
JOHANNESKEPLER
UNIVERSITY LINZ
Altenberger Straße 69
4040 Linz, Austria
jku.at

Author
DI Tobias Höller, BSc
0957305

Submission
Institute of
Networks and Security

First Supervisor
Univ.Prof. Dr.
RenéMayrhofer

Second Supervisor
Alastair Beresford, PhD

Assistant Thesis
Supervisor
Dr.Michael Roland, MSc

October 2022

APrivacy Preserving
Networking Approach
for Distributed Digital
Identity Systems

Doctoral Thesis
to confer the academic degree of

Doktor der technischen Wissenschaften
in the Doctoral Program

Technische Wissenschaften

https://jku.at/

Abstract

Distributed systems are widely considered more privacy friendly than central-
ized systems because there is no central authority with access to all of the in-
formation. However, this does not consider the importance of network privacy.
If users establish peer-to-peer connections to each other, adversaries moni-
toring the network can easily find out who is communicating with whom, at
which times, and for how long, even if the communication is end-to-end en-
crypted. For digital identity systems this is especially critical, because knowl-
edge about when and where an individual uses their digital identity is equiva-
lent with knowing what the individual is doing.

The research presented in this thesis strives to design a distributed digital
identity system that remains resilient against passive adversaries by instru-
menting the anonymity network Tor. Significant efforts were dedicated to an-
alyze how suited the Tor network is for supporting such distributed systems
by measuring the usage of onion services and the time needed to start a new
onion service. While this analysis did not detect any privacy issues within the
current Tor network, it revealed several shortcomings in regard to the network
latency of Tor onion services, which are addressed in the final parts of this the-
sis. Several modifications are proposed that are shown to significantly reduce
the waiting times experienced by users of privacy preserving distributed digital
identity systems.

ii

Kurzfassung

Allgemein wird oft davon ausgegangen, dass verteilte Systeme besser für die
Privatsphäre von Benutzern sind als zentralisierte Anwendungen. Es gibt al-
lerdings einen Aspekt der dabei nicht ausreichend berücksichtigt wird: Net-
work Privacy. Bei der Verwendung von dezentralen Systemen müssen Benut-
zer Nachrichten direkt an andere Benutzer übermitteln, was es Angreifern,
die Netzwerkkommunikation überwachen können, ermöglicht herauszufinden
wer wann mit wem wie lange kommuniziert. Selbst der Einsatz von Ende-zu-
Ende Verschlüsselung stellt hier für Angreifer kein Hindernis dar. Für manche
Anwendungen, wie zum Beispiel digitale Identitäten, ist das besonders pro-
blematisch, weil die Information darüber wann und wo eine digitale Identität
verwendet wurde das Bewegungs- und Aktivitätsprofil der betroffenen Person
enthüllt.

Die Forschung, die in dieser Arbeit präsentiert wird, hat es sich zum Ziel ge-
setzt, ein verteiltes System für digitale Identitäten zu entwicklen, das derarti-
gen Angriffen widerstehen kann. Zu diesem Zweck wird das Anonymisierungs-
netzwerk Tor verwendet, dessen Analyse ein wesentlicher Teil dieser Arbeit
ist. Durch die Analyse von Tor Onion Services, insbesondere wie sie verwendet
werden und wie lange es dauert einen neuen Onion Service zu starten, konnte
einerseits bestätigt werden, dass das Tor Netzwerk ein ausreichendes Level an
Anonymität bietet, andererseits konnten mehrere Punkte identifiziert werden,
in denen Tor Kommunikation länger als notwendig verzögert. Diese Erkenn-
tisse führten zu mehreren Änderungsvorschlägen an der aktuellen Tor Imple-
mentierung, welche die von Benutzern erlebten Wartezeiten bei der Nutzung
eines Privatesphäre bewahrenden verteilten Systems für digitalen Identitäten
wesentlich reduzieren können.

iii

Contents

Abstract ii

Kurzfassung iii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2

1.2.1 Non-Objectives . 3
1.3 Approach . 4
1.4 Contributions . 4
1.5 Publications . 4
1.6 Outline . 5

2 Background 7
2.1 The Digidow Project . 7
2.2 Network Anonymization . 10

2.2.1 Mix Networks . 11
2.3 Onion Routing . 11

2.3.1 I2P . 13
2.3.2 Tor . 14

2.4 The Tor Network . 16
2.4.1 Directory Authorities . 18

2.5 Tor Onion Services . 20
2.5.1 Creating a New Onion Service 22
2.5.2 The Hidden Service Directory 22
2.5.3 Connecting to an Onion Service 25

2.6 Metadata resilient messaging . 27

3 Network Architecture 29
3.1 Network Interactions . 29

3.1.1 Publishing a Sensor . 29
3.1.2 Requesting Sensor Information 30
3.1.3 Issuing Attributes . 30
3.1.4 Communication with the PIA’s Owner 30
3.1.5 Digidow Transactions . 31

3.2 Service Discovery . 33
3.2.1 Initiate Service Discovery . 33
3.2.2 Evaluation . 34
3.2.3 Finalizing Service Discovery . 37

3.3 The Sensor Directory . 40
3.3.1 Functional Requirements . 40
3.3.2 Privacy Requirements . 40
3.3.3 Potential Approaches . 41

3.4 Threat Model . 41
3.4.1 Threats . 41

3.5 Attackers . 42
3.5.1 Countermeasures . 43
3.5.2 Network Unlinkability . 43
3.5.3 Acceptable Risks . 44

iv

Contents v

3.6 Securing Network Interactions . 45
3.6.1 Publishing a Sensor . 45
3.6.2 Requesting Sensor Information 46
3.6.3 Issuing Attributes . 47
3.6.4 Communication with the PIA’s Owner 47
3.6.5 Digidow Transactions . 48
3.6.6 Unresolved Threats . 49

4 Monitoring the HSDir 51
4.1 Preparation . 51

4.1.1 Ethical considerations . 51
4.1.2 Technical Details . 52
4.1.3 Privacy considerations . 52
4.1.4 Hardly used onion services . 53
4.1.5 Unwanted attention . 53

4.2 Results . 54
4.2.1 Uploads . 54
4.2.2 Downloads . 60

4.3 Summary . 63

5 Short-lived onion services 65
5.1 Experiment Design . 65

5.1.1 Measurement Setup . 65
5.1.2 Measured Configurations . 66

5.2 Results . 66
5.2.1 Provisioning Stages . 67
5.2.2 Descriptor Upload Times . 69

5.3 Summary . 72

6 Verifying the Tor consensus 74
6.1 Analysis . 74

6.1.1 Data Sources . 74
6.1.2 Fast Relays . 74
6.1.3 HSDir Relays . 76
6.1.4 Other voting inconsistencies . 80
6.1.5 Monthly relay spikes . 82

6.2 Summary . 87

7 Improving Tor onion services 89
7.1 Using Current Onion Services . 89
7.2 Improvement: Make the HSDIR Optional 91

7.2.1 Implementation . 92
7.2.2 Limitations . 93
7.2.3 Privacy Analysis . 94
7.2.4 Security Analysis . 94

7.3 Improvement: Bundle Information in the INTRO Cell 95
7.3.1 Implementation . 95
7.3.2 Limitations . 96
7.3.3 Privacy Analysis . 97
7.3.4 Security Analysis . 97

7.4 Improvement: Use Minimized Descriptors 97
7.4.1 Implementation . 98
7.4.2 Limitations . 99
7.4.3 Privacy Analysis . 99
7.4.4 Security Analysis . 99

7.5 Performance Evaluation . 100
7.5.1 Experiment Setup . 100

Contents vi

7.5.2 Experiment Results . 101
7.6 Summary . 106

8 Conclusion and Outlook 107
8.1 Conclusion . 107
8.2 Future Work . 108

8.2.1 Improve I2P Metrics . 108
8.2.2 Rework the Estimate for Unique V3 Onion Services 109
8.2.3 Compare Downloads of Known and Unknown Onion Services109
8.2.4 SingleHopOnionService vs. Public Service via Tor 110
8.2.5 Evaluate Service Descriptor Lifetime 111
8.2.6 Harden Onion Services against DDOS Attacks 111
8.2.7 Unlinkable Service Descriptors 112
8.2.8 Optimize Space in Introduce1 Cells 113
8.2.9 Encode Minimal Service Descriptors in Hostnames 114
8.2.10 Minor Implementation Improvements 115

8.3 Epilogue . 115

Bibliography 117

Appendix A Measure onion service creation times 127

Appendix B Improve Onion Service Latency 129
B.1 Make the HSDir Optional . 129
B.2 Bundle Information in the INTRO Cell 132
B.3 Use Minimized Descriptors . 143

Chapter 1

Introduction

1.1 Motivation

Digital services like online shopping or social networks have become an essen-
tial part of society over the last two decades. To support these use cases, users
have grown more and more accustomed to using digital identities (email ad-
dresses, user accounts) for their day-to-day activities. Realizing the impor-
tance of these digital identities, nation states have started to provide their cit-
izens with officially issued digital identities that are directly linked to one spe-
cific individual. The European eID [40] or the Indian Aadhaar [53] are two ex-
amples for such efforts that also highlight different approaches in regards to
privacy.

The eID only supports purely digital authentication, meaning it can be used by
citizens while using a digital device of their own to prove their identity. It does
not replace traditional physical identity documents, because there exists no
obvious link between a physically present individual and his/her digital iden-
tity. Aadhaar solves this problem by including the biometric information about
every citizen in its database. This removes the need for physical identity docu-
ments because every individual can easily be identified by searching the Aad-
haar database for matching biometric features. While the European Union de-
cided against this approach—most likely because of privacy concerns—there
are alternative ideas towards replacing physical identity documents with dig-
ital ones, the most prominent being the recent standard for mobile driving li-
censes [64].

For entities issuing identities, using digital identities has several benefits. They
are cheaper because there is no need to print and distribute physical docu-
ments, they can be issued much faster, they are much harder to forge (as long
as their digital signatures are properly verified) and verification can be auto-
mated. This last point is especially useful because it reduces the cost needed
for officers that would otherwise have to verify physical identity documents. At
the same time, users can also benefit in several ways: New documents can be is-
sued instantly and outdated documents can be updated automatically, so prob-
lems like expired passports can be avoided. The automated verification process
should most likely reduce waiting times at various checkpoints. Finally, digi-
tal identities enable a process of partial disclosure that is not really possible
for physical documents. If an individual tries to purchase alcohol, for example,
they are very likely asked to prove that their age is beyond a certain threshold.
Presenting an officially issued physical identity document, like a driving license
or a passport, fulfills that request, but it reveals much more information than
necessary (e.g. place of birth, nationality, full name, ...). With digital documents
it is possible to use selective disclosure to only reveal as much information as
needed to the verifying entity.

Unfortunately, digital identities systems also bring several new issues. Both,
the European eID and the Indian Aadhaar system require users to interact with

1

1 Introduction 2

them, whenever they want to use their digital identity. This means that author-
ities suddenly get much more information about their citizens daily life. As a
consequence, citizens need to trust their government to not abuse this infor-
mation itself and to be technically capable enough to prevent this data from be-
ing abused by others. In the case of Aadhaar, there have been numerous reports
in the past that indicate that the system does not protect the data of the Indian
citizens as much as it should [42, 108, 116]. Additionally, Aadhaar decided to
assign a global identifier to all identities that is used in every interaction [1],
meaning that every Aadhaar transaction can also be linked to one specific Aad-
haar identity by the entities asking for verification, further compromising the
privacy of its users.

For endangered or privacy sensitive users with little trust in their government
to protect their personal data, such solutions are unacceptable. The easiest way
to convince them would be to implement a distributed digital identity system
which stores information on user controlled devices and transactions do not
involve the authority that originally issued the identity. One example of this
approach is the current mDL standard that stores all identity information lo-
cally on the user’s device and can verify the user’s identity offline. However,
mDL can also verify identities online [63] and as soon as that happens, a new
challenge emerges:

Distributed systems require user controlled devices to establish connections to
every service that asks for the user’s identity. Entities with access to a large
share of network traffic like Internet service providers can observe who is com-
municating with whom and authorities can take legal action to obtain this pri-
vacy sensitive information from them. At this point, distributed digital identity
systems face the same disadvantage as the centralized ones. Authorities can
learn when and where individuals use their identities. Past revelations by Ed-
ward Snowden [88] prove that authorities are capable and willing to force such
entities to provide them with access to all the data they are interested in. And
more recent efforts of the European Union show that they are also willing to
pass legislation that actively weakens the security and privacy of all users [38].

The goal of this research is to find a networking approach that allows the cre-
ation of a distributed digital identity system that protects the privacy of all
users by preventing malicious actors, even if they have access to significant
shares of network traffic, from learning anything about how an individual is
using their digital identity.

1.2 Objectives

The objective of our research is to find a networking scheme for an identity sys-
tem that meets the following requirements:

1. Distributed,

2. privacy-preserving,

3. scalable,

4. low-latency,

5. and feasible.

Distributed means that we want the networking scheme to not rely on any cen-
tral devices or entities that are involved in most ongoing transactions. This is
not simply satisfied by having devices connect to each other directly, support

1 Introduction 3

infrastructure like DNS or certification authorities must also be taken into ac-
count. One specific challenge originating from this requirement is the question
of how devices can learn about each other, without introducing a centralized
entity.

Preserving user privacy means that entities observing network traffic should
not be able to learn anything significant about how individuals are using their
digital identities. Additionally, the privacy of users should also not be nega-
tively impacted if attackers are able to actively modify traffic by either inject-
ing, modifying or dropping network packets. Beyond that, attackers might also
operate public services like DNS or NTP to obtain additional data. If such in-
formation can be correlated with observed network traffic to compromise the
privacy of users, the network would also not be privacy preserving.

In order to support digital identity systems that provide everyone on Earth with
an individual identity, the networking approach has to scale well enough to
support several billion users. At the same time, the devices of all those users
will have to communicate with other devices/services that need information
about the users. Therefore, the total number of devices active in such a net-
work can be expected to be much higher than the number of enrolled users. To
support such a large distributed system, the complexity of a single transaction
must be independent of the size of the entire distributed system.

At the same time, we have to acknowledge that the user experience of a dis-
tributed digital identity system would be very negatively impacted by high la-
tency. Procedures that require users to prove their identity can usually only be
completed, after the identity has been successfully verified. This forces users to
wait, and the longer the waiting periods are, the less likely users are to accept
the system. The success of contactless payment systems has shown that trans-
action times between 300 and 500 ms [3] are not perceived as annoying by the
general public. While we believe it to be unreasonable to expect a distributed
system to match those times, user acceptance depends on transaction times
being as close as possible to those of alternative technologies. To also provide
an upper limit, the EU found that transaction times for border checks would be
acceptable as long as they remain below 30 seconds [39]. However, network la-
tency is just one of the contributing factors of transaction time, so the network
latency will have to be significantly lower than 30 seconds to leave room for all
the other tasks of a digital identity system.

Finally, the desired networking scheme must be feasible to implement at this
point in time. It must not depend on technologies that do not exist yet or tech-
nologies that exist in theory without ever having been deployed in practice. This
ensures that we can deploy and test the proposed networking approach in prac-
tice, which in turn enables us to collect data to quantify how close the proposed
solution is to fulfilling the research objectives.

1.2.1 Non-Objectives

The scope of this thesis is strictly limited to the networking approach for a pri-
vacy preserving distributed digital identity system. Questions like how biomet-
ric comparison can be done while remaining private, or how digital signatures
can be created without revealing the identity of the signer are also crucial for
the design of a privacy preserving digital identity system, but they are not in
scope of this research.

