
Automating theQuantitative Analysis of Reproducibility for
Build Artifacts derived from the Android Open Source Project

Manuel Pöll
manuel.poell.mail@gmail.com
Johannes Kepler University Linz
Institute of Networks and Security

Linz, Austria

Michael Roland
michael.roland@ins.jku.at

Johannes Kepler University Linz
Institute of Networks and Security

Linz, Austria

ABSTRACT
This work proposes a modular automation toolchain to analyze
current state and over-time changes of reproducibility of build arti-
facts derived from the Android Open Source Project (AOSP).While
perfect bit-by-bit equality of binary artifacts would be a desirable
goal to permit independent verification if binary build artifacts re-
ally are the result of building a specific state of source code, this
form of reproducibility is often not (yet) achievable in practice.
Certain complexities in the Android ecosystem make assessment
of production firmware images particularly difficult. To overcome
this, we introduce “accountable builds” as a form of reproducibil-
ity that allows for legitimate deviations from 100 percent bit-by-bit
equality. Using our framework that builds AOSP in its native build
system, automatically compares artifacts, and computes difference
scores, we perform a detailed analysis of differences, identify typ-
ical accountable changes, and analyze current major issues lead-
ing to non-reproducibility and non-accountability. We find that
pure AOSP itself builds mostly reproducible and that Project Tre-
ble helped through its separation of concerns. However, we also
discover that Google’s published firmware images deviate from the
claimed codebase (partially due to side-effects of Project Mainline).

CCS CONCEPTS
• Software and its engineering→Maintaining software; Soft-
ware configuration management and version control systems; De-
velopment frameworks and environments; Open source model; •
Security and privacy → Mobile platform security; Intrusion/
anomaly detection and malware mitigation.

KEYWORDS
Deterministic build, Over-time measurement comparison
ACM Reference Format:
Manuel Pöll and Michael Roland. 2022. Automating the Quantitative Anal-
ysis of Reproducibility for Build Artifacts derived from the Android Open
Source Project. InWiSec ’22: 15th ACMConference on Security and Privacy in
Wireless andMobile Networks, May 16–19, 2022, San Antonio, TX, USA.ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3507657.3528537

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
WiSec ’22, May 16–19, 2022, San Antonio, TX, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9216-7/22/05…$15.00
https://doi.org/10.1145/3507657.3528537

1 INTRODUCTION
Android is the single most widely adopted mobile operating sys-
tem in use today (with a market share of more than 70 percent as of
2021 and continuously held for the past years [45]). Its core is based
on open source software, the Android Open Source Project (AOSP).
AOSP contains all the core components of a fully-functioning mo-
bile operating system distribution on which mobile handset man-
ufacturers and providers of after-market firmware (e.g. the Lin-
eageOS distribution) base their own customizations and additions.

Open source software in general is increasingly influential in
numerous application domains. Originating in the Linux commu-
nity [37] and, for a long time, a very common form of software
development by mainly hobbyists and academia, it has found wide-
spread adoption in enterprise environments of all sizes, including
large multinational enterprises [39]. Open source software is seen
as both a potential benefit and also a potential threat to software
quality and security [39]: While enterprise open source software is
perceived as a chance to increase quality and security, and to bene-
fit from latest innovations and code-reuse, particularly community-
driven open source software is often considered a risk in terms of
security and quality. On the one hand, a key motivation behind
open source software is the establishment of trust. Any interested
party may freely inspect the source code and may assure itself that
a program is free of malicious components. On the other hand, vul-
nerabilities in open source libraries and particularly the issues asso-
ciated with managing them are seen as problematic, cf. [15, 34, 38].
Recent attacks on software dependencies and the software supply
chain in general (e.g. Dependency Confusion [9] and SolarWinds/
SUNSPOT/SUPERNOVA/SUNBURST [14]) suggest that not only
open source libraries but the whole software supply chain man-
agement poses a significant security risk. This risk, introduced by
the software supply chain, is not new, cf. [19, 32, 36, 44]. Already
in 1974, Karger and Schell [30] mentioned the threat of code injec-
tion by malicious compilers. Practically demonstrating this issue
10 years later, Thompson [47] concluded that we rely on putting
ultimate trust into all the intermediate steps (and involved parties)
on the path between the source code and the resulting executable
binary files. As a result, even if open source software permits self-
assurance about non-maliciousness of the source code, this trust
does not automatically propagate to binary artifacts.

One approach to reducing the attack surface imposed by mali-
ciously acting software providers and parties involved in the build
process is the concept of reproducible builds. Reproducible builds
aim to make the software build process deterministic. Any inter-
ested party can inspect the source code, configurations and build
toolchain, can create their own binary artifacts, and can use these

Session 1: Android Security WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

6

https://orcid.org/0000-0002-9374-9779
https://orcid.org/0000-0003-4675-0539
https://doi.org/10.1145/3507657.3528537
https://doi.org/10.1145/3507657.3528537
https://www.acm.org/publications/policies/artifact-review-and-badging-current

WiSec ’22, May 16–19, 2022, San Antonio, TX, USA Manuel Pöll and Michael Roland

to verify that they match the officially provided artifacts bit-by-
bit (cf. the concept of diverse double-compiling attributed to Henry
Spencer by Wheeler [49]). While the vast majority of users do not
compile their software themselves, they can still benefit from inde-
pendent verification of the correspondence between source code
and resulting binary artifacts. Even if this correspondence is veri-
fied by only a small number of independent parties, this provides
additional trust to the overall user base. Also, if users (or organi-
zations) would be willing to compile their own software, this is
sometimes infeasible for device firmware due to secure boot en-
vironments rejecting self-signed firmware binaries. Therefore, re-
producible builds are a logical next step for open source projects to
extend the trust from their source code to the final binary artifacts.

Debian [17] is probably among themost prominent projects that
aim for reproducibility. With the Reproducible Builds project [42],
a whole initiative to drive reproducible builds has been founded.
Besides supply chain security, reproducible builds have also proven
as an important measure to achieve reproducibility of scientific
results (e.g. in high-performance computing with GNU Guix [13]).

In the segment of mobile software and operating systems, there
are a few security-focused, AOSP-based projects that claim repro-
ducibility (e.g. GrapheneOS [24], CopperheadOS [12], andGuardian
Project [25]). Moreover, F-Droid is a dedicated app catalog for Free
andOpen Source Software (FOSS) that supports reproducible builds
for Android apps [46]. While AOSP does not aim for reproducibil-
ity with their current build system, there are a few projects try-
ing to make AOSP reproducible with improved build systems (e.g.
AOSP Build [26] and robotnix [20]). However, using such a cus-
tomized build environment only allows to compare results based
on these alternative environments. Consequently, this does not
help towards the goal of verifying the correspondence between the
AOSP source code and the actual binaries already shipped by mo-
bile handset manufacturers and (after-market) firmware providers.
Even with the announced migration to the Bazel build system [28],
AOSP has a long way ahead of becoming fully reproducible.

It is, therefore, interesting to quantitatively and qualitatively
assess to what extent AOSP already provides reproducibility and
how this reproducibility allows to establish trust that published
firmware images stem from a specific, untainted version of the of-
ficial AOSP source code. Moreover, where reproducibility is not
achieved, it is interesting to identify the root causes of differences.

Beside the official build system not (yet) aiming for full repro-
ducibility, the heterogeneous Android ecosystem poses several ad-
ditional challenges: The tremendous amount of different build tar-
gets results in various generic and device-specific firmware im-
ages and image formats. Moreover, AOSP only provides the core
components, while OEMs (including Google) enrich the resulting
firmware images with closed-source functionality (like the Google
Apps) creating expected discrepancies between the overall binary
artifacts (even if the core components are untainted). Finally, firm-
ware images are signed with keys that must be kept secret. While
this is well-studied and does not pose a significant issue, firmware
images themselves contain signed binaries leading to multiple lay-
ers of signatures.

In this paper, we measure the state of reproducibility of AOSP
against publicly available reference images such as the generic sys-
tem images (GSI). Further, we analyze how this reproducibility can

be used to assess the trustworthiness of claims that specific device
firmware images stem from a certain, untainted codebase. We cre-
ate an automated toolchain for running AOSP builds in their native
build system, for automating artifact comparison, and for analysis
of remaining differences. This permits a quantitative assessment
of changes in reproducibility over time and an independent veri-
fication of the mapping between official source code and official
binary artifacts. As we found that there are certain complexities in
the Android ecosystem that make perfect reproducibility unpracti-
cal, particularly in the assessment of production firmware images,
we introduce “accountable builds” as a form of reproducibility that
allows for legitimate deviations from 100 percent bit-by-bit equal-
ity. Finally, we analyze the current major issues of AOSP leading
to non-reproducibility and non-accountability.

2 REPRODUCIBLE BUILDS
The gap between programs in their source code form and their
compiled binary form leaves room for manipulation. There is no
intrinsic guarantee that artifacts distributed by someone, claiming
these stem from some unmodified source code, really are the result
of building that specific source code without any (potentially ma-
licious) modifications. An obvious solution to establish your own
trust in the mapping between source code and binary form, would
be to compile all software yourself—at least for open source soft-
ware and under the assumption that the build toolchain itself is
benign. However, that is not a practical solution for most users.
Reproducible builds are a way towards bridging this gap, as they
allow verification of that mapping for existing binary artifacts.

The typical textbook definition of reproducibility mandates ex-
act bit-by-bit equality between all the artifacts produced from the
same source code in the same build environment using the same
build instructions [8, 31, 40]. Based on this requirement, verifying
if two artifacts stem from the same reproducibly building source
code is straight forward: They can simply be compared bit-by-bit.
This makes automation of the comparison trivial and also eases
independent validation: A party that wants to contribute results
of their own compilation does not need to publish full binary ar-
tifacts, but can simply publish a cryptographic checksum over the
generated untainted artifacts to provide a trust anchor for indepen-
dent verification by others. Similarly, users can build and use their
own binary artifacts from source and can then verify them against
a simple hash value provided by the publisher of the source code
without the need to obtain the whole pre-built artifacts.

2.1 Deterministic Build System
A make-or-break factor for reproducibility is the build environ-
ment. This includes not only all the different tools used as part
of the build process, but also the state and configuration that these
tools are used in. Particularly for huge projects like Android, there
is a diverse set of tools involved in the build process of monolithic
binary artifacts (i.e. the final firmware images). These include sev-
eral compiler toolchains for compiling and linking source code in
different languages, tools to assemble application and firmware
package files, and build automation tooling (e.g. Soong and Make)
that combines all the other tools into one huge build system.

An important property that all the involved build systems need
to contribute is determinism. A deterministic build system ensures

Session 1: Android Security WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

7

Automating theQuantitative Analysis of Reproducibility for Build Artifacts derived from the AOSP WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

that stable inputs (source code, configuration) lead to stable out-
puts (identical artifacts), while minimizing effects of the environ-
ment a build is performed in [7, 11]. Even in a deterministic build
system, non-stable inputs from configuration and environmental
differences will cause variations in outputs. Hence, uncontrollable
parameters in the build environment prevent determinism.

