JOHANNES KEPLER
UNIVERSITY LINZ

Author
Jakob Arneth
11916206

Submission
Institute of

Networks and Security

Thesis Supervisor
Dr. Michael Roland

Assistant Thesis
Supervisor

FIDO2 Token
Authentication for
Personal Identity Agent

Bachelor’s Thesis

to confer the academic degree of
Bachelor of Science
in the Bachelor’s Program

Computer Science

JOHANNES KEPLER
UNIVERSITY LINZ
Altenberger StraBe 69
4040 Linz, Austria
jku.at

https://jku.at/

Abstract

This bachelor thesis aims to extend the Personal Identity Agent of the Digidow
project by adding two new authentication methods with FIDO2 tokens. So far,
users had to use a password for the authentication process. A method for au-
thenticating with FIDO2 tokens has not been implemented yet. Therefore, the
authentication process was enhanced by implementing the authentication with
security keys. Initially, two-factor authentication with security keys as sec-
ond factor was implemented. In addition to that, the application now fulfills
the requirement of passwordless authentication. First, this bachelor thesis de-
scribes the theoretical background of FIDO2 token authentication. Second, it
gives a detailed overview of the functionality of FIDO2 token authentication.
Additionally, the design choices for the implementation and the individual im-
plementation steps are outlined. Furthermore, an evaluation concerning the
Tor Browser, the WebAuthn standard, the security key setup, and implemen-
tation options is done.

Kurzfassung

Das Ziel dieser Bachelorarbeit ist die Implementierung einer neuen Authen-
tifizierungsmethode mit FIDO2-Tokens fiir den Personal Identity Agent des
Digidow-Projektes. Bis jetzt mussten sich Benutzer mit einem Passwort an-
melden und es stand keine Authentifizierungsmethode mit FIDO2-Tokens als
Sicherheitsschliissel zur Verfiigung. Daher musste der Authentifizierungspro-
zess erweitert werden. Zu Beginn wurde die Zwei-Faktor-Authentifizierung
mit Sicherheitsschliisseln als zweiten Faktor implementiert. Zudem wurde
Funktionalitdt hinzugefiigt, damit sich Benutzer ohne Passwort und mit einem
Sicherheitsschliissel authentifizieren konnen. Zuerst geht diese Bachelorarbeit
genauer auf den theoretischen Hintergrund von FIDO2 Token Authentifizie-
rung ein. Danach wird die Funktionalitat der FIDO2 Token Authentifizierung
genauer erldutert. Zusdtzlich werden die Entwurfsentscheidungen fiir die Im-
plementierung und die einzelnen Implementierungsschritte beschrieben. Au-
Rerdem wird eine Evaluierung mit Bezug auf den Tor Browser, den WebAuthn
Standard, die Einrichtung von Sicherheitsschliisseln und Implementierungs-
optionen vorgenommen.

Acknowledgements

This work has been carried out within the scope of Digidow, the Christian
Doppler Laboratory for Private Digital Authentication in the Physical World and
has partially been supported by ONCE (FFG grant F0999887054 in the program
“IKT der Zukunft”) and the LIT Secure and Correct Systems Lab. We grate-
fully acknowledge financial support by the Austrian Federal Ministry for Digital
and Economic Affairs (BMDW), the Austrian Federal Ministry for Climate Ac-
tion, Environment, Energy, Mobility, Innovation and Technology (BMK), the
National Foundation for Research, Technology and Development, the Chris-
tian Doppler Research Association, 3 Banken IT GmbH, ekey biometric sys-
tems GmbH, Kepler Universitatsklinikum GmbH, NXP Semiconductors Austria
GmbH & Co KG, Osterreichische Staatsdruckerei GmbH, and the State of Upper
Austria.

Contents

Abstract

Kurzfassung

Acknowledgements

1

Introduction

1.1 Digidow Project & Personal IdentityAgent
1.2 Motivation
1.3 ObjectivesandGoals,

Background

2.1 FIDOAILHAnNce e e e e
2.2 Universal Second Factor (U2F)
2.3 Universal Authentication Framework (UAF).
2.4, WebAuthn
2.5 PublicKeyCryptography

FIDO2 Token Authentication

31 OVeIVIEW . . . o o e e e e e e e e e
3.2 RegistrationProcess
3.3 Authentication Process. i

Design Choices

41 ROCKet . . . o e
4.2 Tera. . . . e e e e e e
4.3 Web Authentication API
4.lp Fetch API e
4.5 WebAuthn Server
4.6 webauthn-rsFeatures

Implementation
5.1 Security KeyPersistence
511 Data e e e e
5.1.2 SecurityKeys
513 Credentials
5.2 TemporaryData
5.3 Security Key Registration
5.31 CheckPassword
5.3.2 AddSecurityKey
5.3.3 StartRegistration,
5.3.4 CreateKeyPair..........
5.3.5 Finish Registration
5.4 SecurityKeyRemoval............
5.5 Security Key Authentication.
5.5.1 Start Authentication
5.5.2 CreateSignature.
5.5.3 Finish Authentication
5.6 ErrorHandling

Contents

6 Evaluation
6.1 TOrBrowser.t
6.2 WebAuthnStandard.
6.3 SecurityKeySetup.
6.4 Registration of Several SecurityKeys
6.5 Fallback Option after FIDO2 Token Authentication
6.6 Privacy Considerations about Credential Identifiers.
6.7 Access Restriction of Start RegistrationPage

7 Conclusion and Outlook
Bibliography

Appendix A Selected Definitions

Vi

32
32
32
33
33
34
34
34

35
36
39

Chapter1

Introduction

1.1 Digidow Project & Personal Identity Agent

The Digidow project from the Institute of Networks and Security is about pri-
vate digital authentication in the physical world. Individuals should be able to
use, for example, public transport or payment applications without carrying
around a physical identity document or a trusted mobile device. In such a sce-
nario, it is possible to save all users’ data in a centralized database and track
all actions of the users. However, the centralized approach cannot be realized
without compromising the user’s privacy. Another solution would be a decen-
tralized approach, where the user is associated with a Personal Identity Agent
(PIA). Each individual is represented by a PIA in the digital world.

The Institute of Networks and Security researches and develops this decentral -
ized approach. In the current experimental setup, the Personal Identity Agents
are hosted on a server at the institute. Each PIA runs as a separate process in a
virtual machine. Whenever a new user wants to enroll the PIA instance, the user
gets access to a unique onion service. Additionally, the user receives an enroll-
ment PIN. Now, the user can pair with the PIA. Information about the user and
identities are stored on the server side within the PIA. After the enrollment,
users can log into their PIA.

1.2 Motivation

Thus far, it has only been possible to authenticate with a password at the Per-
sonal Identity Agent (PIA). Mere password-based authentication can lead to
many security issues [22]. Some examples are weak passwords, insecure pass-
word storage, or password reuse. According to Srinivas et al. [22], it should be
possible for online services to allow strong user authentication by leveraging
native security features of end-user computing devices. This reduces the prob-
lems associated with creating and remembering many online credentials.

In the context of this bachelor thesis, this authentication procedure will be
adapted, so that authentication is possible with FIDO2 tokens as security keys.
These newly implemented features will increase the security of the whole au-
thentication process for the PIA. According to Lyastani et al. [15], the FIDO2
standard has enormous potential to become the successor of mere password-
based authentication in web applications. Alqubaisi et al. [1] also argue that the
implementation of FIDO2 authentication gives each user the possibility to en-
hance privacy and security, as the FIDO2 standard is more secure than pure
password-based authentication.

Additionally, all big players in the digital world (Facebook, Google, Microsoft,
etc.) give their users the possibility to enhance the authentication process with

1 Introduction 2

two-factor authentication [15]. Therefore, implementing FIDO2 authentica-
tion for the PIA can be characterized as a state-of-the-art project.

1.3 Objectives and Goals

The goal of this bachelor thesis is to extend the Personal Identity Agent (PIA)
of the Digidow project with new authentication methods that use FIDO2 tokens
as security keys. The main reason for the enhancement of the authentication
procedure of the PIA is, as mentioned above, the increase in security, as pure
password-based authentication causes many security threats [1].

Therefore, this bachelor thesis aims to implement an authentication method,
where FIDO2 tokens can be used as security keys for two-factor authentication.
The security keys are the second factor to support password-based authentica-
tion with additional security. To use the FIDO2 token as second factor, the user
must register the security key and link it to the PIA. After the successful regis-
tration, the user has to authenticate with the password and the FIDO2 token as
second factor. This means that the user must authenticate with something he
or she knows and possesses.

In addition to two-factor authentication, passwordless authentication will be
implemented too. In this scenario, the user does not have to enter a password
and is only asked to present a security key during authentication. As the pass-
word is omitted and the user verification is shifted to a secure FIDO2 token on
the user end, not all security keys can be used to authenticate. Only security
keys that enforce user verification, for example with a fingerprint or an addi-
tional PIN, should be allowed. This way security is not compromised [22, 26].
The registration process works the same way as with two-factor authentica-
tion. According to Lyastani et al. [15], users describe FIDO2 passwordless au-
thentication as more usable and acceptable than traditional password-based
authentication. Therefore, FIDO2 passwordless authentication is a very good
option regarding user convenience.

Chapter?2
Background

2.1 FIDO Alliance

The FIDO (Fast Identity Online) Alliance was founded to change the nature of
strong online authentication [22]. Their goal is to introduce an authentication
standard that makes authentication easier and increases privacy and security.
Moreover, the FIDO Alliance wants to reduce the importance of passwords on
theweb, as creating and remembering online credentials leads to many security
issues [19].

Therefore, the FIDO Alliance has developed technical specifications for how
users can be authenticated securely at online services. According to Pereira et
al. [19], the goal is to avoid the use of server-side shared secrets in public key
cryptography systems. In order to implement the new concept, many compa-
nies all over the world supported and integrated the FIDO Alliance services.
The FIDO Alliance is an organization with 250 member companies worldwide.
Among them are the Bank of America, Google, Facebook, Microsoft, and Ama-
zon [15, 19].

According to Lyastani et al. [15], the FIDO2 authentication standard seems like
a promising candidate for succeeding text-based password authentication in
end-user web applications. The FIDO Alliance provides a concept that uses cre-
dentials that cannot be phished or replayed. In addition, the new standard is
supported by almost all browsers and operating systems like Windows or An-
droid. Furthermore, the concept offers a consistent user experience.

The FIDO Alliance also supports different technologies and devices to authen-
ticate at an online service, including biometrics, Trusted Platform Modules
(TPM), USB security tokens, smart cards, Bluetooth and near-field commu-
nication (NFC) [15].

2.2 Universal Second Factor (U2F)

The Universal Second Factor (U2F) protocol allows users to improve authen-
tication security by adding a decisive second factor to the login procedure in
addition to a password. U2F is the predecessor of the FIDO2 project, which is
based on the Universal Second Factor protocol [15].

