parallel the contents of this directory are
changed, we argue that these changes are most likely more important than
the deletion of the directory. This conflict can be solved in various ways, for
example by removing all files that are older than the tombstone. But for the
sake of simplicity, our straightforward approach is to ignore the deletion
of the directory if there exist changes of its contents that have a timestamp
greater than the tombstone. This is achieved by propagating all changes to
the parent directories and thus updating their timestamps.

m The graph DB query engine needs a built-in mechanism to reduce the set of
intermediate results to be able to process tombstones for deleted directories
accordingly. The concept of the graph query strategy is to asynchronously
and recursively traverse the graph and only return a stream of results that
match the query. In the case of collaboration spaces and in order to be able
to process tombstones, the graph traversal algorithm has to assemble in-
termediate result sets that can be filtered if a branch contains a tombstone.

The disadvantage of this conflict resolution strategy is that it does not handle
some not to be neglected edge cases. If the previous example is modified in a
way that the changed file inside the deleted directory happens offline, but be-
fore the deletion, this can lead to an unexpected loss of data. This and similar
problems can be solved by determining the partial order of the write events, for
example by introducing vector clocks [14] or similar mechanisms. In compar-
ison, the GUN decentralized graph DB utilizes such a conflict resolution algo-
rithm based on timestamps and vector clocks, called the Hypothetical Amnesia
Machine [32].

Attackers could deliberately cause write conflicts and set the timestamp to a
future date to ensure their files cannot be overwritten. This can be mitigated by
using the partial order of the write events in addition to the timestamp.

The transaction version number of the implemented graph DB, technically the
Hypercore block index of the transaction marker, already implements a well
suited logical clock that could be utilized for such purposes. This proposed im-
provement to the conflict resolution strategy would be an important feature for
future work.

4.5.2 Pre-Shared Vertices

Write permissions are implemented by referring to a directory vertex that is
owned by another user. In order to create an edge to this vertex, this vertex
has to exist in the first place. A naive solution to this could be implemented
by introducing a sort of handshake protocol where the owner first signals that
write access is granted, and then the writer creates a new vertex and returns
the read capabilities to the owner, who then can create an edge to it. This might
work fine if, at the time of granting the write access, both parties are online
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Figure 4.4: Write Permission using a Pre-shared Vertex

and can communicate with little latency. However, if this is not the case, this
can cause quite some delay.

Since a more practical solution would be desirable, this is where pre-shared
vertices come into play. The idea is that users create and share these vertices
in advance, thus reducing the required number of round-trips to zero. But a
user can’t know how many of these vertices are required and therefore would
have to provide a large enough number of such vertices to every known contact
that might want to grant write access in the future. Instead, a small number
of pre-shared vertices only serve as an intermediary and are not tied to a spe-
cific recipient. They are shared as part of every user’s publicly accessible data,
readable by everyone who knows the User URL.

When a write permission is granted, an edge from the collaboration space ver-
tex to a pre-shared vertex is created. This edge specifies a randomly generated
referrer label and an encryption key, the referrer key. With this knowledge, the
recipient of the write permission creates a directory, encrypts it using the re-
ferrer key and creates an edge from the pre-shared vertex to this newly cre-
ated directory. The label of this edge is the specified referrer label and since
the pre-shared vertex is public, that edge must not contain the read capability.
A pre-shared vertex can be used for multiple shares, therefore the randomly
generated referrer label has to be long enough as to avoid accidental naming
collisions. If such a collision happens, the owner of the vertex considers the
second occurrence as faulty and ignores it.

Figure 4.4 visualizes this concept in a simplified manner. To ensure that the
number of edges on one pre-shared vertex does not grow too large, a user can
provide an arbitrary number of them, add an expiry date and potentially re-
move old or heavily used ones from the public list. This is not of much concern
to the conceptual design, but can influence the resource usage and privacy im-
plications. A third party eavesdropping the changes to the pre-shared vertices
could gain some insights on user interaction, as the vertex IDs of the referred
directories are readable and all changes to the filesystem cause these vertices
to be updated. For example, a third party who has replicate capabilities for this
user and for the owner of the collaboration space, could infer that the user is a
participant if there are updates to pre-shared vertices in temporal proximity of
updates to the collaboration space. A more privacy preserving implementation
might therefore choose to create separate secret pre-shared vertices for each
friend of the user.
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rules: [{
// prohibits any .txt files in any sub-directory and any feed
rule: '! x/#x/% txt'

// but README.txt in the top directory is allowed

except: {rule: '#/README.txt'}
3o

// restricts to this exact feed at the given version

rule: '489894a58fad1cec3abba357bb4957879ff6f11a8fa56f775e4cdc8d#123/*x /!
}]

Listing 4.1: Example for Access Control Rules in JavaScript Notation

4.5.3 Access Control Rules

Granting write permissions to a collaboration space in itself does not imply any
limitations on what the graph and therefore the directory structure can look
like. Without additional rules, a user with write permissions could even refer to
another user’s graph, which technically gives this other user write permissions
as well.

Commonly filesystems use an ACL based access control system that specifies
permissions per file and directory for users, groups or dependent on the roles a
user is assigned. Whenever a file is accessed, these properties are checked and
if a new file is created, the permissions are set based on specific rules, e.g. in-
herited from the parent directory.

Applying such an ACL based access control system to collaboration spaces is
difficult, mostly because the owner cannot control the content and structure of
areferred graph. Given the targeted usecase of users manually sharing files, a
simple, generic and efficient solution seems preferable. Since every user with
write permissions has to be dealt with separately anyway, there is not much
need for a group- or role-based system. In order to allow further simplifica-
tions, collaboration spaces are intended to be, permissions-wise, more-or-
less homogeneous directories where every participant usually is allowed to
read and write any file. Collaboration spaces can be nested. Therefore, it must
not be possible to bypass limitations set in parent directories by adding rules
in a child directory. These considerations suggest the use of an approach that
specifies an elementary set of rules that can be extended with exceptions if nec-
essary. Since CertaCrypt is built on top of a graph database, these rules are em-
bedded into the graph and are already checked by the query engine.

The implemented system allows attaching limiting rules to any edge on the
graph. These rules specify paths that are either allowed or disallowed, based on
Unix fnmatch-like string pattern matching. A rule can state additional rules as
exceptions that are applied as logical OR, multiple rules and rules added down
the directory tree are applies as logical AND. In other words, restrictions are
specified and applied in conjunctive normal form. This way edges on the path
can specify additional restrictions, but cannot add exceptions that might by-
pass previously specified rules.

Listing 4.1 shows an example how rules can potentially look like. The first rule
disallows any .txt files with the exception of a README.txt in the top direc-
tory. An exception is just another rule and itself again can state an exception.
As shown with the second rule, the first element in the path describes the feed’s
public key and may define the version to be used. If no version is defined, or if
it is set to 0, always the latest version of the sub-graph is taken. This version
pinning is required for revoking write permissions (see section 4.6).
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These rules are tested for every file a query returns, given its path relative to
the edge the rules are attached to. For a typical collaboration space this means
the rules are written to all edges that lead from the space’s root vertex to the
sub-graph of a user with write permissions. In such cases the referred vertices
are pre-shared vertices, but these are not visible in the files’ relative path and
therefore have no effect on the rules.

In the case of nested collaboration spaces, the rules specified in the higher-
level space cannot be overridden. Adding writers to nested spaces is therefore
only possible on the owner’s sub-graph, as this one has no rules attached. The-
oretically, a space can be included in two unrelated collaboration spaces. This
might cause inconsistent views on the data, but in terms of the access control
rules, only those rules are taken into account which are written on the path the
reader’s query takes.

For comparison, Textile Threads DB [42] uses a technically quite similar ap-
proach for multiple writers. It also defines ACL rules the reader has to check, but
in this case, these rules implement a Role-based Access Control (RBAC) pattern
using a set of roles on different levels. They call this methodology, where the
reader has to verify the compliance with the ACL rules, agent-centric security.

4.6 Permission Revocation

The fact that Hypercore is a P2P replicated append-only log implies that data
once shared cannot be deleted anymore. A peer that has downloaded the Hy-
percore feed can always check out the graph DB with a certain version, even if
later versions restrict the access to previously shared files. One method to im-
prove that situation would be to implement a protocol extension that asks other
peers to delete byte ranges in their local copy of the Hypercore feed, but a non-
compliant peer might just ignore that and even proceed sharing that data with
others.