For instance, artifacts may include timestamps and other meta-
data that describe the build environment itself (e.g. begin/end of
compilation, file metadata in file system images and other con-
tainers, absolute paths, hostnames, usernames). Best-practice for
a deterministic build system would be to completely get rid of all
such information [10]. While often only used for convenience, ex-
isting specifications of data formats (and tools based on them) may
mandate presence of such metadata though. Hence, a determinis-
tic build system needs to apply an appropriate normalization strat-
egy to such metadata. Data that is not essential for the function-
ality of an artifact may simply be stripped in post-processing or
not be added at all. If omission is not desirable, values must be de-
rived in a deterministic fashion, e.g. by solely relying on data from
source codemanagement (version control system). Again, such val-
uesmay then be used by the build tools directly or patched through
a post-processing step.

2.2 Accountable Builds
In practice, it is not always possible to achieve full bit-by-bit equal-
ity. For those cases, it is important to distinguish between account-
able differences, which have their origin in a specific, explainable
deficiency that can be held accountable for, and unexplainable dif-
ferences. If two builds of the same build target differ only by fully
explainable differences, we refer to this as an accountable build.
While an accountable build is weaker than a reproducible one, it is
a good step towards a fully reproducible build system.

One reason for such differences can be that (parts of) the build
system are not yet deterministic. This is usually fixable by patch-
ing and updating the build tooling. Nevertheless, it is important to
measure the degree of reproducibility, and to classify issues into
explainable and unexplainable differences, even when a build sys-
tem does not yet provide full determinism.

Another reason for failing full reproducibility is parts of the
build environment that are expected to differ between the offi-
cial source of binary artifacts and someone who tries to reproduce
building them. This is, for instance, the case when verifying the
claim that some firmware image published by a third party stems
from a specific source code version. One such unavoidable differ-
ence may come from code signing. Obviously, someone trying to
reproduce a build must not have access to the official signing keys
used for the published firmware images. Hence, resulting signa-
tures generated for artifacts must be different.

As long as one considers the signature (and potentially associ-
ated certificate chains) as auxiliary metadata and not part of the
binary artifact itself, this does not threaten reproducibility and,
consequently, should not impact the trust gained from an indepen-
dent verification of such build artifacts. However, while it would
be simple to strip a single signature before comparison for a single
executable, this task is a lot more complex when it comes to whole
operating system distributions bundled into firmware images.

Looking specifically into Android, it is not as simple as a single
detachable signature and a firmware image. Instead, each applica-
tion package (Android Package, APK) and, lately, also each upgrad-
able system module package (Android Pony EXpress, APEX) is
signed individually. Signing such package files means that certifi-
cate files are added and that manifest files listing packaged files
with their signature values change. Such changes are, again, ac-
countable differences and should, in most cases, be automatically
excluded from a build comparison. However, since code signing is
an integral part of the Android permission system [33], changes of
signing keys (and their associated certificates and signatures) also
propagate to other areas.

Since critical permissions are tied to signatures, public keys and
certificates can be part of permission policy definitions (e.g. embed-
ded in SELinux policy files). Simply stripping all public keys and
certificates from a policy before comparison may result in undis-
covered security issues like an additional key injected by a mali-
cious party to gain permissions based on their own signing key.

Also, update mechanisms for application packages and the firm-
ware image itself are tied to signatures. For APK and APEX files,
this has an interesting side-effect seemingly introduced by Project
Mainline [43]: Certain applications available as part of AOSP are in-
cluded into firmware images with a different package name. Specif-
ically the AOSP package name prefix “com.android” is changed to
the Google prefix “com.google.android” while supposedly keeping
the source code identical. This seems to have the practical reason
that Google can ship those packages with their own signature up-
datable through Play Store while keeping versions directly built
from AOSP unaffected and conflict-free. Here, conflict-free means
that updates published by Google through Play Store would not
be identified as updates for AOSP versions (due to the different
package name) and would, consequently, not result in signature-
mismatches. Therefore, as long as the rest of the binary artifact
(except for the signature/certificate and the package name) match,
such a deviation may still be considered an accountable difference.

Besides Google’s Mainline effort, firmware images for Android
devices are usually assembled from AOSP and other components.
Such additional components are expected in the Android ecosys-
tem since device manufacturers often want to (or even have to)
rely on closed-source components and also want to enhance be-
yond the core AOSP functionality. A number of these components
is provided by chipset vendors and original design manufacturers
to provide platform-specific low-level device drivers and software
to install/update peripheral firmware. Since these components are
often not offered as FOSS, device OEMs can, at best, provide them
as standalone pre-built binary blobs for reproducing their device
firmware. Another share is made up by components shipped by
the OEM to enrich user-experience and branding over plain AOSP.
Such additions are expected since manufacturers want to offer a
value-gain over other AOSP-based devices. Even though function-
ality embedded in such binaries cannot be verified based on public
source code, we consider such additions acceptable in an account-
able build as long as they are clearly distinct from AOSP, do not
modify the AOSP codebase itself, and do not change the security
and privacy guarantees provided by the platform. Nevertheless, we
would prefer these components to be reproducible FOSS as well.

Session 1: Android Security WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

8

WiSec ’22, May 16–19, 2022, San Antonio, TX, USA Manuel Pöll and Michael Roland

3 RELATEDWORK
There has been extensive work in defining the requirements for re-
producible builds. Specifically, the Reproducible Builds project [7,
11] put a significant effort towards defining reproducibility and
how to create a deterministic build environment. While their focus
lies on Debian, there are similar efforts for other FOSS projects.

There are two actively developed projects (AOSPBuild and robot-
nix) that create new or enhanced build environments focused on
improving reproducibly buildingAOSP. Our automation framework
differs from their approach in that we explicitly aim to measure
reproducibility and comparability based on the unmodified build
system that is also used for official firmware builds. Nevertheless,
we have embedded the robotnix build flow into our framework
(though we consider that out-of-scope for this paper).

With their 2020 announcement to migrate to the Bazel build sys-
tem [28], Google made “correct and reproducible (hermetic) AOSP
builds” an explicit goal for AOSP for the first time. Our framework
can help with continuously monitoring that effort by comparing
reproducibility metrics before, during, and after that transition.

The tool diffoscope [41] (from the Reproducible Builds project)
performs recursive, context-aware comparison (“diff-ing”) of archive
files and generates reports in the form of line-by-line differences.
Such reports form the basis for our metrics.

With regard to measuring reproducibility, Ren et al. [40] cre-
ate RepLoc, a framework to automatically localize reproducibil-
ity issues. Their work focuses on (but is not exclusively limited
to) building packages in the Debian distribution. RepLoc leverages
diffoscope to identify differences between two build instances of
the same source code. Based on these difference reports and on
domain-specific knowledge about common reproducibility issues
in Debian, they estimate the source files most likely responsible
for breaking reproducibility. In contrast, the goal of our analysis
framework is to give a quantitative estimate of improvements in re-
producibility/comparability over time while specifically focusing
on the special aspects of the Android ecosystem.

Even before the Reproducible Builds project and the efforts in
Debian, reproducibility had been understood as an important prop-
erty in software configuration management and build systems. For
instance, Heydon et al. [27] mention repeatable builds as a valuable
benefit of the Vesta SCM system. Muniswamy-Reddy et al. [35] dis-
cuss data provenance as a source for automated generation of build
steps to reproduce artifacts.

With regard to software supply chain security, there is vari-
ous orthogonal work. For instance, Jämthagen et al. [29] present a
novel approach to create hidden functionality at the source code
level. They specifically target false trust in deterministic builds,
as any malicious functionality that makes it into the source code
repository while not being identified as such, would (obviously)
not be discoverable through independent deterministic builds.

de Carné de Carnavalet and Mannan [16] analyze verifiability
of official TrueCrypt binaries by manually recreating a build envi-
ronment that potentially resembles the original through trial-and-
error.

Torres-Arias et al. [48] develop a framework to cryptographi-
cally guarantee continuous integrity of the whole software supply
chain from source code to artifacts at the end user. We partially

share this goal as we try to establish trust that a firmware image
published by a vendor stems from a claimed source code version.
However, we do not require the parties involved in the build pro-
cess to collaborate by providing authenticated metadata on their
actions and only rely on independently rebuilding the binary ar-
tifacts. This is similar to Gitian [18], which aims at providing a
deterministic build environment to create trusted binaries that are
verified by multiple independent builders.

4 AUTOMATING THE ANALYSIS
Building AOSP involves several steps, starting with the prepara-
tion of a build environment, checkout of source code, and finally
the actual build process [1]. We created a wrapper around the An-
droid build system to automate the entire process of setting up
the build environment, fetching and building AOSP, and compar-
ing artifacts with reference builds. This permits us to assess the
current state of reproducibility when matching the official AOSP
build instructions as closely as possible, to easily reproduce such
an analysis, and to perform a long-term analysis of rebuilt firm-
ware images against officially provided firmware images over time.
We make the whole environment, which we call “Simple Opinion-
ated AOSP builds by an external Party” (SOAP), publicly available
at https://github.com/mobilesec/reproducible-builds-aosp.

4.1 Tooling and Architecture
A majority of the steps of the official AOSP build instructions [1]
are commands meant for execution in a Bash compatible shell on
a Linux host system (specifically Ubuntu). Since our environment
should be as close as possible to the official instructions, we opted
to use shell scripts for implementing our automation environment.

We created an automation environment consisting of several
small, composable shell scripts. Each script automates a specific
smaller task (i.e. a step in the aforementioned process) creating a
modularized framework that allows for simple exchange of individ-
ual components. A top-level script executes all steps in proper se-
quence. This top-level script also allows for continued, automated
long-term rebuild comparison (we use Jenkins).Thewhole automa-
tion framework is packaged in aDocker container based onUbuntu
18.04 (or Ubuntu 14.04 for older build targets).

After a successful build, our framework performs an automated
analysis to compare the (re-)built artifacts to reference builds, and
derives quantitative metrics and detailed difference reports. At its
core, this process relies on diffoscope to perform recursive diff-
ing of the firmware packages. This includes unpacking of various
archive formats and transformation of binary formats into human-
readable representations for visualizing differences. In addition,
our framework performs a set of pre-processing steps to eliminate
certain expected, accountable differences and to handle Android-
specific container formats that diffoscope does not support yet. A
set of post-processing steps on the output of diffoscope derives
quantitative metrics from difference reports that form the basis
for analysis of over-time reproducibility and for continuous assess-
ment of the trustworthiness of claims that official firmware image
releases are built from specific source code versions. This analy-
sis process is packaged in a separate Docker container for clean
isolation from the build environment.

Session 1: Android Security WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

9

https://github.com/mobilesec/reproducible-builds-aosp

Automating theQuantitative Analysis of Reproducibility for Build Artifacts derived from the AOSP WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

Docker Container
build or build-legacy

 Docker Container
 analysis

Difference Reports

Dockerfile
setup-build

build-generic

analysis

18_build-lpunpack.sh

19_preprocess-imgs.sh

20_diffoscope-files.sh

21_generate-diffstat.sh

22_generate-metrics.sh

23_generate-visualization.sh

24_generate-report-overview.sh

02_apt-installs-soap.sh

01_apt-installs-aosp.sh

Packages (apt)

repo tool

git configuration

build-device

Fetch source (repo
init, repo sync)

Build artifacts from source
(envsetup, lunch, m)

Fetch factory
image

Source Code Binary Artifacts

Fetch pre-compiled
driver binaries

10_fetch-extract-factory-images.sh

11_clone-src-device.sh

12_fetch-extract-vendor.sh

13_build-device.sh

Unpack super.img and boot.img

diffoscope

Pre-process images (sparse images,
APEX special case handling)

Detailed diffoscope
HTML reports

Quantitative CSV reports
for each image

Overall summary CSV
reports

Hierarchical visualization
HTML reports

Dockerfile
setup-analysis

01_apt-installs.sh Packages (apt)

Figure 1: Automation framework architecture.