At first, the user has to register a second factor for the authentication process,
also known as a security key. In general, the authentication procedure stays the
same, as the user has to enter a password. However, the online service can now
send a login challenge, which forces the user to present the registered second
factor. The user’s presence is confirmed by some interaction with the security
key. The intent of user presence is not to identify a user, but to confirm that a

2 Background 4

user is physically present. This can be done, for example, by touching a sensor.
Version 1.2 and later of the Universal Second Factor protocol allow to get a sig-
nature of a device without the user’s presence [22]. This is not recommended
and should be handled by the web application accordingly. After all, user pres-
ence is expected for the authentication process of the Personal Identity Agent.

Furthermore, user verification ensures that the user is authorized to use the
authenticator. This, for example, can be done by entering a PIN for the secu-
rity key or by presenting a saved fingerprint to the authenticator. If the user
chooses to authenticate with a password and uses the security key as a second
factor, it is recommended to omit user verification [26]. The reason for this is
that the user enters a password and therefore a shared secret anyway. If user
verification is enabled, the user would have to present a third factor during au-
thentication, which is not recommended for standard web applications regard-
ing convenience. In this case, only user presence is needed to authenticate the
user.

2.3 Universal Authentication Framework (UAF)

According to Machani et al. [16], the core idea of the Universal Authentication
Framework (UAF) protocol is to allow passwordless authentication at online
services. During registration, the user registers a device or technology for au-
thentication. For example, such a device or technology could be swiping a fin-
ger or looking at the camera. Then, the authentication action must be repeated
and the user is successfully authenticated at the online service. However, im-
plementing a single-factor, passwordless authentication creates new security
issues. For this reason, the goal of UAF is to support the authentication pro-
cess in web applications with an additional factor. Also, strong multi-factor
authentication can be applied to web applications that rely greatly on a secure
authentication process [16]. A typical example would be a web application that
deals with online banking or finances.

2.4 WebAuthn

The Universal Authentication Framework protocol and the Universal Second
Factor protocol were not deployed on a large scale. Web browsers like Safari
and Microsoft Edge did not implement the U2F protocol and the UAF proto-
col was only available if the user installed a compatible FIDO client [1]. As a
consequence, the FIDO Alliance developed, together with the World Wide Web
Consortium (W3C), a new generation of the FIDO standards, also known as the
FIDO2 protocol. The main goal was to offer the web community a standard for
secure authentication services. The idea of establishing a new standard resulted
in the creation of a new FIDO2 protocol composed of two sub-protocols.

First, there is the W3C Web Authentication (WebAuthn) protocol, which man-
ages the communication between the client and the server. WebAuthn intends
to standardize the authentication process for users at online services by public
key cryptography. It is backward compatible with the U2F standard and We-
bAuthn can also perform passwordless authentication. For passwordless au-
thentication, user verification is recommended. Otherwise, the security of the
authentication process would not be enhanced. Using passwordless authen-
tication allows the user to replace complicated passwords with, for instance,
shorter 4-digit PINs or some biometrics. The main advantage is that security

2 Background 5

is not compromised, although the user’s password is omitted [22]. Besides, if
biometric matching is used, this is done locally. Hence, nothing about the bio-
metric feature itself is being exchanged with the server. An example for this
would be Windows Hello.

An authenticator (e.g. a USB security token) is required to do cryptographic op-
erations during the authentication procedure. No matter which technology is
used, the authenticator verifies the user locally. That way, sensitive authenti-
cation data is not shared with the web application. Additionally, several secu-
rity keys can be registered for one user [2]. Another important aspect is that
users can use the same device across multiple web applications since there are
several virtual security keys generated on one physical device. Due to that, the
user does not need to have a federated identity for different web applications
but can simply use one authenticator [2].

The second sub-protocol of the FIDO2 protocol is the FIDO Client to Authenti-
cator Protocol (CTAP). CTAP is an application layer protocol and aims to facili-
tate the communication between a cryptographic authenticator (e.g. a USB se-
curity token) and a client application (e.g.aweb browser). This protocol is based
on the U2F authentication standard. If the authenticator implements the sec-
ond version of the Client to Authenticator Protocol (CTAP2), it is called a FIDO2
(WebAuthn) authenticator. The focus of the FIDO Alliance is now narrowed
down to the communication between the client and the authenticator. W3Creg-
ulates the communication between the client and the server. With this adapta-
tion of responsibilities, the popularity of FIDO2 has increased enormously [1].

2.5 Public Key Cryptography

The authentication process with FIDO2 tokens is based on asymmetric encryp-
tion, also called public key encryption. In this cryptographic system, there are
always pairs of keys. Each key pair consists of a private key and a public key.
There are different approaches how those key pairs can be created. There are,
for example, RSA or Elliptic Curve Cryptography (ECC). The security of RSA en-
cryption relies on the difficulty of factoring two large prime numbers [20] and
the Elliptic Curve Cryptography is based on the algebraic structure of elliptic
curves over finite fields [24]. The public key, as the name implies, can be known
by the public, therefore, by everyone. On the contrary, the private key must only
be known by the owner of the key. There are several practical use cases for how
the key pairs can be used.

Encrypt and Decrypt Messages

Asymmetric encryption can be used to encrypt and decrypt messages (see Fig-
ure 2.1). If two stations want to communicate with each other, each of them
must create a key pair, consisting of a private and a public key. Afterwards, the
public keys are exchanged. With the exchanged public keys, the stations can
encrypt messages and send them to the other station. Anybody who reads the
encrypted message cannot decrypt it, as it can only be decrypted with the cor-
responding private key [3]. However, with the correct private key, the stations
can decrypt messages from the other station and read the plaintext.

2 Background 6

Encrypt

Public key l

Plaint text

Cipher text

Decrypt

Private key

Figure 2.1: Encrypt and decrypt messages (Source: [3])

Private key Public key

v
v

Message Signature

Sign Verif
& Y Valid/Invalid

v

Figure 2.2: Sign and verify messages (Source: [3])

Sign and Verify Messages

Furthermore, asymmetric encryption can be used to sign and verify messages
(seeFigure 2.2).For this procedure, one public/private key pair must be created.
Then, the sender can use the private key to create and sign messages. After-
wards, the recipient of a message can use the corresponding public key to ver-
ify the message against the signature. This procedure provides a secure way to
ensure the authenticity and integrity of messages transmitted between sender
and receiver [3].

Chapter 3
FIDO2 Token Authentication

3.1 Overview

For FIDO2 token authentication, asymmetric encryption is used. During the se-
curity key registration process, a key pair is created. If a user wants to authen-
ticate with a registered FIDO2 token at a web application, the server can create
alogin challenge and send it to the client. The client uses the private key to sign
the login challenge. During the signing process, the FIDO2 token never reveals
the private key. Next, the signature is sent back to the server, where it is ver-
ified with the corresponding public key [1]. If the verification was successful,
the user is authenticated at the web application.

The key pair created during the security key registration process is origin-
specific. This means, that the created key pair during the registration is saved
together with the origin of the web application [22]. For FIDO2 token authenti-
cation it is also possible to allow cross-origin authentication. However, by de-
fault this feature is not enabled as it brings potential security and privacy risks
with it [23].

By using asymmetric encryption, security can be increased compared to mere
password-based authentication. The reason for this is that the public key is
stored on the server and the private key remains at the authenticator. There-
fore, no shared secrets exist between users and websites that can be leaked
by server-side attacks [15]. Depending on the cryptosystem, the private key is
recreated by the FIDO2 token and does not have to be stored on the authen-
ticator. Instead, a key handle, which is created during registration by the au-
thenticator and sent by the server during authentication, is decrypted by the
authenticator. The private key is then derived from the key handle during the
signing process. For YubiKeys, the decryption of the key handle is done by a
master key, which is unique for each security key'.

During the registration, the client sends the origin of the web application to
the authenticator. The FIDO2 token returns a fresh public key and a key han-
dle, which are both stored on the server. An important aspect is that the FIDO2
token encodes the requesting origin into the key handle [22]. During the au-
thentication process, the client sends the key handle created during registra-
tion and the origin of the web application to the authenticator. The FIDO2 to-
ken has to ensure that the origin of the registration and authentication match
before performing any signing operation. If they match, the challenge will be
signed and returned. Otherwise, no signature will be returned to the client. This
origin check ensures that public keys and key handles cannot be reused by other
online services or websites. Otherwise, the user would be traceable across dif-
ferent web applications.

According to Srinivas et al. [22], online services can therefore verify identities
securely with FIDO2 tokens. Also, man-in-the-middle attacks can be detected

thttps://developers.yubico.com/U2F/Protocol__details/Key__generation.html

3 FIDO2 Token Authentication 8

server validation

Relying Party Server

PublicKeyCredentialCreationOptions @ @ Authenti A i
(challenge, user info, relying party info) (clientDataJSON, attestationObject)

JavaScript Application

Web Authentication API

Browser

relying party identifier,
user info, @ attestationObject

relying party info, (new public key, credential identifier, attestation)

clientDataHash

Authenticator

®

user verification, new keypair, attestation

Figure 3.1: Register FIDO2 token (Source: [10])

in most situations, as credentials are saved with the origin of the web applica-
tion. This means that the FIDO2 token would not even respond, since the origin
of the man-in-the-middle would not match the stored origin.

Although, FIDO2 token authentication improves the security of the authenti-
cation process, some problems remain unresolved. According to Frymann et al.
[9], itis currently under discussion how users can regain access to an account if
the registered authenticator is damaged or lost. As a solution for this problem,
Yubico proposes to register a backup authenticator in addition to the primary
authenticator [14]. If the primary authenticator is lost, the backup authentica-
tor could recover the private key to get access to the online service. According
to Frymann et al. [9], no transfer or sharing of secrets is required. However,
it is not resolved whether the security requirements are met due to a lack of
analysis.

3.2 Registration Process

In order to use a security key, the FIDO2 token must be registered by the user
(see Figure 3.1).

1. First, the web application sends a request to the server that the user wants
to register a FIDO2 token as security key.

2. Second, the server responds by sending back a request (PublicKeyCredential -
CreationOptions) to the client for a FIDO2 public key, which can be stored for
authentication. This request includes a random challenge from the server, a
user handle linked to the user account, a list of supported credential types,
authenticator filtering criteria, a list of already registered credentials, and
the server’s preference for authenticator attestation [23]. In detail, the Pub-
licKeyCredentialCreationOptions contain the following data fields for cre-
dential creation [10]:

m attestation:
Attestation is a built-in feature of the FIDO and WebAuthn protocols. It
enables the web application to use a cryptographically verified chain of
trust from the security key’s manufacturer. Therefore, it can be chosen

3 FIDO2 Token Authentication 9

which security keys can be trusted and which not. The Web Authentica-
tion API defines four types of attestation conveyance. First, the “none”
type defines that the relying party is not interested in the attestation
procedure of the authenticator. Second, the preference “indirect” allows
the client to choose how the attestation statement is obtained. The “di-
rect” option defines that the relying party wants to receive the attesta-
tion statement as it was generated by the authenticator. Last, the “en-
terprise” type specifies that the relying party wants to receive an attes-
tation statement that may include unique identifying information.

B attestationFormats:
This member specifies a preference for the attestation statement format
that is used by the authenticator. The values for this parameter should
be taken from the [ANA WebAuthn Attestation Statement Format Identifiers
registry?. One possible attestation statement format identifier could be
“apple” which is used with Apple devices’ platform authenticators.