Instead, CertaCrypt only supports revoking read and write access with respect
to future changes. After revoking read access the read capabilities are no longer
shared and when write access is revoked, the user’s graph is frozen at the cur-
rent version.

4.6.1 Read Access

Since old versions of the filesystem can be checked out and read anyway, it
would make no sense to re-encrypt all of the files when read access is revoked.
Only modified and new files need to be encrypted with a new key. This is also
referred to as lazy re-encryption [22].

Key Update

Read capabilities are stored on the edges of the directory vertices, so these have
to be updated and encrypted with new keys as well. Then again, the edges to
these vertices have to be updated as well. This means an updated read capability
for a single file requires updating every single parent directory read capability
up to the filesystem root.

Read capabilities are shared with other users in the form of URLs that con-
tain the IDs and encryption keys to dedicated Share vertices, which in turn
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have edges to the shared files or directories. The encryption keys attached to
these edges are updated, but not the encryption keys for these vertices, else
this would mean the URLs have to be shared again. This mechanism of using
dedicated Share vertices for sharing read access enables revoking read access
by simply marking them as revoked. A Share vertex that is marked as revoked
does not receive any updates and thus the edge to the shared directory or file
has an invalid encryption key once any shared file is modified.

To keep the code as simple as possible, our implementation always generates a
new encryption key each time a file is modified. This has the drawback that, for
every written file, all parent directories are re-written with updated encryption
keys. This causes some unnecessary overhead, but otherwise additional logic
would be necessary to keep track which directory has been updated already.

Referrer Key Update

Collaboration spaces that utilize pre-shared vertices for granting write access
need to update their keys as well. This means the other user has to be noti-
fied that, for the next write, the referrer key is changed and the referred direc-
tory has to be encrypted with the new key. The difficulty here is that updates to
the graph, as well as any communication, are not guaranteed to be available to
other peers and that changes can happen while one or both parties are offline.
The referrer key can be updated multiple times while the referred writer is not
aware of it. Even worse, a third party with read access might not have the latest
version of the owner’s graph while the latest version of the referred writer is
already updated. Without appropriate measures to tackle the problem, this can
cause major inconsistencies concerning the referrer key and the key actually
used for encrypting the referred vertex.

The desired solution to the problem of inconsistent encryption keys should
work without the need of multi round-trip communication, needs to allow both
parties to make changes while being offline and preferably it should nicely in-
tegrate in the previously sketched system of collaboration spaces. When the
owner specifies a new referrer key, the other user should update the referenced
vertex in a timely manner, but cannot be forced to do that as it might not be
aware of the changed key.

Our solution to this requires a few compromises. Each time the read access to a
collaboration space is revoked, the edges to the other writer’s pre-shared ver-
tices are duplicated, but with updated referrer keys. This means there can be
many edges to one user, but only one is valid and a reading client has to figure
that out on a trial-and-error basis. Which one that is, depends on whether the
referenced user has applied the latest changes. To keep track which edges are
the most recent ones and which are out-of-date, a version counter is attached
to them. The old edges can be deleted only after the owner of the collaboration
space observes that the requested key update has been carried out.

This solution can potentially add some performance overhead and still does
not solve the problem of the edge case where a third party does not have the
latest version of the owner’s Hypercore feed. In this case the reader could fall
back to an older version, but that only replaces one compromise with a new
one. Therefore, and for the sake of simplicity, the current implementation sim-
ply throws an error if the available referrer version of the pre-shared vertex is
newer than the version of collaboration space vertex. Such an exception causes
the affected sub-graph to be invisible to reader, the rest of the collaboration
space still works.
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4.6.2 Write Access

As previously mentioned, revoking write access is as simple as pinning the re-
ferred graph to a certain version. This way, previously written files are kept and
additional changes are ignored. Similar to the terminology of the Git source
code version control system, a Hypercore can be checked out at a certain version.
In the case of Hypercore, the version is determined by incrementing a counter
each time a block is appended to the log. This version pinning is realized as an
extension of the access control rules and therefore is implemented on the graph
DB level. A rule can specify the Hypercore feed the files have to be stored on and
this extension allows specifying a version of this feed. If the query engine en-
counters a rule that specifies a version, it checks out the Hypercore feed at that
version.

In case a user receives write permissions again at a later point in time, this only
requires removing version pinning from the access control rules. This implies
that if the user made changes to its part of the graph, while actually not hav-
ing write access, these changes are applied immediately. A different approach
that solves this problem would be copying all the files of the user to the owner’s
filesystem and entirely removing the now obsolete edge. However, the decision
was made in favor of the straight-forward and resource-saving approach that
uses version pinning, so this is a compromise in favor of performance and sim-
plicity.



Chapter 5

Implementation

CertaCrypt [SRC.1] is implemented as a NodeJS module and is mostly written
in TypeScript, transpiled to JavaScript in the build process. The CertaCrypt-
Filemanger uses this module for a desktop application built using Electron' and
the web framework Angular?.

5.1 Architecture

To reduce the overall complexity and to allow parts to be re-used in other
projects, multiple layers of abstraction have been introduced. Figure 5.1 visu-
alizes the modules and layers of abstraction CertaCrypt is built on. Our initial
attempt for the implementation did not separate filesystem, graph and access
control logic properly, and it soon became clear that the complexity of the code
would become a real problem. Even with the multi-layered solution, the pro-
cess of debugging a query can be quite a challenge. The lowest abstraction layer
is HyperObjects [SRC.2], a transaction-log based object store on top of Hyper-
core. The graph database Hyper-GraphDB [SRC.3] utilizes this for storing the
graph. The low-level access control mechanisms, such as encryption, are im-
plemented as a separate module, CertaCrypt-Graph [SRC.4], which extends the
graph database by overriding some core methods. CertaCrypt-Crypto [SRC.5]
wraps the cryptography primitives, manages the secret keys and is intended as
an easily replaceable module in case that’s necessary for an application. Cer-
taCrypt then adds the actual application logic for the access control system,
provides a Hyperdrive wrapper and combines these modules into an easy-to-
use library. The filemanager application additionally uses the module Hyper-
PubsSub [SRC.7] for improving the friend discovery process.

5.1.1 Object Store

A Hypercore feed in itself does not specify what the data stored there has to look
like. It only provides methods for appending arbitrarily sized binary blocks and
for reading these blocks either by block index or as a sequential stream. As a
base for the graph database, HyperObjects provides very efficient random read
access to objects and the ability to concurrently write objects in a way that pre-
serves consistency even if the graph is modified at multiple locations at once.

This is achieved using a transaction log based approach, in combination with
an index that contains the mapping of object-IDs to their block storage loca-
tions. Each object is appended as separate Hypercore block. Such writes to the
feed can be performed by multiple transactions in parallel. When a transaction

thttps://www.electronjs.org/
2https://angular.io/
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is finished, the updates to the index are written to the feed, followed a special
transaction-marker block. Only during this short period, the write access is re-
stricted to this transaction.

The index has an octree structure, each node keeps track of 8 objects and ad-
ditionally can refer to the locations of up to 8 other nodes. This allows partial
updates of the log without having to re-write all of it. When a new object is writ -
ten to the feed a unique ID is assigned to it. This object-ID is simply obtained by
incrementing an internal counter, which allows it to serve as a path description
when looking up the storage location in the index. The ID can be split up into
triples of bits. The least significant three bits define the location within the in-
dexnode, the others define the location of the index node in the tree. This octree
index and the sequential object-IDs result in very efficient lookups and writes,
both having an asymptotic computational complexity of O(logn). For example,
updating a single object with the ID of 1000 requires five blocks to be appended,
the object itself, three index nodes and the transaction marker, despite the in-
dex having a size of at least 69 nodes.

Looking up an object does not require to read the transaction log from the be-
ginning, instead the blocks are read starting at the end of the feed. The trans-
action marker is preceded by the root node of the index, from there the index
can be searched for the object-ID. This means only those few Hypercore blocks
have to be downloaded and read.