The overall architecture is depicted in Fig. 1. The left side of this
figure shows the modules of our framework split into a build stage
and an analysis stage (each packaged in a Docker container). The
right side shows the corresponding automation steps for setup/
preparation, fetching of source code and binary reference artifacts,
build and comparison stages (including their pre- and post-process-
ing), and the final comparison outputs.

Our environment currently performs automated comparison of
reference builds sourced from (1) the generic system images (GSI,
cf. [3]) as provided by the Android Continuous Integration (CI)
dashboard [21], and (2) the official factory images for Nexus and
Pixel devices [23] provided by Google. These sources have been
chosen under the following assumptions:

(1) GSI builds are, by definition [3], “[…] considered a pure An-
droid implementation with unmodified Android Open Source
Project (AOSP) code […]” Therefore, they are well-suited as

ground truth for comparison against our rebuilds in order
to measure the degree of reproducibility of pure AOSP.

(2) Pixel (formerly Nexus) are considered Google’s flagship de-
vices. They have a timely update schedule and cover the lat-
est innovations in AOSP. A documented, exact mapping [6]
between build IDs and source codeGit tags allows us to infer
an exact source revision for any given Pixel/Nexus factory
image [23]. Moreover, AOSP contains the necessary build
configuration (i.e. device-specific build targets) for these de-
vices. Google also provides ready-made binary blobs of pro-
prietary, closed-source components of their firmware that
are, due to legal reasons, not part of AOSP.
However, we acknowledge that device-specific build targets
in AOSP (“aosp_<codename>”) are not exactly matching the
build targets used by Google for the official factory images
(“<codename>”). As the latter are not publicly available, we
are limited to a best-effort comparison under the expecta-
tion that these build targets are similar enough to warrant
comparability, even though the build instruction are (likely)
not identical. While this does not permit to measure repro-
ducibility in a classical sense, we expect them to be suffi-
ciently close for assessing the mapping between untainted
AOSP source code and OEM firmware images.

While out-of-scope for this paper, our modular environment could
easily be adapted to analyze other build targets from other sources
as long as they rely on the AOSP build system, the necessary build
configuration is provided, and a well-defined mapping between
firmware images and source code exists. Even other build systems
or changes to the current AOSP build system could be integrated
at the price of the additional effort for integrating deviating steps
in the form of new automation modules.

4.2 Deviations from AOSP Build Instructions
Although our goal was to fully abide by the official build instruc-
tions [1], our tests on Ubuntu 18.04 and Debian 10 revealed ad-
ditional dependencies for the AOSP build environment. The tool
“repo” (used to fetch the AOSP source code repository) has a depen-
dency on Python 2. Even though the tool is written for Python 3,
the shebang (#!/usr/bin/env python) of repo exclusively resolves
to Python 2 on Ubuntu (as the python command is not provided
by Python 3 packages). Once started in Python 2, repo immediately
restarts itself in a Python 3 interpreter. As Python 2 is no longer
installed by default on Ubuntu 18.04, we install the APT package
python in addition to the official list of dependencies. Moreover,
older Android versions (8.0 and below) do not ship their own JDK
and building them requires the installation of OpenJDK 8. Further-
more, a GSI build uncovered xxd (a hexdump tool) as an additional
dependency not mentioned by the official build instructions.

While readily installed on Ubuntu 18.04, we also install the pack-
ages rsync and libncurses5.This allows our toolchain to also run
on Debian 10 while not having any impact on systems where these
packages already ship pre-installed.

The AOSP build system also uses several undocumented envi-
ronment variables (e.g. BUILD_DATETIME) that allow to make the
build output more deterministic. We rely on these variables and fill
them with corresponding values from the official firmware images.

Session 1: Android Security WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

10

WiSec ’22, May 16–19, 2022, San Antonio, TX, USA Manuel Pöll and Michael Roland

4.3 Challenges and Potential Solutions
During the implementation of our automation tooling, we encoun-
tered challenges inherent to the AOSP build process and related to
the use of diffoscope for analysis that required unique solutions.

4.3.1 Sparse Images. File system images can become quite large,
especially due to zero-padding (for alignment or to match partition
sizes) or due to duplicate data blocks (because files contain iden-
tical code or data structures). In order to mitigate problems when
transferring or flashing such large image files, Android has its own
sparse image format [4] used for Google’s factory images [23].

As of today, diffoscope (version 202) is not capable of handling
such Android sparse images directly. Therefore, we opted to con-
vert these images to regular file system images before passing them
on to diffoscope for further processing. For this, we rely on the
tool simg2img provided by AOSP. This tool is included in AOSP in
source code form and is built during the AOSP build process.

4.3.2 Project Mainline APEX Files. Starting with Android 10, as
part of their Project Mainline effort, Google ships certain compo-
nents of AOSP in the form of easily and independently upgrad-
able packages. While the source code of these APEX package files
is (or should be) part of AOSP, a side effect of ensuring seamless
and conflict-free upgradability is that the package prefix of most
APEX files changes from “com.android” (in AOSP) to “com.google.
android” (in device factory images). Since this also changes their
file names, diffoscope no longer considers these to be the same (or
comparable) files across the compared artifacts.

We consider the pure change of package name as an account-
able difference (cf. section 2.2) as long as this is the only modifica-
tion and both packages are built from the same source code. There-
fore, we want to get a similarity score despite the different package
names. To achieve this, we opted to exclude APEX files from the
analysis of the overall firmware image and perform an additional
comparison step where we extract these files from the outer image,
unify their names to the prefix “com.android”, and then pass them
on to diffoscope for separate analysis.

4.3.3 Dynamic Partitions. WithAndroid 10, Google introduced su-
per images containing dynamic partitions. Such a partition may
bundle any of the read-only mounted partitions used from within
the Android/Linux system.This allows for seamless changes in the
device partition layout through over-the-air updates [2]. A super.
img encapsulates the images and partitioning information for sev-
eral other partitions, most notably the system partition (containing
the Android framework; otherwise in a file system.img), the ven-
dor partition (containing components not publishable with AOSP;
otherwise in vendor.img), and the product partition (containing
OEM-specific components to make the vendor partition consist of
only SoC-specific components; otherwise in product.img).

The GSI build targets output such a super image. Therefore, the
Android CI dashboard offers only the super.img build artifact while
omitting the classical system.img and vendor.img files. Device
builds currently use the separate partitions approach. As we want
to maintain easily comparable results between our evaluation of
GSI builds and device builds, decomposing the super image into
the individual partition images is necessary. AOSP provides the
tool lpunpack for this task.This tool is not automatically built from

the standard build targets and needs to be explicitly built using the
command “mm -j $(nproc) lpunpack”.

4.4 Trade-Offs
4.4.1 Embedded Signatures andCertificates in Device Builds. Acore
concept of the Android platform security model [33] is that not
only whole partitions, but each individual application component
is digitally signed. Consequently, each APK file and each APEX file
also has its own signature that is added at the end of the build pro-
cess. Obviously, the secret signing keys must not be shared. There-
fore, the certificates and signatures embedded into published firm-
ware images must differ from those embedded into our own builds.
While this is essential for device builds, GSI builds follow a differ-
ent strategy. As they are not considered production software, they
are signed with public test keys (private key published) instead.

For device build comparison, deviating signatures are consid-
ered an accountable difference. Hence, it is necessary to exclude
the relevant certificate and signature files from comparison. For
APK and APEX files, the signature is located in META-INF/CERT.
RSA. APEX files additionally contain the signer public key in a file
(apex_pubkey). These are simply excluded from our difference re-
ports. The same applies to certificates for the platform signing key
and for over-the-air updating that are directly embedded into the
file system of the system partition. These are releasekey.x509.
pem (or testkey.x509.pem for our builds) for platform signing and
update-payload-key.pub.pem for OTA updates.

Besides the signature itself, the signing scheme of APK/APEX
files also embeds a digest of the signer certificate into the signed
Java archive manifest files (META-INF/CERT.SF and META-INF/MA-
NIFEST.MF). Since we consider the remaining portions of these
files (digests over all signed files within the APK/APEX) important
for reproducibility, we tolerate these changes to propagate into dif-
ference reports but eliminate them from quantitative change met-
rics for device builds. The same applies to the comparison of ZIP
archive metadata for these files performed by diffoscope through
the tool zipinfo.

Another difference due to signing is related to SELinux.The poli-
cies contain permissions based on platform signatures. As a con-
sequence, the file system/etc/selinux/plat_mac_permissions.
xml is accountably different. Due to the sensitivity of this file and
the possibility to miss additional certificates injected into it, we
opted to tolerate this as a false positive to also propagate into our
reports while eliminating the expected number of changes from
quantitative metrics.

4.4.2 Noise Reduction in ELF Binary Comparison. diffoscope per-
forms a rich comparison of ELF (Executable and Linkable Format)
files, showing differences in headers and individual sections through
the help of the tools readelf and objdump. Resulting diff-reports
can become unproportionally large even for only minor changes
as even a small offset shift causes the entire compared hexdumps
to show as different. Through manual analysis, we found that, in
all cases, differences in ELF files also show up as differences in the
ELF headers (mainly as changes in offset and size fields). Based
on this observation, we have opted to exclude detailed comparison
of ELF files (symbol table, relocation table, disassembly, and raw
section hexdumps) and solely rely on header comparison. While

Session 1: Android Security WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

11

Automating theQuantitative Analysis of Reproducibility for Build Artifacts derived from the AOSP WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

there is, admittedly, a small possibility that tiny changes could slip
through, we consider this an acceptable trade-off to significantly
reduce noise in analysis reports.

4.5 Output Format
An Android installation consists of several partitions that are writ-
ten to flash storage. Each of these partitions contains file systems
or data for a specific purpose, such as the main system partition,
partitions for SoC, OEM and product specific files, a boot image
containing the Linux kernel together with an initial ramdisk, etc.
Therefore, file system (or raw) images of these partitions are the
binary artifacts of the AOSP build process.

After the build process finishes, our analysis framework per-
forms an analysis (comparison and pre-/post-processing) and stores
the resulting difference reports. Specifically, we create a list of arti-
facts for both our own builds and the pre-built images that we use
as our compare-targets. We consider only those artifacts that ex-
ist in the pre-built images for further inspection. For each of these
files we perform a recursive difference analysis through diffoscope
and generate several reports:

• A detailed HTML report showing difference listings for all
artifacts that exhibit variations.

• CSV reports summarizing the number of change lines for all
artifacts via the tool diffstat.