® authenticatorSelection:
With this field, restrictions concerning the authenticator’s type can
be defined. The value “platform” indicates a software token or rather
a platform authenticator, like Windows Hello, and the value “cross-
platform” indicates a hardware token or rather a roaming authenticator,
like a USB security token. Furthermore, this attribute gives information
on whether user verification is compulsory.

m challenge:

The challenge parameter is a buffer of generated random bytes and is
used to prevent replay attacks. Replay attacks are a form of network at-
tacks that are used to deliberately delay or retransmit data. In order to
prevent replay attacks, the challenge should contain enough entropy to
make guessing as difficult as possible. Therefore, the challenge should
have a length of at least 16 bytes which provides 2'?8 possible values and
makes it hard enough for an attacker to guess the value of the challenge
[10].

m excludeCredentials:
This field is used to avoid identical credentials for the same user. If there
is already a credential saved for the user (from the current authentica-
tor), the creation of a new credential will fail.

B extensions:
This member contains additional parameters to request extra process-
ing by the authenticator or the client. One example could be that the
relying party requests additional information from the client about the
credential that was created. In detail, the values for setting this parame-
ter should be obtained from the IANA WebAuthn Extension Identifiers reg-
istry?.

® pubKeyCredParams:
The pubKeyCredParams field specifies the encryption algorithms, which
are supported by the web application during registration and authen-
tication. A list of all possible algorithms can be obtained from the JANA
COSE Algorithms registry?. The relying party should at least support the
Ed25519, ES256, and RS256 algorithms.

m rp:
rp stands for relying party. This term is used to refer to the server which

2https://www.iana.org/assignments/webauthn/webauthn.xhtml
3https://www.iana.org/assignments/cose/cose.xhtml

3 FIDO2 Token Authentication 10

provides access to the web application. It consists of a name and an
identifier. The identifier must be the website’s origin or the origin must
be a subdomain of the identifier.

® timeout:
The timeout parameter specifies the time in milliseconds, the user has
for presenting a FIDO2 token.

m user:
The user field contains information about the user’s account. It consists
of a name, a display name, and an identifier.

3. To get a public key credential from the authenticator, an asymmetric FIDO2
key pair, consisting of a private and a public key, must be created by the au-
thenticator. Hence, the request has to be forwarded from the client to the
authenticator. Afterwards, the JavaScript client calls the function navigator
.credentials.create() of the Web Authentication API with the above-defined
parameters. Also, the web browser validates the relying party identifier
against the origin of the web application, hashes the client data, and calls
the authenticatorMakeCredential method to communicate with the authenti-
cator [28]. The authenticatorMakeCredential method is defined in the specifi-
cation of the Client to Authenticator Protocol (CTAP) to request the genera-
tion of a new credential in the authenticator. The following parameters are
defined to call the method authenticatorMakeCredential to communicate with
the authenticator [4]:

® clientDataHash:
The hash of the serialized client data which includes the challenge from
the server, the origin of the web application, the type of operation, and
a flag whether cross-origin credentials are allowed.

m excludeList:
This member contains a list of registered credentials to limit the cre-
ation of several credentials for the same user with the same authenti-
cator.

B enterpriseAttestation:
Enterprise attestation provides the ability to configure the attestation
statement of authenticators to return unique identifying information.
This would allow enterprises to improve their security and monitor the
authenticator management strategy by only allowing specific devices
and attestation statements [25].

m options:
A parameter that includes several flags to influence the behavior of the
authenticator. The flags define, for example, restrictions for user pres-
ence and user verification.

® pinUvAuthParam:
The pinUvAuthParam member contains a Message Authentication Code
(MAC) of the clientDataHash.

® pinUvAuthProtocol:
The pinUvAuthProtocol indicates the PIN/UV protocol version which
was chosen by the platform. The PIN/UV auth protocol (pinUvAuthPro-
tocol) is used to avoid sending plaintext PINs to the authenticator. The
protocol encrypts the entered PINs and replaces them with pinUvAuth-
Tokens. These tokens are randomly-generated byte-strings which are
effectively unguessable. They should have a length of least 16 bytes [4].

® Theextensions, pubKeyCredParams, rp, and user parameters from step
2 are included in the authenticatorMakeCredential call as well.

3 FIDO2 Token Authentication 1

4. At the authenticator, an asymmetric key pair can be created with the re-
ceived information. The key pair is unique for the combination of the lo-
cal device, the user account and the online service [23]. The private key re-
mains safe at the authenticator and the public key will become part of the
attestation [28]. During the creation of the FIDO2 key pair, the FIDO2 token
requests the user’s presence. This can be done by, for example, pressing a
button or touching a sensor. If the user wants to register a security key for
passwordless authentication, the user must also be verified, for example,
by a PIN or some biometrics.

5. If the creation of the key pair was successful, the authenticator will return
the created public key, the credential identifier, and other attestation data
to the web browser. In detail, the following data is sent back to the web
browser [4, 10]:

® authData:
The authData field contains metadata about the registration process,
the credential identifier, and the created public key.

B epAtt:
This parameter indicates whether an enterprise attestation was re-
turned.

m fmt:
The attestation format is used to indicate how the server is supposed to
parse and validate the attestation data.

B attStmt:
The attestation statement looks different depending on the given attes-
tation format. In general, the attestation format defines the syntax of
the attestation statement. The attestation statement is a specific type
of signed data object containing statements about the credential object
itself and the authenticator.

m largeBlobKey:
This field contains a random key that enables storing opaque data as-
sociated with a credential.

At the web browser the received data becomes the attestationObject [28].

6. Next, the promise of the navigator.credentials.create() method of the Web
Authentication API resolves to a public key credential object (PublicKeyCre-
dential) which contains the attestation response of the authenticator (Au-
thenticatorAttestationResponse) [28]. Afterwards, the PublicKeyCredential is
sent back to the server. In detail, it consists of the following fields [10]:

m id:
The identifier of the newly generated credential for the user as base64-
encoded string.

E response:
The response contains the client data in JSON format, which is used to
store data that was passed from the client to the authenticator. Further-
more, the response includes the received attestation object from the au-
thenticator [28].

= type:
The type parameter defines the string representing the credential type.
This could be, for example, “public-key”.

7. The received public key credential object must be validated by the server. To
validate the registration, the WebAuthn specification describes a procedure
with several steps which have to be done on the server side [10]:

3 FIDO2 Token Authentication 12

® The type of the client data must match the string “webauthn.create”.

®m The challenge of the client data must match the the base64-encoded
challenge created in step 2.

m The origin of the client data must match the origin of the relying party
identifier.

® The hashed relying party identifier of the authenticator data must
match the hashed relying party identifier expected by the relying party.

®m The user present bit of the authenticator data must be set.

® The user verification bit of the authenticator data must be set (if user
verification is required for this registration event).

m Thealgparameter of the authenticator data must match one of the items
of pubKeyCredParams created in step 2.

® The attestation statement format must be correctly determined.

®m The attestation statement must be correct and must convey a valid
attestation signature. For this process, the attestation statement, the
attestation statement format, the authenticator data, and the hashed
client data are used. How this process looks like depends on the attes-
tation statement format. There are, for example, different attestation
statement formats for Android, Apple, or Microsoft authenticators. If
the validation is successful, a list of attestation root certificates must be
obtained from a trusted source®*. Afterwards, the attestation trustwor-
thiness is assessed. Therefore, the attestation type must be accepted by
the relying party or the attestation public key must correctly chain up to
an attestation root certificate [10].

® The credential identifier has to have a length of at most 1023 bytes.
® The credential identifier must not already be registered for any user.

If the credential object is validated successfully, the public key and the cre-
dential identifier will be stored on the server and used for future authenti-
cation requests by the associated user.

3.3 Authentication Process

After a successful security key registration, the user can authenticate at the web
application using the FIDO2 token (see Figure 3.2).

1. At first, the user chooses to authenticate at the web application. The login
request is forwarded to the server by the web application.

2. Then, the server creates a request (PublicKeyCredentialRequestOptions), in-
cluding the login challenge, which is sent to the client [27]. Following pa-
rameters are defined in the PublicKeyCredentialRequestOptions [10]:

m allowCredentials:
In this array, the credential identifiers, which have been saved during
registration, are set for the corresponding user. Also, a preferred au-
thentication option like USB, Bluetooth, or NFC can be configured.

B attestation:
This parameter defines a preference for the attestation conveyance.

4https://www.iana.org/assignments/webauthn/webauthn.xhtml

3 FIDO2 Token Authentication 13

server validation

Relying Party Server
PublicKeyCredentialRequestOptions @ @ @ AuthenticatorAssertionResponse
(challenge) (clientDataJSON, authenticatorData, signature)
JavaScript Application
Web Authentication APl
Browser
rely g]’g ,':;Z'Z}gzeag]ﬂer’ @ @ authenticatorData, signature
Authenticator

user verification, create assertion

Figure 3.2: Authenticate with FIDO2 token (Source: [10])

B attestationFormats:
This member works the same as during the registration. It specifies a
preference for the attestation statement format that is used by the au-
thenticator.

m challenge:
This parameter works similarly to the registration process. It is a buffer
that provides cryptographically generated, random bytes to prevent re-
play attacks.

® extensions:
This member contains additional parameters to request extra process-
ing by the authenticator or the client.

m rpld:
The relying party identifier of the caller. It must match the relying party
identifier which was used during registration.

B timeout:
This field works similarly to the timeout parameter during the regis-
tration process. It specifies the time in milliseconds, the user has for
presenting a FIDO2 token.

m userVerification:
Defines whether user verification during the authentication process is
mandatory. User verification is required for passwordless authentica-
tion.

3. On the client, the received information is used to communicate with the
authenticator. The request of the server must be forwarded to the au-
thenticator in order to sign the login challenge. Therefore, the client calls
the JavaScript function navigator.credentials.get() of the Web Authentica-
tion API. Next, the browser validates the relying party identifier against the
origin of the web application. Moreover, the client data is hashed and the
authenticatorGetAssertion method is called [27]. This method is specified in
the standard of the Client to Authenticator Protocol (CTAP) and is used to
communicate with the authenticator [4]. In detail, the following parame-
ters can be specified for authenticatorGetAssertion:

m allowList:

3 FIDO2 Token Authentication 14

This parameter defines a list that contains information, which creden-
tials are allowed to be used for assertion by the authenticator.

clientDataHash:

The hashed serialized client data. It includes the origin of the web ap-
plication, the type of the operation, and the challenge created from the
server [10].

extensions:
The extensions parameter contains information to influence authenti-
cator operations.

options:

Aparameter which includes several flags to influence the behavior of the
authenticator. The flags define restrictions for user presence and user
verification.

pinUvAuthParam:

The pinUvAuthParam member contains the same information as during
the registration process, a Message Authentication Code (MAC) of the
clientDataHash.

pinUvAuthProtocol:
The pinUvAuthProtocol indicates the PIN/UV protocol version which
was chosen by the platform.

rpld:
The relying party identifier of the server.

4. At the authenticator, the login challenge of the server is signed by the au-
thenticator [23]. During the signing process, the FIDO2 token requests user
presence and, if needed, user verification. Therefore, the user has to com-
municate in some way with the authenticator during the authentication
process.