1 Introduction 4

1.3 Approach

We relied on the following methods to achieve the results presented in this the-
sis:

literature review,

evaluation of protocols and their implementations,

design and implementation of prototypes,

design and execution of experiments,

and data analysis.

1.4 Contributions

The contributions presented in this thesis can logically be split into two differ-
ent categories: First, are the theoretic contributions in what the network pro-
tocols for a privacy preserving distributed system should look like and all the
potential pitfalls that might cause unintended privacy leaks. The most promi-
nent contributions in this area are approaches for private service discovery to
allow devices to learn about each other without leaking privacy sensitive in-
formation and the evaluation of network anonymization tools that would be
suitable to support such systems.

Second, are several contributions surrounding Tor, the anonymization net-
work that we identified to be the best currently available system to provide
network anonymity. This includes evaluations of the Tor network in terms of
performance, privacy, and reliability. The investigation into Tor onion services
was acknowledged as valuable by the Tor project itself and at their request, a
summary was published directly on the official blog of the Tor project [58]. Our
results provided new insights into how onion services are being used in prac-
tice.

Research into the reliability of the Tor network also provided valuable results.
While conducting this research, a group of suspiciously acting relays could be
identified. Further investigation led to the conclusion that this group of relays
was most likely secretly operated by a single entity violating the rules for Tor
relay operators. Those findings were officially disclosed to the Tor project and
they were able to confirm that these relays were in fact acting maliciously [99]
and removed them from the network [74], so this research also improved the
security of the Tor network as a whole. This discovery of malicious Tor relays
was also reported in the media [4, 10, 21, 71, 77, 103].

During the final stages of this research, the lessons learned from the extensive
analysis of the Tor network were used to suggest and implement several spe-
cific changes that stand to improve its capability to support privacy preserving
distributed systems. Those contributions are not limited to digital identity sys-
tems, they are also capable of supporting various other scenarios that require
a distributed system that ensures network privacy.

1.5 Publications

Parts of this thesis have already undergone peer review and were published in
scientific workshops, conferences, and journals:

1 Introduction 5

T. Höller: Towards establishing the link between a person’s real-world
interactions and their decentralized, self-managed digital identity in the
Digidow architecture, in IDIMT-2019: Innovation and Transformation in a
Digital World, Kutná Hora, Czech Republic, Trauner Verlag, pp. 327– 332,
2019. ISBN 978- 3- 99062- 590- 3.

R. Mayrhofer, M. Roland, and T. Höller: Poster: Towards an Architecture
for Private Digital Authentication in the Physical World, in Network and
Distributed System Security Symposium (NDSS Symposium 2020), Posters,
San Diego, CA, USA, 2020.

T. Höller, T. Raab, M. Roland, and R. Mayrhofer: On the feasibility of short-
lived dynamic onion services, in 2021 IEEE Security and Privacy Workshops
(SPW), San Francisco, CA, USA, IEEE, pp. 25– 30, 2021.

T. Höller, M. Roland, and R. Mayrhofer: On the state of V3 onion services, in
Proceedings of the ACM SIGCOMM 2021 Workshop on Free and Open Com-
munications on the Internet (FOCI ‘21), Virtual, ACM, pp. 50– 56, 2021.

T. Höller, M. Roland, and R. Mayrhofer: Analyzing inconsistencies in the Tor
consensus, in The 23rd International Conference on Information Integra-
tion and Web Intelligence (iiWAS2021), Linz, Austria, ACM, pp. 487– 496,
2021.

T. Höller, M. Roland, and R. Mayrhofer: Evaluating Dynamic Tor Onion Ser-
vices for Privacy Preserving Distributed Digital Identity Systems, Journal of
Cyber Security and Mobility 11, 2, pp. 141– 164, 2022. ISSN 2245- 1439.

One additional publication (based on the work presented in chapter 7) is cur-
rently undergoing peer-review and expected to be published in the future:

T. Höller, M. Roland, and R. Mayrhofer: Optimizing Tor onion services for
Tor-aware pub/sub based communication. In Proceedings on Privacy En-
hancing Technologies Symposium 2023.

Apart from scientific publications, the research presented in this thesis has
also produced a significant amount of source code that analyzes and visu-
alizes collected data. As it is infeasible to include all the data and source
code within a printed thesis, this supporting material is published on GitHub
instead. The repository https://github.com/TTH-Someone-stole-my-name/
privacy-preserving-networking-for-distributed-systems.git contains all the
tools developed while working on this thesis and all the data that can be in-
cluded without compromising the privacy of third parties1.

1.6 Outline

This thesis is structured to present the conducted research as a series of con-
secutive steps that continue to build on top of each other. In chapter 2 we pro-
vide the necessary background information on the Digidow project, the re-
search endeavor that motivated this research. We also include a discussion of
network anonymity, different strategies on how to achieve it, and available
implementations. Finally, we describe the functionality of the Tor network in
greater detail.
The main contributions of this thesis are presented in the chapters 3 to 7. Chap-
ter 3 elaborates the proposed network architecture of privacy preserving dis-
tributed digital identity systems. It includes discussions of network interac-
tions, potential adversaries, and the service discovery process responsible for

1Since one publication is still under review, material regarding the work presented in section 7
will be added later

https://github.com/TTH-Someone-stole-my-name/privacy-preserving-networking-for-distributed-systems.git
https://github.com/TTH-Someone-stole-my-name/privacy-preserving-networking-for-distributed-systems.git

1 Introduction 6

detecting other devices within a distributed setup. Based on this information,
chapter 4 presents the work conducted to evaluate the degree of privacy already
offered by the Tor network and highlights privacy leaks that still exist in the
current design. To mitigate some of the issues identified in the two previous
chapters, chapter 5 investigates the concept of dynamic onion services.

Chapter 6 contains a detailed analysis of the Tor network, to determine if its
structure and participants can be considered trustworthy enough to meet the
specified objectives. This part of the thesis was originally a side track that was
triggered while conducting experiments on the live Tor network for chapter 4
when parts of the Tor network were found to not behave according to the spec-
ification.

Finally, chapter 7 combines all the information gathered from the previous
chapters to propose several changes to the current Tor implementation that
can improve the latency and privacy of distributed systems built on top of the
Tor network. Chapter 8 wraps up the thesis by summarizing the results and de-
scribing future work that could be done to further advance scientific knowledge
in this field but was beyond the scope of this thesis.

Chapter 2

Background

2.1 The Digidow Project

The Digidow project1 is a research project funded by the Christian Doppler
Gesellschaft2, the Austrian Ministry for Digitalization3, 3 Banken IT4, ekey5,
Kepler Universitätsklinikum6, NXP Semiconductors Austria7, and the Austrian
State Printing House8. The entire Digidow projects operates on three assump-
tions about the future that are essential to understand its goals:

1. The use of digital identities will continue to increase over time.

2. Biometric identification will become the primary method of linking physi-
cal individuals to digital identities in the future.

3. Users will demand access to their digital identities, even when they are not
carrying any physical identity documents or devices with them.

Considering that there are numerous systems that implement these assump-
tions for ticketing in public transport [104, 105, 106], these assumptions must
be considered reasonable. Provided with those expectations, one already es-
tablished digital identity system immediately comes to mind: The Indian Aad-
haar [53] system already supports the requirements listed above, leaving no
doubts about their feasibility. The question we should ask instead, is how to
best protect the privacy of citizens if such a digital identity system is imple-
mented. As the research for this thesis was conducted mostly within the Digi-
dow project, most of the objectives listed in section 1.2 can be mapped to explicit
goals of the Digidow project.

The need for a distributed networking scheme originates from Digidow’s as-
sumption that a central database with biometric information about millions of
citizens is unacceptable because it puts too much power and responsibility on
the operators. Beyond that, an essential part of privacy is a user’s agency over
their own data. If data is centrally stored and managed by a single entity, users
lose control of their own information.

Figure 2.1 visualizes the envisioned network architecture expected by the Digi-
dow project. The three most important actors in Digidow (and every other dig-
ital identity system relying on biometric features) are personal identity agents
(PIAs), biometric sensors, and verifiers, as they are needed every time a digital
identity is used. Personal identity agents are a piece of software the holds all the

1https://www.digidow.eu
2https://www.cdg.ac.at/
3https://www.bmdw.gv.at/
4https://www.3bankenit.at/
5https://www.ekey.net/
6https://www.kepleruniklinikum.at/
7https://www.nxp.com/
8https://www.staatsdruckerei.at/

7

https://www.digidow.eu
https://www.cdg.ac.at/
https://www.bmdw.gv.at/
https://www.3bankenit.at/
https://www.ekey.net/
https://www.kepleruniklinikum.at/
https://www.nxp.com/
https://www.staatsdruckerei.at/

2 Background 8

(B
oo

ts
tr

ap
 d

isc
ov

er
y)

St
ro

ng
 tr

us
t(Weak) trust

Proof of reading

TrustAttr
ibute

s

Li
st

 o
f s

en
so

rs

Re
pu

ta
ti

on

Ce
rt

ifi
ca

te
Ce

rt
ifi

ca
te

Certificate

Certificate

(U
lt

im
at

e)
 T

ru
st

Register

Trust

List of acceptable sensors

Credential: claim + proof

Tr
us

t

Au
th

en
ti

ca
ti

on

U
se

r
in

te
rf

ac
e

Register

Weak trust

HW Root of Trust

Sensor Aggregator

AggregatorIndividual

Sensor
directory

availability, capabilities,
reputation

Issuing
Authority

RegisterAttributes

+ external

reviews

VerifierPIA

Verifier
directory

requested attributes,
reputation/review by

external parties

Figure 2.1: The network architecture proposed by the Digidow project [91].

2 Background 9

identity information (attributes) about a single individual. Such attributes can
be general information like name, age, or gender, biometric measurements, or
specific data like a user’s club membership ID. The purpose of the PIA is to store
all of these attributes and share them with other parts of the Digidow network,
if the owner wants it to do so. Ideally, all PIAs would be operated on personal
devices by their owners to ensure that nobody gains access to them, but for
a majority of the population this is likely not going to be an option. Provid-
ing these users with maximum control over their data therefore means giving
them the freedom to delegate the task of operating their PIA to a third party
they trust.
Sensors serve as points of interaction between individuals in the physical world
and their PIAs in the digital world. Sensors can be cameras, fingerprint read-
ers, or anything that can physically extract a biometric template for a physically
present person. Within the Digidow architecture, a sensor exists solely to pro-
vide a PIA with a proof that the individual represented by the PIA has interacted
with the sensor. Sensors can be operated by anyone because the decentralized
nature of the Digidow architecture lacks a central authority that could grant
or revoke the permission to operate a sensor. This means that PIAs must not
trust sensors by default, but at the same time a sensor must be trusted to han-
dle the biometric information of individuals in order to fulfill its function. The
proposed approach to solve this conflict is a hardware root of trust that proves
that the sensor is only operating a publicly known and trusted software ver-
sion that does not store or forward the recorded biometric information in any
way. By verifying this hardware root of trust, PIAs can trust that sensors are not
malicious, even if they know nothing about the operator of the sensor.
The verifier represents the service that actually requires attributes about an
individual. A verifier could be everything from a government checking digital
passports at border crossings to a private homeowner who wants to automat-
ically unlock the front door when they return home from work. Verifiers typ-
ically ask for attributes about an individual and take decisions based on them.
Digidow puts no limitations on the attributes requested by the verifier, nor does
it make any assumptions on how the received information is used afterwards.
The key objective is to grant users (via their PIAs) agency over which infor-
mation is shared with every verifier. What verifiers do with this information
afterwards is out of scope for this project.
A simple Digidow transaction for verifying passports before opening automatic
gates at a border crossing would look like this: The sensor detects the biometric
features of an individual standing in front of the gate and provides the PIA with
a digitally signed proof that the individual with those biometric features is cur-
rently located in front of the sensor. Afterwards, the PIA contacts the verifier
to find out which attributes the verifier needs to allow the individual to pass
the border crossing. For some countries, a proof of citizenship might be suf-
ficient, others might ask for additional information like name, date of birth,
vaccination status, or insurance coverage. The decision which attributes to re-
quest is completely left to the individual verifier. The PIA can then decide if it is
willing to provide those attributes to the verifier or not. If it decides to do so, it
combines the proof received from the sensor with proofs about the requested
attributes and forwards everything to the verifier. Before the verifier can allow
the individual to pass the border crossing, it has to verify if the received at-
tributes are cryptographically valid and signed by trusted entities. Only then,
the verifier can open the gate and allow an individual to pass.
The fourth key players needed within the Digidow architecture are issuing au-
thorities. Their main task is to link attributes to biometric features, similarly
to how sensors assign temporary locations to a biometric measurement. Gov-
ernments or companies are typical examples of issuing authorities, but private

2 Background 10

individuals might also issue attributes like permission to enter a house. This
enables a PIA to prove for example that the individual with biometric features
A is in front of the gate according to sensor X and that the individual with those
biometric features is a citizen of Austria according to the Austrian government.
If the verifier trusts both the sensor and issuing authority and the digital sig-
natures are all valid, it can be certain that the person in front of the gate is an
Austrian citizen. The important thing to mention here is that issuing authori-
ties are not involved in Digidow transactions, making it impossible for them to
learn when and to whom the attributes provided by them are presented. This
is important because it protects user’s privacy against the issuing authorities
that provide attributes.

In order to allow verifiers to obtain up-to-date information on which certifi-
cates are used by various issuing authorities and sensors, there will be a need
for central aggregators. Otherwise verifiers would have to contact every issu-
ing authority directly to learn about its certificates, and more importantly its
certification revocation list. Fortunately, distribution of certificate revocation
information is not a new problem [23], so it will not be discussed any further in
this thesis.

The final components of the Digidow architecture are the verifier directory and
the sensor directory. The verifier directory was introduced to help PIAs decide
whether they should provide attributes to a verifier or not. The idea is that non-
profit organizations or governmental privacy protection agencies publish lists
of verifiers they know along with the attributes they are allowed to request.
Those reviews can individually challenge verifiers to justify their requested at-
tributes and their intended uses. PIAs could use those lists to make good deci-
sions on behalf of users who do not want to manually decide about which data
they want to share. The verifier directory is an optional component because
Digidow transactions could also be conducted without it. Its main purpose is
to reduce the amount of user interaction required by the PIA to make good de-
cisions in the interest of its owner.

The inclusion of the sensor directory into the Digidow architecture is one of the
contributions presented in this thesis. Therefore, it will not be discussed at this
point, as the motivation for including it will be covered in substantial detail in
section 3.2.

2.2 Network Anonymization

The fact that many digital applications are vulnerable to traffic analysis has
long been recognized [17]. Unfortunately, all approaches put forward and dis-
cussed in this section do share the same issue. To obscure who is communi-
cating with whom on a network level, communication cannot be transmitted
directly between the communication partners and must instead be relayed by
proxy devices. Indirect communication via such relays adds additional latency
and bandwidth consumption to network connections, resulting in a constant
trade-off between network performance and network anonymity. This section
will discuss the various concepts for network anonymity that have been pro-
posed in the past and evaluate how suited they are to achieve the research ob-
jectives documented in section 1.2.

2 Background 11

2.2.1 Mix Networks

The first documented proposal to achieve network privacy for a distributed
system was put forth by David Chaum [17] in 1981, when he suggested a con-
cept for untraceable email communication. The core concept he proposed was
amix, a device that accepts messages from other clients, aggregating messages
in batches, sorting them in lexicographic order and then forwarding them. To
prevent both passive attackers on the network and the mix itself from learn-
ing anything about the messages, they are encrypted twice. First, the intended
message is encrypted with the public key of the intended recipient and that en-
crypted message along with the address of the recipient is then encrypted again
with the public key of the mix. Lastly, a mix must never forward the same mes-
sage more than once because that would allow an observer to link multiple in-
puts to multiple outputs. A mix that operates in this fashion is often referred to
as a ChaumMixer.