• In a post-processing step, these CSV reports are cleaned
from expected accountable changes that we deliberately let
slip through into the difference reports (cf. section 4.4), which
we refer to as “diff score”.

• The individual CSV reports of each artifact are further ag-
gregated into a single change summary report. Besides ac-
cumulated change lines, the individual CSV reports are also
used as the basis to calculate a “weight score” (as relative
amount of changes, see section 5).

• The final quantitative metrics are also visualized in a hier-
archical treemap for improved navigation through detailed
difference reports (not further used in this paper though).

5 QUANTITATIVE CHANGES OVER TIME
An assessment of reproducibility over time requires stable metrics
that quantify the state of differences. Existing tools primarily tar-
get localizing the source of differences (cf. [40]). For instance, diff-
oscope provides (indirectly through unified diffs) a change score
in terms of change lines between two artifacts. After elimination
of expected changes as discussed in section 4.4, we refer to this as
“diff score” (DS). These change lines are not necessarily the result
of directly comparing two files, as the notion of a “line” usually
only applies to text files and not to other binary artifacts. Change
lines provided by diffoscope may, instead, be the result of com-
paring high-level reports generated by analysis tools that trans-
late or summarize binary artifacts to abstract information (e.g. zip-
info, apktool, readelf). As a result, this metric does not necessar-
ily have a relationship to the file size of individual components or
the amount of change lines reported for other artifact components.
Nevertheless, many accountable changes (such as side-effects of
the signing scheme) have a stable impact on change line reports,
and can easily be observed in and excluded from them.

Since any tiny difference in the binary artifacts could mean that
(potentially malicious) functionality was added, it does not make
much sense to reflect maliciousness in a quantitative difference
metric. Another meaningful quantity that a reproducibility score
could reflect is the relative amount of artifact bytes affected by
changes. In a first attempt towards creating a reproducibility score
that not only allows comparison and localization of changeswithin
a single artifact, but also allows to compare changes in reproducibil-
ity of a source code repository and a specific build target over time,
we define a “weight score” (WS). This weight score is calculated
from the accumulated size of files that include changes (based on
their diff score) or exist exclusively in the reference artifact, divided
by the overall accumulated size of files (in the reference artifact).

5.1 Generic System Image (GSI) Builds
In a first step, we aim to measure the state of reproducibility of
AOSP. For comparison against our own rebuilds, we rely on the GSI
builds as publicly available reference binary artifacts generated by
an external source from pure AOSP. These are available through
the Android CI dashboard. To observe reproducibility over time,
we follow a monthly cadence, taking the first successful build after
the first of each month from the “release” branches of GSI (aosp-
<version>-gsi, where version is pie for Android 9, android10 for
Android 10, etc.) for the latest major Android release at that time.
Following that scheme, the first build artifact available through
the CI dashboard has build ID 5854032 (September 2019) and is
the last build (given our monthly cadence) of Android 9 before the
release of Android 10 (October 2019). For older builds on the CI
dashboard, the firmware images were removed from the available
build results. While many builds are marked with the “archived”
flag to indicate this removal, the dashboard also shows older suc-
cessful builds without that flag1. This suggests that there might be
an issue with the dashboard that causes either improper flagging
or accidental removal of older GSI firmware images. We did not
receive an official statement from Google on this.

While we prefer to base our comparison on externally built ref-
erence images to, hopefully, eliminate potential side-effects of our
own build framework, we could overcome the unavailability of
older GSI reference builds by comparing build artifacts generated
by two instances of our own framework. However, the results seen
for Android 9 to 12, seem to show sufficient reproducibility to war-
rant the comparison of device builds performed in the remaining
sections. Hence, we leave analysis of older versions to future work.

Fig. 2 shows the resulting DS and WS over time for each parti-
tion image in the GSI build. Note that 0 is (falsely) visualized on the
logarithmic DS scale as an extra Y-axis tick slightly below 1 (10^0)
to distinguish the value 0 from absent measurements.

The main interesting artifact is system.img. Our results show
that its contents are, in fact, bit-by-bit identical formost Android 10
builds. However, the ext2 file system image itself is not bit-by-bit
identical. Android 11 shifted this issue towards APEX files which
contain an ext2 file system in apex_payload.img. Again, the con-
tents of the APEX payload is reproducible, but the containing file

1Build ID 5771215 (https://ci.android.com/builds/branches/aosp-pie-gsi/grid?head=
5771215) is marked as archived, while build ID 5403672 (https://ci.android.com/builds/
branches/aosp-pie-gsi/grid?head=5403672) is not, but still lacks the firmware images.

Session 1: Android Security WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

12

https://ci.android.com/builds/branches/aosp-pie-gsi/grid?head=5771215
https://ci.android.com/builds/branches/aosp-pie-gsi/grid?head=5771215
https://ci.android.com/builds/branches/aosp-pie-gsi/grid?head=5403672
https://ci.android.com/builds/branches/aosp-pie-gsi/grid?head=5403672

WiSec ’22, May 16–19, 2022, San Antonio, TX, USA Manuel Pöll and Michael Roland

0
10^0

10^1

10^2

10^3

10^4

10^5

20
19

-0
9-

05
 5

85
40

32
20

19
-1

0-
01

 5
91

01
08

20
19

-1
1-

01
 5

98
17

20
20

19
-1

2-
04

 6
04

76
94

20
20

-0
1-

02
 6

10
70

85
20

20
-0

2-
01

 6
17

43
56

20
20

-0
3-

02
 6

25
43

17
20

20
-0

4-
06

 6
36

77
54

20
20

-0
5-

05
 6

46
20

63
20

20
-0

6-
12

 6
58

58
97

20
20

-0
7-

02
 6

65
97

66
20

20
-0

8-
03

 6
73

04
36

20
20

-0
9-

01
 6

80
46

18
20

20
-1

0-
05

 6
88

33
03

20
20

-1
1-

02
 6

94
69

58
20

20
-1

2-
01

 7
00

31
36

20
21

-0
1-

05
 7

06
39

84
20

21
-0

2-
01

 7
11

60
47

20
21

-0
3-

01
 7

17
71

91
20

21
-0

4-
07

 7
26

39
45

20
21

-0
5-

04
 7

33
46

70
20

21
-0

6-
02

 7
41

69
31

20
21

-0
7-

08
 7

53
04

37
20

21
-0

8-
06

 7
61

75
87

20
21

-0
9-

02
 7

69
74

10
20

21
-1

0-
24

 7
85

00
77

20
21

-1
1-

04
 7

88
20

77
20

21
-1

2-
02

 7
96

31
14

9 10 11 12

D
iff

 S
co

re
 (

D
S

)

Google Incremental Build ID / CI Build Date

Android Major Release

system.img
vbmeta.img
VerifiedBootParams.textproto

 0

 0.01

 0.02

20
19

-0
9-

05
 5

85
40

32
20

19
-1

0-
01

 5
91

01
08

20
19

-1
1-

01
 5

98
17

20
20

19
-1

2-
04

 6
04

76
94

20
20

-0
1-

02
 6

10
70

85
20

20
-0

2-
01

 6
17

43
56

20
20

-0
3-

02
 6

25
43

17
20

20
-0

4-
06

 6
36

77
54

20
20

-0
5-

05
 6

46
20

63
20

20
-0

6-
12

 6
58

58
97

20
20

-0
7-

02
 6

65
97

66
20

20
-0

8-
03

 6
73

04
36

20
20

-0
9-

01
 6

80
46

18
20

20
-1

0-
05

 6
88

33
03

20
20

-1
1-

02
 6

94
69

58
20

20
-1

2-
01

 7
00

31
36

20
21

-0
1-

05
 7

06
39

84
20

21
-0

2-
01

 7
11

60
47

20
21

-0
3-

01
 7

17
71

91
20

21
-0

4-
07

 7
26

39
45

20
21

-0
5-

04
 7

33
46

70
20

21
-0

6-
02

 7
41

69
31

20
21

-0
7-

08
 7

53
04

37
20

21
-0

8-
06

 7
61

75
87

20
21

-0
9-

02
 7

69
74

10
20

21
-1

0-
24

 7
85

00
77

20
21

-1
1-

04
 7

88
20

77
20

21
-1

2-
02

 7
96

31
14

W
ei

gh
t S

co
re

 (
W

S
)

Google Incremental Build ID / CI Build Date

system.img
vbmeta.img
VerifiedBootParams.textproto

 0.98

 0.99

 1
9 10 11 12

Figure 2: DS and WS metrics over time for GSI builds.

system image is not. Subsequently, signatures and related meta-
data of APEX files differ. Android 9, 10 and 12 exhibit differences
in native libraries (see section 6.2.1). However, Android 12 resolved
the ext2 image issue, making APEX files reproducible, and fur-
ther improved overall reproducibility by making vbmeta.img re-
producible and by eliminating VerifiedBootParams.textproto.

5.2 Pixel/Nexus Device Builds
Given the result that recent pure AOSP is already reproducible to
a significant extent, we analyze if this reproducibility state helps
in validating that concrete device firmware images stem from a
claimed codebase. Specifically, we use our analysis framework to
compare rebuilds of each major release of Android from version 5
to 12. As reference build for our comparison, we use the first and
last build of eachmajor release for theGoogle flagship device (Pixel/
Nexus) that has been released alongside that major version (e.g.
Pixel 6 Pro for Android 12, see appendix A).

Fig. 3 shows the results of this comparison for each partition
image (analogous to the degree of reproducibility of GSI builds).
As these official firmware images use slightly different build tar-
gets (cf. section 4.1), our measurement results do not reflect repro-
ducibility in a classical sense. Nevertheless, we believe that such a
comparison permits a useful assessment of the mapping between
supposedly untainted AOSP source code and corresponding firm-
ware images, and also allows to identify issues in the current build
and system layout that inhibit validation of that mapping.

As seen in the figure, starting with Android 8, the Treble project
(a major overhaul of the Android architecture) introduced addi-
tional firmware images for better separation of concerns.This over-
haul caused no drastic changes in the measured metrics for most
firmware components (particularly not for the system.img that

0
10^0

10^1

10^2

10^3

10^4

10^5

10^6

10^7

...
-5

.0
.0

_r
3.

0.
1

20
14

-1
1-

07

...
-5

.1
.1

_r
26

20
15

-1
0-

22

...
-6

.0
.0

_r
1

20
15

-0
9-

16

...
-6

.0
.1

_r
79

20
17

-0
1-

25

...
-7

.1
.0

_r
4

20
16

-1
0-

05

...
-7

.1
.2

_r
33

20
17

-0
6-

29

...
-8

.0
.0

_r
21

20
17

-0
9-

01

...
-8

.1
.0

_r
40

20
18

-0
6-

11

...
-9

.0
.0

_r
11

20
18

-0
8-

23

...
-9

.0
.0

_r
46

20
19

-0
6-

18

...
-1

0.
0.

0_
r7

20
19

-0
8-

27

...
-1

0.
0.

0_
r4

1
20

20
-0

6-
11

...
-1

1.
0.

0_
r7

20
20

-0
8-

26

...
-1

1.
0.

0_
r4

6
20

21
-0

8-
14

...
-1

2.
0.