The transaction log approach also enables versioning of the objects, each
transaction-marker implies a new version and points to the block that con-
tains the previous transaction. When reading objects at a certain version, first
the marker for this version has to be found. After that, the object lookup works
the same as for reading the latest version.

5.1.2 Graph Database

Hyper-GraphDB allows creating and querying graphs that can consist of an ar-
bitrary number of Hypercore feeds. It also has a mechanism for defining views
that are embedded into the graph and produce aggregated or filtered results
when queried.

The core element of the graph is a vertex. It stores content of a specific data
type. For each data type a class has to be registered. This class needs to have
methods for serialization and de-serialization to and from an arbitrary binary
format. Additionally, all outgoing edges are stored as part of the vertex. These
edges can contain additional metadata, such as the encryption key for the re-
ferred vertex.

Graph Queries and Views

The query language, or more precisely query API, consists of functional-
programming- style chained operators that define how the graph is traversed.
This is inspired by the gremlin? query language, but has a different syntax and
islimited to read-only queries. Queries are processed asynchronously and yield
results whenever they are available. This way the first results can already be
processed while other parts of the graph have to be requested from other peers.

Listing 5.1 shows an example of a query that searches for vertices in the direc-
tory photos that match the criteria of being of type CertaCrypt-File. Each query

3https://tinkerpop.apache.org/gremlin.html


https://tinkerpop.apache.org/gremlin.html

© L —w o A W N =

5 Implementation 35

// get all vertices in directory photos that contain a file
let query = db.queryAtVertex(rootVertex)
.out('photos")
.out()
.matches(vertex => vertex.getContent().typename === 'CertaCrypt-File')
// process the results - query.vertices() returns an async generator
for async (const vertex of query.vertices()) {
// process result
}

Listing 5.1: Hyper-GraphDB query example in JavaScript

operation, such as out, matches and repeat, returns another query object. The
operators form a chain and are then applied recursively, finally returning a
number of vertices.

For more advanced usecases, queries can also return the internal state of each
resulting vertex. This state contains further information, such as vertex paths,
access control rules and utilized views.

Views are implemented as classes that manipulate the query logic. When the
query engine encounters an edge that contains a view annotation, this view is
instantiated and takes control over the sub-query. For example, write-access
using pre-shared vertices is implemented using a view. This referrer-view in-
ternally evaluates the pre-shared vertex and directly returns the one that is re-
ferred to, skipping the intermediary one in the resulting state and path.

Access Control Rules

The access control rules are applied right before the query results are returned.
The path that led to each result is concatenated to a string, then the rules are
checked relative to their position in the graph. This verification is implemented
at such a low level to make sure it is always enforced, without having to worry
about incorrectly implemented views and possibly overlooked edge cases.

Read Capabilities

The CertaCrypt-Graph module adds access control functionality, such as en-
cryption and automatic key extraction and management. Whenever a key is
read, e.g. from an edge that points to an encrypted vertex, this key is put into
the in-memory key store of the CertaCrypt-Crypto module. When a vertex is
read from the feed, the encryption key already needs to be present in the key
store. This effectively separates read access control capabilities from the query
logic.

5.1.3 CertaCrypt

The main module exposes an easy-to-use API that hides most of the graph.
Instead it provides classes for managing access control permissions, user pro-
file, contacts and much more. Reading and writing files is possible through
a modified implementation of Hyperdrive that is designed to be backward-
compatible. A Hyperdrive protected by CertaCrypt can also contain plaintext
files that can be read by the regular Hyperdrive implementation.
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Commonly used complex graph queries are provided in the form of views. This
way their results can be included in the filesystem in the form of a simple path.
For example, all files and directories shared by other users are made available
in the /shares directory. That means those shared files and directories are au-
tomatically mounted to the filesystem under one common root.

The CertaCrypt module does not include networking and OS filesystem func-
tionality, this has to be supplied by the application in the form of Core-
store [SRC.32] and Random-Access-* [SRC.20] compatible plug-in modules.

5.1.4 Filemanager GUI

The demonstration application only adds a thin business-logic layer on top of
the CertaCrypt module and uses Electron and Angular for the user interface. It
utilizes the Hyperspace Daemon [SRC.33] as its Corestore implementation.

As shown in figure 5.2, the web-based user interface runs in a separate process
that communicates with the backend logic using the Electron IPC functionality.
This is important from a security perspective, as it limits the attack surface in
case of cross-site-scripting and similar attacks.

5.2 Graph Encryption

Every vertex is encrypted using an individual secret key and can be updated
when read access is revoked. This results in a large number of keys that are
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managed by the CertaCrypt-Crypto module, each identified by their vertex ID,
Hypercore feed and version.

Which cipher to use for graph encryption is mostly based on the premise that
the cryptography library libsodium [16] is already used by Hypercore. To min-
imize the number of dependencies, the selection is limited to one of the stream
ciphers libsodium provides: ChaCha20, XChaCha20, Salsa20 and XSalsa20, or
alternatively a higher-level hybrid method that includes authenticated en-
cryption and generates the nonce internally.

All of these four variants of the Salsa cipher use an internal block counter in ad-
dition to the nonce, allowing them to be used similar to ablock cipher in counter
mode. When the cipher is used directly on the Hypercore block level, that allows
the block number to be used as nonce, provided that the same encryption key
is never reused for another Hypercore feed. This does not introduce any addi-
tional memory overhead and allows random access to single blocks.

Based on our threat model, we assume that the authenticity of the content of
a Hypercore feed is assured by the verified signature, so we do not require a
hybrid method that provides authenticated encryption.

For our purposes the 64-bit nonce of ChaCha20 or Salsa20 is enough. The ex-
tended 192-bit nonce of the XChaCha20 and XSalsa20 variants is more use-
ful if there is no guaranteed unique source for nonce available and it instead
has to be generated randomly. ChaCha20 was introduced as an improvement to
Salsa20 [6]. Based on this, ChaCha20* with its 64-bit nonce and 64-bit internal
counter was assessed to be the best method for the encryption of the filesystem
graph.

5.3 Hyperdrive Encryption

The Hyperdrive-internal metadata unfortunately cannot be encrypted on the
Hypercore block level. Hyperdrive internally uses a variant of a prefix tree, a
rolled hash array mapped trie [2], to store the metadata. This data structure and
the key strings have to be in plaintext to allow random access. Its keys, which
in Hyperdrive normally contain the path and filename, are instead numeric IDs
in a hidden directory. Only the content or value of the individual entries is en-
crypted, and in contrast to the vertices, due to API limitations, the Hypercore
block number is not known in advance and thus cannot be used as nonce. In this
case the choice fell to XChaCha205 with a random 192-bit nonce prepended to
the ciphertext.

Instead of forking the Hyperdrive repository, we chose to derive our imple-
mentation from the original Hyperdrive class and override all required func-
tions. Hyperdrive is implemented in an object-oriented fashion and utilizes a
number of sub-modules and classes. As is customary for Node]S applications, it
alsoimplements the Event Emitter pattern and uses callbacks for functions that
might wait for some IO operation or event. Always keeping the ability in mind
to write downwards-compatible plaintext files as well, the derived class deeply
modifies the internals of Hyperdrive and still has to make sure that this does
not break the original functionality. This introduced a lot of complexity and
during the development often broke in completely unexpected ways. Because
of these difficulties, we decided to only override the higher-level functions and
skip the C-style file descriptor API Hyperdrive provides in addition. This means

4https://doc.libsodium.org/advanced/stream_ ciphers/chacha20
5https://doc.libsodium.org/advanced/stream__ ciphers/xchacha20
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our implementation does not allow random access reading and writing, but for
most applications stream-based or whole-file operations are sufficient any-
way. Mounting Hyperdrives to a directory is replaced by our graph and thus
also is not supported. In retrospective, forking the Hyperdrive repository and
applying the changes directly likely would have been a much easier approach.

5.4 App Session

In the context of our work, the term session only vaguely relates to the way it is
applied in traditional web development. Instead, it is used as an umbrella term
for all user data, the way this data is stored and the business logic behind it. We
call the root vertex of the user graph the session root, as access to this vertex
implies read access to all of a user’s data.

Figure 5.3 provides an overview over the session graph. The session root has
edges to all components of the application. While these components all fulfill
a specific purpose, they can have edges to each other and utilize each other’s
functionality. The color of the vertex indicates whether this vertex is kept secret
(blue), might be shared with certain users (yellow) or is part of the public profile
(green).