Mix networks consist of multiple Chaum Mixers that allow clients to cascade
their communication via multiple mixers, enabling them to control the trade-
off between anonymity and network speed. Every additional mixer makes it
harder for an attacker to find out where traffic is going, but at the same time it
increases the time needed for a message to arrive at its destination. The biggest
advantage of mix networks is that passive adversaries cannot find out who is
communicating with whom, even if they have access to 100 % of the networks
traffic. However, this requires Chaum Mixers to aggregate sufficiently large
batches before forwarding and waiting for those batches to grow introduces
massive and unpredictable network latency. There has been continued work
on how to improve the latency of Mix networks [65] but no mix network has
ever achieved privacy against passive adversaries with access to all network
traffic without forbidding mixes from forwarding data immediately [2]. Nev-
ertheless, there have been continued efforts to improve mix networks, mostly
for applications like messaging that are less impacted by additional delays [2,
24, 79, 107, 130]. It should be emphasized however, that only one of those
attempts (Loopix [107]) has seen any use beyond research prototyping. Re-
cent efforts surrounding mix networks that might be adopted in the future ex-
tend the Loopix architecture [26] and focus on blockchains and cryptocurren-
cies [55], as those technologies are distributed and privacy sensitive. Thanks
to the fact that blocks within a blockchain are created slowly and users already
have to wait for new blocks to be created before a transaction is confirmed, the
additional delays introduced by a mix network might be acceptable there.

After careful consideration, we came to the conclusion that it is currently in-
feasible to use a mix network based networking scheme to provide network pri-
vacy in a distributed digital identity system. One main argument for this con-
clusion is the added latency that would have a significant negative impact on
user privacy. The other critical argument is that there are very few established
mix networks available to build on and the ones that exist are both too small to
provide privacy and not yet sufficiently tested to earn the necessary trust. Until
those two things change, digital identity systems will have to use alternative
strategies to obtain network privacy.

2.3 Onion Routing

The concept of onion routing [43] takes the idea of cascading multiple Chaum
mixes and modifies it to be protocol agnostic. This is achieved by two key mod-
ifications: First, onion routing uses real-time Chaum mixes, which do not ag-

2 Background 12

gregate packages in batches or send them in predefined intervals. Instead, ev-
ery incoming packet is forwarded as soon as possible, just like it would be with-
out an anonymization network. Second, the information about where to for-
ward a packet is no longer included in every encrypted packet. Instead, onion
routing connections undergo three different phases during their existence. In
the first phase, an onion routing connection is established. To do so the client
establishes a TCP connection to the first mix and tells it that this is a new onion
connection. Then the client selects a second mix and instructs the first mix to
establish a TCP connection to the second mix and informs it that it is now part
of a new onion connection. This continues until the client is satisfied with the
number of mixes between itself and its destination. After the connection has
been established, the next phase sees the client communicate with its desti-
nation by encrypting the packets it would usually send with the keys of all the
mixes involved in the connection. Every mix receives the packet on a specific
TCP connection, decrypts the packet with its key and then forwards it to the
next mix it still knows from the setup phase. The final mix ends up with the
decrypted packet that contains the normal networking information that would
have usually been used to deliver the packet directly, so it can just make sure
that the packet reaches its intended target. If the final mix receives a response
to a request, it adds layers of encryption for every mix and forwards the en-
crypted response to the next mix in the path.

To improve performance and prevent attackers from recognizing used keys,
public key encryption is only used during the building stage of an onion routing
connection. During this stage, temporary symmetric keys are negotiated that
are used for encryption and decryption during the data transfer phase. Those
keys are different for each direction because the encryption keys for the reverse
path should only be known by the final mix, while only the client should have
the keys for the other direction. The final stage of a connection is the tear-down
where mixes know that no further packages should be processed and the tem-
porary keys can be deleted. This also happens if the TCP connections between
the client and the first mix or two of the mixes break down and cannot be re-
covered.

Onion routing has two main advantages over mix networks: First, it supports
arbitrary protocols because a constant bi-directional stream of data becomes
possible. This allows existing network applications to use this concept directly
by treating the entire onion routed connection just like they would treat a reg-
ular proxy server (e.g. SOCKS). Second, onion routing significantly improves
the performance of connections by reducing the number of required public
key cryptography operations and maintaining open connections between the
mixes of active connections. Unsurprisingly, the trade-off between network
performance and network anonymity means that these gains in performance
have to be paid for by a loss of network privacy. Onion routing is forced to
change their threat model from a passive adversary that has access to the en-
tire network to a passive adversary that has only access to a fraction of the net-
work [34]. This can be directly tied to the use of real-time mixes instead of reg-
ular ones. A real-time mix forwards traffic immediately, allowing onion rout-
ing to forward any type of protocol because the sequence and order of messages
is maintained, but at the same time attackers can conduct timing based traffic
correlation attacks. As a general rule, it can be said that onion routing does not
protect against attackers that can see the traffic before it enters the first mix
and after it leaves the last mix [9, 85, 95, 114].

This raises the question whether a digital identity system could still be con-
sidered privacy preserving if it decides to rely on onion routing to anonymize
its traffic. To the best of our knowledge, there is no single entity with access
to 100 % of the Internet’s traffic, but there are entities that control multiple

2 Background 13

autonomous systems (AS) or internet exchange points(IXP), enabling them to
observe a substantial share of Internet traffic. Johnson et al. [66] have shown
that the organizations behind large ASs or IXPs, like DE-CIX or Level 3 Commu-
nications could successfully deanonymize users over a longer period of time,
while every single connection only has a probability of about 1 % of being
deanonymized. This also corresponds with the information leaked by Edward
Snowden regarding the Tor network [34], the most popular currently avail-
able onion routing network. According to those leaks, intelligence agencies
are capable of deanonymizing some of Tor’s users some of the time, but have
not managed to selectively target specific Tor users. Based on the assumption
that their capabilities have not substantially changed since then, the question
arises whether occasional random deanonymization of network traffic is ac-
ceptable for a privacy preserving identity system. Our conclusion is that this
is acceptable because using digital identities in the physical world will always
leave traces that external entities can observe. Even if the network would pro-
vide perfect anonymity, physical surveillance of a sensor would still reveal who
is interacting with it at which times. As long as individuals cannot be targeted
specifically and there is not enough information leaked to automatically build
profiles on all users over time, the primary requirements of a privacy preserv-
ing digital identity system are still fulfilled. Therefore, we believe that onion
routing is the best suited available technology to achieve network privacy for
distributed systems and will be used for the remainder of this thesis.

With the decision for onion routing made, the next task is to identify an ex-
isting onion routing network that would be best suited to support a distributed
digital identity system. While there are ideas to integrate onion routing into the
infrastructure of the network directly [18], current implementations of onion
routing are mostly available as overlay networks on top of the established In-
ternet infrastructure. The two largest existing networks will be considered as
potential foundations for a distributed digital identity system.

2.3.1 I2P

The I2P project [61] seems like the perfect fit for the requirements of this the-
sis. It was designed to provide a peer-to-peer network that uses onion routing
to allow all peers to communicate with each other. Connecting to devices that
are not part of the I2P network is not supported, but also not needed for a dis-
tributed system. Devices connected to the I2P network are referred to as I2P
routers and receive their own router identifier that can be used to contact them
later on [7]. A key difference to usual onion routing is that I2P does not support
bi-directional connections. Every established connection (I2P tunnel) only op-
erates in one direction, meaning that two connections must be established for
bi-directional communication.

The I2P network is fully decentralized, meaning that there are no central au-
thorities that have to be contacted before joining the network. There is one
catch however, a new I2P client needs to know about at least one existing I2P
client to obtain some information about the network. Since this can be any ac-
tive I2P router, this does not lead to centralization in theory but in practice
there exist a few long-lived I2P routers (reseed servers) that are typically used
for this purpose. The information regarding the entire network is stored in the
netDB, a distributed hash table maintained by all active I2P routers, so no router
ever has full knowledge about the network [56]. This netDB contains informa-
tion about every available I2P router, including their router id and their host-
name/ip address. Additionally, the netDB also contains information about ev-
ery service available within the network. This is necessary because I2P needs to

2 Background 14

conceal which router is providing a service, so services actually have to estab-
lish a tunnel to a random router and then publish service information that tells
potential clients that they can reach the service by connecting to that router and
asking it to forward the message to the final destination. Effectively, every I2P
tunnel consists of two halves. The first half are routers chosen by the sender
and the second half are routers chosen by the receiver. This ensures that both
parties can be certain that their privacy is protected.

The I2P network enables clients to communicate with each other via onion
routing, which is the primary requirement for a distributed system that cares
about network privacy. So, from a functional perspective, I2P is well suited to
support a privacy-preserving distributed system. However, functional require-
ments are not everything, so the current capabilities of the I2P network must
be analyzed next to find out if the I2P network could handle the load associated
with a global distributed system. While it is not trivial to measure a fully de-
centralized network like I2P, there are ways to obtain statistically significant
measurements by operating multiple I2P routers and aggregating and extrap-
olating their data [56]. This tells us that the I2P network currently has around
27.000 active routers with about 16.000 different IP addresses. Even fewer, only
about 12.000 are actually reachable, the rest is most likely blocked by firewalls
or NATs, so the concept of every I2P router forwarding traffic for others does
not hold. The situation becomes even worse, when analyzing the advertised
bandwidth provided by I2P routers. Less than 3000 of them share more than 2
MB/s of bandwidth, while more than 15.000 share less than 48KB/s. Most appli-
cations have bandwidth requirements that are much higher than this and more
importantly this limited bandwidth capability increases the probability of con-
gestion at I2P routers leading to additional latency. This problem is intensified
by the heavily decentralized setup of I2P. Clients only ever see a fraction of the
netDB, meaning they cannot simply choose the post powerful routers within
the network, they have to use what they see and there is a high chance that some
clients will end up with only routers providing less than 48KB/s of bandwidth,
which is insufficient for anything except the most basic of communication.

This leads us to conclude that I2P is an excellent candidate to support privacy
preserving distributed identity system in theory, but it has not yet gathered a
large enough user base that is willing to contribute routing capacity and inter-
net bandwidth to support larger applications. However, this decision is purely
due to the current state of the I2P network and that could easily change in the
future.

2.3.2 Tor

The Tor project [34, 123] is probably the most commonly known tool when it
comes to concealing network location. Although it was suggested a year after
I2P, Tor managed to capture a significant user base by focusing on a scenario
not supported by I2P: Establishing anonymous connections to services that are
available on the Internet. This was an attractive offer for users who wanted
more privacy with their current Internet activities and gave users living in op-
pressive countries with censorship a safe way of connecting to the internet.

Tor can be considered as a reference implementation for onion routing with
the acronym Tor being short for “The Onion Router” and one of the inven-
tors of onion routing helping with the design of Tor. The key feature of Tor are
the so called exit nodes that allow users of the Tor network to establish outgo-
ing connections to any device on the internet. Another important difference in
comparison to I2P is that Tor does not expect every client to also act as a mix.

2 Background 15

This means that it is much harder for an observer to find out if someone is us-
ing Tor. The only way to find out is to monitor the client’s web traffic and check
if any of its outgoing connections are going to a Tor relay and Tor’s efforts to
circumvent censorship [120] make this even harder to do.

While the Tor project originally did not support accepting incoming connec-
tions via the Tor network, support for this feature was later introduced [126]
and continuously developed since then [127]. Clearly inspired by I2P, this al-
lows Tor clients to select a random node within the Tor network as entry point
for its service and publish that information in a distributed hash table. This en-
ables Tor clients to accept incoming connections via Tor, which in turn allows
direct peer-to-peer connections between clients, just like I2P does. There re-
main two key differences that should be pointed out at this stage: First, the Tor
network is not fully decentralized. It depends on a set of manually selected di-
rectory authorities that control who is allowed to join the network. This does
not mean that they control which clients are allowed to use the network, but
they do control which mixes clients will use. The need to trust these directory
authorities necessitates a high level of trust that can only obtained by verifying
that they are acting as expected. Chapter 6 will provide a detailed analysis of
the behavior of Tor’s directory authorities. Second, every Tor client downloads
the entire list of available Tor mixes, while I2P routers only know about a small
fraction of the network. This puts limitations on how large the Tor network can
grow before Tor clients can no longer process the entire list of available Tor
mixes, but has no real impact from a privacy perspective.

This directly leads to the question of feasibility and for that an estimate on the
current size and capabilities of the Tor network is needed. Fortunately, the Tor
project does provide extensive statistics about itself that can be drawn upon to
answer these questions [86, 125]. The Tor network currently consists of about
6200 different mixes that distribute traffic for other users. More than 4000 of
them provide a bandwidth of more than 2MB/s and only a few hundred provide
a bandwidth of less than 50KB/s. At the same time, the Tor network sees more
than 3 millions users per day that consume about 250Gb/s of bandwidth. Al-
though the Tor network is smaller than the I2P network, it services more than
100 times more users than the I2P network. This is mainly possible because
the available mixes all volunteered to forward traffic and allocate the neces-
sary resources and bandwidth to execute this task efficiently. The substantially
larger user base has also attracted significantly more attention from research.
There is ample research available on every aspect of the Tor network. Poten-
tial attacks [11, 19, 20, 95, 114], provided privacy guarantees [66, 102], and real
world usage [86, 102] have been the subject of extensive research that drove
the Tor project to continuously improve their network. Beyond research that
mostly aimed to strengthen the Tor network, there have also been several doc-
umented cases of powerful adversaries actively compromising the network [8,
27, 30, 98] including both the American FBI and the British GCHQ. One could
argue that a network under constant attack is not the best choice to provide
security, but this argument would be misleading. With every detected attack
on the Tor network, its security was improved to address the flaw that enabled
the attack, making the Tor network more resilient to future attacks. While this
is no guarantee that there are no undiscovered security flaws within the Tor
network, the knowledge of all the attacks that failed and the sheer amount of
research that has tried to attack it make the Tor network the most trustworthy
anonymization network currently available.

All those reasons combined lead to the inevitable conclusion that any privacy
preserving digital identity system deployed in the near future should rely on the
Tor network to achieve network privacy. It has enough other users and traffic
to blend in with, it has the most data transfer capacities and most importantly

2 Background 16

it has stood the test of time even when attacked by powerful adversaries, mak-
ing it very likely that it will also be able to protect the privacy of its users in
the future. Since the design details of the Tor network are instrumental for the
contributions presented in chapter 4,5,6 and 7, section 2.4 provides a detailed
description of how the Tor network functions.

2.4 The Tor Network

The inner workings have been originally published as a paper [34] and the cur-
rent specification with all the changes implemented over time is also pub-
licly available [33], making it easy to understand the inner workings of the Tor
project without having to read the source code, which is also open source. The
Tor network refers to its mixes as Tor relays. Those relays are operated by vol-
unteers, so everyone can contribute to the Tor network by adding more relays to
it. Connections through the Tor network are called circuits and typically include
three Tor relays: The first relay allows a client to enter the network and is com-
monly referred to as guard relay, the second relay that purely forwards the data
from the guard, usually referred to asmiddle relay, and finally the exit relay that
forwards requests to their final destination. Figure 2.2 visualizes such a typi-
cal Tor connection. Technically, Tor clients could choose to build circuits that
consist of a different number of relays, but it is not easy or recommended to so
because it makes Tor traffic more vulnerable to certain attacks [14]. In order to
establish connections through the Tor network, clients need to obtain a list of
currently available relays and their capabilities because not every Tor relay can
be used as a guard or exit node. Exit nodes appear like the origin of traffic orig-
inating from the Tor network, forcing their operators to deal with all kinds of
abuse complaints linked to problematic behavior via the Tor network.Guard re-
lays are the entry point into the Tor network and therefore the only devices that
know the network location of Tor clients. This makes them interesting points
of attack because the anonymity of the user is compromised if a Tor client can
be tricked into choosing a not trustworthy guard relay. To minimize the risk of
that happening, a Tor client keeps using the same guard relays for all circuits to
minimize the number of Tor relays that know its identity [32]. For a long time
Tor clients only used a single guard [29], but this was recently changed to two
guards to better distribute load across the Tor network [31].