0_
r4

20
21

-0
9-

02

D
iff

 S
co

re
 (

D
S

)

AOSP Tag / Google Build Date

android-info.txt
boot.img.ramdisk.img
dtbo.img
product.img
recovery.img.ramdisk.img
system.img
system_ext.img
system_other.img
vbmeta.img
vendor.img

 0

 0.2

 0.4

 0.6

 0.8

 1

...
-5

.0
.0

_r
3.

0.
1

20
14

-1
1-

07

...
-5

.1
.1

_r
26

20
15

-1
0-

22

...
-6

.0
.0

_r
1

20
15

-0
9-

16

...
-6

.0
.1

_r
79

20
17

-0
1-

25

...
-7

.1
.0

_r
4

20
16

-1
0-

05

...
-7

.1
.2

_r
33

20
17

-0
6-

29

...
-8

.0
.0

_r
21

20
17

-0
9-

01

...
-8

.1
.0

_r
40

20
18

-0
6-

11

...
-9

.0
.0

_r
11

20
18

-0
8-

23

...
-9

.0
.0

_r
46

20
19

-0
6-

18

...
-1

0.
0.

0_
r7

20
19

-0
8-

27

...
-1

0.
0.

0_
r4

1
20

20
-0

6-
11

...
-1

1.
0.

0_
r7

20
20

-0
8-

26

...
-1

1.
0.

0_
r4

6
20

21
-0

8-
14

...
-1

2.
0.

0_
r4

20
21

-0
9-

02

W
ei

gh
t S

co
re

 (
W

S
)

AOSP Tag / Google Build Date

android-info.txt
boot.img.ramdisk.img
dtbo.img
product.img
recovery.img.ramdisk.img
system.img
system_ext.img
system_other.img
vbmeta.img
vendor.img

Figure 3: DS and WS metrics over time for device builds.

is expected to primarily stem from AOSP). Only the vendor.img,
into which Treble shifted many proprietary components, incurred
an (expected) sharp increase of differences.

Android 10 caused another big shakeup of themeasuredmetrics.
This marks the start of Project Mainline (cf. section 4.3.2). Clear im-
provements can be seen mainly for both system.img and vendor.
img, with system.img being arguably the most relevant artifact
for comparison to AOSP. Unfortunately, Android 12 introduces a
regression for system.img (analogous to our observation for repro-
ducibility against GSI builds) mainly caused by non-reproducible
native shared libraries and ODEX files. Overall, the comparison of
factory images against our builds shows reduced differences for
the most essential images over time, which we mainly attribute to
the positive effects of Project Treble outsourcing expected differ-
ences from non-AOSP components to separate partition images.

Another partition image that experienced significant change of
differences across observed builds is the ramdisk image. Several
additional graphics files were added in Android 7, significantly in-
creasing the overall file size. However, native binaries that previ-
ously contained differences became bit-identical in Android 7. Re-
moval of bootloader info message graphics (cf. section 6.3.1) finally
made this image fully reproducible in Android 12.

6 QUALITATIVE ANALYSIS
In order to verify the quantitative metrics and the overall output
of our analysis framework, and to identify the main causes for dif-
ferences between official release build artifacts and our (expect-
edly) sufficiently close rebuilds, we manually inspect the differ-
ences identified in the quantitative comparison. We further dis-
cuss the implications of these differences and classify them as ac-
countable differences (that may justify exclusion from quantitative

Session 1: Android Security WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

13

Automating theQuantitative Analysis of Reproducibility for Build Artifacts derived from the AOSP WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

analysis) and unaccountable differences (that prevent perfect re-
producibility or comparability in the case of device builds).

All examples illustrated in this section are based on difference
reports for the following states of AOSP:

(1) GSI build ID 79631142 in branch aosp-android12-gsi (built
on 2021-12-02) for build type “userdebug”,

(2) source repository tag android-12.0.0_r43 (equivalent to
security patch level 2021-10-05) for the device build flow for
the Pixel 6 Pro (codename “raven”),

(3) source repository tag android-11.0.0_r464 (equivalent to
security patch level 2021-10-01) for the device build flow for
the Pixel 5 (codename “redfin”).

Findings from these specific builds were also cross-checked against
results obtained from our toolchain for other revisions of the AOSP
source code to reduce the possibility of outliers leading to wrong
conclusions. However, due to the nature of comparison of closely,
but not exactly matching build targets, the difference reports for
device build comparison have substantial differences between ma-
jor Android releases. To determine improvements (or regressions)
betweenmajor version steps, we also analyze the changes between
builds of Android 11 and 12.

6.1 Accountable Differences in Device Builds
Accountable builds may entail artifact differences that can be ex-
plained and are tolerable due to specific circumstances. Besides dif-
ferences that must obviously be excluded from comparison, there
also exist accountable differences that are technically fixable, but
have strong and valid reasons to be maintained.

6.1.1 Property Files. Several partitions feature one or more prop-
erty files that record build and configuration properties (e.g. /sys-
tem/build.prop in system.img and /build.prop in vendor.img).
Several of these properties differ, accountable to corporate policies
or comparison of deviating device build targets, and reflect valu-
able information for debugging and backtracking, for instance the
brand and manufacturer names (“google” vs. “Android”, reflected
in multiple properties) and the exact build target in case of device
builds. However, we see no technical requirements that would war-
rant these differences. Therefore, despite being accountable, these
differences are not excluded from our framework reports. More-
over, we observed several additional properties in these files (clas-
sified as unaccountable changes, see section 6.2.4).

6.1.2 APEX/APK File and Package Names. For most APEX files,
the name changes between AOSP and the official device factory
image (cf. section 4.3.2). This change is accountable, as long as no
other changes to APEX content occur.

Similar to this, Google also ships several APK files of AOSP
components with their own package name [43]. Besides the dif-
ferent package name, these application components also ship with
a different file name (usually, but not exclusively, with “Google”

2https://android.ins.jku.at/soap/7963114_aosp_x86_64-userdebug_Google_
_7963114_aosp_x86_64-userdebug_docker-Ubuntu18.04/summary.html
3https://android.ins.jku.at/soap/android-12.0.0_r4_raven-user_Google__android-
12.0.0_r4_aosp_raven-user_docker-Ubuntu18.04/summary.html
4https://android.ins.jku.at/soap/android-11.0.0_r46_redfin-user_Google__android-
11.0.0_r46_aosp_redfin-user_docker-Ubuntu18.04/summary.html

added as prefix or suffix). For instance, CaptivePortalLoginGoo-
gle.apk and GooglePackageInstaller.apk replace their AOSP
variants CaptivePortalLogin.apk and PackageInstaller.apk.

Overall, we were able to discover 3 such cases in /system/app,
5 in /system/priv-app and 9 in APEX files. While these changes
are, as with APEX files, accountable, we do not exclude file name
differences fromour framework reports since there is no clear, well-
defined and stable naming convention for these changes.

6.1.3 License Attribution. The file NOTICE.xml.gz on various par-
titions lists all installed files on the partition with corresponding
license information. Therefore, missing or added files and changes
in file names have a direct impact on this file. We consider these
differences to be accountable since they are a knock-on effect.

6.2 Unaccountable Differences
Beyond accountable differences, we also discovered issues thatwere
not justifiable with any good reason. This section highlights the
most noteworthy differences, where we found clear patterns.

6.2.1 Differences in Native Binaries in GSI Builds. The Android 12
GSI build comparison showed differences in ELF files; specifically
in 6 shared libraries (all related to the Bluetooth stack, e.g. lib-
bluetooth.so, audio.hearing_aid.default.so). All of these dif-
ferences appear to be alignment issues. Notably, there are no ad-
ditional/missing entries in the relocation and symbol tables, and
only slightly altered locations for the same entries.

6.2.2 Inconsistent Build Type of Vendor Partition. In device builds,
the build properties of vendor.img indicate build type “userdebug”
(in the property ro.vendor.build.type) instead of build type “us-
er”, which was specified during the invocation of the lunch com-
mand to initialize the build target. Further inspection revealed that
the whole vendor.img is not actually built on our build environ-
ment. Instead, it is simply copied from the pre-compiled blobs of
driver binaries provided by Google for their Pixel and Nexus de-
vices [22]. Besides the two files being identical, this is further con-
firmed by other metadata in the build properties file that clearly in-
dicate a build at Google infrastructure from around the same time
as the full factory image. Notably, this file is different from the
vendor.img packaged into the corresponding full firmware image.
We are not aware of any official source for the pre-built vendor.
img for build type “user” that matches the official firmware (other
than extraction from the pre-built firmware image itself, which is
prohibited by Google’s terms and conditions [23]). Also, we did not
find any mechanism that would initiate a re-packaging (or similar)
of the vendor partition during the AOSP build process.

6.2.3 Differences in APEX/APK Content. After normalization of
APEX names (cf. section 6.1.2), we observed 3 additional APEX
files exclusive to the Google factory image and 1 exclusive to our
android-12.0.0_r4 device build (cf. appendix B). Except one, all
remaining comparable APEX files also showed unaccountable con-
tent differences, clearly indicating that our build is based on dif-
ferent source code. Most (but not all) of them also clearly indi-
cate this through a different version code. For instance, the reposi-
tory tag and, consequently, our build artifact contains version code
319999900 for com.android.conscrypt.apex, while the factory

Session 1: Android Security WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

14

https://android.ins.jku.at/soap/7963114_aosp_x86_64-userdebug_Google__7963114_aosp_x86_64-userdebug_docker-Ubuntu18.04/summary.html
https://android.ins.jku.at/soap/7963114_aosp_x86_64-userdebug_Google__7963114_aosp_x86_64-userdebug_docker-Ubuntu18.04/summary.html
https://android.ins.jku.at/soap/android-12.0.0_r4_raven-user_Google__android-12.0.0_r4_aosp_raven-user_docker-Ubuntu18.04/summary.html
https://android.ins.jku.at/soap/android-12.0.0_r4_raven-user_Google__android-12.0.0_r4_aosp_raven-user_docker-Ubuntu18.04/summary.html
https://android.ins.jku.at/soap/android-11.0.0_r46_redfin-user_Google__android-11.0.0_r46_aosp_redfin-user_docker-Ubuntu18.04/summary.html
https://android.ins.jku.at/soap/android-11.0.0_r46_redfin-user_Google__android-11.0.0_r46_aosp_redfin-user_docker-Ubuntu18.04/summary.html

WiSec ’22, May 16–19, 2022, San Antonio, TX, USA Manuel Pöll and Michael Roland

firmware image contains version 310727000 of the equivalent APEX
We could locate this version in a standalone version bump commit
(without tag/branch) of the AOSP repository. The version code ob-
served in our builds seems to be used in the development branch
to assure that artifacts always have a higher version number than
actual releases. While the main design goal of APEX files is seam-
less upgradeability independent of the overall system partition, we
believe that if firmware images are claimed to stem from a specific
repository tag, that tag should mark the exact version provided in
the published build. Appendix B provides a more detailed analysis.

We observed a similar situation for renamed Google APKs pack-
aged directly into system.img (without APEX encapsulation). Aside
from their different file name, comparison revealed different ver-
sion codes, additional manifest entries and resources, and a Google
APK targeting multiple CPU architectures (where our version only
targets the specific device platform).