5.4.1 Application Data

Filesystems and other arbitrary application data can be stored under the appli-
cation data vertex. This section does not need to follow any predefined struc-
ture. The CertaCrypt-Filemanager stores the user’s drive root under the name
filemanager. A user session can theoretically be used by multiple applications,
but the current implementation does not feature locking and update mecha-
nisms for concurrent writes to the graph. This could be added as a future im-
provement.

5.4.2 Social

The social component is referred to by three separate edges that each point to
one and the same vertex. Two of these edges define an aggregate view of the
data provided by the communication with other users. This component man-
ages friends, other contacts and the internal communication. Section 5.5 de-
scribes the component in detail.

5.4.3 Shares

Files and directories shared with other users are provided using one step of
indirection, the Share vertices. The re-encryption of the filesystem, enabling
read access revocation, requires these shares to be updated and therefore to be
centrally managed. Each share vertex contains additional information, such as
the public profile URL of its owner, an arbitrary information text for debug-
ging purposes and a flag that indicates its revocation status. The edges to share
vertices can have one of two labels, either url or user, indicating whether it is
shared by URL or directly with a user.
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Figure 5.4: Social Sub-Graph with Views for Communication and Contacts

5.4.4 Identity and User Profile

For initiating the communication, the inbox uses libsodium’s sealed box,
which internally performs an X25519 elliptic-curve Diffie-Hellman key ex-
change [16]. For this purpose each user has a Curve25519 key pair, which is
stored in two vertices, we call them User Identity and Identity Secret. The user
profile is stored as a JSON-encoded string, whose contents are pre-defined, but
can be extended by the application. The profile can include a URL to a profile
picture stored on the user’s Hyperdrive. Additionally, as explained in sections
4.4.2 and 4.5.2, the public profile contains pre-shared vertices and the Outbox.

5.5 Contacts and Communication

The social component is all about users and their interactions. It manages
friends, contacts shared by other users, tracks what data is shared with oth-
ers and what data others shared with the user.

When a permission is granted, the capability needs to be sent to the user. For
URLs this can happen through external means, such as email, but the use of
internal communication is more comfortable and secure. This is implemented
by adding vertices to a part of the graph that is only accessible to the owner and
the recipient, we call this a communication channel.

As shown in figure 5.4, the component also provides two views that generate
aggregate data:

®m The contacts view provides a list of profiles of all known contacts. This com-
bines the friends and the contacts shared by other users, then fetches and
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decodes their JSON-encoded profiles.

® The communication view provides a list of sent shares and a list of received
shares, implemented by querying all communication channels.

Edges to channels and friends have a distinct label, derived from the vertex IDs
of the users’ public root vertices and the public keys of the Hypercores they are
stored on.

5.5.1 Outbox

Each time the communication channels are queried, also the outboxes of all
known users are checked for new inbound messages that each may contain the
capability for reading a new communication channel. Since the trial-and-error
approach of the outbox is computationally heavy, previously encountered mes-
sages are cached. Therefore only new messages need to be decrypted. Techni-
cally, the outbox is part of the identity and profile component, but the caching
part happens in the communication component as this concerns only the ini-
tiation of communication channels.

5.5.2 Friends and Contacts

Contacts are added by creating edges to the users’ public profiles. A user be-
comes a friend when a friend request is added to the communication channel.
This friend request contains the capability for reading the user’s list of friends
and additionally serves as a solicitation to do the same.

As part of the contact list, the CertaCrypt-Filemanager displays the state of the
friendship, meaning whether a friend request has been sent and/or received.

5.5.3 Communication Channels

The concept of how to structure a communication channel has gone through a
series of iterations. In contrast to protocols for real-time communication, e.g.
for client-server application models, we only communicate in an asynchronous
fashion. The protocol used by CertaCrypt only uses zero-round-trip methods.
They are deliberately chosen that way to enable offline usage. Another core re-
quirement is that it can be extended by the application, which might require
requests that expect responses from the recipients.

Initially the idea was to combine the messages of the participants of a com-
munication channel to one merged graph, or to be precise to create a view that
merges the users’ messages, implemented analogously to a collaboration space
in the filesystem. However, this would have meant a lot of additional effort
and does not provide much value, besides being a technically elegant solution.
Therefore we chose to implement the simplest approach we could think of: sep-
arate communication channels that contain a vertex for each message.

A new communication channel is always started with an Init message, which
contains additional information, such as the user URLs of sender and recipient.

Figure 5.5 shows an example for acommunication channel with a friend request
and one shared directory. Message types are separated by edge label. Friend re-
quests are referred to as requests and shared read capabilities as provisions. The
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capabilities shared through these messages are implemented using URLs in-
stead of just creating edges to these vertices. Technically, creating edges would
be possible as well. It is only a design decision to separate the sub-graphs from
each other.

An application can extend the communication with its own message types,
which need to have a separate label. Request/response protocol extensions
could be implemented by including an edge to the request when a response is
created. The graph DB requires the data type of the vertex content to be known.
Therefore, the message types need to be extensible as well. This is solved by
encoding the message as JSON and only defining its structure in the form of
TypeScript object types, which are only present in code and removed when
transpiled to JavaScript. This compromise allows arbitrary messages and still
is easy to work with during development.

Write capabilities, implemented as edges within the filesystem graph, are in-
ferred and not communicated. The write permission to a directory requires the
read permission. Thus the other user already knows of the directory.

5.6 CertaCrypt API

The API of the module is centered around the class CertaCrypt. Most of the spe-
cific functionality is implemented by additional classes, such as User, Contacts
and Shares. These classes are managed and accessible as member variables of
CertaCrypt. The API largely uses async functions, which return a Promise that can
be accessed using the await keyword.

This section only covers the top level API, but a developer also has access to the
internal functions if necessary. Instead of a formal definition, the function calls
are shown by example to improve the readability.
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// some corestore implementation e.g. package 'corestore' or 'hyperspace
let corestore = new Corestore('./storage')

await corestore.ready()

// DefaultCrypto from package @certacrypt/certacrypt-crypto

let crypto = new DefaultCrypto()

// if a session exists the session URL needs to be passed

let sessionUrl = 'hyper://...'

let certacrypt = new CertaCrypt(corestore, crypto, sessionUrl)

Listing 5.2: Initializing CertaCrypt

5.6.1 Initialization

Initializing CertaCrypt requires an implementation of the Corestore interface
and an implementation of the interface CertaCrypt-Crypto specifies. Listing 5.2
shows an example for the initialization of the CertaCrypt class. If no session URL
is passed to the constructor, a new session is generated.

5.6.2 Utility Functions

Building features directly on the graph database API often results in a lot of
boilerplate code. CertaCrypt provides various functions that can be used to re-
place repetitive code:

B Jet vertex: Vertex<GraphObject> = await certacrypt.path('/path-to/my-vertex')
It is frequently necessary to query a specific vertex by its absolute path from
the session root. This function executes a Hyper-GraphDB query and re-
turns the first result. It throws an exception if the vertex cannot be found or
the result contains more than one vertex.

m Jet url: string = await certacrypt.getSessionUrl()
This function can be used to export the session URL, e.g. for writing it to a
file in the local filesystem.

m let url: string = certacrypt.getFileUrl(fileVertex, fileName)
Creates a URL that points to a specific file or directory. Because filenames
are specified on the edges of the graph, the names need to be included in the
URLs.

m let { vertex, name, stat, readFile } = await certacrypt.getFileByUrl(shareUrl)
Parses a file URL and mounts it to a temporary filesystem. It additionally
returns the file metadata and a function that can be used to read the file
contents. The CertaCrypt-Filemanager frequently uses this function to read
the profile pictures of other users.