5. If the signing of the login challenge is successful, the authenticator will
send back the credential identifier, the actual signature, the data structure
used to generate the signature, the user handle, a signature counter, and
several flags to the web browser [23]. The Client to Authenticator Protocol
(CTAP) describes which fields are required to form a correct response [4]:

authData:

The authenticator data stores information about the attempted authen-
tication. This includes some flags, whether the user was present or ver-
ified during authentication. Additionally, the authenticator data con-
tains the hashed relying party identifier and a signature counter of the
authenticator.

credential:
The credential field contains the credential identifier and credential

type.

largeBlobKey:
The parameter contains the content of the associated largeBlobKey cre-
ated during registration.

numberOfCredentials:
This member carries information about the total number of credentials
for the relying party.

signature:
This field contains the assertion signature, which was created from the
authenticator.

3 FIDO2 Token Authentication 15

® user:
The user field contains information about the user name and the display
name.

m userSelected:
This parameter indicates whether the credential was selected by the
user via direct communication with the authenticator.

6. At the web browser the promise of the navigator.credentials.get() method
of the Web Authentication API is resolved to a public key credential object
(PublicKeyCredential), which includes the authenticator assertion response
(AuthenticatorAssertionResponse) from the authenticator. The received in-
formation is then sent back to the server to verify the signature and to fi-
nalize the authentication [27]. In detail, the PublicKeyCredential object con-
tains the following fields:

m id:
The credential identifier that was used to generate the authentication
assertion as a base64-encoded string.

E response:

The response object contains the client data in JSON format. Further-
more, the authenticator datais included in the response field. Moreover,
the response object contains the signature object generated by the au-
thenticator, which must be verified by the server. The signature object
was generated by signing the login challenge from the server with the
private key. The last field is the user handle, which stores the user iden-
tifier created during registration. If the authenticator supports attesta-
tion in assertions, also an attestation object will be created containing
the attestation statement and attestation statement format [10].

m type:
This type field defines a string representing the credential type. This
could be, for example, “public-key”.

7. Finally, the signature has to be verified by the server with the public key,
which has been stored during the registration. In order to verify the signa-
ture, the WebAuthn specification describes a procedure with several steps
which have to be done by the server [10]:

®m The credential identifier must match one of the options of the allowed
credentials defined in step 2.

®m The user handle of the response object must be present.
®m The user identifier must match the identifier of the response object.
m The type of the client data must match the string “webauthn.get”.

®m The challenge of the client data must match the base64-encoded chal-
lenge created in step 2.

m The origin of the client data must match the origin of the relying party
identifier.

®m The hashed relying party identifier of the authenticator data must
match the hashed relying party identifier expected by the relying party.

®m The user present bit of the authenticator data must be set.

m The user verification bit of the authenticator data must be set (if user
verification is required).

3 FIDO2 Token Authentication 16

The signature must be a valid one over the binary concatenation of the
authenticator data and the hashed client data. For this procedure, the
stored public key is used.

The bit which indicates that the attested credential data was included
must be set.

The public key and the credential identifier in the attestation object
must match the public key and the credential identifier saved on the
server.

The attestation statement must be correct and must convey a valid
attestation signature. If the validation is successful, a list of attesta-
tion root certificates must be obtained from a trusted source®. After-
wards, the attestation trustworthiness is assessed. Therefore, the at-
testation type must be accepted by the relying party or the attesta-
tion public key must correctly chain up to an attestation root certifi-
cate [10]. This process is called attestation in assertion. It is optional,
must be supported by the authenticator, and must be requested by the
relying party. Attestation in assertion could be helpful if the attesta-
tion statement format involves a third-party attesting to the state of
the authenticator. Then, attestation in assertion can help to always
check the authenticator to attest. Furthermore, it can also be useful for
multi-device credentials where a generating authenticator (involved in
the authenticatorMakeCredential operation) and a managing authenticator
(involved in the authentication operation) are used. The generating au-
thenticator and managing authenticator may not match. Therefore, at-
testation in assertion allows the relying party to observe such changes.

If all steps are verified successfully, the user will be logged in to the web
application. Otherwise, the signature is not verified and access to the web
application will be denied [1].

Shttps://www.iana.org/assignments/webauthn/webauthn.xhtml

Chapter 4

Design Choices

In order to implement FIDO2 token authentication, several design choices had
to be made. There have already been some existing components of the web ap-
plication that could be used to build upon. However, also new components have
been added to the web application (see Figure 4.1).

4.1 Rocket

Most parts of the extension for FIDO2 token authentication are implemented
in Rust, since the web application of the Personal Identity Agent is developed
in Rust too. The web application is based on the Rocket web framework!, which
is used to develop secure web applications in Rust. The Rocket web framework
has three philosophies: Primarily, Rocket is easy to use and takes a lot of mea-
sures to ensure that the developed web application is secure. Furthermore, all
request handling is typed and self-contained. This means that Rocket handles
type conversions and requests are handled by normal functions with param-
eters. Lastly, the Rocket web framework supports different, optional compo-
nents and libraries.

4.2 Tera

For showing server-side data on web pages, Tera? templates are used. Tera is
a template engine for Rust. The Tera templates are, for example, used to show

thttps://rocket.rs/
2https://tera.netlify.app/

Authenticator Browser Server
i i icati REST
Client to Authenticator Protocol Web Authentication API FETCH API AP Rocket
l webauthn-rs
1
Application J‘ Tera
Web Page

Figure 4.1: Component interaction diagram of the web application

17

4 Design Choices 18

the registered security keys to the user. There were already some existing Tera
templates. Therefore, Tera templates are used for all new HTML pages which
are not static. For the FIDO2 token authentication, several Tera templates were
created:

B add_security_key.html.tera
B check_password.html.tera
B start_authentication.html.tera

B start_registration.html.tera

4.3 Web Authentication API

The communication between the authenticator and the server is done via the
client side (= browser) and is, therefore, handled in JavaScript. The Web Au-
thentication API® is used for communication between the client and the au-
thenticator. It enables passwordless and two-factor authentication with public
key cryptography. Generally, the Web Authentication API provides two meth-
ods for registering and authenticating with a security key:

W navigator.credentials.create():
This method is used to create new credentials (asymmetric key pair) asso-
ciated with a user account.

® navigator.credentials.get():
Thenavigator.credentials.get() method is used for authenticating to a service
with existing credentials.

4.4 Fetch API

The client uses the Fetch API*, which creates request and response objects, in
order to be able to communicate with the server. It is similar to XmlHttpRe-
quest® but provides a more powerful feature set. To handle the requests of the
Fetch API from the client, a REST API is implemented on the server side. All
those functions transmit the data in JSON format. The method of all Fetch re-
quests is POST. In the following sections, these functions will be described in
detail.

4.5 WebAuthn Server

In order to create and verify credentials on the server side, a search and an
evaluation of libraries for implementing WebAuthn into Rust web servers were
done. In particular, the search was narrowed down to libraries that provide the
relying party component of the FIDO2 protocol. Overall, three Rust crates® were
found and evaluated to implement WebAuthn for Rust server web applications.

3https://developer.mozilla.org/en-US/docs/Web/API/Web_ Authentication_ API
4https://developer.mozilla.org/en-US/docs/Web/API/Fetch_ API
Shttps://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
6https://crates.io/

4 Design Choices 19

First, the slauth crate (version 0.5.0)” was evaluated. On Docs.rs all modules
of the crate are documented [6]. However, the last release of the crate was in
July 2020. By now, the crate was downloaded over 9,000 times. On GitHub the
slauth repository has 10 contributors and according to the README.md server-side
verification of WebAuthn is only partially implemented [17].

The second library which was evaluated was the libreauth crate (version
0.15.0)8. On Docs.rs all modules are documented and also examples are given
in the documentation [7]. The last release of the crate was in April 2022. As of
yet, the crate was downloaded over 120,000 times. On GitHub the repository
has 6 contributors. However, the project is currently under development and
the developers suggest that libreauth should not be used in production until
the version 1.0.0 is released [5].

Atlast, the webauthn-rs crate (version 0.4.6)° was evaluated. The webauthn-rs
crate uses OpenSSL and it follows the standards of the W3C Web Authentication.
Besides, the webauthn-rs library was successfully audited by SUSE product se-
curity [11]. On Docs.rs the crate is documented and also examples for the im-
plementation are given [8]. The last release of the crate was in November 2022.
Thus far, the crate was downloaded over 85,000 times. On GitHub the reposi-
tory has 18 contributors [11].

After comparing the three libraries, the decision to implement WebAuthn for
Rust server web applications fell on the webauthn-rs crate. The library is cur-
rently in development, was audited, follows the W3C Web Authentication stan-
dards, is used by a broad community, is well documented, and is ready to be
used in production. Furthermore, with the webauthn-rs library, the types and
parameters described in section 3.2 and section 3.3 can be defined. Also, the val -
idation of the public key and the verification of the signature are handled by the
library. Hence, no cryptographic algorithms need to be implemented, as those
functionalities are provided by the webauthn-rs library.

4.6 webauthn-rs Features

The webauthn-rs library is included in the web application via the Cargo.toml
files of the Personal Identity Agent project. The library can be extended by the
use of features, which provide additional functionalities compared to the de-
fault implementation. In order to be able to use all functionalities of the FIDO2
token authentication, the features must be activated accordingly.

Firstly, the danger-user-presence-only-security-keys feature is required to al-
low security keys without user verification. By default, user verification is re-
quired for security keys. However, if two-factor authentication is used, the user
will have to enter a password and therefore, a knowledge factor anyways. With
user verification enabled, the user would have to present an additional knowl-
edge factor during the authentication process. Regarding user convenience,
this is not a good option. For this reason, security keys which verify only user
presence are allowed with two-factor authentication. If passwordless authen-
tication is used, user verification will be mandatory. By enabling this feature,
user verification will be prevented if it is not required. Nevertheless, newer keys
will force user verification during the registration process but will not require
a verification of the user during the authentication procedure. This function is
implemented by design [8].

Thttps://crates.io/crates/slauth
8https://crates.io/crates/libreauth
9https://crates.io/crates/webauthn-rs

4 Design Choices 20

Secondly, the preview-features feature is enabled. This feature enables pass-
wordless security key registration and authentication. A passwordless key is
a cryptographic authenticator, which enforces multi-factor authentication. In
other words, the security key verifies the user via, for example, a PIN or a bio-
metric factor.

Lastly, as part of the preview-features feature, the resident-key-support must
be activated too. The preview-features feature partly depends on functions and
types that are implemented as part of the resident-key-support feature. Thus, if
the feature resident-key-support is not activated, the above mentioned feature
will not work properly.

Chapter 5
Implementation

5.1 Security Key Persistence

To ensure that FIDO2 token authentication works properly, the public key of
the user must be stored safely on the server. There is already a working method
for persisting server data, which has been extended for the FIDO2 token au-
thentication.

5.1.1 Data

The Personal Identity Agent (PIA) has a struct Data, which holds information
about configuration, identities and transactions. This is used to store and load
information for the PIA. For the FIDO2 token authentication, an additional field
called security_keys has been added to the struct for storing the user’s security
keys (see Listing A.1). This data structure is serialized into the Data. json file,
which is stored on the server. During the start of the web application, all im-
portant data is read from the file.