6.2.4 Additional Entries in Property Files. Theproperty files in sys-
tem.img of device builds contain a significant number of additional
entries in our AOSP builds (61 for tag android-12.0.0_r4) that
have no matching (or even comparable) entries in the Google fac-
tory images. All affected properties are placed in a section of the
property files that is prefixed with the comment “ADDITIONAL_
BUILD_PROPERTIES”.

6.2.5 Differences in Native Binaries. The device builds contain sev-
eral native binaries that differ from our AOSP builds.This concerns
mainly shared libraries (133 files, e.g. libandroid_runtime.so)
but also executable files (22 files, e.g. adbd) in system.img and as-
sociated APEX files for tag android-12.0.0_r4. As opposed to
our observation for GSI builds, we found a wide spectrum of dif-
ferences ranging from changes in debug information to more com-
plex changes (often including additions/removals in the relocation
and symbols tables, and even differences in strings embedded into
binaries). Given the variety of differences, we assume that at least
some of them are a result of building a different source code than
what was used for the official build artifacts. While this is obvi-
ously the case for Mainline APEX and APK files with version or
name mismatches, it is unclear why this also affects other files in
system.img.

6.3 Evolution over Major Releases
6.3.1 Resolved Image Rendering Issues. BeforeAndroid 12, the boot-
loader utilized info messages encoded in PNG images. Rendered
during the build process, these files showed significant bit differ-
ences in the Android 11 build while no differences were noticeable
in manual visual inspection. Pixel-by-pixel image comparison re-
vealed minimal differences around the borders of font shapes (see
Fig. 4), potentially caused by font rendering. Android 12 no longer
contains these files and, consequently, eliminated this issue.

6.3.2 System Partition and SoC Vendor Files. SoC vendor related
files have existed in a dedicated vendor.img since Android 7. How-
ever, some SoC related files are tightly coupled with AOSP compo-
nents [5]. In the past (Android 10 and before), these proprietary
files were embedded directly into system.img. Starting with An-
droid 11, such components reside in a dedicated system_ext.img,
no longer cluttering the core system.img.

Figure 4: Pixel delta (marked in red) for a bootloader image
containing a multilingual info message.

7 CONCLUSIONS
We propose a modular automation framework to analyze current
state of reproducibility of AOSP, to measure over-time improve-
ments, and to measure comparability between AOSP and official
pre-built firmware images. The latter is particularly important for
assessing trustworthiness in situations where users have to rely
on pre-built firmware images that they cannot recreate themselves
(e.g. due to signature requirements enforced by a bootloader). Our
framework builds AOSP from source in its native build system, au-
tomatically compares artifacts to reference firmware images, and
derives trivial difference metrics that permit comparison.

A weighted change score based on differences in relation to
artifact file sizes allows meaningful comparison of relative repro-
ducibility between different revisions of a source code repository,
even for complex artifacts as long as the artifacts have comparable
structure and contents. This weight score is used to continuously
measure changes in reproducibility of AOSP over time.

By comparing against existing, publicly available GSI build arti-
facts, we found that pure AOSP is already very close to full repro-
ducibility. Although the introduction of additional Mainline mod-
ules in Android 11 initially had a negative impact on reproducibil-
ity due to non-determinism in file system image generation, this
issue has been resolved in Android 12. Unfortunately, Android 12
also introduced new reproducibility issues for native libraries.

Given the good state of reproducibility of AOSP, we evaluated
how well Google’s Pixel/Nexus factory images can be matched
to their claimed codebase for rebuilds of Android 5 to 12. We in-
troduce accountable builds as a form of sufficiently-close rebuilds
of firmware images that allow neglection of expected differences
(such as different signatures or results of comparison against only
a partial codebase) when comparing to production release artifacts.

We found that the separation of concerns introduced by Project
Treble helped to continuously get system.img closer to AOSP (par-
ticularly kicking in with Android 10) while shifting deviations to
other partitions.While ProjectMainline significantly improves An-
droid security through modularization of upgradable components,
it turns out Mainline modules shipped inside firmware images do
not match the repository tags identifying those firmware image re-
leases. This significantly inhibits comparability of Mainline mod-
ules and not only affects APEX files, but also APK files directly
embedded into system.img. As with GSI builds, Android 12 intro-
duces a regression with regard to reproducibility of native binaries.

Logical next steps for future work are the continuation of repro-
ducibility analysis for upcoming GSI builds (and potentially also
older Android versions), and the extension of our comparison ef-
fort to Android device firmware images from other OEMs. Any
given OEM factory image could be used as reference for compar-
ison, provided we have a build recipe defining the device-specific
build target and the corresponding state of the AOSP source code
that the OEM based their customization on.

Session 1: Android Security WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

15

Automating theQuantitative Analysis of Reproducibility for Build Artifacts derived from the AOSP WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

ACKNOWLEDGMENTS
This work has been carried out within the scope of Digidow, the
Christian Doppler Laboratory for Private Digital Authentication
in the Physical World and has partially been supported by ONCE
(FFG grant FO999887054 in the program “IKT der Zukunft”) and
the LIT Secure and Correct Systems Lab. We gratefully acknowl-
edge financial support by the Austrian Federal Ministry for Digital
and Economic Affairs (BMDW), the Austrian Federal Ministry for
Climate Action, Environment, Energy, Mobility, Innovation and
Technology (BMK), the National Foundation for Research, Tech-
nology and Development, the Christian Doppler Research Associ-
ation, 3 Banken IT GmbH, ekey biometric systems GmbH, Kepler
Universitätsklinikum GmbH, NXP Semiconductors Austria GmbH
& Co KG, Österreichische Staatsdruckerei GmbH, and the State of
Upper Austria.

REFERENCES
[1] Android Open Source Project 2020. Android Developer Codelab. Android Open

Source Project. https://source.android.com/setup/start
[2] Android Open Source Project 2020. Dynamic Partitions. Android Open Source

Project. https://source.android.com/devices/tech/ota/dynamic_partitions
[3] Android Open Source Project 2020. Generic System Images. Android Open

Source Project. https://source.android.com/setup/build/gsi
[4] Android Open Source Project 2020. Images (in Architecture: Bootloader). Android

Open Source Project. https://source.android.com/devices/bootloader/images
[5] Android Open Source Project 2022. Android Shared System Image. An-

droid Open Source Project. https://source.android.com/devices/bootloader/
partitions/shared-system-image

[6] Android Open Source Project 2022. Codenames, Tags, and Build Numbers.
Android Open Source Project. https://source.android.com/setup/start/build-
numbers#source-code-tags-and-builds

[7] Aspiration 2015. Open Technology Fund Community Lab: Repro-
ducible Builds Summit (Athens, Greece, Dec. 1–3, 2015). Aspira-
tion, San Francisco, CA, USA. https://reproducible-builds.org/files/
AspirationOTFCommunityLabReproducibleBuildsSummitReport.pdf

[8] Aspiration 2016. Reproducible Builds Summit II (Berlin, Germany, Dec. 13–15,
2016). Aspiration, San Francisco, CA, USA. https://reproducible-builds.org/files/
ReproducibleBuildsSummitIIReport.pdf

[9] Alex Birsan. 2021. Dependency Confusion: How I Hacked Into Apple, Microsoft and
Dozens of Other Companies. medium.com. https://medium.com/@alex.birsan/
dependency-confusion-4a5d60fec610

[10] Jérémy Bobbio, Juri Dispan, Paul Gevers, Georg Koppen, Chris Lamb, Holger
Levse, and Niko Tyni. 2020. Reproducible Builds Documentation: Timestamps.
reproducible-builds.org. https://reproducible-builds.org/docs/timestamps/

[11] Jérémy Bobbio, Paul Gevers, Georg Koppen, Chris Lamb, and Peter Wu. 2020.
Reproducible Builds Documentation: Deterministic build systems. reproducible-
builds.org. https://reproducible-builds.org/docs/deterministic-build-systems/

[12] Copperhead 2022. Building CopperheadOS. Copperhead. https://copperhead.co/
android/docs/building/

[13] Ludovic Courtès and Ricardo Wurmus. 2015. Reproducible and User-Controlled
Software Environments in HPC with Guix. In Euro-Par 2015: Parallel Processing
Workshops (Vienna, Austria) (LNCS, Vol. 9523). Springer, Cham, 579–591. https:
//doi.org/10.1007/978-3-319-27308-2_47

[14] Cybersecurity and Infrastructure Security Agency (CISA). 2020. Advanced Per-
sistent Threat Compromise of Government Agencies, Critical Infrastructure, and
Private Sector Organizations. Alert AA20-352A. National Cyber Awareness Sys-
tem. https://us-cert.cisa.gov/ncas/alerts/aa20-352a

[15] Stanislav Dashevskyi, ArchimD. Brucker, and FabioMassacci. 2019. A Screening
Test for Disclosed Vulnerabilities in FOSS Components. IEEE Transactions on
Software Engineering 45, 10 (Oct. 2019), 945–966. https://doi.org/10.1109/TSE.
2018.2816033

[16] Xavier de Carné de Carnavalet and Mohammad Mannan. 2014. Challenges
and Implications of Verifiable Builds for Security-Critical Open-Source Soft-
ware. In ACSAC ’14: Proceedings of the 30th Annual Computer Security Appli-
cations Conference (New Orleans, LA, USA). ACM, New York, NY, USA, 16–25.
https://doi.org/10.1145/2664243.2664288

[17] Debian Wiki 2020. ReproducibleBuilds. Debian Wiki. https://wiki.debian.org/
ReproducibleBuilds

[18] devrandom 2022. Gitian: a secure software distribution method. devrandom.
https://gitian.org/

[19] Robert J. Ellison, John B. Goodenough, Charles B. Weinstock, and Carol Woody.
2010. Evaluating and Mitigating Software Supply Chain Security Risks. Tech-
nical Note CMU/SEI-2010-TN-016. Carnegie Mellon University, Software Engi-
neering Institute. https://resources.sei.cmu.edu/asset_files/technicalnote/2010_
004_001_15176.pdf

[20] Daniel Fullmer. 2022. robotnix - Build Android (AOSP) using Nix. GitHub Project.
https://github.com/danielfullmer/robotnix

[21] Google 2020. Android Continuous Integration dashboard. Google. https://ci.
android.com

[22] Google Developers 2021. Driver Binaries for Nexus and Pixel Devices. Google
Developers. https://developers.google.com/android/drivers

[23] Google Developers 2021. Factory Images for Nexus and Pixel Devices. Google
Developers. https://developers.google.com/android/images

[24] GrapheneOS 2022. Build. GrapheneOS. https://grapheneos.org/build#
reproducible-builds

[25] Guardian Project 2022. Services. Guardian Project. https://guardianproject.info/
services/

[26] hashbang. 2022. AOSP Build. GitHub Project. https://github.com/hashbang/
aosp-build

[27] Allan Heydon, Roy Levin, Timothy Mann, and Yuan Yu. 2001. The Vesta Ap-
proach to Software Configuration Management. Research Report SRC-RR-168.
Compaq Systems Research Center, Palo Alto, CA, USA. https://www.hpl.hp.
com/techreports/Compaq-DEC/SRC-RR-168.pdf