5.6.3 Graph Manipulation

In some cases it is necessary to directly manipulate the graph using the Hyper-
GraphDB API. The currently utilized instance of the graph DB is provided as the
member variable graph of the CertaCrypt class. The example in listing 5.3 creates
avertex for later use with the filesystem.
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let appRoot = await certacrypt.path('/apps')

let driveRoot = certacrypt.graph.create<GraphObjects.Directory>()
await certacrypt.graph.put(driveRoot)

appRoot . addEdgeTo(driveRoot, 'filemanager')

await certacrypt.graph.put(appRoot)

Listing 5.3: Graph Manipulation

let driveRoot = await certacrypt.path('/apps/filemanager"')
let drive = await certacrypt.drive(driveRoot)

Listing 5.4: Initializing the Filesystem

5.6.4 Filesystem

An instance of the Hyperdrive wrapper can be created using the function drive,
which takes a vertex as argument for the filesystem root. Listing 5.4 continues
the example from listing 5.3 by initializing the filesystem on the created vertex.

The CertaCrypt filesystem API overrides the one of Hyperdrive, but is lim-
ited to the following functions: createReadStream, createWriteStream, mkdir, readFile,
writeFile, unlink, readdir, stat, lstat, access and exists. Similar to the Node]JS
filesystem API, Hyperdrive provides an asynchronous callback-based API and
aPromise API. Both are supported.

The filesystem API has two modes: the encrypted mode enables the CertaCrypt
access control and the the original Hyperdrive plaintext mode provides down-
wards compatibility. Most functions of the Hyperdrive API have an options pa-
rameter for specifying additional settings, e.g. which encoding to use and the
detail level of the result. CertaCrypt extends the options parameter to spec-
ify whether the encryption mode should be used. It can be activated by setting
the db.encrypted flag to true. The CertaCrypt API adds the options parameter for
those Hyperdrive functions that do not have it. The plaintext mode does not
use the CertaCrypt filesystem graph. Therefore, the directory structures of the
encrypted and the plaintext mode are independent of each other. Hyperdrive
methods that are not supported by CertaCrypt ignore the db.encrypted flag and
therefore always use the plaintext mode.

Listing 5.5 shows some exemplary usage of the promise API. The only differ-
ence to the callback API is that, instead of returning a promise, each function
has an additional callback parameter.

CertaCrypt provides a database view that lists all received shares. Each share
is identified by a unique, auto generated label and can be accessed by querying
that path. Listing 5.6 shows how to use this view by mounting it to a directory.
In this context, mounting a share to a directory means creating an edge from
the directory vertex to the referred one. The DriveShares class provides internal
functionality that allows the extended Hyperdrive to access the view. Because
of this, the method mountAt requires passing an instance of the filesystem the
shares are mounted to.

5.6.5 User and Profile

The User class manages the user profile, the Outbox and the pre-shared vertices.
Outbox and pre-shared vertices are handled automatically. There are two ways
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// for encrypted files and directories the 'db.encrypted' flag is required

await drive.promises.mkdir('/', {db: {encrypted: true}})

await drive.promises.mkdir('/shares', {db: {encrypted: true}})

let files = await drive.promises.readdir('/', {db: {encrypted: true}, includeStats
. true})

await drive.promises.writeFile('/readme.txt', 'Hello world!', {db: {encrypted:
true}, encoding: 'utf-8'})

let content = drive.promises.readFile('/readme.txt', {db: {encrypted: true},
encoding: 'utf-8'})

Listing 5.5: File Access Examples

// mount all received shares to the /shares directory

let shares = await certacrypt.driveShares

let driveRoot = await certacrypt.path('/apps/filemanager"')

// mounts the DriveShares to the Directory 'shares' of the given filesystem/drive
await shares.mountAt(drive, driveRoot, 'shares')

Listing 5.6: Mounting all received Shares

of getting an instance of the class:

W let user: User = await certacrypt.user
The current user can be accessed as a member variable of the main class.

m let user: User = await certacrypt.getUserByUrl(userUrl)
Loads another user by parsing the URL and fetching the referred graph ver-
tices.

The following high-level functions can be used for managing and accessing
users:

m Jet url: string = user.getPublicUrl()
Generates a URL that points the the user’s public root vertex.

m let profile: UserProfile = await user.getProfile()
Parses and returns the user profile.

W await user.setProfile(profile)
Updates the user profile.

5.6.6 Shares

Internally, the shares are managed by the Shares class, but the high-level API is
provided by the main class:

B et share: Vertex<ShareGraphObject> = await certacrypt.createShare(vertex, false)
Creates a new share that points to the passed vertex. If there already is a
share for the given vertex, it can be used by setting the second parameter
to true. The CertaCrypt-Filemanager reuses existing shares when a file is
shared by URL and always creates a new one if shared with a specific user.

W await certacrypt.sendShare(shareVertex, receipients)
Uses the internal communication to share a file with the given users.
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B await certacrypt.mountShare(targetVertex, label, shareUrl)
Parses the passed URL and attaches the referred vertex to the given target
vertex. The label parameter specifies the label of the new edge. In contrast
to DriveShares.mountAt, this method mounts a specific share using a defined
label. It can be used to access files which are shared by URL.

5.6.7 Contacts

The Contacts class manages friends and contacts. An instance of the class is
provided by the contacts member of the CertaCrypt class. In addition to manag-
ing friends and contacts, it provides functions for managing sent and received
shares:

®m await contacts.addFriend(user)
Adds a user to the friend list and sends a friend request.

B await contacts.removeFriend(user)
Removes a user from the friend list.

B let state: FriendState = await contacts.getFriendState(user)
Evaluates whether a friend request has been sent or received. The return
value is one of NONE, REQUEST_SENT, REQUEST_RECEIVED and FRIENDS.

m Jet friends: User[] = await contacts.getFriends()
Returns all users on the friend list.

m Jet allContacts: ContactProfile[] = await contacts.getAllContacts()
Returns the profiles and user URLs of all known contacts by combining the
list of the user’s friends with each friend’s list of friends.

m let shares: CommShare[] = await contacts.getAllReceivedShares()
Generates an overview of all shares received from all known contacts.

m Jet shares: CommShare[] = await contacts.getAllSentShares()
Lists all shares sent to other users.

5.6.8 Collaboration Space

Write access to directories can be managed using the CollaborationSpace class.

A directory can be converted to a collaboration space by calling
let space = await certacrypt.convertToCollaborationSpace(absolutePath)

Existing collaboration spaces can be loaded using
let space = await certacrypt.getSpaceForPath(absolutePath)

The class provides functions for managing write access and additionally pro-
vides utility functions for easy and efficient access to the current set of permis-
sions:

W await space.addWriter(user, restrictions)
Grants write access to a collaboration space. The second parameter is op-
tional and allows specifying access control rules. The default rule limits the
sub-graph to the user’s feed. If the user previously had access permissions
that were revoked, the version pinning is removed.

W await space.revokeWriter(user)
Revokes the write access permission of a user by pinning the feed to the
current version.
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B let hasAccess: boolean = await space.userHasWriteAccess(user)
Evaluates whether a user has write permissions to the collaboration space.

m let writers: User[] = await space.getWriters()
Returns a list of all users with write permissions, including the owner.

m let writersUrls: string[] = await space.getWriterUrls()
Returns a list of URLs to all users with write permissions. This does not re-
quire loading the users, making it faster.

m let owner: User = await space.getOwner()
Loads the user that owns the collaboration space.

m Jet ownerUrl: string = await space.getOwnerUrl()
Returns the user URL of the owner.

5.7 Filemanager User Experience

The user interface is a minimalist demonstrator for the capabilities of Cer-
taCrypt. It uses the angular material UI component library®. The UI provides
two views: a filesystem page and an overview of all shares. It also makes heavy
use of dialogue boxes.

The left-hand menu bar contains four icons: a profile picture, a contacts icon,
adrive icon, and a shared-directory icon. The profile picture leads to the user’s
profile dialogue, where users can edit their personal information and their pro-
file pictures. Clicking the “share” button on the profile dialogue copies the user
URL to the clipboard. Figure 5.7a shows a screenshot of this dialogue. The con-
tacts icon on the menu bar leads to the contacts dialogue, which lists all con-
tacts and provides buttons for sending friend requests. New contacts can be
added by pasting a user URL to the input field in the contacts dialogue. This di-
alogue is shown in figure 5.7b. The drive icon leads to the filesystem page and
the shared-directory icon leads to the share overview.