5.1.2 SecurityKeys

The additional field in the Data struct is of type SecurityKeys, which is a new
struct holding all security key information (see Listing A.6). This information
isneeded for the FIDO2 token authentication of the user. The SecurityKeys struct
contains two fields. The credentials field, which stores the user credentials for
authentication and the field authentication_type, which indicates whether two-
factor authentication or passwordless authentication will be enabled.

The authentication type is stored in an enum (see Listing A.3). The default value
is NoType, which means that the user does not use FIDO2 token authentication.
Password means that two-factor authentication is enabled and Passwordless de-
scribes the fact that passwordless authentication is used. Depending on the au-
thentication type, the functionality and appearance of the web application au-
thentication will differ.

5.1.3 Credentials

As mentioned above, the security key credentials are stored on the server side.
For this reason, the struct Credentials is used (see Listing A.2). It stores, de-
pending on the authentication type, the SecuritykKey or the Passwordlesskey object
for the user. Both fields are annoted with skip_serializing_if = "Option::is_none"
and will therefore be skipped during the serialisation process if they have no

21

5 Implementation 22

value. Additionally, the username and the name of the security key are stored.
The SecurityKey and the Passwordlesskey objects store, for example, the credential
identifier, the attestation certificate, the registration policy, the public key and
some flags which were set during the registration process. This includes infor-
mation about how the user was verified or the signature counter of the authen-
ticator. Depending on the SecurityKey or the Passwordlesskey object, registration
and authentication is handled differently in terms of allowed certificates and
required user verification.

5.2 Temporary Data

All fields in the WebauthnData struct (see Listing A.7) are optional as those val-
ues are only stored temporarily during the registration and the authentication
process. The username and security_key_name fields are stored during the security
key registration.

password_checked, registration_started and authentication_started are used to store
timestamp values. Those values are used by the request guards of the Rocket
web framework to prevent erroneous or malicious access to web pages. A re-
quest guard is a powerful instrument of the Rocket web framework, which pro-
tects web pages from being accessed by mistake. This check is done based on the
incoming request information.

For requesting a public key or a signature of the authenticator, the fields
creation_challenge_response and authentication_challenge_response are used. Those
values are stored on the server until they get sent to the client side.

The last four fields of the WebauthnData struct are filled, depending on the authen-
tication type, during the registration and authentication process. They store,
for example, the user verification policy, encryption algorithms or login chal-
lenges.

5.3 Security Key Registration

In order to use security keys for the authentication process of the Personal
Identity Agent (PIA), they must be registered by the user. This can be done on
the pairing page (see Figure 5.1) after the user has finished authenticating at
the PIA.

For the authentication process, the user does not need a username. Each PIA
runs as a separate process in a virtual machine and the user gets access to a
unique onion service. Therefore, the web application only asks for a password
during the authentication process. However, the Web Authentication API needs
a username for the FIDO2 token authentication. Therefore, the unique iden-
tifier of the user and the username are created randomly with a Universally
Unique Identifier (version 4) and set during the registration.

The security key registration process on the server is split into the
start_registration() and finish_registration() methods. The first function checks
if the received security key name already exists. If not, a challenge for the
security key registration will be created, which is used by the Web Authenti-
cation API. Also, a timestamp is created, which is used to restrict access to the
start_registration page. The finish_registration() function is used to process the
response of the credential object, created from the Web Authentication API.

5 Implementation

Authenticator|

authenticatorMake Credential

@ credentials.create()

generate
key pair

credential, public key, attestation

credential, public key, attestation

23
Registered Security Keys
Add Security Key
Figure 5.1: Pairing page without security keys
’Web Authentication API‘ Client Server
o—>— (@ GET: /check_password 3
check_password.tera.html ‘ ‘
®@ POST: ii/add_security_key |
check
add_security_key.html.tera H password

@ POST: /vi/start_registration

start_registration.html.tera

(PublicKeyCredentialCreationOptions)

POST: v1/finish_registration

(AuthenticatorAttestationResponse) _ ! validate

pairing.html.tera / error message and

store

Figure 5.2: Sequence diagram for security key registration (Source: [23])

After the response has been verified, the credential of the registered security

key is saved.

An overview of the security key registration process is depicted in Figure 5.2.

5.3.1 Check Password

If a user wants to register a security key, the Register button must be clicked.
Afterwards, the user is redirected to the check_password page (see Figure 5.3).
As the name implies, the check_password page is used to ask for the user’s pass-
word. This happens every time the user wants to register a security key. Also,
if the authentication process is already passwordless, the user must enter the
password during the registration process of a new security key.

Check Password

l

Figure 5.3: check_password page

5 Implementation 24

Add Security Key as Second Factor

[Security Key |
Add Security Key as Passwordless Authenticator

ISecurity Key |

Figure 5.4: add_security_key page

To verify the password, the function add_security_key() has been created on the
server. This function is called via the REST API before the add_security_key page
is accessed (see Figure 5.2). It is used to verify the password that the user en-
tered on the check_password page. If the password is verified, a timestamp will
be created which is used to restrict access to the add_security_key page. After
the user has entered the correct password, access to the add_security_key page
is granted (see Figure 5.4).

Normally, this page is protected by a request guard and cannot be accessed
without entering the correct password. In that case, the request guard will
checkif a password has been entered correctly in the last 300 seconds. The value
for the time limit is stored in the constant CHECK_PASSWORD (see Listing A.5). This
value is used by the request guard to protect the add_security_key page and the
start_registration() method from erroneous access. If the password check has
expired, the user gets an error message and can go back to the pairing or login
page (see chapter 6).

5.3.2 Add Security Key

On the add_security_key page, the user can choose between two authentication
types. First, two-factor authentication can be chosen to add a second factor to
the current authentication process in addition to the password. The second op-
tion is used to add a security key for passwordless authentication. Depending
on previously added security keys, the other option is hidden from the user.
The authentication process of the PIA only allows one authentication type at
a time. Therefore, only security keys with the same authentication type as the
first registered security key can be added.

The main reason for only allowing one authentication type at a time, is to avoid
design implications. Primarily, the login page and the authentication would be
more difficult to implement. With only one allowed authentication type at a
time, the implementation of the FIDO2 token authentication is facilitated. One
problem could be, how the login page should look like, if both authentication
options are allowed. A solution could be to show the password field every time,
although passwordless authentication is used. This would not be a good op-
tion regarding user experience since the user cannot be 100 percent sure that
no password is needed. The second problem is that the check of the password

5 Implementation 25

is done before the FIDO2 token authentication starts. Therefore, it is uncer-
tain, how a passwordless authentication should be handled if the user entered
a password. It would be difficult to implement the distinction of the authenti-
cation types.

In both cases, a unique name for the new security key must be entered. If the
user tries to register a security key under a name that already exists, the regis-
tration process will fail.

5.3.3 Start Registration

If the user clicks the Register button, the start_registration process will be initi-
ated. At first, the start_registration() function on the server side is called from
the client with the request “POST: /vi/start_registration” (see Figure 5.2). The
server receives the security key name, the authentication type, the origin of the
web application, and the relying party identifier in JSON format. At the server,
this information is used to create a request for a public key.

Depending on the authentication type, the webauthn-rs library provides dif-
ferent functions:

® Two-Factor Authentication:

To register a security key as second factor, the webauthn-rs func-
tion start_securitykey_registration() is used. For this function, the
attestation_ca_list can be set as a parameter. This parameter contains a list
of certificates from authenticator manufacturers, that the web application
can trust. For example, if only Yubikeys should be allowed for the Personal
Identity Agent, the Yubico Root certificate authority can be provided in
this list to validate that all registered devices are manufactured by Yubico.
For two-factor authentication, no constraints are set for authenticator
manufacturers. Furthermore, the start_securitykey_registration() function
checks if the feature danger-user-presence-only-security-keys is set (see
section 4.6). If that is the case, user verification will not be enforced during
the registration process. The webauthn-rs function returns a registration
state object of the type SecurityKeyRegistration.

m Passwordless Authentication:

The start_passwordlesskey_registration() function is used to register a se-
curity key as a passwordless authenticator. This function also includes
the parameter attestation_ca_list. In contrast to two-factor authenti-
cation, the parameter needs a value if a passwordless authenticator is
registered. This constraint is imposed by the webauthn_ rs crate. It pro-
vides several lists, which can be passed over to the function. For ex-
ample, the list can be limited to allow only Apple or Android certifi-
cate authorities. For the Personal Identity Agent, all certificate author-
ities, which are known to the webauthn-rs project, are allowed. This
list contains certificate authorities from Google, Android, Apple, Mi-
crosoft, Yubico, and Nitrokey. Because a passwordless authenticator is
registered, the start_passwordlesskey_registration() function enforces user
verification. This function returns a registration state object of the type
PasswordlessKeyRegistration.

For both functions, the user parameter must be defined. This includes a unique
identifier, the username, and the display name. Since there is no user identi-
fier required for the Personal Identity Agent, the unique identifier contains a
version 4 Universally Unique Identifier (UUID). The username also contains a
version 4 UUID but as a String representation and the display name contains
the name of the security key.

5 Implementation 26

Windows Security X Making sure it's you
Continue setup Set up Windows Hello to sign in to localhost as 9dfaec81-
d985-4feb-8812-ace5e280234.
ﬁ This request comes from Chrome, published by Google LLC.

Touch your security key. -

forgot my PIN

Cancel

Cancel

(a) Request user presence (b) Request Windows Hello PIN

Figure 5.5: Register security key

Furthermore, both functions return either a SecurityKeyRegistration object or a
PasswordlessKeyRegistration object. No matter which authentication type is used,
the objects are stored on the server for later use. The registration state object is
later used to verify the registration process.

Besides, both functions return an object of the type CreationChallengeResponse
(see section 3.2) that is presented via a Tera template to the client by invok-
ing the start_registration page.

The start_registration page is protected by request guards. In the first phase of
the registration process, a timestamp is created and saved on the server. To
grant or deny access to the start_registration page, the timestamp must not be
older than the value stored in the TIME_LIMIT constant (see Listing A.4) in sec-
onds. If the time limit has expired, the pages cannot be accessed by the user.
They will show the HT'TP error 403: Forbidden. Additionally, the user must be
logged in to access the start_registration page.

5.3.4 Create Key Pair

On the client side, the CreationChallengeResponse object is used to call the
JavaScript function navigator.credentials.create() of the Web Authentication
APL. This function creates a key pair by requesting a FIDO2 token from the user
(see Figure 5.5). The user must be present during the registration process. As
mentioned in section 2.1, different technologies and devices can be used as
FIDO2 tokens. Two examples of how to register a FIDO2 token can be seen in
Figure 5.5. Figure 5.5a shows the registration of a USB security token. During
this process, the Web Authentication API may prompt a dialog and ask for
access to the USB security token. In the case of passwordless key registration,
the user must also be verified by some biometric feature or a PIN. If the USB
security token is used for the first time and was not configured by the user
beforehand, it might be possible that a PIN must be set to use the security key.
Since the entered PIN is required during the authentication process, the user
should remember it. Figure 5.5b shows a registration with the Windows Hello
PIN as a security key. In that case, the correct Windows Hello PIN of the user
must be entered.