The process of obtaining the list of currently active Tor relays is commonly re-
ferred to as bootstrapping and requires new clients to connect to an already run-
ning Tor relay to learn about the current network. A random set of stable Tor
relays is hardcoded in every Tor release to make this procedure as easy as pos-
sible. The list of all currently available Tor relays is called the consensus and is
arguably the most important piece of information for every Tor client. The con-
sensus document includes address and key information about every relay, pro-
vides information about the capabilities of every Tor relay as well as their sta-
bility and available bandwidth. For performance reasons, not all information
about relays is included in the consensus. Tor’s directory specification [124]
specifies several descriptor formats that provide advanced information about a
specific relay. In order to request any of those descriptors, the Tor client needs
a valid consensus first and can then request more specific descriptors about the
relays it wants to use. A new consensus is created every hour and usually valid
for up to three hours, so there are multiple valid consensuses at most times
which gives clients more freedom when they update their consensus informa-
tion. Section 2.4.1 describes the process of creating and verifying the consensus
document in more detail.

2 Background 17

Figure 2.2: How regular Tor connections work

2 Background 18

Onion routing in general and Tor specifically were designed in a way that sup-
ports arbitrary protocols by being able to handle arbitrary network streams.
Technically, Tor can only handle TCP streams but this is sufficient for most
real world applications. When running on a client, not as a relay, Tor presents
itself as a SOCKS5 proxy [81] to other applications. This means that almost ev-
ery network application that supports using a proxy server can be configured
to communicate via Tor. The most common applications used in combination
with Tor are web browsers;so common in fact that the Tor project has begun
to maintain a modified version of the Firefox9 browser that removes some fea-
tures that might compromise a user’s privacy and redirects all communication
via Tor by default. This Tor Browser10 is the recommended and most common
way for users to use the Tor network.

However, some applications require advanced control over the behavior of a lo-
cal Tor client. In order to support this kind of functionality, the Tor control pro-
tocol [122] supports fine grained control over almost every aspect of the Tor ap-
plication. It can be used to create/modify/destroy circuits, it can make arbitrary
configuration changes, it can obtain arbitrary logging information, or even
restart/shutdown Tor entirely. The Tor Browser for example uses the control
protocol to find out which countries traffic is currently being routed through
and display this information to the user. Other applications like OnionBalance
or OnionShare11 would not be possible at all without the control protocol.

2.4.1 Directory Authorities

The decision about which relays are included in the Tor network is a deci-
sion of great importance for all Tor users. If malicious relays are included,
their anonymity might be compromised. If too few relays are included, the
network might not be able to handle enough traffic and the network becomes
useless. Besides, the entity responsible for these decisions might be forced
by authorities to provide specific users with modified variants of the consen-
sus that only include relays under the control of an attacker. To mitigate this
risk, the responsibility for creating the Tor consensus is not given to a sin-
gle entity. A small group of trusted relay operators that are known support-
ers of the Tor project and spread across multiple countries have been chosen
to fulfill this task collaboratively. Their relays are also known as directory au-
thorities and information about them is hardcoded within the Tor application.
At the moment, there are 9 directory authorities (moria1(USA), bastet(USA),
longclaw(Canada), Faravahar(USA), dizum(Netherlands), gabelmoo(Germany),
tor26(Austria), dannenberg(Germany), and maatuska(Sweden)).

Every directory authority maintains an independent view on the Tor network
and publishes its perspective hourly in a network status vote. The consensus is
also created hourly by every directory authority but this is not directly influ-
enced by their personal view on the network. Instead, they collect the network
status votes from all available directory authorities (including their own) and
include everything in the consensus that is included in a majority of votes. So
a relay is only included in the consensus if more than 50 % of the votes include
the relay. This also applies to properties of a relay, so a relay is only considered
fast if more than 50 % of the votes believe it to be fast. If everything works as
intended, all nine directory authorities have access to all nine votes and pro-
duce the same consensus, which they sign digitally before publishing it. By ex-
changing signatures, each directory authority ends up with a consensus docu-

9https://www.mozilla.org/en-US/firefox/
10https://www.torproject.org/download/
11https://onionshare.org/

https://www.mozilla.org/en-US/firefox/
https://www.torproject.org/download/
https://onionshare.org/

2 Background 19

ment that has been signed by all directory authorities. Note that while an ideal
consensus is built from nine votes and has nine signatures, a valid consensus
only requires the signatures of a majority of voting directory authorities. If all
nine authorities are voting, five signatures are needed, but if two authorities
stop voting there would only be seven voting authorities and four signatures
would be enough to sign a valid consensus.

Tor Flags

The Tor network describes the properties of Tor relays with a series of flags that
are assigned by the directory authorities if the relays meet the necessary crite-
ria. The following list provides a selection of the more important flags currently
present in the Tor consensus:

Valid: Assigned if the version of Tor run by the relay is not known to be bro-
ken. Invalid relays are not included in the consensus.

Running: Assigned to all running relays. Requires the directory authority to
be able to connect to the relay. Relays that are not running are not included
in the consensus.

V2Dir: Assigned if the relay supports the V2 directory protocol. Unless ac-
tively disabled, all current Tor versions obtain this flag.

Fast:Assigned if the relay is suited for high bandwidth (≥ 105 KB/s) connec-
tions.

Stable: Assigned if the relay is suited for long-lived connections. Requires
the relay to have a mean-time-between-failure of more than seven days.

HSDir: The relay is part of the hidden service directory. Assigned only if the
relay is stable, fast, and has been up for more than 96 hours.

Guard: Assigned if a relay is suited to be the first node of a Tor connection.
Requires a relay to be fast, stable, be a V2Dir, have an at least median up-
time, be at least a few weeks old, and have a bandwidth of more than 2 MB/s.

BadExit: Assigned if a directory authority believes that an exit relay should
not be used by clients. This flag is unusual because there is no specification
on how that assumption should be built, the only example given is using
an internet provider that is known to block/censor traffic. In practice, the
assignment process for this flag is semi-manual.

Tor Bandwidth Authorities

While it is easy for a directory authority to keep track of the uptime of relays be-
cause relays have to upload new descriptors regularly, measuring their band-
width is more challenging yet still important. Relay operators usually think of
bandwidth in terms of what they pay their internet provider for and make a
fraction of that bandwidth available to the Tor network. But the actually avail-
able bandwidth does not always correspond with what clients pay for, leading
to Tor relays advertising more bandwidth than they can actually handle. Even
worse, malicious relays can advertise huge amounts of bandwidth that they
could never handle, just to cause the Tor network to send them lots of traffic
that they will drop. Both cases result in a deteriorating user experience for all
Tor users because of incorrect bandwidth information.

To address this issue, Tor uses several bandwidth authorities [68] which are
responsible for measuring the available bandwidth of relays. Since the results

2 Background 20

of these bandwidth measurements must be incorporated into the votes for
the consensus, only directory authorities can be bandwidth authorities. This
means that for every consensus vote, some authorities make bandwidth deci-
sions based on advertised bandwidth, while others decide based on their mea-
surements. To prevent malicious relays from only responding to measurement
traffic, these measurements must also take place via the Tor network in order
to appear just like regular traffic. This means that every bandwidth measure-
ment is going via several nodes, making it hard to tell for certain if the mea-
sured relay really was the bottleneck during the measurement. Currently, Tor
has two different algorithms for measuring relay bandwidth in use (torflow12

and sbws13), resulting in three different ways how a directory authority can de-
termine bandwidth information about relays.

2.5 Tor Onion Services

Onion services (formerly known as hidden services) were originally conceived
as an experiment to learn more about what kind of tasks the Tor network could
be used for [47] and have found significant user acceptance since then. Onion
services enable users of the Tor network to accept incoming network connec-
tions from other Tor users, a scenario that was originally not supported by the
Tor project. At the time of writing, there were more than half a million onion
services deployed within the Tor network responsible for about 10 Gb/s of traf-
fic making up about 4 % of the entire Tor network’s traffic [125].

Interestingly, anonymous communication within the Tor network is actually
more complex than anonymous communication with a device outside of the
Tor network. The main reason for this increased complexity is that regular Tor
connections only protect the privacy of one client, while onion services have
to protect the privacy of both communication partners. Considering that I2P
published their solution to this problem one year before the Tor project an-
nounced their support for onion services, it is not surprising that the function-
ality of onion services has a lot in common with how I2P enables anonymous
internal communication. Onion services have also been a constant target for at-
tackers, forcing the Tor network to regularly update their implementation and
occasionally even the specification. Therefore, there were two variants of onion
services deployed within the Tor network for a long time: version 2 onion ser-
vices [126] (since 2005) and version 3 onion services [127] (since 2018). Version
2 was deprecated in 2021 [47], so everything in this thesis—unless otherwise
specified—refers to the currently supported version 3 onion services.

Figure 2.3 visualizes the complex procedure that was designed to create and
communicate with onion services using the best privacy protection achievable
with the Tor network. In total, six different types of circuits across at least 15
different Tor relays are needed with at least 5 different public/private key pairs
and additional symmetric keys. The functionality provided by onion services
can roughly be split in three parts: The setup required by Tor clients that want
to run an onion service, the service provided by the Tor network to support the
distribution of onion service information, and finally the actions required by
the client to connect to a running onion service. All of those will be described in
more detail in the following sections:

12https://gitweb.torproject.org/torflow.git/tree/NetworkScanners/BwAuthority/
13https://gitlab.torproject.org/tpo/network-health/sbws

2 Background 21

Figure 2.3: How Tor onion services operate

2 Background 22

2.5.1 Creating a NewOnion Service

The first thing every onion service needs is an elliptic curve (ed25519) key pair
that grants control over an onion service. The private part of that key is referred
to as MASTER KEY and the public part is called the AUTH KEY. Every crypto-
graphic proof that ensures the integrity of onion service operations ties back to
theMASTERKEY and requires the AUTHKEY to be verified. The AUTHKEY is en-
coded in the onion address that serves as hostname and identifier for an onion
service.

After the main key pair is ready, a Tor client intending to run an onion service
needs to provide other Tor clients with a way to connect to it, without disclosing
its identity. This is achieved by randomly selecting relays within the Tor net-
work as introduction points (IP). The client establishes ESTABLISH_INTRO cir-
cuits to these introduction points and asks them to act as introduction points
for their new service. According to the protocol [127], Tor relays are not al-
lowed to refuse such a request unless it is invalid. By default, every onion service
selects three different introduction points, but any number between 0 and 20
would be valid. Every introduction point receives a fresh key (the INTRO AUTH
KEY) that can be later used to link incoming requests to the correct onion ser-
vice. The circuit to the introduction point has to be kept open continuously by
the onion service because this circuit is the only possible path of communica-
tion between the introduction point and the onion service. If this circuit fails,
the introduction point becomes unusable; if all circuits to introduction points
fail, the onion service becomes unreachable. Before clients can start connecting
to the service however, they need a way to learn about the introduction points
chosen by the onion service. To achieve this, the future onion service bundles
the information about all its introduction points in one file called service de-
scriptor.

Figure 2.4 visualizes the layout of such a service descriptor along with all the
data it provides to a Tor client. However, the only thing distributed to clients is
the static onion address of an onion service, not the service descriptor that has
to be changed every time the circuit to an introduction point fails. This means
that Tor clients need a reliable way to request the currently valid service de-
scriptor for an onion address. This service is provided by the hidden service di-
rectory (HSDir).

2.5.2 The Hidden Service Directory

The hidden service directory is a distributed hash table that contains informa-
tion about every currently available onion service and its current service de-
scriptor. It is also arguably the aspect of Tor onion services that changed the
most between the onion service versions 2 and 3, after researchers demon-
strated that the implementation in version 2 allowed malicious attackers who
joined the hidden service directory to collect information about every currently
deployed onion service, restrict access to selected onion services, and count
the number of Tor users that connect to them [11, 102]. This forced the Tor
project to completely redesign the hidden service directory for version 3 to de-
fend against malicious relays within the hidden service directory.

The HSDir is formed by all Tor relays that fulfill the requirements to obtain the
HSDir flag in the current consensus. By comparing the requirements for the
HSDIR flag and the V2Dir flag in section 2.4.1 one can see that this is the first
aspect that saw significant change between versions 2 and 3. Since all running
Tor relays need to know the current consensus, they are always aware of which

2 Background 23

Figure 2.4: Structure diagram of a service descriptor

2 Background 24

relays currently form the hidden service directory. The next decision needed is
which relays within the HSDir should be responsible for which service descrip-
tors. To answer this question, a HSDIR INDEX is calculated for every relay that
depends on the identifier of the relay, the current date and time, and a shared
random value (SRV) included in every consensus. This SRV is changed every 24
hours and makes it impossible for attackers to predict in advance which mem-
ber of the HSDir will be responsible for a specific service in the future. It was
introduced in version 3 to prevent attacks that relied on predicting the future
layout of the HSDir [11]. The HSDir relays are sorted alphabetically based on
theirHSDIR INDEX with every relay being responsible for uploads whose hashes
are alphabetically between its HSDIR INDEX and the index of the next HSDir re-
lay. This means that the share of the hidden service directory handled by every
relay is not equal and subject to change with every new shared random value.

Before onion services can publish their descriptors, they need to know the ID
of their descriptor. In version 2, the onion address was used for this purpose,
but that allowed malicious HSDir relays to harvest existing onion addresses [11,
102]. Version three solves this issue by deriving a new blinded public key (BPK)
from the AUTH KEY This BPK changes periodically and does not leak any in-
formation about the AUTH KEY it was derived from. Further protection against
malicious HSDir relays is achieved by encrypting the service descriptor with
a symmetric key (descriptor encryption key) that is also derived from the AUTH
KEY. This prevents attackers within the hidden service directory from learning
onion addresses. Without knowledge of the onion addresses, even HSDir re-
lays cannot read the service descriptors they are distributing. With the HSDIR
INDICES and the blinded public key calculated and the service descriptor en-
crypted, an onion service can finally proceed to upload its descriptor into the
hidden service directory. Since onion service operators cannot be expected to
trust every single relay in the hidden service directory, every descriptor is not
just uploaded to the relay responsible according to theHSDIR INDEX, but also to
the three relays that come right behind it. Since those four uploads are still at
four consecutive positions within the hidden service directory, a replica value is
used to modify the BPK and determine a new second position within the hash
ring of the hidden service directory, where the descriptor will also be uploaded
to. This results in a total of 8 uploads for each service descriptor, which is still
not the total number of uploads per onion service. As mentioned in section 2.4,
there are multiple consensuses valid at every point in time. To prevent issues
during times when the consensus is changing its SRV or transitions from one
day to the next, every onion service keeps a second service descriptor that uses
the previous day/SRV to support clients that are not fully synchronized with the
onion service. This results in a total of 16 descriptor uploads per onion service.
These uploads happen immediately after an onion service has been created. A
running onion service re-uploads its service descriptors after between 60 and
120 minutes or if the service descriptor has changed.