The filesystem page (as shown in figure 5.6a) is an explorer-like view that al-
lows users to navigate through their files and directories. It is designed to re-
semble a typical file system view, where users can browse through their folders
and files. The top menu bar has buttons buttons for uploading files, creating
directories and refreshing the view. The menu bar also contains a breadcrumb
navigation that shows the path to the currently viewed directory and allows to
navigate to parent directories by clicking on them. The filesystem page includes
a context menu that appears when users click on the three dots next to a file
or folder. The context menu provides three options for managing the selected
file or folder: download, share, and delete. Clicking on “share” opens the share
dialogue. This dialogue lets the user share a file either by URL or by selecting
the recipient from a list of contacts. Additionally, it provides a button to grant
write access to a contact and the option to revoke the permission by clicking
the button another time. Figure 5.6b shows the dialogue for sharing a file with
contacts and figure 5.6c shows sharing by URL.

The share overview page (as shown in figure 5.6b) lists all shared and received
directories and files. Additionally, it provides an input form for mounting files
or directories shared by URL. The list of shared directories and files is separated
into two categories: shared by the current user and shared by others. Each el-
ement includes information about the file or directory, whom it is shared with
and who shared it. Users can navigate to the shared files by clicking on the
paths.

Shttps://material.angular.io/
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Chapter 6
Evaluation

6.1 Security Considerations

While CertaCrypt encrypts files, directories and their metadata, the most basic
data structures are stored in plaintext. An attacker who knows the public key
of a user might exploit that to gain insights. We identified multiple potential
attack vectors of this category.

6.1.1 Inferring the Directory Structure

Every time a file or directory is modified, it is encrypted with a new encryption
key. The new key has to be propagated to the parent directory, which in turn
is encrypted with a new key as well. This lazy re-encryption enables the re-
vocation of read access permissions, but causes an easily recognizable pattern
in the transaction log. The vertices are persisted in the order they are modified,
allin the same transaction. The vertices themselves are encrypted, but their IDs
are not. Given there are many different write operations to analyze, an attacker
might be able to infer the directory structure of the filesystem.

This potential attack vector could easily be mitigated by randomizing the order
the vertices are written within a transaction. Additionally, other paths in the
filesystem tree could be re-encrypted as part of the same transaction to impede
an attempt of such an attack.

6.1.2 File Size

The internal data structure of the Hyperdrive is stored in plaintext. Encrypted
files are stored in a hidden directory, using a numeric filename, but the storage
location in the Hypercore feed can be read by anyone. Knowing the size of a file
allows an educated guess of some file types. Especially if the filesystem struc-
ture is known, a directory e.g. might be recognizable as a collection of music or
videos.

6.1.3 User Relations and Identity

To analyze which users interact with each other, an attacker only needs to con-
nect to the peers in the swarm and track which peer provides which Hypercore
feed ranges. A peer that provides a user’s Hypercore feed as a whole, likely is
either the user or one of their friends. Listening to new blocks on the feed, to a
certain degree, allows identifying the owner of the feed.
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6.2 Memory Usage

The fact that all version history kept available on the append-only log, raises
concerns about the memory consumption and required disk space. Hypercore
does not keep the whole feed loaded in memory, but it caches frequently used
blocks [SRC.8]. Therefore, the RAM usage regarding the log size hits an up-
per limit once the maximum cache size is reached. However, the required disk
space grows with each change to the graph. When the complete feeds of all of
the user’s friends are downloaded, this also becomes a network issue.

It is difficult to provide exact numbers for the required disk space, because
there are many variables that influence number of bytes written to the feed. In
general, the required space per change increases with the number of vertices in
the graph. In other words, the larger the number of files in the filesystem, the
larger the overhead of each write operation. This has various reasons:

® The more outgoing edges a vertex has, the larger its size. Outgoing edges
are stored as part of the vertex and are persisted that way. Adding a file to a
directory requires re-writing the directory vertex, including all of its edges.

®m The overhead of the HyperObjects block index grows with the number of
vertices it contains.

®m The re-encryption of parent directory vertices up to the filesystem root
means all of them need to be persisted. The deeper the folder structure, the
larger the overhead.

An endlessly growing log is not suitable for a production-grade application.
One solution to this problem would be pruning the transaction log. This would
mean deleting all old versions of files and their metadata, but for many types
of applications versioning is not required anyway. It would also be possible to
keep important versions and delete the rest. The transaction log pruning could
easily be implemented on the HyperObjects level. This way it would not inter-
fere with the encryption.

6.3 Benchmarks

All benchmarks were executed on a laptop with an Intel Core i5-1035G4 CPU
running Windows 11. The utilized Node]JS runtime had version 14.6.0. To en-
sure the code was optimized by the JavaScript runtime, a warm-up period was
executed prior to each benchmark. Instead of the Hyperspace daemon, the de-
fault Hypercore Corestore [SRC.32] was used with the module random-access-
memory [SRC.21] as a virtual in-memory persistence layer. Since measuring
time in the ps range can be very inaccurate on normal PCs, each measure-
ment was done on many repetitions of the evaluated operation. The code for the
benchmarks and the raw results are published in the CertaCrypt Github repos-
itory [SRC.1]. Time measurements were performed using the Node]JS function
process.hrtime, which returns the current high-resolution real time in seconds
and nanoseconds.

6.3.1 Access Control Rules

The checking of access control rules requires validating the relative file path
against a rule specified in a string syntax. This benchmark measured the per-
formance hit and runtime complexity of the rule validation. For each measure-
ment N rules were added to a collaboration space with one writer and a single
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Figure 6.1: Benchmark Results for the Number of Access Control Rules

file. The files in this directory were listed 100 times per measurement and each
measurement was repeated 10 times.

The benchmark used the following rule (in JavaScript notation):
{rule: '"!*x/* txt', except: {rule: 'x/data/readme.txt'}}

The results in figure 6.1 reveal an almost linear runtime complexity. Checking
one such access control rule took 68us on average. Since the rule checking in-
volves a lot of string operations, these results are better than we expected.

6.3.2 Writers in a Collaboration Space

Reading the contents of a collaboration space requires querying the sub-graph
of each participant. This is a rather resource-intensive operation. As a first
step, it requires checking the pre-shared vertex of each user, which is imple-
mented in the form of a graph database view. Each sub-graph is restricted to
one Hypercore feed, which means that access control rules need to be checked
for every vertex. The file status and metadata is read from the Hyperdrive
filesystem for each file found by the graph query. That additional complexity
already led to the expectation that the number of writers does not scale well.

This benchmark measured the runtime complexity of reading directory con-
tents for a large number of participants in a collaboration space. For each mea-
surement N users, in sequence, overwrote the same file. It is to be expected that
N different files would have been even slower, because it would have required N
additional file status read operations to different Hyperdrive filesystems. The
files in this directory were listed 100 times per measurement and each mea-
surement was repeated 10 times.

Figure 6.2 shows the results of the benchmark. These results indicate a poly-
nomial runtime complexity. Reading the directory contents with N = 50 writers
took almost a second, which is, in our opinion, a threshold where the load time
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Figure 6.2: Benchmark Results for the Number of Writers in a Collaboration
Space

might start to get annoying. Whether this is acceptable, depends on the type of
application.

The results contain large single outliers. We suspect these outliers were caused
by the software and hardware setup the benchmarks were executed on. There
are many random variables that could cause such outliers, e.g. background pro-
cesses or changes of the CPU clock due to thermal management.

6.3.3 Outbox Messages

Checking outbox messages follows a trial-and-error strategy for decrypting a
sealed box, which utilizes public key cryptography. This benchmark measured
the impact of a large number of messages in a user’s outbox. For each measure-
ment, N messages, addressed to user B, were placed into the outbox of user A.
User B then read and decrypted all of the messages, 100 times per measure-
ment. Each measurement was repeated 10 times.

The results in figure 6.3 indicate an average decryption duration of 160us per
message. Considering the previous benchmarks, we argue that the impact of
the sealed boxes is almost negligible. It can be expected that other features
cause serious bottlenecks before the Outbox becomes a problem. We expect that
the results for addressing the messages to N different users would be very sim-
ilar. Whether a trial-and-error attempt is successful or not should not make
much of a difference.
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Chapter 7

Conclusion and Future Work

In this thesis, we analyzed different approaches to access control for P2P
filesystems. The core motivation was to simplify building local-first soft-
ware, based on which we defined a set of requirements for the desired sys-
tem and identified challenges that needed to be solved. As the result of our
work we presented our concept of an access control system for the P2P filesys-
tem Hyperdrive. This concept was implemented and published as the Node]JS
module CertaCrypt, accompanied by the demonstrator application CertaCrypt-
Filemanager.