5.3.5 Finish Registration

After the Web Authentication API call, the finish_registration() server function
is called via the REST API (see Figure 5.2). As described in section 3.2, the re-
quest contains the credential identifier, the attestation object, the client data

5 Implementation 27

Registered Security Keys
security key 1 Delete
security key 2 Delete
security key 3 Delete
Add Security Key

Figure 5.6: Pairing page with registered security keys

in JSON format, the origin of the web application, and the relying party identi-
fier. Depending on the authentication type, the finish_securitykey_registration()
function or the finish_passwordlesskey_registration() function of the webauthn-
rs library is invoked. Those functions are used to complete the registration
of the credential. They use, depending on the authentication type, the regis-
tration state object (SecurityKeyRegistration or PasswordlesskeyRegistration), which
was stored during the start_registration process. The registration state object is
used to validate the registration. Furthermore, the response object of the Web
Authentication API is set as a parameter. The validation process is composed of
several steps [10]. This part is fully provided by the webauthn-rs library.

After successful validation of the registration, the functions return a SecurityKey
respectively a PasswordlessKey object. The objects contain the credentials, which
are used for user authentication later. Therefore, the credentials are stored
safely on the server. If the registration process is finished successfully, the
user will be redirected to the pairing page and will see the newly added security
key. Users can register multiple security keys on different devices so that they
have fallback options for the authentication process. If there are several secu-
rity keys registered for one user, they are shown one underneath the other (see
Figure 5.6).

5.4 Security Key Removal

On the pairing page, all added security keys are shown to the user in the secu-
rity keys section (see Figure 5.6). In this section, up to five keys are allowed. The
number of security keys is defined by the constant MAX_SECURITY_KEYS, which is a
configuration option of the server-side implementation. If the limit is reached,
the option for adding security keys will be omitted from the pairing page. In ad-
dition to that, the registration of a security key will be canceled on the server, if
the number of registered security keys is already higher or equal to the number
stored in the constant MAX_SECURITY_KEYS.

Each security key can be deleted by clicking on the Delete button next to it if the
user decides it is no longer needed. This invokes the remove_security_key() func-
tion on the server, which removes a security key from the user. The identifier
of the security key is set as a parameter and used to search for the correspond-
ing security key credential. If an entry is found in the credentials list of the Data
struct, it will be removed and the user can no longer authenticate with it. Fur-
thermore, if the list of the security key credentials is empty after the removal
process, the authentication type of the user will be set to NoType. That way, the
authentication procedure with FIDO2 tokens is disabled, as no registered secu-
rity keys are left.

5 Implementation 28

There is no best practice for the fallback option after FIDO2 token authentica-
tion is removed from a user account but it is suggested to warn the user that
all security keys are removed [29]. How others implement the fallback option
is discussed in chapter 6.

In order to change the identifier of a registered security key, the security key
hastobedeleted and registered again, as changing the identifier is not possible.
The renaming of security keys has not been implemented in the context of this
Bachelor thesis. In general, with the Register button, it is possible to add more
security keys as long as there are not more than five keys registered. If there
are already five registered security keys, a security key must be deleted before
another one can be added.

5.5 Security Key Authentication

After the user has registered security keys, they can be used for the authentica-
tion process. Depending on the authentication type, the login page is different
(see Figure 5.7).

If passwordless authentication is used, the text field for entering the password
will be hidden, since no password is needed for the authentication (see Fig-
ure 5.7b). For two-factor authentication, the login page is not modified at all
(see Figure 5.7a). The FIDO2 token authentication can be started directly by
clicking on the Login button.

If two-factor authentication is used, the password must be entered in the text
field by the user and checked by the server before the FIDO2 token authentica-
tion starts. However, if no security keys are registered for the user, the standard
login page will be shown, since no changes were made for this case. Therefore,
the user can log in by entering the correct password and clicking on the Login
button.

The security key authentication process on the server is split into
the start_authentication() and the finish_authentication() methods. The
start_authentication() function checks and verifies the entered password of
the user, if one was given. Also, a login challenge for the security key au-
thentication is created, which is used by the Web Authentication API. The
finish_authentication() function is used to process the response object of the
Web Authentication API. This means that the signature is verified. After a
successful verification, the user is authenticated. An overview of the security
key authentication process is depicted in Figure 5.8.

5.5.1 Start Authentication

As soon as the authentication process is started, the web application calls the
server function start_authentication() via the REST API (see Figure 5.8). The re-
quest includes the password and the authentication type. Furthermore, the ori-
gin and relying party identifier of the web application are included.

Depending on the authentication type, different functions of the webauthn-rs
library are called:

® Two-Factor Authentication:
To authenticate with a security key as second factor, the webauthn-rs
function start_securitykey_authentication() is used. This function accepts
a list of Securitykey objects as a parameter. The parameter contains a

5 Implementation

29

Login

I

(a) Standard login page

Login

(b) Passwordless login page

Figure 5.7: Login page

Authenticator ‘WebAuthenticationAPl‘ ’ Client ’

o~

@) POST: /vi/start_authentication

start_authentication.html.tera
(PublicKeyCredentialRequestOptions)

® credentials.get()

_ authenticatorGetCredential

sign signature, user handle

signature, user handle

POST: /v1/finish_authentication
(AuthenticatorAssertionResponse)

verify
pairing.html.tera / error message signature

Figure 5.8: Sequence diagram for security key authentication (Source: [23])

5 Implementation 30

list of all saved second-factor security keys of the user. Moreover, the
start_securitykey_authentication() function checks if the feature danger-
user-presence-only-security-keys is set (see section 4.6). If yes, user verifi-
cation will not be required during the authentication process. The function
start_securitykey_authentication() returns an authentication state object of
the type SecurityKeyAuthenication.

®m Passwordless Authentication:

The start_passwordlesskey_authentication() function is used to authenticate
with a security key as passwordless authenticator. It has one parame-
ter, which contains a list of Passwordlesskey objects. Those objects have
been saved during registration and are now used during passwordless
authentication. The list contains all passwordless authenticators which
can be associated with the user. Since passwordless authentication is
used, the start_passwordlesskey_authentication() function enforces user ver-
ification. This function returns an authentication state object of the type
PasswordlessKeyAuthentication.

Both functions return either a SecuritykeyAuthentication object or a
PasswordlessKeyAuthentication object. The authentication state objects are stored
in their corresponding fields of the SecurityKey struct for later use during the
authentication process. They contain the credential identifier, the user verifi-
cation policy, and the challenge of the authentication attempt.

Moreover, both functions return a RequestChallengeResponse (see section 3.3) that
is inserted in the Tera template of the start_authentication page and thus re-
turned to the client. It contains the credentials, which are allowed to sign the
login challenge. Due to this parameter, some privacy issues arise which are dis-
cussed in chapter 6. In addition to that, the object defines if user verification is
needed for the authentication process. Furthermore, the timeout, the relying
party identifier, and the login challenge itself are included.

The start_authentication page is protected by a request guard. In the first phase
of the authentication process, a timestamp is created and saved on the server.
Therefore, the start_authentication page can only be called if the timestamp is
not older than the value stored in the TIME_LIMIT constant (see Listing A.4) in
seconds. If the time limit has expired, the page cannot be accessed by the user.
It will show the HTTP error 403: Forbidden.

5.5.2 Create Signature

On the client side, the JavaScript function navigator.credentials.get() of the Web
Authentication API, where the authentication challenge response is set as a pa-
rameter, is called. This function requests a registered FIDO2 token from the
user (see Figure 5.9). During this request, the user’s presence has to be con-
firmed. Figure 5.9 shows two examples of how to authenticate with a FIDO2
token. Figure 5.9a shows how the authentication works with a USB security to-
ken. If no security key is recognized, the web application will show a waiting
dialog to the user. Moreover, the correct security key has to be presented dur-
ing the authentication process. If the user presents a wrong USB security token,
the web application will tell the user that the security key does not look famil -
iar and that the correct USB security token must be inserted into a USB port.
For passwordless key authentication, the user must also be verified by some
biometric feature or a PIN. Therefore, the web application may ask for a PIN,
for example, to use the USB security token. The user must enter the PIN con-
figured during the registration process or in the operating system’s settings.
Otherwise, the authentication process will fail, as the user cannot be verified.

5 Implementation 31

Windows Security * Windows Security *
Making sure it's you Making sure it's you
Please sign in to localhost. Please sign in as d60962e3-05a8-4add-bc50-f9bf31bf3470 to

localhost.
This request comes from Firefox, published by Mozilla
Corporation. This request comes from Chrome, published by Google LLC.

8 E |

Touch your security key.

forgot my PIN

Cancel
Cancel

(a) Request user presence (b) Request Windows Hello PIN

Figure 5.9: Authenticate with a security key

[Back |

The attestation was parsed, but is not trusted by one of the selected CA certificates

Figure 5.10: An exemplary error message

Figure 5.9b shows an authentication process with a registered Windows Hello
PIN as security key. In this case, the correct Windows Hello PIN of the user must
be entered so that the authentication succeeds.

5.5.3 Finish Authentication

After the interaction with the security key, the finish_authentication() func-
tion on the server side is called via the REST API (see Figure 5.8). As men-
tioned in section 3.3, the data which is sent back to the server contains
the credential identifier, the response object, and the authenticator type.
The response object includes the signature, the authenticator data, the user
handle, and the JSON-encoded client data. On the server side, the func-
tion finish_securitykey_authentication() or finish_passwordlesskey_authentication()
is called, which is determined by the authentication type. The authentication
state object, created during the start_authentication process, and the response
object are used as parameters. Those functions validate the authentication and
verify the signature, which was created by the authenticator. The validation and
verification process is fully provided by the webauthn-rs library. If the verifi-
cation is successful, the user will be authenticated and redirected to the pairing
page. Otherwise, the authentication process fails and the user will be redirected
to the login page.

5.6 Error Handling

If an error occurs on the server, the response of the Fetch request is sent to the
client in JSON format. The response includes the error message from the server.
After the response has been received, the error message is shown on the current
web page. The user can click on the Back button to get back to the pairing or
login page, depending on the authentication status. Figure 5.10 shows an error
message, which will occur if a wrong attestation format is used.

Chapter 6
Evaluation

6.1 Tor Browser

If the web application is used in the Tor Browser, some adaptions must be made
so that the Web Authentication API will work correctly. That is because the Tor
Browser has stricter security settings than a normal browser.

First of all, the security level of the Tor Browser must be set to Standard or Safer
in the security level settings (see Figure 6.1). With the Standard option all Tor
Browser and website features are enabled. The Safer option disables danger-
ous website features and therefore, some websites can lose their functionality.
This option disables JavaScript for all non-HTTPS sites, some fonts and math
symbols are disabled, and all media content is changed to click-to-play. The
Tor Browser treats onion sites as HTTPS. For this reason, the Safer option is
also sufficient for the functionality of the Web Authentication API. If the op-
tion Safest is selected, registration and authentication with FIDO2 tokens will
not work correctly, as the Tor Browser forbids access to the Web Authentication
API. After installation of the Tor Browser, the security level is set to Standard.