Tor clients that want to download from the hidden service directory need to
know the blinded public key of the service descriptor they are interested in.
Typically, this information is extracted automatically from the onion address
that encodes the AUTH KEY. With that information the client can calculate the
HSDIR INDICES of all relays and identify the relays that should hold the desired
descriptor. Note that onion services always upload to four consecutive HSDir
relays, but clients always try one out of the first three. This guarantees that
even if a relay within the hidden service directory goes offline, clients still have
three relays available that hold the information they seek. Clients randomly de-
cide if they try to download the main or the replica, which should distribute load
fairly across the hidden service directory. If a download attempt fails, the client
continues to try until it has exhausted the six HSDir relays that it is supposed

2 Background 25

to download from. After a successful download, the client uses the AUTH KEY
to derive the symmetric key needed to decrypt the service descriptor. The de-
crypted service descriptor is then stored in the internal cache of the Tor client,
so future connections to the onion service will not require downloading the ser-
vice descriptor again as long as the current one remains valid. With this infor-
mation, the client is finally ready to establish a connection to the onion service.

2.5.3 Connecting to an Onion Service

While a Tor client is still downloading the service descriptor, it can simultane-
ously establish a circuit to a rendezvous point (RP). Just like introduction points,
any Tor relays can be chosen by the client to act as rendezvous points. Once
the circuit is ready, the Tor client informs the relay on the other side that it
should act as rendezvous point for an onion service connection and provides
it with a RENDEZVOUS COOKIE consisting of 20 random bytes. After the service
descriptor is downloaded and the rendezvous point is ready, the Tor client cre-
ates a circuit to one of the introduction points specified within the service de-
scriptor. Via this circuit, an INTRODUCE1 cell is transmitted to the introduction
point. The layout of this cell is shown in Figure 2.5 and can logically be split
into two parts. The unencrypted part is intended to be parsed by the introduc-
tion point and the encrypted part—encrypted with the ENC KEY from the ser-
vice descriptor—meant only for the onion service. The only important piece of
information in the unencrypted part is the INTRO AUTH KEY. It is used by the
introduction point to identify the circuit via which the encrypted part of the
introduction cell should be forwarded. If the onion service has an active circuit
associated with the INTRO AUTH KEY specified in the INTRODUCE1 cell, it wraps
the encrypted part of the cell in a new INTRODUCE2 cell and forwards it to the
onion service. If the introduction point cannot forward the cell, it responds to
the client with an INTRO_NACK cell, otherwise it sends an INTRO_ACK cell to
the client, after the INTRODUCE2 cell was successfully sent.

When the onion service receives an INTRODUCE2 cell, it checks if an identical
INTRODUCE2 cell has already been received before. This is necessary to prevent
replay attacks. If the introduction request is valid, it uses the received link spec-
ifier to establish a new circuit to the rendezvous point chosen by the client. Once
the circuit has been established, it uses the onion key specified by the client to
prepare a handshake that sets up a shared symmetric key for end-to-end en-
crypted communication between the onion service and the client and sends a
RENDEZVOUS1 cell containing the RENDEZVOUS COOKIE and the handshake in-
formation to the rendezvous point. The rendezvous point uses the cookie to
find out who the onion services wants to rendezvous with and logically con-
nects the two circuits by forwarding everything arriving at one circuit to the
other one. Finally, it forwards the handshake information from the onion ser-
vice to the client, enabling the client to complete the handshake and start com-
municating with the onion service. The results of this process is a six-hop cir-
cuit between the onion service and the client, with three relays chosen by the
client to protect its anonymity and three relays chosen by the server to do the
same. However, Tor relays that are chosen freely by a Tor client—like the in-
troduction point and the rendezvous point—do count as protecting the privacy
of the Tor client that selected them. This is why—as seen in Figure 2.3—the
circuit from the client to the rendezvous point uses the rendezvous point as
exit node, while the onion service, which had no say in the selection of the ren-
dezvous point adds a second middle node (technically, it is an exit node, but
since it does not require the Exit flag, it is clearer to label it as a second middle
node).

2 Background 26

Figure 2.5: Structured contents of INTRODUCE1 cell

2 Background 27

2.6 Metadata resilient messaging

The biggest area where distributed systems on top of the Tor network have been
implemented in practice is instant messaging. The Tor project itself initiated
Tor Messenger [118], a tool meant to interact with various different providers of
instant messaging (like Jabber, IRC, Google Talk, Facebook Chat, ...) via the Tor
network. This effort had to be abandoned [117] because it added high latency
to all communication without preventing the central servers of the messaging
providers from monitoring their users.

More interest was gathered by fully decentralized messengers that tried to pre-
vent tracking via metadata entirely by exchanging all network communica-
tion directly via onion services. The first implementation of this approach was
TorChat [78]. It managed to gather some interest but failed to become a sta-
ble project and was abandoned fairly soon. In its place, the new project Ric-
ochet [15] tried to establish a privacy preserving instant messenger and suf-
fered the same fate as its predecessor. Despite those setbacks, there still seems
to be a consensus that privacy preserving messaging is needed and new at-
tempts to establish metadata resilient messaging continue to be made. At the
time of writing this thesis, there were at least five different actively maintained
projects that provide this functionality:

1. Cwtch [101]

2. Briar [111]

3. Speek! [128]

4. Ricochet Refresh [12]: An attempt to revive the discontinued Ricochet mes-
senger.

5. OnionBalance [16]: Primarily a file sharing tool, but it also includes a peer-
to-peer messaging functionality that uses Tor onion services.

This raises the question why centralized services like WhatsApp [76] or Sig-
nal [89] are still the standard when it comes to instant messaging. While a de-
tailed analysis for this is out of scope for this thesis, we did identify four issues
that all of these applications have in common that could cause users to not use
them in practice.

The first issue concerns contact discovery. Popular centralized messengers are
using phone numbers as contact identifiers, enabling them to automatically
add all contacts that are already located in the users address book. A privacy
preserving messenger cannot do this because its privacy partly depends on not
publicly linking onion addresses to individuals. This forces users to manually
add all their contacts again, a burden that many users are unwilling to accept.
Distributed digital identity systems face the same issue when it comes to ser-
vice discovery, which will be discussed in section 3.2.

The second issue concerns the additional network latency introduced by the
Tor network. Instant messaging is often used as a synchronous communication
form where users send messages and actively wait for the response. Adding a
latency of several seconds to both the message and the response forces the user
to wait much longer for the expected response, which negatively impacts user
experience. Most messengers try to mitigate this issue by maintaining active
connections to all contacts when they are online. This reduces the latency of
individual messages because the needed circuits and rendezvous points are al-
ready established but it intensifies two other issues.

Every connection to another onion service requires a dedicated circuit with
three different Tor relays. This always limits the amount of messages that a

2 Background 28

messenger can send in parallel, but if connections to all clients are established
all the time this limits the amount of total contacts a user can have. Even if
there are still enough Tor relays available, it is important to consider that the
Tor client will usually try to pick reliable and stable relays first, meaning that
as more and more connections are established in parallel, the latency and reli-
ability of circuits will deteriorate. This strongly incentivizes users with lots of
contacts to stay on centralized communication platforms.

Finally, energy consumption must also be considered because most instant
messaging is done from mobile devices that are powered by batteries. Research
has shown that operating Tor onion services on mobile devices has a signifi-
cant impact on bandwidth usage and energy consumption [72], even if they are
hardly ever receiving incoming connections. Decentralized instant messaging
that aggressively opens circuits to minimize latency comes with a high energy
cost that is again unlikely to be tolerated by a majority of users.

All of these challenges also apply to decentralized digital identity systems and
while some of the solutions proposed in this thesis are specifically tailored to-
wards the Digidow architecture, others are more generic and could with slight
modifications also be applied to the use case of decentralized instant messag-
ing.

Chapter 3

Network Architecture

This chapter provides an overview of the different network communication
paths required by a distributed digital identity system built upon the Digidow
architecture. It specifies what kind of information is exchanged between differ-
ent Digidow devices and what level of protection is needed for each interaction.
Based on this information, we can decide where the established technologies
presented in chapter 2 already provide the necessary functionality and where
further research is necessary to achieve the objectives from section 1.2.

3.1 Network Interactions

Before we can start to think about protecting network privacy, we need to iden-
tify all the different transactions that are going to take place within a dis-
tributed digital identity system. For a distributed digital identity system using
the Digidow architecture, we identified five different interactions:

1. The interaction between a sensor and the sensor directory to publish a sen-
sor.

2. The interaction between a PIA and the sensor directory to learn about avail-
able sensors.

3. The interaction between an issuing authority and a PIA to provide it with
new attributes.

4. Communication between the PIA and its owner.

5. Digidow transactions between PIAs, sensors, and verifiers.

As this thesis only deals with the networking fundamentals, a fully specified
protocol is out of scope. Instead, the requirements from a network security/pri-
vacy perspective will be discussed for every part of the communication.

3.1.1 Publishing a Sensor

The first interaction is the communication required between the sensor and the
sensor directory. This interaction is necessary to either publish a sensor when
it is first deployed or to update the information within the sensor directory for a
previously deployed sensor. All the information needed by PIAs to use the sen-
sor for Digidow transactions must be exchanged during this interaction. This
includes at least the contact information of the sensor, its physical location, its
public key, and the type of biometric template it can detect and compare. The
sensor directory only has to inform the sensor if a request to either publish or
update information was successful or not, it does not provide any further in-
formation to the sensor.

29

3 Network Architecture 30

3.1.2 Requesting Sensor Information

The next interaction occurs when the PIA wants to learn about available sen-
sors. This requires downloading the information published by sensors from
the sensor directory. The information exchanged during this interaction is the
same as in section 3.1.1, but a PIA is likely to request and receive information
about multiple sensors at once. PIAs will typically store information on sensors
locally, so they might also choose to save bandwidth by asking for differen-
tial updates to the sensor directory since their last request. This should provide
them with all sensors that have either published changes or recently joined the
sensor directory.

Note that there might also be sensors that do not wish to be publicly available,
like surveillance cameras operated inside private homes. PIAs can support such
private sensors by manually injecting sensors into their local copy of data from
the sensor directory. This enables them to use such private sensors just like
public ones without the need to change other parts of the network protocol.

3.1.3 Issuing Attributes

Issuing authorities need to communicate with PIAs in order to provide them
with attributes. Without attributes, a PIA would not be able to prove anything
to a verifier, therefore this step is a requirement for successful Digidow trans-
actions. From a functional perspective it would be sufficient to simply transfer
the signed attributes from the issuing authority to the PIA, but there are two
caveats that need to be considered:

1. The issuing authority has to make sure that attributes are only provided to
the correct PIA.

2. The issuing authority has to ensure that no PIA other than the intended des-
tination can present the attributes.

The first part can be addressed by organizational measures to authenticate the
PIA that is receiving attributes. One potential approach would be to first send
a one-time token to the PIA that is about to receive the attributes via an end-
to-end encrypted channel and having it forward this message to its owner. If
the owner can present that one-time token within reasonable time, there is
a high probability that the issuing authority is talking to the correct PIA. The
second issue will most likely have to be addressed on a cryptographic level by
tightly coupling the issued attributes with the biometric features of the indi-
vidual. That should be sufficient to prevent other PIAs from utilizing the same
attributes.

3.1.4 Communication with the PIA’s Owner

Every digital identity system will sometimes require users to make decisions
themselves. The Digidow concept expects those manual decision to be frequent
at the beginning because the PIA needs to build up a history of transactions
and user decisions. Over time, the PIA should become increasingly capable of
making decisions on behalf of its owner without having to ask for the owners’
approval every time. Users might have very different requirements in terms of
how they want to communicate with their PIA, making it almost impossible to
propose one approach that will work for everyone. If a PIA is running on a mo-
bile device like a smartphone, communication is easily possible by just trigger-
ing a notification within the local system. PIAs operated remotely would need

3 Network Architecture 31

another channel of communication. The currently most realistic scenario ex-
pects users to still own a smartphone and allow their PIA to communicate with
their phone. If the PIA is unsure about an individuals’ location, it can contact
the smartphone to ask for its current location, and if the PIA is not sure if it
should reveal certain attributes to a specific verifier, it can ask for permission
before moving forward.

3.1.5 Digidow Transactions

Figure 3.1 shows the flow of a successful Digidow transaction. The main objec-
tive behind this proposed flow is to keep the number of messages exchanged
between devices as low as possible. One reason for this is tied to the use of onion
routing which adds significant latency to every message. For optimal perfor-
mance, networking has to be designed to use fewer but larger messages to min-
imize the impact of onion routing on the overall transaction time.

Figure 3.1: The Digidow transaction protocol

The first two messages exchanged between PIA and sensor are inspired by the
Publish/Subscribe concept [75] that enables the efficient movement of mes-
sages between devices that do not know each other. Within the Digidow archi-
tecture, the PIA would infer the current location of its owner based on available
data and use the sensor directory to identify sensors that it should subscribe
to. It then sends register messages to all these sensors. A register message con-
tains some kind of contact information that enables the sensor to reach the PIA
if necessary, a piece of biometric information that enables the sensor to iden-
tify a potential match and a timeout after which the registration information

3 Network Architecture 32

should be discarded. Note that it cannot simply include the biometric measure-
ment of the target because biometric information must be considered privacy
sensitive, so some form of privacy preserving biometrics [96] will be required.
Approaches like fuzzy extractors [35] or cancelable biometrics [109] seem the
most promising for the purposes of the Digidow project, but a detailed discus-
sion is not within the scope of this thesis.

After receiving a register message, the sensor adds the received biometric tem-
plate to an internal list that it compares observed biometric measurements
against. If this comparison results in a match, the sensor sends a match mes-
sage to the callback provided by the PIA. The match message has to provide a
proof signed by the sensor that an individual with the detected biometric fea-
tures has been detected by this sensor at a specific point in time. The sensor
should also include information about verifiers that might be interested in this
information along with other optional information like its confidence in the
biometric match. The key point here is that the sensor only provides the infor-
mation to the PIA, not to the verifier directly, giving the PIA full control over
the decision if the verifier should be presented with any information about its
owner.

Once a PIA receives a callback from a sensor, it has to do a bit of internal work
before it starts communication with the verifier. First, it has to decide if it be-
lieves the information it received. Biometric comparison is always about prob-
abilities which is why sensors should reveal their confidence in a match. PIAs
need to account for false-positive results by combining information from mul-
tiple sensors with their transaction history to achieve the necessary confidence
to continue with the transaction. If the PIA determines the match to be a false
positive, it simply logs the message for further reference and takes no further
action. Otherwise, it continues with service discovery by trying to identify the
verifier that its owner wants it to talk to. In most cases, the sensor will have pro-
vided sufficient information to make this step easy and in the rare case where
this does not happen and the transaction history is also not helpful, the PIA will
contact its owner directly to receive further instructions. Note that there are
plausible scenarios where a PIA may either not find a verifier for a match mes-
sage or intentionally decide not to interact with it. For example, a user walking
by a bus stop while going to work would be regularly detected by a camera sen-
sor at the bus stop and registering with that sensor would be useful for the PIA
because it confirms that its owner is on the way to work, but there is no reason
to communicate with the verifier. Sensors in public places that see lots of foot
traffic might be intentionally deployed to update the physical location infor-
mation of the PIA without any intention of ever being used for transactions.