The cryptographic capability system based access control model features per-
file and per-directory level read and write permission management, including
the ability to revoke permissions for future changes. This is realized in the form
of a graph, for key management, but also for other features, such as for user
profiles, contacts and communication. The graph database built for this pur-
pose turned out to be a useful, reusable tool for capability based access control
that could potentially be used for applications other than filesystems as well.
On the downside, unifying many features into such a general-use data struc-
ture vastly increases its complexity and is prone to mistakes during develop-
ment.

Hyperdrive and the underlying Hypercore Protocol do not provide a user sys-
tem, but that was crucial for our plan to simplify building local-first software.
CertaCrypt provides a system that keeps track of a user’s friends and other
contacts, supports initial key exchange and implements a simple system for
asynchronous communication. Trust is a difficult topic in P2P systems, for the
demonstrator application we had to find a compromise between usability and
security. In the case of trusting a previously unknown user that might actu-
ally be a malicious attempt to impersonate someone else, we ultimately chose
usability over security to simplify the on-boarding of new users.

Due to a lack of resources, we had to leave a lot of useful features to future work
and instead concentrate on those that were crucial for the access control sys-
tem:

® The implemented write conflict resolution does not handle certain edge
cases. CRDT-based write collision handling could solve many of those.

m Currently the C-style file handler API of Hyperdrive is not supported. The
file handler API would allow random read access to file contents.

B In some cases it would be useful to have the ability to request write access
to a collaboration space.

® In order to improve the availability of shared data, third parties can seed
complete Hypercore feeds. This was a central requirement in the design
phase. However, if a user wants the whole filesystem to be seeded, the repli-
cate capabilities of the graph and those of the Hyperdrive need to be shared
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separately. One possible future improvement, that would improve the us-
ability a lot, would be a feature that allows sharing those replicate capa-
bilities along with the information which Hypercore feed ranges need to be
kept available.

® Another missing feature is the access to file versions. It is possible to check
out the whole filesystem at a certain version, but CertaCrypt does not pro-
vide a feature to list the available versions of a file.

®m Hypercore has a maximum block size of 8MB [SRC.8], which poses a hard
limit for the size of a persisted vertex. This means the number of edges,
and therefore the number of files in a directory, is limited. The exact limit
depends on the data stored on the edges. This problem could be solved on
the HyperObjects layer, e.g. by extending the object storage format in a way
that allows splitting an object into multiple blocks.

® Another desirable feature, that could be implemented on the HyperObjects
layer, is transaction log pruning. This would substantially reduce the re-
quired disk space by locally deleting old versions of the graph.

® In order to mitigate the threat of false attribution, child vertices that rep-
resent files or directories should refer to their parent vertices.

®m The latest major releases of the utilized Hypercore Protocol modules were
developed in parallel to our work. Upgrading to these improved versions
would benefit our system’s features and the overall level of security.
Whether the multi-writer capabilities introduced with Hypercore 10 could
be utilized for CertaCrypt, is another open question left for future work.

Many usability features of the CertaCrypt-Filemanager are left for future work
as well. It only serves as a demonstrator for the technology, therefore it only
provides what’s absolutely necessary for that purpose. To make it a useful tool
for real-world usage, it would require better OS integration and various other
features that improve the user experience.

Overall, CertaCrypt provides a workable solution to the lack of access control
in the P2P filesystem Hyperdrive and accomplishes its goal of simplifying the
development of local-first software. The straight-forward implementation of
the CertaCrypt-Filemanager supports that claim and demonstrates the capa-
bilities of the access control system.
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[SRC.1]  @certacrypt/certacrypt 1.0.0
CertaCrypt main module
https://github.com/fsteff/certacrypt/tree/f3914a2a538d9a5a22b30f93c5f239df5a
79f301

[SRC.2] hyperobjects 1.0.1
Transaction log based object store
https://github.com/fsteff/hyperobjects/tree/bfc42d3beb89d7291c9fa6a664c28b0o2
405/4ca2b

[SRC.3] @certacrypt/hyper-graphdb 1.0.1
Graph database
https://github.com/fsteff/hyper-graphdb/tree/638d1f6ab7c769d2a8adfb275b9dd
eef72fba207

[SRC.4] @certacrypt/certacrypt-graph 1.0.0
Access control extension for hyper-graphdb
https://github.com/fsteff/certacrypt-graph/tree/79ae559b383f2bb6cs4d64ffa76
bba34aba67eas

[SRC.5] @certacrypt/certacrypt-crypto 1.0.0
Crypto utilities for CertaCrypt
https://github.com/fsteff/certacrypt-crypto/tree/a974d9e12090d26f1fc19858d6ce
£4109867fc9d2

[SRC.6] certacrypt-filemanager 1.0.0
Demonstrator application for CertaCrypt
https://github.com/fsteff/certacrypt-filemanager/tree/639ef9436bci1d8eaee/908
4fo112ec7632395db

[SRC.7] hyperpubsub 1.2.4

PubSub system as a Hypercore Protocol extension

https://github.com/fsteff/hyperpubsub/tree/95552c70bfd932£62049c87cd83c9c5
5243599b4
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[SRC.8] hypercore 9.12.0
Main Hypercore module
https://github.com/holepunchto/hypercore/tree/74fd5f5712188d11b88502334281
9a635fc303ec

[SRC.9] hypercore 10.7.0
Hypercore version 10
https://github.com/holepunchto/hypercore/tree/fc541afec9c3c617f236b77e65b4
cda8c7ab8197

[SRC.10]  hypercore-protocol 8.0.7
High-level implementation of the Hypercore replication protocol
https://github.com/hypercore-protocol/hypercore-protocol/tree/c299117fbcbe71
00adf442£30768ec4860cacda7

[SRC.11]  hypercore-crypto 2.3.2
Cryptography utilities used for Hypercore
https://github.com/mafintosh/hypercore-crypto/tree/b6e2d99f9b6634e7d4e3d3
6bs5f6502a88d1eee50

[SRC.12] simple-hypercore-protocol 2.1.2
Low-level implementation of the Hypercore replication protocol
https://github.com/mafintosh/simple-hypercore-protocol/tree/972740e8e97779
bc9464361fbfa6211aca3b3ec2

[SRC.13]  simple-handshake 3.0.0
Handshake using the NOISE framework
https://github.com/emilbayes/simple-handshake/tree/7ba3027721b5b380e8a8d
98aa7a9cdfobfi434de

[SRC.14] noise-protocol 3.0.1
Javascript implementation of the Noise Protocol Framework based on lib-
sodium [SRC.15]
https://github.com/emilbayes/noise-protocol/tree/331566df32160ce8a7fdfabods
556b00301af999

[SRC.15] sodium-universal 3.1.0
Universal wrapper for sodium-javascript and sodium-native working in Node]JS and
the Browser
https://github.com/sodium-friends/sodium-universal/tree/69753b149513fb168
8ad4sfcc245cbee9616afo6

[SRC.16] hyperdrive 10.21.0
Main Hyperdrive module
https://github.com/hypercore-protocol/hyperdrive/tree/220de8818064e01a6fas1
7b65d108a1€192bd969

[SRC.17] hypertrie 5.1.3

Rolling hash array mapped trie to index key/value data on top of Hypercore

https://github.com/hypercore-protocol/hypertrie/tree/37dc7925d6£839b966528f
62bdaaasd2e99acccb