[28] Joe Hicks. 2020. Welcome Android Open Source Project (AOSP) to the Bazel ecosys-
tem. Google Developers. https://developers.googleblog.com/2020/11/welcome-
android-open-source-project.html

[29] Christopher Jämthagen, Patrik Lantz, and Martin Hell. 2016. Exploiting Trust
in Deterministic Builds. In Computer Safety, Reliability, and Security (35th Inter-
national Conference, SAFECOMP 2016, Trondheim, Norway) (LNCS, Vol. 9922).
Springer, Cham, 238–249. https://doi.org/10.1007/978-3-319-45477-1_19

[30] Paul A. Karger and Roger R. Schell. 1974. Multics Security Evaluation: Vulnerabil-
ity Analysis. Technical Report ESD-TR-74-193, Vol. II. Electronics Systems Divi-
sion (AFSC), L. G. Hanscom AFB, MA, USA. https://csrc.nist.gov/publications/
history/karg74.pdf

[31] Chris Lamb, Clemens Lang, and Valerie R. Young. 2019. Reproducible Builds Docu-
mentation: Definition. reproducible-builds.org. https://reproducible-builds.org/
docs/definition/

[32] Elias Levy. 2003. Poisoning the software supply chain. IEEE Security & Privacy
1, 3 (June 2003), 70–73. https://doi.org/10.1109/MSECP.2003.1203227

[33] René Mayrhofer, Jeffrey Vander Stoep, Chad Brubaker, and Nick Kralevich. 2021.
TheAndroid Platform SecurityModel. ACMTransactions on Privacy and Security
24, 3, Article 19 (April 2021), 35 pages. https://doi.org/10.1145/3448609

[34] Alyssa Miller, Simon Maple, Ron Powell, and Vincent Danen. 2020. The state of
open source security report. Report. Snyk Ltd. https://info.snyk.io/sooss-report-
2020

[35] Kiran-Kumar Muniswamy-Reddy, David A. Holland, Uri Braun, and Margo
Seltzer. 2006. Provenance-Aware Storage Systems. In Annual Tech ’06: 2006
USENIX Annual Technical Conference. USENIX Association, Boston, MA, USA,
43–56. https://www.usenix.org/legacy/events/usenix06/tech/muniswamy-
reddy.html

[36] Marc Ohm, Henrik Plate, Arnold Sykosch, and Michael Meier. 2020. Backstab-
ber’s Knife Collection: A Review of Open Source Software Supply Chain At-
tacks. In Detection of Intrusions and Malware, and Vulnerability Assessment (17th
International Conference, DIMVA 2020, Lisbon, Portugal) (LNCS, Vol. 12223).
Springer, Cham, 23–43. https://doi.org/10.1007/978-3-030-52683-2_2

[37] Open Source Initiative 2018. History of the OSI. Open Source Initiative. https:
//opensource.org/history

[38] Serena Elisa Ponta, Henrik Plate, and Antonino Sabetta. 2020. Detection, as-
sessment and mitigation of vulnerabilities in open source dependencies. Empir
Software Eng 25 (Sept. 2020), 3175–3215. https://doi.org/10.1007/s10664-020-
09830-x

[39] Red Hat, Inc. 2021. The state of Enterprise Open Source. A Red Hat Report. Red
Hat, Inc. https://www.redhat.com/en/enterprise-open-source-report/2021

[40] Zhilei Ren, He Jiang, Jifeng Xuan, and Zijiang Yang. 2018. Automated localiza-
tion for unreproducible builds. In ICSE ’18: Proceedings of the 40th International
Conference on Software Engineering (Gothenburg, Sweden). ACM, New York, NY,
USA, 71–81. https://doi.org/10.1145/3180155.3180224

[41] Reproducible Builds project 2022. diffoscope: in-depth comparison of files,
archives, and directories. Reproducible Builds project. https://diffoscope.org/

[42] Reproducible Builds project 2022. Reproducible Builds — a set of software develop-
ment practices that create an independently-verifiable path from source to binary
code. Reproducible Builds project. https://reproducible-builds.org/

[43] Aamir Siddiqui. 2020. Everything you need to know about Android’s Project
Mainline. XDA Developers. https://www.xda-developers.com/android-project-
mainline-modules-explanation/

[44] Stacy Simpson. 2008. Fundamental Practices for Secure Software Development:
A Guide to the Most Effective Secure Development Practices in Use Today. Rep.
SAFECode. https://safecode.org/publication/SAFECode_Dev_Practices1108.pdf

Session 1: Android Security WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

16

https://source.android.com/setup/start
https://source.android.com/devices/tech/ota/dynamic_partitions
https://source.android.com/setup/build/gsi
https://source.android.com/devices/bootloader/images
https://source.android.com/devices/bootloader/partitions/shared-system-image
https://source.android.com/devices/bootloader/partitions/shared-system-image
https://source.android.com/setup/start/build-numbers#source-code-tags-and-builds
https://source.android.com/setup/start/build-numbers#source-code-tags-and-builds
https://reproducible-builds.org/files/AspirationOTFCommunityLabReproducibleBuildsSummitReport.pdf
https://reproducible-builds.org/files/AspirationOTFCommunityLabReproducibleBuildsSummitReport.pdf
https://reproducible-builds.org/files/ReproducibleBuildsSummitIIReport.pdf
https://reproducible-builds.org/files/ReproducibleBuildsSummitIIReport.pdf
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://reproducible-builds.org/docs/timestamps/
https://reproducible-builds.org/docs/deterministic-build-systems/
https://copperhead.co/android/docs/building/
https://copperhead.co/android/docs/building/
https://doi.org/10.1007/978-3-319-27308-2_47
https://doi.org/10.1007/978-3-319-27308-2_47
https://us-cert.cisa.gov/ncas/alerts/aa20-352a
https://doi.org/10.1109/TSE.2018.2816033
https://doi.org/10.1109/TSE.2018.2816033
https://doi.org/10.1145/2664243.2664288
https://wiki.debian.org/ReproducibleBuilds
https://wiki.debian.org/ReproducibleBuilds
https://gitian.org/
https://resources.sei.cmu.edu/asset_files/technicalnote/2010_004_001_15176.pdf
https://resources.sei.cmu.edu/asset_files/technicalnote/2010_004_001_15176.pdf
https://github.com/danielfullmer/robotnix
https://ci.android.com
https://ci.android.com
https://developers.google.com/android/drivers
https://developers.google.com/android/images
https://grapheneos.org/build#reproducible-builds
https://grapheneos.org/build#reproducible-builds
https://guardianproject.info/services/
https://guardianproject.info/services/
https://github.com/hashbang/aosp-build
https://github.com/hashbang/aosp-build
https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-168.pdf
https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-168.pdf
https://developers.googleblog.com/2020/11/welcome-android-open-source-project.html
https://developers.googleblog.com/2020/11/welcome-android-open-source-project.html
https://doi.org/10.1007/978-3-319-45477-1_19
https://csrc.nist.gov/publications/history/karg74.pdf
https://csrc.nist.gov/publications/history/karg74.pdf
https://reproducible-builds.org/docs/definition/
https://reproducible-builds.org/docs/definition/
https://doi.org/10.1109/MSECP.2003.1203227
https://doi.org/10.1145/3448609
https://info.snyk.io/sooss-report-2020
https://info.snyk.io/sooss-report-2020
https://www.usenix.org/legacy/events/usenix06/tech/muniswamy-reddy.html
https://www.usenix.org/legacy/events/usenix06/tech/muniswamy-reddy.html
https://doi.org/10.1007/978-3-030-52683-2_2
https://opensource.org/history
https://opensource.org/history
https://doi.org/10.1007/s10664-020-09830-x
https://doi.org/10.1007/s10664-020-09830-x
https://www.redhat.com/en/enterprise-open-source-report/2021
https://doi.org/10.1145/3180155.3180224
https://diffoscope.org/
https://reproducible-builds.org/
https://www.xda-developers.com/android-project-mainline-modules-explanation/
https://www.xda-developers.com/android-project-mainline-modules-explanation/
https://safecode.org/publication/SAFECode_Dev_Practices1108.pdf

WiSec ’22, May 16–19, 2022, San Antonio, TX, USA Manuel Pöll and Michael Roland

[45] StatCounter Global Stats 2021. Mobile Operating SystemMarket ShareWorldwide
– Jan 2021 - Dec 2021. StatCounter Global Stats. https://gs.statcounter.com/os-
market-share/mobile/worldwide/#monthly-201201-202112

[46] Hans-Christoph Steiner, Michael Pöhn, Tobias Groza, Andreas Schildbach, and
kitsunyan. 2020. Reproducible Builds. F-Droid Ltd. https://www.f-droid.org/en/
docs/Reproducible_Builds/

[47] KenThompson. 1984. Reflections on Trusting Trust. Commun. ACM 27, 8 (1984),
761–763. https://doi.org/10.1145/358198.358210

[48] Santiago Torres-Arias, Hammad Afzali, Trishank Karthik Kuppusamy, Reza
Curtmola, and Justin Cappos. 2019. in-toto: Providing farm-to-table guaran-
tees for bits and bytes. In 28th USENIX Security Symposium (USENIX Security 19).
USENIX Association, Santa Clara, CA, USA, 1393–1410. https://www.usenix.
org/conference/usenixsecurity19/presentation/torres-arias

[49] David A. Wheeler. 2005. Countering trusting trust through diverse double-
compiling. In 21st Annual Computer Security Applications Conference (ACSAC’05).
IEEE, Tucson, AZ, USA, 33–45. https://doi.org/10.1109/CSAC.2005.17

A ANDROID VERSIONS, SELECTED
FLAGSHIP DEVICES, AND BUILDS

A.1 Android 5 (Lollipop)
The selected flagship device for Android 5 (Lollipop) is the Nexus 6
(codename “shamu”). The first available firmware build for that de-
vice has build ID LRX21O (mapping to tag android-5.0.0_r3.0.
1). The last firmware build before the next major release has build
ID LMY48Y (mapping to tag android-5.1.1_r26).

A.2 Android 6 (Marshmallow)
The selected flagship device for Android 6 (Marshmallow) is the
Nexus 6 (codename “shamu”).The first available firmware build for
that device has build IDMRA58K (mapping to tag android-6.0.0_
r1). The last firmware build before the next major release has build
ID MOB31T (mapping to tag android-6.0.1_r79). Actually, the
flagship device would be Nexus 6P (codename “angler”). However,
the Android 6 driver binaries are not available fromGoogle for that
device.

A.3 Android 7 (Nougat)
The selected flagship device for Android 7 (Nougat) is the Pixel
XL (codename “marlin”). The first available firmware build for that
device has build ID NDE63P (mapping to tag android-7.1.0_r4).
The last firmware build before the next major release has build ID
NZH54D (mapping to tag android-7.1.2_r33).

A.4 Android 8 (Oreo)
The selected flagship device for Android 8 (Oreo) is the Pixel 2 XL
(codename “taimen”). The first available firmware build for that
device has build ID OPD1.170816.010 (mapping to tag android-8.
0.0_r21). The last firmware build before the next major release
has build ID OPM4.171019.021.R1 (mapping to tag android-8.1.
0_r40).