After the PIA is certain that a verifier should be contacted, it has two different
options of reaching out. If it has not had any transactions with the verifier re-
cently, it sends an inquire message to the verifier to find out which attributes
the verifier is interested in. The verifier has to respond with the set of attributes
it needs to know about along with the issuing authorities it accepts attributes
from. Verifiers that are already known to the PIA because it has had trans-
actions with them in the past, are not asked about their attributes again and
the required attributes are retrieved from the PIA’s transaction history instead.
Until this point the verifier has no information about the PIA, it does not even
know if the PIA has a valid proof from a trusted sensor so there might not even
be the potential for a transaction at all. The PIA now needs to decide if it is will-
ing to provide the requested information to the verifier. This is an important
step because it marks the point where the PIA loses control over what happens
with its information after sending it. The verifier might store it, share it, pub-
lish it, sell it, or take any other action that could compromise the privacy of the
individual owning the PIA. This raises the question of how PIAs should make

3 Network Architecture 33

the decision between asking for confirmation and deciding on their own. Once
again, the task of striking the right balance between protecting privacy and user
convenience is explicitly out of scope for this thesis, but research within the
Digidow project is actively tackling this challenge. Once the PIA has sufficient
reasons to believe that its owner wants to share the requested attributes with
the verifier, the PIA creates a cryptographically verifiable presentation of the
requested attributes—at this point in time the data format proposed by the W3C
for verifiable credentials [115] seems like a good fit—and forward it to the ver-
ifier. With the arrival of the presentation at the verifier, the networking part
of a Digidow transaction is concluded. The verifier still has to decide if the at-
tributes are valid and then trigger the corresponding action, but this does not
require further communication with other devices within the Digidow archi-
tecture.

3.2 Service Discovery

Before Digidow transactions as discussed in section 3.1.5 can begin, the three
involved parties have to be identified. This process of service discovery hap-
pens for every potential Digidow transaction and requires that sensors, PIAs,
and verifiers have already been deployed and PIAs have already been issued at-
tributes by the issuing authorities. The purpose of service discovery is to iden-
tify the correct triplet of endpoints that will be needed for the current transac-
tion. A sensor to confirm the physical location of an individual, a PIA to provide
verifiable attributes about this individual, and a verifier that acts based on the
provided attributes. If the correct endpoint cannot be determined reliably, it
might also be acceptable for service discovery to produce a small set of options
that can be narrowed down later during the verification stage. Until service dis-
covery is certain that it has found the correct endpoints, service discovery is
not allowed to reveal any privacy sensitive information about the transaction
for which service discovery is currently happening. Otherwise, some Digidow
participants might be able to learn about Digidow transactions that they are
not involved in. At the same time, the service discovery process is a part of the
networking scheme and must adhere to the objectives specified in section 1.2.
This puts strong limitations on the time available for service discovery, which
in turn causes a trade-off between privacy and user experience.

3.2.1 Initiate Service Discovery

The first step of service discovery must be taken by a device that is aware that
service discovery is needed and has enough information to detect at least one
of the other two endpoints. After the second endpoint has been found, the third
one only needs to be detectable with the shared information of both devices. In
order to provide a well founded answer to this question, this section analyzes
the information available to every party and then discusses the benefits and
drawbacks of it being responsible for the first step of service discovery.

Information available to the sensor

The first action that initiates a Digidow transaction is an individual interacting
with a sensor, which enables sensors to tell whether service discovery has to
be started or not. Additionally, the sensor has the biometric information of the

3 Network Architecture 34

detected individual, providing it with a reliable identifier that could be used to
search for the PIA of the individual. Lastly, sensors have to be trusted by veri-
fiers in order to conduct a successful Digidow transaction making it very likely
that sensors are deployed to facilitate services provided by specific verifiers. By
knowing why they were deployed, most sensors are likely to have an idea about
which verifiers are involved in a transaction that includes them.

Information available to the PIA

A PIA holds the identity information of an individual as well as the policies that
decide which attributes are shared with various verifiers. In addition to that, a
PIA can keep a log of previous transactions, effectively providing it with history
of what its owner has been doing in the past. Since there is no restriction on
where a PIA is operated, a PIA might also be running on a mobile device that
the individual carries around, potentially providing the PIA with information
about the current location of an individual.

Information available to the verifier

The verifier has a strong trust relationship with the sensor, meaning that a ver-
ifier will typically maintain a list of sensors that it trusts. This list could be used
to significantly restrict the candidate pool of potential sensors. Since the veri-
fier is not allowed to know anything about the individual that triggered a Digi-
dow transaction. Before that individuals PIA decides to share some attributes,
it has a hard time detecting PIAs. Its knowledge about the attributes that must
be presented for a successful transaction could still enable it to detect PIAs. If
a transaction can only be completed by PIAs that hold certain attributes, the
verifier can safely exclude PIAs without these attributes.

3.2.2 Evaluation

In order to determine the optimal approach towards service discovery, all po-
tential variants must be investigated. Figure 3.2 visualizes that there are six
different sequences in which service discovery could take place. Note that the
process of service discovery can be in three different stages. In stage A none of
the three devices to be involved in a transaction know about each other. During
stage B two of the three devices have already found each other, but the third
is still missing and finally in stage C service discovery has completed when all
three devices know about each other. The focus of this section is on deciding
how the transition from stage A to B should be achieved.

Start with the Verifier?

Although a verifier possesses useful information to restrict the number of sen-
sors that could be involved in a transaction, initializing service discovery from
the verifier is very hard, because they have no way of knowing when a new
transaction is starting. The only way for them to do this, would be to keep con-
stant connections to all their trusted sensors open at all times to learn about
new events at the sensor immediately. Unfortunately, even this is not really an
option because verifiers are much less trusted than sensors, because they are
neither running known code not using a hardware root of trust. This means that

3 Network Architecture 35

Figure 3.2: All possible service discovery options

the sensor is not allowed to share any information with the verifier before the
PIA has confirmed that it wants to execute a transaction with this verifier. This
does not apply in the other direction however, so the verifier might be allowed
to share information with the sensor that it already trusts to enable the sensor
to advance service discovery. One potential scenario where this could work is
access control for a private home where the verifier is operated by the issuing
authority that issued the permission to open the door in the first place. In this
situation, the verifier could provide the sensor with a list of PIAs that would be
allowed to unlock the door. The sensor could then establish connections to all
candidate PIAs and compare if any of them is responsible for the individual it
has detected. If there is no match within the set of candidate PIAs, there is no
need to continue service discovery because the verifier will definitely deny the
request for every other PIA.

Start with the Sensor?

Using the sensor as a starting point for service discovery is the obvious choice
because it knows exactly when service discovery is necessary. Every time a new
biometric is detected, the sensor can initiate a service discovery attempt. Some
of these attempts must be expected to fail if there are individuals that either
do not use a PIA or have a PIA that is currently unavailable. As long as a fail-
ing service discovery attempt does not compromise the privacy of individuals,
failing service discovery attempts are most likely acceptable, especially if they
do not constitute a distributed denial-of-service (DDos) vulnerability because
they are triggered by observing an individual in the physical world. There are
two different ways how a sensor could approach the task of service discovery: It
could use the biometric information it just collected and try to find the PIA that

3 Network Architecture 36

feels responsible for it or it could try to detect the verifier that the individual
wants to prove its attributes to.

Identifying the verifier is probably the easier option, because every sensor
knows who it is being operated by, which often hints at the verifier that is
needed for the transaction. Since the verifier can also detect the sensor, this
raises the question whether sensor or verifier are better suited to initialize ser-
vice discovery if they are both finding each other. Apart from the fact that sen-
sors know better when service discovery is needed, there is a second argument
for having the sensor being responsible for the first step. Most sensors are op-
erated for a specific purpose and this purpose is tied to only one or at least a
very small number of verifiers, while verifiers are more likely to trust a lot of
sensors. Using public transport as an example, checking the digital tickets of all
passengers requires an operator to have sensors either at the access to all stops
or inside all vehicles. Both options will easily result in hundreds of sensors de-
ployed that all refer back to the same verifier. Constructing an example where
a sensor would deal with a similarly sized set of potential verifiers is actually
challenging. Checking in at larger airports might mean that airport sensors are
being used by one out of hundreds of different flight operators, but sensors at
specific gates would only have to support a handful of verifiers at the same time.
During the course of this research, not a single realistic scenario could be iden-
tified where service discovery started by the verifier would have an advantage
over service discovery initiated by the sensor, leading to the conclusion that the
sensor is better suited to initiate service discovery than the verifier.

A vastly different situation presents itself if the sensor tries to find the PIA re-
sponsible for a specific set of biometric features. Without any way to filter the
number of potential PIAs first, the sensor would have to search a dataset of po-
tentially billions of PIAs in order to find the correct one. While there is no sys-
tem in place that regularly compares one biometric against billions of others,
systems like IAFIS [67] have several hundred million biometric templates on
file and law enforcement regularly searches the entire database for matches
with biometric evidence collected at crime scenes. These searches have been
heavily optimized and take between 1 and 2 seconds each [119] which is al-
ready longer than service discovery should take in total. Even more serious is
the problem that a distributed digital identity system cannot use a centralized
biometric database that constantly gets queried by sensors, because that would
give too much power to the entity controlling this database. An attempt could
be made to mitigate this issue by decentralizing the biometric database, but
that would most likely have a significant negative impact on the times needed
to find the matching PIA for a biometric measurement. Even if the distributed
database would provide the same performance, there would be a public reposi-
tory that matches biometric features to the onion address of a PIA, which would
seriously compromise the privacy of transactions within the Digidow network.
This leads to the ultimate conclusion that it would not be desirable for sensors
try and lookup PIAs purely based on biometric information.

Start with the PIA?

The history of transactions known to the PIA provides it with historic loca-
tion information about the individual, allowing it to predict certain actions with
reasonable certainty. For example, an individual leaving their house at 8:00 AM
on a weekday is most likely going to work. If that trip usually happens by bike,
the next sensor that will encounter the individual is located at the employer. If
the trip uses public transport, the next sensor to talk to would be the one at the

3 Network Architecture 37

nearest public transport station. Pulling in relevant circumstances like the cur-
rent weather could make these predictions even more accurate. With those pre-
dictions, a PIA could connect to sensors that are likely to observe their owner, if
they had a way of knowing the physical location of available Digidow sensors as
well as a way to contact them. This would require a public dictionary of avail-
able Digidow sensors that includes their location and their contact information.
Such a list would have to deal with similar challenges as the biometric database
needed by the sensor to discover PIAs. It would have to be distributed to prevent
a single entity from abusing their control over the directory to hide sensors or
track how often sensors are being used. Even then, the contact information for
sensors compromises unlinkability and makes it easy for adversaries to launch
attacks against sensors. To recover service discovery in situations where the
PIA does not predict the movement of an individual correctly, individuals could
use mobile devices like smartphones to inform their PIA about their current lo-
cation, which should be enough for the PIA to connect to the correct sensors.

An almost identical strategy could also be applied to discover the verifier in-
volved in a transaction. If a PIA can determine the physical location of an in-
dividual, it could use that information to reason about potential verifiers that
its owner might interact with in the near future. For example, if an individ-
ual is close to a subway station, the PIA could get in contact with the verifier
of the subway operator. This would require a public directory of verifiers that
ties them to physical locations where they provide services, similarly to how
the detection of sensors would require a public record of their location. Once
the correct verifier has been determined, the detection of the correct sensor
would most likely be easier because the verifier could just provide a limited set
of sensors that it trusts. This approach would be more efficient than discover-
ing sensors because it seems reasonable to expect there to be more sensors than
verifiers for a public digital identity system, but it would also put verifiers in a
more powerful position than necessary. Considering that PIAs are making edu-
cated guesses rather than knowing for certain what an individual will do, there
will be a significant number of false positives, especially for verifiers like public
transport providers that service large areas, as they are likely to be consistently
contacted by everyone moving around their service area. Even if verifiers were
unable to link those requests to certain individuals, verifiers would still obtain
information about public movement patterns that would not be exposed if PIAs
identified their sensors directly. Ultimately, both variants of service discovery
triggered by the PIA appear to be viable, with detecting the sensor first being
more privacy preserving, while detecting the verifier first would most likely re-
duce the time needed for service discovery. Based on this consideration, the
first implementation of service discovery will try to detect the sensors directly
and only if this approach is not fast enough, discovering the verifier instead will
be evaluated.

3.2.3 Finalizing Service Discovery

Figure 3.3 shows that analyzing potential candidates for initiating service dis-
covery has already ruled out 3 out of 6 possible options. And one of those
options—the option to have the PIA discover the verifier first—has already
been found to be less desirable than its alternatives. This leaves two competing
approaches that need to be evaluated in order to reach a final decision:

3 Network Architecture 38

Figure 3.3: Remaining possible service discovery options

Information available to sensor and verifier

Obviously, a cooperation of sensors and verifiers has access to all the informa-
tion they had individually (see section 3.2.1), so the key aspect here is the ad-
ditional information they can produce by cooperating. Unfortunately, this co-
operation is hampered by the fact that a sensor must not reveal the biometric
information it collected to the verifier, since the permission to do this can only
be given by the PIA after it has been discovered. Apart from the biometric in-
formation, the sensor does not have any information about the individual. The
other directions would be less of an issue, so if the verifier has any information
about the PIA it could share that with the sensor. As discussed in section 3.2.2,
the verifier can limit the number of candidate PIAs based on the attributes that
it would accept from the PIA if it could be found, which would enable the sensor
to only compare its biometric against a limited set of PIAs.

Information available to PIA and Sensor

The cooperation between PIA and sensor can take a relatively simple approach
to discover the correct verifier for a transaction. In most situations, the sen-
sor will know the only verifier that trusts it and therefore be able to directly
provide the answer. However, in the unlikely event that the sensor does not
know the correct verifier to communicate with, the PIA can still check its own
transaction history to see if this sensor or similar sensors were used with spe-
cific verifiers in the past. If the sensor is unsure between multiple verifiers, the
PIA could check if it holds any attributes that would indicate a specific verifier.
An example for such a situation would be an event where three different ven-
dors were given permission to sell tickets. The sensors at the entrance would

3 Network Architecture 39

be aware that every ticket has to be confirmed by one of the three verifiers, but
they would have no idea where a specific individual purchased their ticket, so
they could only provide a list of several candidate verifiers to the PIA, which
would be able to select the correct verifier based on the ticket that it has stored.

Use Sensor and Verifier

As discussed in the previous sections, the information that can be shared be-
tween a sensor and a verifier reveals very little about the individual interacting
with the sensor. The only easy scenario would be a verifier that knows the small
group of PIAs that could potentially provide valid attributes. Scenarios like ac-
cess control for personal office space could be handled this way, but even this
approach comes with a downside. If PIAs need to provide their contact infor-
mation to verifiers, they have no way of knowing how the contact informa-
tion could be abused later on. Contact information like onion addresses may be
anonymous, but they are still linkable so a collaboration of malicious verifiers
would be likely to find out if they have a shared subset of users. Even if that issue
could be solved, there are still scenarios where this approach towards service
discovery is not feasible. Verifiers for public transport in cities for example are
very likely to handle up to several million users every day. Such verifiers would
end up having to go through a huge list of PIAs and doing a biometric compar-
ison with each of them, an approach that does not scale and would most likely
take way longer than acceptable. Lastly, there are plausible scenarios where
verifiers might have no idea about the PIA because there was no enrollment
step that would have told the verifier about a new candidate PIA. Age verifi-
cation in front of clubs is one example for such a scenario. A club would most
likely accept any government issued attributes that confirms the individual’s
age to be above 18, setting the pool of potential PIAs to almost all running PIAs.
At this point the issue discussed in section 3.2.2 comes into play again. If the
verifier cannot provide the contact information of a few PIAs that the sensor
should contact, the sensor only has the biometric template to work with and—
as discussed in section 3.2.1—searching PIAs in a global database indexed by
biometric features is not feasible.