62


https://github.com/holepunchto/hypercore/tree/74fd5f5712188d11b885023342819a635fc303ec
https://github.com/holepunchto/hypercore/tree/74fd5f5712188d11b885023342819a635fc303ec
https://github.com/holepunchto/hypercore/tree/fc541afec9c3c617f236b77e65b4cda8c7ab8197
https://github.com/holepunchto/hypercore/tree/fc541afec9c3c617f236b77e65b4cda8c7ab8197
https://github.com/hypercore-protocol/hypercore-protocol/tree/c299117fbcbe7100adf442f30768ec4860cacda7
https://github.com/hypercore-protocol/hypercore-protocol/tree/c299117fbcbe7100adf442f30768ec4860cacda7
https://github.com/mafintosh/hypercore-crypto/tree/b6e2d99f9b6634e7d4e3d36b5f6502a88d1eee50
https://github.com/mafintosh/hypercore-crypto/tree/b6e2d99f9b6634e7d4e3d36b5f6502a88d1eee50
https://github.com/mafintosh/simple-hypercore-protocol/tree/972740e8e97779bc9464361fbfa6211aca3b3ec2
https://github.com/mafintosh/simple-hypercore-protocol/tree/972740e8e97779bc9464361fbfa6211aca3b3ec2
https://github.com/emilbayes/simple-handshake/tree/7ba3027721b5b380e8a8d98aa7a9cdf0bf1434de
https://github.com/emilbayes/simple-handshake/tree/7ba3027721b5b380e8a8d98aa7a9cdf0bf1434de
https://github.com/emilbayes/noise-protocol/tree/331566df32160ce8a7fdfab9d4556b00301af999
https://github.com/emilbayes/noise-protocol/tree/331566df32160ce8a7fdfab9d4556b00301af999
https://github.com/sodium-friends/sodium-universal/tree/69753b149513fb1688ad44fcc245cbee9616af06
https://github.com/sodium-friends/sodium-universal/tree/69753b149513fb1688ad44fcc245cbee9616af06
https://github.com/hypercore-protocol/hyperdrive/tree/220de8818064e01a6fa517b65d108a1e192bd969
https://github.com/hypercore-protocol/hyperdrive/tree/220de8818064e01a6fa517b65d108a1e192bd969
https://github.com/hypercore-protocol/hypertrie/tree/37dc7925d6f839b966528f62bdaaa5d2e99acccb
https://github.com/hypercore-protocol/hypertrie/tree/37dc7925d6f839b966528f62bdaaa5d2e99acccb

Hypercore-Protocol Code References 63

Ref. NPM Package Name Version
Description
Git Repository URL (Version Commit)

[SRC.18] mountable-hypertrie 2.8.0
A Hypertrie [SRC.17] wrapper that supports mounting of other Hypertries
https://github.com/andrewosh/mountable-hypertrie/tree/f4a64f98fe86fc5725d
6bagebf3dsbss5d4b3adob

[SRC.19]  hypercore-bytestream 1.0.12
A Readable stream wrapper around Hypercore that supports reading byte ranges.
Used for Hyperdrive [SRC.16]
https://github.com/andrewosh/hypercore-byte-stream/tree/9b648f50806139db
a7f76a8c8317911172c0d388

[SRC.20] random-access-storage 1.4.3
For implementing random-access-storage interface compliant modules
https://github.com/random-access-storage/random-access-storage/tree/50ddo
2fdo7d5d1690a3346684f8aac74dd76do17

[SRC.21] random-access-memory 6.1.0
Virtual in-memory storage
https://github.com/random-access- storage/random-access-memory/tree/9e50
Lea2637abggdb6120c7ees54bbfibfads7d42

[SRC.22] random-access-s3 0.0.2
A random access interface for AWS s3 buckets (read only)
https://github.com/random-access-storage/random-access-s3/tree/1€38579b7b
152111651930d5effa0933243a0524

[SRC.23] hyperdrive-next 11.0.0-alpha.10
Hyperdrive 11 alpha preview based on Hypercore 10
https://github.com/holepunchto/hyperdrive-next/tree/fbd973785845a6¢c3bas9
6¢c5b47f71b1egb24ac6c

[SRC.24] hyperswarm 2.15.3
Main Hyperswarm module
https://github.com/holepunchto/hyperswarm/tree/924f56ae2781f1c605916e8e0
70f474ac7fffofo

[SRC.25] @hyperswarm/discovery 2.0.1
Hyperswarm discovery using the DHT and mDNS
https://github.com/hyperswarm/discovery/tree/e9cab6a7asdddo99c71eb6879779
3322a116b2159

[SRC.26] @hyperswarm/dht 4.0.1
The DHT powering Hyperswarm
https://github.com/holepunchto/hyperswarm-dht/tree/c8bbe643dac374d9c7cf9
2d723b732a980c564bd

[SRC.27] @hyperswarm/dht 6.5.0
The DHT powering Hyperswarm, latest version
https://github.com/holepunchto/hyperswarm-dht/tree/40653a29f5901fe3668as
893959a1b89490dd2f7

[SRC.28] @hyperswarm/network 2.1.0

Low-level networking parts of Hyperswarm

https://github.com/hyperswarm/network/tree/12a211462c1f4ddcab8ee73398f61
£44,026208c09
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https://github.com/hyperswarm/network/tree/12a211462c1f4ddcab8ee73398f6144026a08c09
https://github.com/hyperswarm/network/tree/12a211462c1f4ddcab8ee73398f6144026a08c09
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Ref. NPM Package Name Version
Description
Git Repository URL (Version Commit)

[SRC.29] dht-rpc 4.9.6
RPC calls over a Kademlia based DHT, used by [SRC.26]
https://github.com/mafintosh/dht-rpc/tree/19a0df46cd63ecoddfffi6b7ffab77d38
4eoctdb

[SRC.30] dht-rpc 6.3.0
RPC calls over a Kademlia based DHT, latest version
https://github.com/mafintosh/dht-rpc/tree/949d146db4cb79bb6baf8ca08716b14
1bc79f060

[SRC.31]  udx-native 1.4.0
libudx - reliable, multiplex, and congestion controlled streams over udp (pre-alpha
WIP version)
https://github.com/hyperswarm/libudx/tree/ecaoies5e116d326c5173ee32e9d80f9
662c81cs

[SRC.32] corestore 5.8.2
Canonical implementation of the corestore interface
https://github.com/hypercore-protocol/corestore/tree/87d11b3d2bec28193797ab
€795938ea4d17d7c51

[SRC.33] hyperspace 3.19.0
Lightweight server that provides remote access to Hypercores and a Hyperswarm
instance and exposes a simple RPC interface
https://github.com/hypercore-protocol/hyperspace/tree/26d6d36f3d3f9d6cai2
69994af5a2ddf9096¢583

[SRC.34] hyperbee 2.4.2
B-tree running on a Hypercore
https://github.com/holepunchto/hyperbee/tree/295f465c85970be862d0715cfbs
29d091076a5bo

[SRC.35] autobase 1.0.0-alpha.8

Rebase multiple causally-linked Hypercores into a single, linearized Hypercore

https://github.com/holepunchto/autobase/tree/7719d9a87fd191563044cb14468
340ce42b6d4cy



https://github.com/mafintosh/dht-rpc/tree/19a0df46cd63ec0ddfff16b7ffab77d384e0c4db
https://github.com/mafintosh/dht-rpc/tree/19a0df46cd63ec0ddfff16b7ffab77d384e0c4db
https://github.com/mafintosh/dht-rpc/tree/949d146db4cb79bb6baf8ca08716b141bc79f060
https://github.com/mafintosh/dht-rpc/tree/949d146db4cb79bb6baf8ca08716b141bc79f060
https://github.com/hyperswarm/libudx/tree/eca01e45e116d326c5173ee32e9d80f9662c81c4
https://github.com/hyperswarm/libudx/tree/eca01e45e116d326c5173ee32e9d80f9662c81c4
https://github.com/hypercore-protocol/corestore/tree/87d11b3d2bec28193797abc795938ea4d17d7c51
https://github.com/hypercore-protocol/corestore/tree/87d11b3d2bec28193797abc795938ea4d17d7c51
https://github.com/hypercore-protocol/hyperspace/tree/26d6d36f3d3f9d6ca1269994af5a2ddf9096c583
https://github.com/hypercore-protocol/hyperspace/tree/26d6d36f3d3f9d6ca1269994af5a2ddf9096c583
https://github.com/holepunchto/hyperbee/tree/295f465c85970be862d0715cfb429d091076a5b0
https://github.com/holepunchto/hyperbee/tree/295f465c85970be862d0715cfb429d091076a5b0
https://github.com/holepunchto/autobase/tree/7719d9a87fd191563044cb14468340ce42b6d4c7
https://github.com/holepunchto/autobase/tree/7719d9a87fd191563044cb14468340ce42b6d4c7
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