A.5 Android 9 (Pie)
The selected flagship device for Android 9 (Pie) is the Pixel 3 XL
(codename “crosshatch”).The first available firmware build for that
device has build ID PD1A.180720.030 (mapping to tag android-9.
0.0_r11).The last firmware build before the nextmajor release has
build ID PQ3A.190801.002 (mapping to tag android-9.0.0_r46).

A.6 Android 10
The selected flagship device for Android 10 is the Pixel 4 XL (co-
dename “coral”). The first available firmware build for that device
has build ID QD1A.190821.007 (mapping to tag android-10.0.0_
r7). The last firmware build before the next major release has build
ID QQ3A.200805.001 (mapping to tag android-10.0.0_r41).

A.7 Android 11
The selected flagship device for Android 11 is the Pixel 5 (code-
name “redfin”). The first available firmware build for that device
has build ID RD1A.200810.0207 (mapping to tag android-11.0.0_
r7). The last firmware build before the next major release has build
ID RQ3A.211001.001 (mapping to tag android-11.0.0_r46).

A.8 Android 12
The selected flagship device for Android 12 is the Pixel 6 Pro (co-
dename “raven”). The first available firmware build for that device
has build ID SD1A.210817.015.A4 (mapping to tag android-12.0.
0_r4).

B DETAILED ANALYSIS OF APEX
DIFFERENCES

Table 1 shows a detailed comparison of all APEX files that were
encountered in the device build for tag android-12.0.0_r4. APEX
files where file name or version code match between the official
build and our own build are marked in the corresponding “Match”
columns.

TheGoogle factory image contains 25APEXfileswhile our build
contains only 23. 4 of these APEX files have identical names and 18
could bematched through normalization (according to section 4.3.2).
Note that our build of AOSP generates several compressed APEX
files (file extension .capex) while the factory image contains the
uncompressed form. As theGoogle documentation explains5, APEX
compression minimizes storage impact and requires an additional
ZIP file wrapping, but has no influence on the actual functionality.

We found that APEXfileswith identical name also have the iden-
tical version code “1”. As discussed in section 6.2.3, most of the
APEX files that were subject to name normalization, have their
version code set to “xx9999900” in AOSP to assure that develop-
ment artifacts always have a higher version number than actual
releases. The first two digits (“xx”) of the version code appear to
encode the Android API level (“31” for Android 12). Curiously, com.
android.mediaprovider.apex is an outlier to this schema, using
“319999910” in our build instead. Also, com.(google.)android.
appsearch.apex has version code “300000000” in both images.

Overall, we cannot infer any correlation between version (mis-)
matches and the amount of changes in an APEX file. However, we
found that even APEX files with identical file names and identical
version code contain differences.

5https://source.android.com/devices/tech/ota/apex#compressed-apex

Session 1: Android Security WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

17

https://gs.statcounter.com/os-market-share/mobile/worldwide/#monthly-201201-202112
https://gs.statcounter.com/os-market-share/mobile/worldwide/#monthly-201201-202112
https://www.f-droid.org/en/docs/Reproducible_Builds/
https://www.f-droid.org/en/docs/Reproducible_Builds/
https://doi.org/10.1145/358198.358210
https://www.usenix.org/conference/usenixsecurity19/presentation/torres-arias
https://www.usenix.org/conference/usenixsecurity19/presentation/torres-arias
https://doi.org/10.1109/CSAC.2005.17
https://source.android.com/devices/tech/ota/apex#compressed-apex

Automating theQuantitative Analysis of Reproducibility for Build Artifacts derived from the AOSP WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

Table 1: APEX file comparison for repository tag android-12.0.0_r4.

Google Build Our Build Match
File Name (FN) Version (V) File Name (FN) Version (V) FN V DS WS
com.google.android.adbd.apex 310727002 com.android.adbd.capex 319999999 100162 0.748
com.android.apex.cts.shim.apex 1 com.android.apex.cts.shim.apex 1 X X 0 0.000
com.google.android.appsearch.apex 300000000 com.android.appsearch.apex 300000000 X 90 0.010
com.google.android.art.apex 310733000 com.android.art.capex 319999900 23319 0.641
com.google.android.cellbroadcast.apex 310733000 com.android.cellbroadcast.capex 319999900 5 0.995
com.google.android.conscrypt.apex 310727000 com.android.conscrypt.apex 319999900 181 0.525
com.google.android.extservices.apex 310727000 com.android.extservices.capex 319999900 62 0.986
com.android.i18n.apex 1 com.android.i18n.apex 1 X X 3 0.003
com.google.android.ipsec.apex 310727000 com.android.ipsec.capex 319999900 1 0.000
com.google.android.media.apex 310731000 com.android.media.capex 319999900 150 0.743
com.google.android.media.swcodec.apex 310727000 com.android.media.swcodec.capex 319999900 894 0.994
com.google.android.mediaprovider.apex 310731000 com.android.mediaprovider.capex 319999910 49935 0.967
com.google.android.neuralnetworks.apex 310727000 com.android.neuralnetworks.capex 319999900 30 0.575
com.google.android.os.statsd.apex 310727000 com.android.os.statsd.apex 319999900 137 0.784
com.google.android.permission.apex 310733000 com.android.permission.capex 319999900 241185 0.988
com.google.android.resolv.apex 310733000 com.android.resolv.capex 319999900 82 0.975
com.android.runtime.apex 1 com.android.runtime.apex 1 X X 141 0.487
com.google.android.scheduling.apex 310727000 com.android.scheduling.apex 319999900 100 0.023
com.google.android.sdkext.apex 310729000 com.android.sdkext.apex 319999900 133 0.918
com.google.android.telephony.apex 1
com.google.android.tethering.apex 310733000 com.android.tethering.capex 319999900 20 0.442
com.google.android.tzdata3.apex 310727000

com.android.tzdata.apex 319999900
com.android.vndk.current.apex 1 com.android.vndk.current.apex 1 X X 466 0.078
com.google.android.wifi.apex 310733000 com.android.wifi.capex 319999900 73 0.837
com.google.mainline.primary.libs.apex 310005800

DS Diff score based on sum of line differences in diffoscope reports. WS Weight score based on relative file size of changed files.

C REPRODUCING THE REPRODUCIBILITY
ANALYSIS

We believe that for an analysis of reproducibility, it is also impor-
tant that the analysis itself is replicable.Therefore, besides our anal-
ysis framework, we also provide the necessary scripts to recreate
our analysis results in a repository at https://github.com/mobilesec/
reproducible-builds-aosp-wisec. These scripts create the analysis
reports, the time-series figures, and the APEX comparison table
shown in this paper by passing the relevant source code state and
reference artifacts to our analysis framework.

Users need to fulfill the following baseline requirements in order
to run the entry-point script:

(1) Start with a Linux distribution with Docker support.
(2) Ensure there is at least 750GB of free storage6.
(3) Install Docker (see https://docs.docker.com/engine/install/).
(4) The user account used to run our scripts must be able to

execute Docker commands without superuser privileges7.

6We recommend a higher value than Google recommends for building AOSP because
we build and analyze 43 versions of AOSP and also need storage for the reference
artifacts.
7See https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-
non-root-user

(5) Install Gnuplot8, which we use to generate the figures sum-
marizing the quantitative data.

(6) Install Git9.
(7) Check out the Git repository https://github.com/mobilesec/

reproducible-builds-aosp-wisec and switch to that folder.
(8) Optionally, create a working directory and provide the abso-

lute path via the environment variable RB_AOSP_BASE. If the
variable is unset, our framework defaults to ${HOME}/aosp
(which is created automatically if it does not exist).

Once these manual setup steps are complete, one can simply exe-
cute the entry-point script via “./run-wisec-2022.sh”.This script
then performs the following tasks to replicate the jobs that were
run on our Jenkins instance:

(1) As a safeguard, all of the above preconditions are verified
and further execution is refused if any of them is not met.

(2) Our framework repository is cloned and the version used
for this paper is checked out.

(3) The Docker images are built. This is done to customize the
image with the current (non-root) user.

8See http://www.gnuplot.info/download.html
9See https://git-scm.com/download/linux

Session 1: Android Security WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

18

https://github.com/mobilesec/reproducible-builds-aosp-wisec
https://github.com/mobilesec/reproducible-builds-aosp-wisec
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user
https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user
https://github.com/mobilesec/reproducible-builds-aosp-wisec
https://github.com/mobilesec/reproducible-builds-aosp-wisec
http://www.gnuplot.info/download.html
https://git-scm.com/download/linux

WiSec ’22, May 16–19, 2022, San Antonio, TX, USA Manuel Pöll and Michael Roland

(4) Then, the build and analysis pipelines (Docker containers)
are run, parameterized for each of the 28 GSI builds and 15
device builds analyzed in this paper. Note that this takes a
considerable amount of time, even on powerful hardware.

(5) Finally, metrics are extracted to generate theDS/WS columns
of the APEX comparison table and the time-series data for
the figures. That data is then processed by gnuplot to gener-
ate the figures presented in this paper.

The detailed reports created by our framework can be found in
${RB_AOSP_BASE}/diff/, each subfolder contains the report for
one build. The figures visualizing the time-series data reside in
${RB_AOSP_BASE}/figure/. The LaTeX code for the APEX com-
parison table resides in ${RB_AOSP_BASE}/apex-table/.

Session 1: Android Security WiSec ’22, May 16–19, 2022, San Antonio, TX, USA

19

	Abstract
	1 Introduction
	2 Reproducible Builds
	2.1 Deterministic Build System
	2.2 Accountable Builds

	3 Related Work
	4 Automating the Analysis
	4.1 Tooling and Architecture
	4.2 Deviations from AOSP Build Instructions
	4.3 Challenges and Potential Solutions
	4.4 Trade-Offs
	4.5 Output Format

	5 Quantitative Changes Over Time
	5.1 Generic System Image (GSI) Builds
	5.2 Pixel/Nexus Device Builds

	6 Qualitative Analysis
	6.1 Accountable Differences in Device Builds
	6.2 Unaccountable Differences
	6.3 Evolution over Major Releases

	7 Conclusions
	Acknowledgments
	References
	A Android Versions, Selected Flagship Devices, and Builds
	A.1 Android 5 (Lollipop)
	A.2 Android 6 (Marshmallow)
	A.3 Android 7 (Nougat)
	A.4 Android 8 (Oreo)
	A.5 Android 9 (Pie)
	A.6 Android 10
	A.7 Android 11
	A.8 Android 12

	B Detailed Analysis of APEX Differences
	C Reproducing the Reproducibility Analysis

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 47.31, 720.16 Width 516.03 Height 15.77 points
 Origin: bottom left

 1
 0
 BL

 1
 AllDoc
 1

 CurrentAVDoc

 47.3102 720.1586 516.0315 15.77

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 13
 14
 13
 14

 1

 HistoryList_V1
 qi2base

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 47.31, 720.16 Width 516.03 Height 15.77 points
 Origin: bottom left

 1
 0
 BL

 1
 AllDoc
 1

 CurrentAVDoc

 47.3102 720.1586 516.0315 15.77

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 13
 14
 13
 14

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 368.20, 739.76 Width 196.32 Height 16.85 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 368.1987 739.7614 196.3165 16.8512

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 14
 0
 1

 1

 HistoryList_V1
 qi2base