The only way to resolve these problems would be to introduce auxiliary infor-
mation that helps sensor and verifier to discover the PIA. This could be as sim-
ple as a QR code scanner included within the sensor that can be used to give the
sensor the contact information of the PIA, if it cannot detect the PIA automat-
ically. To keep user interaction down to a minimum, sensors or verifiers would
have to cache new contact information for PIAs that successfully completed a
transaction. Otherwise, users would have to keep providing their PIA’s contact
information which would most likely not be accepted by users. Even with this
auxiliary information, service discovery would still have a scalability problem
if there are too many PIAs that need to be contacted individually. This could
be solved by giving up on caching for larger verifiers and just requiring users
to always present their PIAs contact information, but in this case identifying
individuals directly based on a token they carry would be the more efficient so-
lution.

Use PIA and Sensor

PIA and sensor can always discover the verifier with the same certainty as the
sensor can on its own. Even when the sensor is uncertain because there are
several candidate verifiers, the PIA can either decide based on its transaction

3 Network Architecture 40

history and stored attributes, or it can contact all candidate verifiers and ask
them for the attributes they require and the service they provide. This approach
would support all the different scenarios that required special attention before
without removing support for any other type of scenarios. Consequently, a ser-
vice discovery process where the PIA identifies potential sensors first and then
discovers verifiers based on information from the sensors should be best suited
to support all potential use cases of a distributed digital identity system.

3.3 The Sensor Directory

As discussed in section 3.2.1, PIAs require a public directory of available Digi-
dow sensors along with their contact information and their location to identify
and connect to sensors that their owner is likely to interact with. The research
conducted for this thesis resulted in the inclusion of a sensor directory within
the Digidow architecture in Figure 2.1. While the implementation details for
the sensor directory are not part of this thesis (as they are still part of active
research), the requirements it is expected to meet will be presented here:

3.3.1 Functional Requirements

The sensor directory should maintain a list of available Digidow sensors
comprised of the geographical location, type (which kind of biometric is
it recording), identity key and contact information. Every entry within the
sensor directory should be signed with the private key that matches the
public key listed in the entry to prevent unauthorized modifications. Op-
tional fields for the operator of the sensor, the purpose of the sensor, or the
attributes that its verifier will require should also be available.

Digidow sensors should be able to register within the service directory, by
either creating a new entry or updating their old entry.

PIAs should be able to query for all Digidow sensors available in a specified
area or for all sensors within the proximity of a specified location.

PIAs should be able to request all updates made to the sensor directory
without having to download the entire list of sensors.

PIAs need to be able to request a checksum over the entire database that can
be used to validate the overall state of the database.

3.3.2 Privacy Requirements

No single entity must be able to monitor or manipulate requests made
against the sensor directory.

Sensors must never be removed from the database, they can only be updated
to be discontinued.

The sensor directory must be able to prove to PIAs that it is operating as
intended.

The sensor directory has to respond to requests from PIAs quickly enough
to not negatively impact the performance targets set in section 1.2.

3 Network Architecture 41

3.3.3 Potential Approaches

Some readers may have already started thinking about the Blockchain [94]
when the requirement for a distributed public directory was introduced. From
a functional perspective, a blockchain could indeed be used to store the infor-
mation about available sensors, but it does come with the classic challenges.
A proof-of-work blockchain wastes a lot of resources that could definitely
be spent more efficiently on other tasks and it would have to find a way to
reimburse the users who contribute their resources. A proof-of-stake based
blockchain might be an acceptable solution, but would still introduce the chal-
lenge that these stakeholders would suddenly be able to prevent sensors from
registering within the sensor directory.

Another established solution for sharing this kind of information is the ap-
proach taken by PGP keyservers [113] that provides far less structure but gives
PIAs more choice in their selection of information sources. Since the informa-
tion from the sensors could be independently verified by every client, there is
no need to go through a proof-of-stake procedure before including a new sen-
sor in the list. Obviously, the time until a new sensor has propagated to all key-
servers might be an issue and so is the question who would operate them. If
there are not enough of them, individual key servers might again be able to in-
fer information about individuals location based on the requests made by their
PIAs.

Lastly, the approach taken by the Tor project to publish service descriptors—
the hidden service directory—could also serve as an example for how the sen-
sor directory could be designed. It definitely serves as an example how critical
information about individuals from such a shared database [11, 102] can be un-
intentionally leaked. Unfortunately, many of the strategies of the HSDir do not
apply to the sensor directory, because sensors do not have knowledge of any
keys that the sensor directory would not be aware of and data would be retrieved
in chunks which would make it more complicated to randomly spread out in-
formation across multiple participants. The process of evaluating the various
possible implementations of the sensor directory is a research question of its
own that is currently pursued by other researchers within the Digidow project
and therefore no subject of further discussion in this thesis.

3.4 Threat Model

3.4.1 Threats

In every digital identity system there are two types of participants with legiti-
mate interests. Users (PIAs) who want to access services and verifiers who grant
access to services. Both of them can suffer from privacy violations and there-
fore require protection of their data and legitimate interests.

Threats against users

Users—or more specifically their PIAs—could be targeted in several ways. The
obvious network attack is a passive adversary monitoring their communica-
tion to learn the contents and patterns of their conversations. Even if the con-
tents of the conversation cannot be accessed, information about when and how
often a PIA communicates with sensors, verifiers or issuing authorities com-
promises the user’s privacy. Similarly, the absence of communication can also

3 Network Architecture 42

reveal privacy sensitive information about a user, by telling an attacker that a
user has not used any of its digital identities during a specific period of time.
Even communication not directly related to the digital identity system, like re-
solving hostnames via DNS, requires connections to a third party that leak pri-
vate information about a user.

Unfortunately, traffic monitoring is not the only way in which PIAs could be
targeted. Active attackers could conduct man-in-the-middle attacks to mod-
ify the communication between entities and trick devices into revealing more
information than they should or just outright sabotaging the availability of
the digital identity system entirely. As a final resort, adversaries also have the
option of actively dropping network traffic from selected PIAs to render their
owners unable to use their digital identities. The same could also be achieved by
standard distributed denial-of-service attacks, which most PIAs are unlikely to
withstand.

Threats against verifiers

Verifiers are mostly expected to be operated by organizations rather than indi-
viduals, but the threats they face are still similar, although their priority shifts
as availability becomes more important than privacy. If the business of a com-
pany depends on the availability of verifiers so customers can access its ser-
vices, attacks that prevent network access for clients are more of an issue for
them, than it is for the clients. There are also legitimate confidentiality inter-
ests that apply to organizations, mostly in terms of how many customers they
have, at which point in time the customers use its service, and who those cus-
tomers are. The verifier itself receives all the necessary information via the at-
tributes provided by the PIA, so there should be no other information leaking
out that competitors could use to learn more about a specific business.

3.5 Attackers

This section lists the various types of attackers that could try to attack the net-
work of a distributed digital identity system. They are grouped by their capa-
bilities, not by their intentions because most attacker types could potentially
target either PIAs or verifiers.

Perfect global passive adversaries are entities that can observe the entire
global network traffic at a given point in time. There are no public indica-
tions that such entities currently exists in the real world.

Global passive adversaries are attackers capable of passively observing a sig-
nificant amount but not all global network traffic. Some intelligence agen-
cies have been shown to possess this capability [88].

Local passive adversaries are attackers with the possibility to monitor net-
work traffic at one specific location. There exists a wide range within this
category from large entities like internet service providers or operators of
internet exchange points down to operators of public WLANs or attackers
controlling the router in a private home. Typically, global passive adver-
saries obtain their information by forcing multiple local adversaries to hand
over their data.

Global active adversaries are capable of modifying a significant fraction of
the global network traffic and have the resources to deploy a significant

3 Network Architecture 43

share of network devices to add their own traffic. This kind of adversary
might deploy their own malicious sensors, PIAs, verifiers or Tor relays to
achieve its goals. China’s great firewall [37] is one example for such an ad-
versary.

Local active adversaries can manipulate traffic at one specific location or de-
ploy a few malicious devices within a network to obtain more information.

3.5.1 Countermeasures

Fortunately, many of the threats listed above can be tackled with established
strategies. Preventing eavesdropping, tampering, and message forgery can be
achieved by adopting standard cryptographic protocols like TLS [110] (as long
as certificate checks are performed correctly). This prevents active attackers
from modifying messages and passive adversaries are left unable to read the
contents of the messages exchanged between communication partners. This
still leaves the meta-information of who is communicating with whom un-
protected, so the network anonymity tools from section 2.2 also need to be uti-
lized. As discussed in section 2.3.2, the Tor network was identified to be the best
currently available tool for digital identity systems, although it does not pro-
tect against perfect passive global adversaries. Protecting the anonymity of both
communication partners is best achieved by communicating via onion services,
which also adds a default end-to-end encryption to all communication, re-
moving the need for an additional TLS layer. Onion services are also beneficial
in another way as they remove the dependence on external services like DNS
that would negatively impact privacy.

A significant part of our privacy objectives can be achieved by using the Tor
network and onion services, but there are some areas where the Tor project’s
primary goal of network anonymity is actually not sufficient to ensure network
privacy in a distributed system. Consider for example passive adversaries that
have the capability to monitor a part of Tor’s hidden service directory. Without
any further access to the network traffic of a sensor, they could find out when
and how often a specific sensor is being contacted. For a sensor that is used to
open an office door, this information would leak information about the work-
ing hours of the individual working behind that door. To protect against such
attacks by passive adversaries, the networking architecture for a digital iden-
tity system should aim for a new property that will be defined in this thesis as
network unlinkability.

3.5.2 Network Unlinkability

RFC 6973 [22] defines unlinkability as the inability of an observer to tell if two
items of interest (IOI) are related or not. If IOI’s have at least one unique iden-
tifying attribute, unlinkability can only be achieved within specified sets of in-
formation. In the context of network unlinkability, protocol information like
IP addresses or TCP ports are standard examples of IOIs. The amount of traffic
exchanged via a TCP session or the times when data is sent are further exam-
ples for IOIs that enable an observer to reason about the activity of a client. The
adaptation of onion routing does not prevent an observer from measuring any
of these values because onion routing still uses TCP connections between the
various circuits, but it reduces the amount of information they carry. Since a
Tor client will typically only use two different guard relays, an observer moni-
toring outgoing traffic will only see active TCP connections between the client

3 Network Architecture 44

and its guard, which tells the observer that communication via the Tor network
is taking place. It is impossible to determine who is being communicated with
or how many different communication partners there are, but the times dur-
ing which communications happen as well as the amount of data exchanged
remains visible to an observer. Since Tor uses padding to make most of its cells
have the same size, the only IOI for which a passive attacker can identify rela-
tions easily is the timing of transmitted cells. More active attackers have other
options as well, most notably via the hidden service directory. Joining the HS-
DIR with a few relays is easy for attackers with moderate resources, and allows
them to see the uploads and downloads of their fraction of the distributed hash
table. Within this fraction, they can easily find out if upload and download re-
quests are made for the same service descriptor (they need to know that in or-
der to respond with the right answer) enabling them to track the usage of some
onion services every day.

Network Unlinkability vs. Network Anonymity

An important observation to make at this point is that networks like Tor were
designed with network anonymity in mind, meaning that adversaries should
be unable to discover the network location of Tor users. This does provide a
measure of unlinkability, because some IOIs need to be removed to conceal the
clients network location. In other regards, like the hidden service directory, the
difference shows quite openly. Tor protects the anonymity of the operator and
visitors of an onion service, but it does not protect the information about when
and how often an onion service is being connected to. Most likely, Tor had to
decide between performance and more unlinkability in this case and decided to
accept a degree of linkability in return for faster translation of onion addresses
into service descriptors. Another example for network linkability within the
Tor network are the guard relays used by onion services. These guard relays
know about outgoing circuits established by the Tor client, and onion services
have a very peculiar pattern when it comes to circuit creation. There are usu-
ally three long-lived circuits that are kept open for weeks or even months that
are only ever used to receive incoming cells without any outgoing cells, and
most incoming cells cause the creation of new circuits. Every guard relay can
use the IOIs of traffic sent via circuit and time of circuit created to detect if
a client is operating an onion service (the regularly occurring 16 uploads to
the hidden service directory might be a hint as well). None of this weakens the
anonymity of the onion service (the guard knows its network location anyway),
but it demonstrates that providing anonymity does not provide unlinkability.
Ultimately, this discussion circles back to the difference between onion rout-
ing and mix networks. As long as onion routing forwards traffic in real time, the
timing of messages becomes an IOI that can be used to link traffic, and even if
it does not compromise the anonymity of a Tor client, it might still leak privacy
sensitive information about users of digital identity system. Every interaction
within the network architecture must be designed with this limitation in mind
to minimize the privacy impact of time based correlation attacks on the privacy
of Digidow’s users.

3.5.3 Acceptable Risks

As a final part of the threat model, it is important to acknowledge risks that are
inherent to every identity system and should not be overstated. When evaluat-
ing both security and privacy risks introduced by a distributed digital identity
system, the key objective should be to ensure that there are no new security or

3 Network Architecture 45

privacy issues that are either easier to exploit than before or work on a larger
scale than before. For example, we do know that onion routing is vulnerable to
timing analysis, so there is a risk that adversaries might deanonymize commu-
nication routed via the Tor network. This could tell an attacker that one specific
PIA communicated with a sensor or a verifier for example. While this is consid-
ered a risk under this model, the same information could also be obtained by
simply following the person in the physical world and seeing it successfully in-
teract with a sensor. This approach taken by physical adversaries is much more
reliable—as the attacker can select the target in advance—and almost impos-
sible to avoid. Fortunately, it does not scale at all, so adversaries are only able
to monitor a very small set of individuals. The privacy protections provided by
the Tor network (not being able to selectively or reliably deanonymize users)
ensure that surveillance by monitoring network traffic is less efficient and re-
liable than physical surveillance. We conclude that there is no need for our pro-
posed Digidow architecture to be free of all risks, it is sufficient if the risks in-
cluded are so small compared to the risks inherent to identity systems that no
reasonable attacker would choose to exploit them. Such risks are considered as
acceptable risks for the network architecture.

The usage of onion routing over mixnets is a good example for such an accept-
able risk. Yes, onion routing will allow attackers to sometimes deanonymize
some interactions, but the vast majority of communication will be protected.
Adversaries with the capability to launch large scale attacks on the Tor network
would focus their attention on other mechanisms like physical surveillance or
forcing verifiers and issuing authorities to hand over data. As long as onion
routing prevents both large-scale and targeted deanonymization of commu-
nication, it reduces the risk of passive adversaries to an acceptable level.

3.6 Securing Network Interactions

3.6.1 Publishing a Sensor

The interaction between a sensor and the sensor directory requires very lit-
tle protection. Information exchanged between these parties is intended to be
published, so there is no need for confidentiality. Even if the publication fails,
the sensor already intended this information to be public, so there is no rea-
son to keep the content confidential. Furthermore, the sensor directory does
not receive any privacy sensitive information during this interaction, it only
learns information about a sensor which has no right to privacy. Significantly
more important than confidentiality is the integrity of the published infor-
mation. To ensure that a sensor provides meaningful information, their pub-
lished information must carry a signature that can be verified with the public
key they are publishing. Most likely, the published contact information should
also be tested before the sensor is accepted within the sensor directory, but this
is not relevant for the network protocol, and therefore remains future work for
the research on the implementation of the sensor directory. From a network
anonymity perspective, sensors have no reason to hide that they are commu-
nicating with the sensor directory. Their existence, location, and identity is re-
vealed by the sensor directory already, and communication with the sensor di-
rectory is part of their normal operation. Similarly, the sensor directory has no
need for network anonymity because its operators need to be known publicly
anyway to ensure that users can trust them to not abuse their position within
the Digidow infrastructure.

3 Network Architecture 46

There is one argument for publishing sensor information anonymously and
that is that it makes it harder for passive adversaries to tell the difference be-
tween a sensor publishing new data and a sensor contacting a PIA. However,
since publishing to a sensor directory does not happen very frequently and can
be tracked via the public service directory, this argument has little weight. This
leads to the conclusion that no specific protections are necessary for this in-
teraction.