Additionally, one setting in the Tor Browser must be set manually so that the
Web Authentication API calls work properly (see Figure 6.2). If the user en-
ters about:config in the search bar of the Tor Browser, the preferences page will
open. To allow Web Authentication calls for the Tor Browser, the entry secu-
rity.webauth.webauthn must be set to true. This entry is set to false, as the default
value. There was already a request for enabling the security.webauth.webauthn
feature by default, but according to the Tor Project, the Web Authentication API
must still be audited [21].

6.2 WebAuthn Standard

As mentioned in chapter 3, the registration and authentication of FIDO2 tokens
are origin-specific. Therefore, the registration and authentication depend on
the relying party identifier of the web application. The Personal Identity Agent
is accessed in the Tor Browser via an Onion address. Thus, if the PIA is accessed
via an Onion service, the Onion address will be used as relying party identifier.
If the PIA is accessed directly, the relying party identifier will look different,
since no Onion address is used. Therefore, a user’s security key registered at
the Onion address can only be used at the same Onion address to authenticate.
Besides, if the registration is done over anon-Onion service but the authentica-
tion process is initiated via an Onion service, the authentication will fail. How-
ever, itisnot intended that the Personal Identity Agent can be accessed without
an Onion address. The current implementation uses the concept of ephemeral
Onion addresses for callbacks into the Personal Identity Agent. But this imple-
mentation only affects machine-to-machine (M2M) communication. Hence,

32

6 Evaluation 33

Security Level

Disable certain web features that can be used to attack your security and anonymity. Learn more

O Sstandard

All Tor Browser and website features are enabled.

Safer

Disables website features that are often dangerous, causing some sites to lose functionality.

Safest

Only allows website features required for static sites and basic services. These changes affect

images, media, and scripts.

Figure 6.1: Security level in Tor Browser

« &) @ Tor Browser about:config

security.webauth.webauthn

security.webauth.webauthn

Figure 6.2: Adaption of Tor Browser preferences

it can be assumed that the Personal Identity Agent is reachable for the user via
an Onion service with a permanent Onion Address. This also means that the
implementation of the Personal Identity Agent should have no problem with
WebAuthn standard concerning origin-specific credentials.

6.3 Security Key Setup

In order to use the security keys appropriately in the web application, they have
to be configured before the security key registration process. For platform au-
thenticators like, for example, Windows Hello, the security key must be config-
ured before it can be used in the web application. With USB security key tokens,
it is possible to configure the PIN for the security key during the registration
process. The biometric feature of a USB security token can only be used, if it
was added to the security key beforehand. Unfortunately, registration of bio-
metric factors is not possible in web applications. The Yubico webpage' gives
an excellent introduction on how to set up a USB security token as security key
on several operating systems and platforms.

6.4 Registration of Several Security Keys

If FIDO2 token authentication is chosen for the Personal Identity Agent, users
should register several security keys to have several options to authenticate

thttps://www.yubico.com/at/setup/yubikey-bio-series/

6 Evaluation 34

with. Thus far, functionality to restore security keys if they get lost has not been
implemented. Therefore, it is recommended to register more than one security
key to have a fallback option for the authentication process [14].

6.5 Fallback Option after FIDO2 Token Authentication

After FIDO2 token authentication was disabled, the fallback option gener-
ally depends on security and usability. By self-testing it could be determined,
that Google, for instance, sends an e-mail to provide information about dis-
abling two-factor verification, and mere password-based authentication is
used again. Facebook, for example, just disables two-step verification and falls
back to password-based authentication. The current implementation is dis-
cussed in chapter 5.

6.6 Privacy Considerations about Credential Identifiers

During the authentication process, the RequestChallengeResponse is sent to the
client and contains a parameter that includes all allowed credentials. According
to Lundberg [12], the parameter exposes the credential identifiers of the user to
an unauthenticated caller. Therefore, there exists the risk that personal iden-
tifying information is leaked. However, this is only a problem for password-
less authentication since two-factor authentication asks for a password before
FIDO2 token authentication is initiated. Thus, two-factor authentication pre-
vents the information leak of credential identifiers [13]. In order to avoid the
security risks of leaking credential information, passwordless authentication
could be replaced by the use of discoverable credentials [10]. These credentials
are stored on the authenticator or the client side and can be used during the
authentication ceremony without the relying party providing any allowed cre-
dentials. This means that the relying party leaves the parameter containing the
allowed credentials empty. Moreover, the authentication process can be done
without identifying the user first. However, not all authenticators are able to
work with discoverable credentials. The webauthn-rs crate provides four func-
tions that support discoverable credentials. Nevertheless, on the documenta-
tion page of the webauthn-rs crate it is stated that this feature is currently in
development [8].

6.7 Access Restriction of Start Registration Page

After the password check timed out, it is a good option regarding security to
verify the password again instead of extending access to the page [18]. Long
session timeouts should be avoided. Therefore, the user gets an error message
that the password check has timed out. The timeout after checking the pass-
word was set to 300 seconds (see Listing A.5). The page access will not be ex-
tended if the password check expires. 300 seconds should be enough time for
the user to finalize the registration. Furthermore, it would be a good option to
limit access to the page by proper use of cookies instead of using several request
guards in combination with server-side flags.

Chapter 7

Conclusion and Outlook

In the context of this Bachelor thesis, the Personal Identity Agent (PIA) of the
Digidow project was enhanced by implementing safer authentication meth-
ods. For users, it is now possible to authenticate with FIDO2 tokens. There
are different options for the authentication process. Firstly, the implemented
extension allows two-factor authentication. In that case, the FIDO2 token is
the second factor in addition to an existing password. Hence, the security of
password-based authentication is enhanced by the additional second factor.
Secondly, the extension enables passwordless authentication. The FIDO2 to-
ken is used as a passwordless authenticator. Although the password does not
have to be entered anymore, security standards are not compromised. Here,
the password is replaced by client-side authentication towards the FIDO2 to-
ken itself, for example with a short PIN or a biometric factor. Therefore, pass-
wordless authentication is a very good option in terms of user convenience.

During the implementation, a very interesting aspect has been discovered for
FIDO2 token authentication with different domains pointing to the same ser-
vice. As described in chapter 3, the key pair created during registration and used
for authentication is origin-specific. This functionality is important to guaran-
tee that no two web applications use the same cryptographic key and thus, see
the same user identity. Otherwise, the user would be traceable across differ-
ent web applications. Therefore, it will not be possible for users to apply FIDO2
token authentication if the service is accessed via different domains.

In future, the Personal Identity Agent can be enhanced by implementing the
recoverability of security keys. Currently, if a security key gets lost, the user
has to have at least one security key as a fallback option to still be able to access
the Personal Identity Agent. Moreover, if FIDO2 token authentication is dis-
abled the user could be informed by e-mail, for instance, that mere password-
based authentication is used again. Furthermore, the access protection of the
start_registration page can be enhanced. Instead of using a time limit in com-
bination with a request guard, access to the start_registration page can be re-
stricted with the proper use of cookies. Additionally, passwordless key au-
thentication can be enhanced by the support of discoverable credentials. This
would avoid leaking credential identifiers during the passwordless authentica-
tion process.

35

Bibliography

(1]

(2]

(3]

(4]

(5]
(6]
(7]
(8]

(9]

[10]

(11]

[12]

(13]

Fatima Alqubaisi, Ahmad Samer Wazan, Liza Ahmad, and David W.
Chadwick. 2020. Should We Rush to Implement Password-less Single
Factor FIDO2 based Authentication? In 2020 12th Annual Undergraduate
Research Conference on Applied Computing (URC). IEEE, pp. 1—6. DOI: 10.1
109/URC49805.2020.9099190.

Manuel Barbosa, Alexandra Boldyreva, Shan Chen, and Bogdan Warin-
schi. 2021. Provable security analysis of FIDO2. In Annual International
Cryptology Conference. Springer, pp. 125—156. DOI: 10.1007/978-3-030-
84252-9_5.

Elaine Barker. 2020. Guideline for Using Cryptographic Standards in the
Federal Government: Cryptographic Mechanisms. National Institute of
Standards and Technology, Gaithersburg, MD, pp. 32—41. DOI: 10.6028
/NIST.SP.800-175Br1.

John Bradley, Jeff Hodges, Michael B. Jones, Akshay Kumar, Rolf Linde-
mann, and Johan Verrept. 2021. Client to Authenticator Protocol (CTAP).
(2021). Retrieved 01/06/2023 from https://fidoalliance.org/specs/fido-
v2.1-ps-20210615/fido-client-to-authenticator - protocol-v2.1-ps-20
210615.html.

Rodolphe Bréard. 2023. libreauth. (2023). Retrieved 04/26/2023 from ht
tps://github.com/breard-r/libreauth.

DOCS:RS. 2023. Crate slauth. (2023). Retrieved 04/26/2023 from https:
//docs.rs/slauth/0.5.0/slauth/.

DOCS.RS. 2023. Crate libreauth. (2023). Retrieved 04/26/2023 from http
s://docs.rs/libreauth/0.15.0/libreauth/.

DOCS.RS. 2023. Crate webauthn_ rs. (2023). Retrieved 03/25/2023 from
https://docs.rs/webauthn-rs/0.4.8/webauthn_ rs/.

Nick Frymann, Daniel Gardham, Franziskus Kiefer, Emil Lundberg,
Mark Manulis, and Dain Nilsson. 2020. Asynchronous Remote Key Gen-
eration: An Analysis of Yubico’s Proposal for W3C WebAuthn. In Proceed-
ings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’20). ACM, Virtual Event, USA, pp. 939—954. DOI: 10.1145/3
372297.3417292.

Jeff Hodges, J. C. Jones, Michael B. Jones, Akshay Kumar, and Emil Lund-
berg. 2021. Web Authentication: An API for accessing Public Key Creden-
tials Level 2. (2021). Retrieved 02/01/2023 from https://www.w3.0rg/TR
/2021/REC-webauthn-2-20210408/.

James Hodgkinson. 2023. webauthn-rs. (2023). Retrieved 04/26/2023
from https://github.com/kanidm/webauthn-rs.

Emil Lundberg. 2023. Add privacy considerations about credential IDs.
Issue #1250. (2023). Retrieved 03/31/2023 from https://github.com/w3c
/webauthn/pull/1250.

Emil Lundberg. 2023. Privacy risk from revealing allowed credentials. Is-
sue #1246. (2023). Retrieved 03/31/2023 from https://github.com/w3c
/webauthn/issues/1246.

36

https://doi.org/10.1109/URC49805.2020.9099190
https://doi.org/10.1109/URC49805.2020.9099190
https://doi.org/10.1007/978-3-030-84252-9_5
https://doi.org/10.1007/978-3-030-84252-9_5
https://doi.org/10.6028/NIST.SP.800-175Br1
https://doi.org/10.6028/NIST.SP.800-175Br1
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-20210615.html
https://github.com/breard-r/libreauth
https://github.com/breard-r/libreauth
https://docs.rs/slauth/0.5.0/slauth/
https://docs.rs/slauth/0.5.0/slauth/
https://docs.rs/libreauth/0.15.0/libreauth/
https://docs.rs/libreauth/0.15.0/libreauth/
https://docs.rs/webauthn-rs/0.4.8/webauthn_rs/
https://doi.org/10.1145/3372297.3417292
https://doi.org/10.1145/3372297.3417292
https://www.w3.org/TR/2021/REC-webauthn-2-20210408/
https://www.w3.org/TR/2021/REC-webauthn-2-20210408/
https://github.com/kanidm/webauthn-rs
https://github.com/w3c/webauthn/pull/1250
https://github.com/w3c/webauthn/pull/1250
https://github.com/w3c/webauthn/issues/1246
https://github.com/w3c/webauthn/issues/1246

Bibliography 37

[14]

[15]

(16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

(24]

[25]

(26]

(27]

Emil Lundberg and Dain Nilsson. 2023. Webauthn recovery extension.
(2023). Retrieved 04/26/2023 from https://github.com/Yubico/weba
uthn-recovery-extension/.

Sanam Ghorbani Lyastani, Michael Schilling, Michaela Neumayr,
Michael Backes, and Sven Bugiel. 2020. Is FIDO2 the Kingslayer of User
Authentication? A Comparative Usability Study of FIDO2 Passwordless
Authentication. In IEEE Symposium on Security and Privacy, pp. 268—285.
DOI: 10.1109/SP40000.2020.00047.

Salah Machani, Rob Philpott, Sampath Srinivas, John Kemp, and Jeff
Hodges. 2020. FIDO UAF Architectural Overview. (2020). Retrieved
01/05/2023 from https://fidoalliance.org/specs/fido-uaf-vi.2-ps-202
01020/fido-uaf-overview-vi1.2-ps-20201020.html.

Richard Markiewicz, Benoit Cortier, and Michael Proulx. 2023. slauth.
(2023). Retrieved 04/26/2023 from https://github.com/devolutions/s
lauth.

OWASP. 2023. Session Timeout. (2023). Retrieved 04/03/2023 from http
s://owasp.org/www-community/Session_ Timeout.

Olivier Pereira, Florentin Rochet, and Cyrille Wiedling. 2018. Formal
Analysis of the FIDO 1.x Protocol. In Foundations and Practice of Secu-
rity. Abdessamad Imine, José M. Fernandez, Jean-Yves Marion, Luigi Lo-
grippo, and Joaquin Garcia-Alfaro, (Eds.) Springer, Cham, pp. 68—82.
DOI: 10.1007/978-3-319-75650-9_ 5.

Abhishek Sachdeva. 2013. A Study of Encryption Algorithms AES, DES
and RSA for Security. Global Journal of Computer Science and Technology,
13, E15, 32—40. ISSN: 0975-4172. https://computerresearch.org/index.p
hp/computer/article/view/272.

Mark Smith. 2018. audit the Web Authentication API. Issue #26614.
(2018). Retrieved 01/02/2023 from https://gitlab.torproject.org/tpo/a
pplications/tor-browser/-/issues/26614.

Sampath Srinivas, Dirk Balfanz, Eric Tiffany, and Alexei Czeskis. 2017.
Universal 2nd Factor (U2F) Overview. (2017). Retrieved 01/05/2023 from
https://fidoalliance.org/specs/fido-u2f-vi.2-ps-20170411/fido-u2f-o
verview-vi1.2-ps-20170411.html.

Athanasios Vasileios Grammatopoulos, Ilias Politis, and Christos Xe-
nakis. 2021. A Web Tool for Analyzing FIDO2/WebAuthn Requests and
Responses. In (ARES 21), Article 125. ACM, Vienna, Austria, 10 pages. DOI:
10.1145/3465481.34692009.

Yuhan Yan. 2022. The Overview of Elliptic Curve Cryptography (ECC).
Journal of Physics: Conference Series, 2386, 1, Article 012019. DOI: 10.108
8/1742-6596/2386/1/012019.

Yubico Developers. 2023. Enterprise Attestation. (2023). Retrieved
04/26/2023 from https://developers.yubico.com / WebAuthn /Conce
pts/Enterprise_ Attestation/.

Yubico Developers. 2023. User Presence vs User Verification. (2023). Re-
trieved 01/02/2023 from https://developers.yubico.com/WebAuthn/We
bAuthn_ Developer_ Guide/User_ Presence_ vs_ User_ Verification.htm
L

Yubico Developers. 2023. WebAuthn Client Authentication. (2023). Re-
trieved 01/02/2023 from https://developers.yubico.com/WebAuthn/We
bAuthn_ Developer_Guide/WebAuthn_ Client_ Authentication.html.

https://github.com/Yubico/webauthn-recovery-extension/
https://github.com/Yubico/webauthn-recovery-extension/
https://doi.org/10.1109/SP40000.2020.00047
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-overview-v1.2-ps-20201020.html
https://fidoalliance.org/specs/fido-uaf-v1.2-ps-20201020/fido-uaf-overview-v1.2-ps-20201020.html
https://github.com/devolutions/slauth
https://github.com/devolutions/slauth
https://owasp.org/www-community/Session_Timeout
https://owasp.org/www-community/Session_Timeout
https://doi.org/10.1007/978-3-319-75650-9_5
https://computerresearch.org/index.php/computer/article/view/272
https://computerresearch.org/index.php/computer/article/view/272
https://gitlab.torproject.org/tpo/applications/tor-browser/-/issues/26614
https://gitlab.torproject.org/tpo/applications/tor-browser/-/issues/26614
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.html
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.html
https://doi.org/10.1145/3465481.3469209
https://doi.org/10.1088/1742-6596/2386/1/012019
https://doi.org/10.1088/1742-6596/2386/1/012019
https://developers.yubico.com/WebAuthn/Concepts/Enterprise_Attestation/
https://developers.yubico.com/WebAuthn/Concepts/Enterprise_Attestation/
https://developers.yubico.com/WebAuthn/WebAuthn_Developer_Guide/User_Presence_vs_User_Verification.html
https://developers.yubico.com/WebAuthn/WebAuthn_Developer_Guide/User_Presence_vs_User_Verification.html
https://developers.yubico.com/WebAuthn/WebAuthn_Developer_Guide/User_Presence_vs_User_Verification.html
https://developers.yubico.com/WebAuthn/WebAuthn_Developer_Guide/WebAuthn_Client_Authentication.html
https://developers.yubico.com/WebAuthn/WebAuthn_Developer_Guide/WebAuthn_Client_Authentication.html

Bibliography 38

[28] Yubico Developers. 2023. WebAuthn Client Registration. (2023). Re-
trieved 01/02/2023 from https://developers.yubico.com/WebAuthn/We
bAuthn_ Developer_ Guide/WebAuthn_ Client_ Registration.html.

[29] Yubico Developers. 2023. WebAuthn Deployment Best Practices. (2023).
Retrieved 02/13/2023 from https://developers.yubico.com/WebAuthn
/WebAuthn_ Developer_ Guide/Best_ Practices.html.

https://developers.yubico.com/WebAuthn/WebAuthn_Developer_Guide/WebAuthn_Client_Registration.html
https://developers.yubico.com/WebAuthn/WebAuthn_Developer_Guide/WebAuthn_Client_Registration.html
https://developers.yubico.com/WebAuthn/WebAuthn_Developer_Guide/Best_Practices.html
https://developers.yubico.com/WebAuthn/WebAuthn_Developer_Guide/Best_Practices.html

Appendix A

Selected Definitions

#[derive(Serialize, Deserialize)]
pub struct Data {

/// Used to store security keys for the user
#[serde(default)]
pub security_keys: SecurityKeys,

Listing A.1: Field for storing security keys

#[derive(Serialize, Deserialize, Debug, Clone)]

pub struct Credentials {
/// Stores the credential for the registered security key
#[serde(skip_serializing_if = ”Option::is_none”)]
pub security_key_ credential: Option<SecurityKey>,

/// Stores the credential for the registered passwordless security key
#[serde(skip_serializing_if = ”Option::is_none”)]
pub passwordless_ key_ credential: Option<PasswordlessKey>,

/// Stores the username
#[serde(default)]
pub username: String,

/// Stores the name of the security key
#[serde(default)]
pub security_key name: String,

Listing A.2: Struct for user credentials

#[derive(Serialize, Deserialize, Clone, Debug, Default)]
pub enum AuthenticationType {

Password,

Passwordless,

#[default]

NoType

Listing A.3: Enum for authentication type

pub(crate) const TIME__ LIMIT: i64 = 20;

Listing A.4: Constant for time limit

pub(crate) const CHECK__ PASSWORD: i64 = 300;

Listing A.5: Constant for time limit to check the password

39

Appendix A Selected Definitions 40

#[derive(Serialize, Deserialize, Debug, Clone, Default)]
pub struct SecurityKeys {

/// Stores the credentials for user authentication

pub credentials: Vec<Credentials>,

/// Saves the authentication type of the user
#[serde(default)]
pub authentication__type: AuthenticationType,

Listing A.6: Struct for security keys

#[derive(Debug, Clone, Default)]

pub struct WebauthnData {
/// Saves the username during registration
pub username: Option<String>,

/// Saves the security key name during registration
pub security _key name: Option<String>,

/// Used for adding a security key
pub password__checked: Option<i64>,

/// Used for security key registration
pub registration_ started: Option<i64>,

/// Used for security key authentication
pub authentication_ started: Option<i64>,

/// Saves the response of the Webauthn API during registration
pub creation_ challenge response: Option<CreationChallengeResponse>,

/// Saves the response of the Webauthn API during authentication
pub authentication_ challenge_ response: Option<RequestChallengeResponse>,

/// Saves the registration state during security key registration
pub security_key registration: Option<SecurityKeyRegistration>,

/// Saves the authentication state during security key authentication
pub security_key authentication: Option<SecurityKeyAuthentication>,

/// Saves the registration state during passwordless security key registration
pub passwordless_key_ registration: Option<PasswordlessKeyRegistration>,

/// Saves the authentication state during passwordless security key authentication
pub passwordless_ key_ authentication: Option<PasswordlessKeyAuthentication>,

Listing A.7: Struct for temporary values

	Abstract
	Kurzfassung
	Acknowledgements
	Contents
	Introduction
	Digidow Project & Personal Identity Agent
	Motivation
	Objectives and Goals

	Background
	FIDO Alliance
	Universal Second Factor (U2F)
	Universal Authentication Framework (UAF)
	WebAuthn
	Public Key Cryptography

	FIDO2 Token Authentication
	Overview
	Registration Process
	Authentication Process

	Design Choices
	Rocket
	Tera
	Web Authentication API
	Fetch API
	WebAuthn Server
	webauthn-rs Features

	Implementation
	Security Key Persistence
	Data
	SecurityKeys
	Credentials

	Temporary Data
	Security Key Registration
	Check Password
	Add Security Key
	Start Registration
	Create Key Pair
	Finish Registration

	Security Key Removal
	Security Key Authentication
	Start Authentication
	Create Signature
	Finish Authentication

	Error Handling

	Evaluation
	Tor Browser
	WebAuthn Standard
	Security Key Setup
	Registration of Several Security Keys
	Fallback Option after FIDO2 Token Authentication
	Privacy Considerations about Credential Identifiers
	Access Restriction of Start Registration Page

	Conclusion and Outlook
	Bibliography
	Selected Definitions