3.6.2 Requesting Sensor Information

Downloading information from the sensor directory is more sensitive than up-
loading because it might reveal information about the activity of a user. For
example, if a PIA asks the sensor directory for sensors located at an airport,
then the sensor directory can assume that the owner of the PIA is most likely on
their way to the airport. Several mitigations must be combined to prevent the
sensor directory from leaking this kind of privacy sensitive information. First,
PIAs should maintain a local copy of the list of sensors at locations that their
owner visits regularly and periodically synchronize their internal list with the
up-to-date information on the sensor directory. This periodical update must
be sufficiently randomized so that there is no time based correlation between
the requests sent to the sensor directory by a PIA and the individuals physical
location and movement. Obviously, trips that take an individual around half the
globe would still force the PIA to respond with specific requests to the sensor
directory, so further protections are needed. Different requests sent to the sen-
sor directory must be unlinkable for both passive observers and the sensor di-
rectory itself to prevent patterns from being observed. To achieve this, PIAs are
only allowed to establish connections to the sensor directory via the Tor net-
work. With network location and request timing being handled, there remains
one other IOI that could be used to link multiple requests from the same PIA,
namely the area in which it is interested. If a PIA always asks for sensors in a
5 mile radius around the current position of its owner, requests can be linked
based on the assumption that the owner is not very likely to move while asleep
which ultimately reveals the home location of the PIAs owner. To prevent this,
PIAs could ask for random positions in the proximity of their owner and adapt
the search radius to still learn about all the relevant sensors. While this works
well in densely populated areas with many PIAs making overlapping requests,
sparsely populated areas would not benefit from this approach if all requests in
a larger area are linkable because there is only one individual living there. The
safer way to synchronize with the sensor directory is therefore to group sen-
sors by established geographic areas like for example postal codes. Asking for
all sensors in Vienna for example, would be a request that millions of PIAs could
plausibly make, and if the requests come via Tor, a malicious sensor directory
is left without any way to find out if two requests are related or not.

One question that will arise several times during the discussion of the network-
ing scheme is the use of Tor onion services for connections that only require
privacy for the client. When retrieving information from the sensor directory,
the sensor directory might—as argued in section 3.6.1—have no need for net-
work anonymity so the connection could just be established via a regular Tor
circuit, which should be more efficient considering that onion service connec-
tions are more complex to set up. On the other hand, the Tor network is cur-
rently mostly limited by the bandwidth of exit nodes. Using Tor onion services
instead of regular Tor circuits might therefore be more efficient, especially with
Tor’sHiddenServiceSingleHopMode that allows an onion service to willingly give
up its own network anonymity in return for better connection speeds. For the

3 Network Architecture 47

purpose of this thesis, we are working with the assumption that onion service
connections are the more efficient choice, but there is no solid research avail-
able yet to back this assumption. Based on this assumption, we expect PIAs to
connect to the sensor directory via Tor onion services.

3.6.3 Issuing Attributes

The attributes issued to a PIA are private and sensitive information, so this
interaction must protect integrity and confidentiality of the exchanged data.
Network privacy is also an issue because information on which PIA received
attributes from which issuing authorities is privacy sensitive. If you receive at-
tributes from the Austrian state printing house for example, you are most likely
to be an Austrian citizen. To account for this requirement, a PIA should only
accept issued attributes via a Tor onion service, allowing issuing authorities to
make incoming connections. This conceals not only the network location of the
PIA, but also the network location of the issuing authority. While large official
issuing authorities are likely to operate in public, there is no need for issuing
authorities to reveal their contact information or network location. Some is-
suing authorities may have good reasons to conceal when and how often they
issue attributes. As an example, consider an organization that offers consult-
ing to woman considering abortion. In some countries, such a consultation is
mandatory before an abortion can be conducted legally, so the consultants have
to issue an attribute that a woman received such a consultation. Obviously, the
privacy of the women would be significantly compromised if outside observers
could monitor when a woman is receiving this attribute.

3.6.4 Communication with the PIA’s Owner

The communication between a PIA and its owner requires the highest level of
security. It contains information about the owner’s physical location or at-
tributes that the PIA wants to share with verifiers, both very privacy sensitive
pieces of information. Additionally, integrity or authentication failures would
enable attackers to fully impersonate the owner. Aside from confidentiality and
integrity, network privacy is again an issue. Communication between a PIA and
its owner’s smartphone takes place at specific occasions, so being able to link
these connections together constitutes another privacy risk. By having conver-
sations between the PIA and the owner’s smartphone take place via Tor onion
services, this risk can be reduced. However, this communication is very likely to
remain linkable for certain attackers even if it takes place via Tor onion services.
Mobile network providers can track when messages are sent to a smartphone,
even if the messages comes from within the Tor network, and the network
traffic of the owner who operates the PIA is again visible to the internet ser-
vice provider. Since both of those providers have contracts with the owner that
contain linkable information, they can quite easily use timestamps to identify
when and how often a PIA communicates with the smartphone of its owner.
Delegating operation of a PIA to a third party does not resolve this issue, but
it adds one more entity that has conspire to compromise the owners privacy.
The best way to mitigate this issue for now, is to operate the PIA directly on the
smartphone itself, but this comes with significant other limitations in regard
to power and available performance. This is one of the reasons why the long-
term goal of the Digidow project is a state where user interaction is no longer
necessary because the PIAs can resolve all issues on their own. Once this goal is
achieved, this privacy issue will be solved.

3 Network Architecture 48

3.6.5 Digidow Transactions

Every Digidow transaction consists of multiple interactions that need to be se-
cured. The first communication happens between the PIA and the sensor when
it sends the register message. Both passive adversaries and the sensor itself
should not be able to find out if two registration requests were made by the
same PIA, i.e. registration requests should be unlinkable. Otherwise, it would be
possible to both find out who a PIA belongs to and what an individual is doing in
the physical world, by collecting and analyzing register requests. As a first step,
network anonymity can be achieved by onion routing communication via the
Tor network. Technically, the sensor itself does not require network anonymity
but due to the considerations presented in section 3.6.2, it is most efficient to
use onion services for this kind of connection. This effectively decides that the
contact information published in the sensor directory has to be an onion ad-
dress (although the possibility of publishing onion service descriptors instead
is investigated in section 7.2). Unfortunately, this is not sufficient to ensure un-
linkability because the information included within the request could also serve
as IOIs like the callback information or the biometric comparison data. While
unlinkable biometric data is not within the scope of this thesis, unlinkable net-
work callback information definitely is. Simply using a static onion address as
callback information is infeasible because it breaks unlinkability. Thankfully,
there is no limitation on the number of onion services that a single Tor client
can operate in parallel, so PIAs can just create a new onion service for every reg-
ister request. This approach comes with significant performance and scalability
costs that will require further optimization.

After a successful registration, the connection between the PIA and the sensor
is closed. This is a strong contrast to other established notification systems like
Google’s Firebase Cloud architecture [44] that expects devices to keep a long
lived connection open to receive responses. Unfortunately, this is not feasible
in a distributed setup because a PIA will have to register at lots of sensors that
will never have a reason to respond to them with a match message. Keeping all
of these connections open would be wasteful and put unnecessary burden on
the Tor network. It should be acknowledged at this point that the chosen alter-
native of creating onion services also requires at least one introduction circuit
per registration, so the number of connections is not reduced as much as one
might initially assume. However, an active onion service connection requires
two active circuits instead of just one, so the Pub/Sub approach still halves the
number of required circuits and Tor can optimize introduction circuits for their
purpose while the circuits for onion service communication have to be gen-
eral purpose circuits. Another argument against keeping connections open can
be made by considering the perspective of passive adversaries. If they monitor
long-lived connections, they can easily link register requests with their match
responses, and they can even track which registrations resulted in a match. By
having more short-lived connections that all transmit a very similar amount
of information, attackers monitoring the network have to rely solely on timing
to link various messages. These reasons lead us to believe that a Pub/Sub based
approach with multiple messages is the best option for this interaction.

Since the match response has to be sent to the callback destination included
in the register request, there is little left to discuss. This message is sent to
a Tor onion service, which provides anonymity to the PIA and the client as
well as integrity and confidentiality protection by using end-to-end encryp-
tion and digital signatures. Unfortunately, there is no functionality like an in-
verted HiddenServiceSingleHopMode that allows Tor clients to give up their own
anonymity in order to improve their performance when communicating with
Tor onion services. This feature (Tor2WebMode) did exist in the past and was

3 Network Architecture 49

removed because it was incompatible with various brute-force protections in-
troduced by the Tor network [46]. This means that onion service connections
always ensure the network anonymity of the client, even if the client does not
need it.

Similarly to the communication between PIA and sensor, the communication
between PIA and verifier usually requires one-sided network anonymity. Most
verifiers have to make their contact information public to enable PIAs to con-
tact them and information on when and how even they are being used can be
obtained by monitoring the sensors trusted by the verifier. However, the ver-
ifier is not allowed to learn anything about the identity of the PIA before the
attributes are transmitted. Most notably, the verifier must not be able to distin-
guish various inquire requests to prevent it from requesting different attributes
from different individuals. Since the contents of the inquire message are static,
it is sufficient to communicate via the Tor network to meet this requirement.
This results once again in the debate between onion services vs. regular Tor
connections to a public service, and—as argued in section 3.6.2—the best so-
lution is for verifiers to operate an onion service inHiddenServiceSingleHopMode
that can be contacted by the PIA.

3.6.6 Unresolved Threats

Aside from actively communicating devices, there remain several other targets
for potential attackers. The most typical target would traditionally be the owner
of a PIA targeted via social engineering. One could for example set up a sensor
close to a public transport station and have it recommend a verifier with a dan-
gerously similar name to that of the public transport company. This could trick
many users into sharing their attributes with them because they believe they
are only sharing it with a trusted public transport company. Similar tricks could
be applied to get a PIA to reveal more attributes than it should to a verifier. On
a more technical level, Tor onion services depend on several other Tor relays
that might be operated by malicious entities. Since sensors have to publish their
onion addresses in the sensor directory, they are publicly available to attackers.
By translating the onion address to a service descriptor, an attacker operating
a large number of Tor relays can find out if it acts as introduction point for any
sensors. If yes, the attacker can either count the number of INTRODUCE1 cells
received for the onion service or it can decide to restrict access to the sensor by
responding with INTRO ACK cells without actually forwarding the introduction
request.

Finally, the anonymous nature of the Tor network makes onion services es-
pecially vulnerable to DDoS attacks. The general strategy of dropping traffic
early is impossible due to the end-to-end encryption and the effort of creating
an onion service connection is significant because a new circuit must be cre-
ated for every single one of them. The Tor project is aware of this issue [5] and
has tried to mitigate it by enabling onion services to set optional limits on the
number of introduction requests that the introduction point is allowed to for-
ward. Unfortunately, this approach drops legitimate and illegitimate introduc-
tion requests equally, so it constitutes only a very limited solution. There are
proposals to address this on a general level by adding a proof-of-work based
challenge to introduction requests [70] if an onion service experiences un-
usual load, but this has not been implemented yet. In our network architecture,
sensors are likely to experience the most denial-of-service attacks. Their ad-
dresses are publicly available, they are easy to contact and easy to overwhelm.
Even if they can handle the attack on a pure network level, a lot of registra-
tions increase the number of comparisons a sensor has to do for every biomet-

3 Network Architecture 50

ric measurement and it is very likely that a distributed denial-of-service at-
tack can quite easily prevent a sensor from identifying legitimate users trying
to interact with it. Hopefully, the Tor project will put forward DDoS mitigations
that are powerful and flexible enough to fulfill the requirements of a distributed
digital identity system like Digidow.

Summary and Next Steps

The presented networking scheme provides several significant benefits. It re-
duces the number of mandatory messages exchanged between devices down to
three, with the first message being sent ahead of time so the user only has to
deal with the latency of two messages until the verifier makes a decision. This
should keep the overhead introduced by onion routing within the Tor network
down to a minimum. It also works well to protect the privacy of PIAs because
they do not show up in any public directories (and even if they would, they
only accept incoming connections when receiving attributes or listening for
responses to their registrations) making it almost impossible for active adver-
saries to connect to them directly. They would have to operate a malicious sen-
sor that passes the hardware root-of-trust check by the PIA to get valid onion
addresses of PIAs and even then the attack surface would be limited because
there is only one message the PIA expects to receive from the sensor. If a PIA
receives any other message, it can just disable the onion service, preventing the
attackers from communicating with it any further. Unfortunately, the scheme
also leaves several challenges open whose resolution will be the main content
of the remaining thesis.

Chapter 4 will discuss the privacy challenges tied to the hidden service direc-
tory. Which kind of information does it reveal, could attackers realistically ob-
tain that information, and what implications does that have for distributed
systems constructed on top of the Tor network. Chapter 5 investigates the im-
pact of creating multiple onion services at the same client to have multiple un-
linkable onion service addresses available. The main focus of this chapter will
be on the time and resources required to establish new onion services. This
was necessary because there was no research data available on this topic and
lengthy onion service creation times could delay registration requests from
PIAs to a point where the owner of the PIA has already been detected by the
sensor. Chapter 6 will investigate the structure of the Tor network as a whole
with a focus on the decisions made by the directory authorities. With the deci-
sion of Tor’s directory authorities being essential to the functionality of the Tor
network and thus also to every privacy preserving distributed system using the
Tor network, this seemed necessary to ensure that trust in the Tor network is
justified. Chapter 7 will utilize the knowledge gained from the previous chap-
ters to introduce several changes to the Tor application that would enable it
to better support distributed applications running on top of the Tor network.
While all suggested improvements are useful within the proposed networking
scheme, most should be beneficial for a range of different systems constructed
on top of the Tor network.

Chapter 4

Monitoring the HSDir

This chapter describes an experiment conducted to find out how much infor-
mation an active adversary with limited resources could obtain about the usage
of Tor onion services by controlling a fraction of the hidden service directory.
Parts of this research were already published at FOCI’21 [60] and at the official
blog of the Tor project [58].

4.1 Preparation

Analyzing the differences between version 2 [126] and version 3 [127] onion
services reveals that the Tor project has already gone to great lengths to pre-
vent information leaks from the hidden service directory. Nevertheless, the
distributed and anonymous nature of the HSDir makes it impossible to fully
prevent information disclosure. In order to quantify the negative privacy im-
pact of the hidden service directory when using Tor onion services, a group of
Tor relays was deployed within the Tor network with the explicit goal of col-
lecting information about how onion services are being used. The design of that
experiment was inspired by previous research from Owen and Savage [102] that
conducted a similar study for version 2 onion services. The basic idea behind
this approach is very simple. Deploy several Tor relays that qualify for the HSDir
flag and modify them to print a log messages if they receive a request to publish
or download a service descriptor. Aggregating the information from multiple
relays over extended periods of time should then reveal valuable information
about how onion services are being used.

4.1.1 Ethical considerations

Ethics are always an issue if research is conducted on systems that are being
used by individuals that did not agree to be part of the research. This becomes
even more important if research is conducted on an anonymization network
like Tor because there might be users whose life or safety depends on them re-
maining anonymous. Therefore, research has to be conducted carefully to not
endanger any Tor users. Thankfully, the Tor project does operate their own re-
search safety board [121] that supports researchers in conducting experiments
on the Tor network safely. One issue discussed in section 3.5.2 is that nodes
within the hidden service directory can learn when service descriptors for spe-
cific services are being downloaded. Unsurprisingly, the Tor research safety
board agreed that collecting this information puts Tor users at risk and rec-
ommended that the exact timestamps of upload and download requests should
not be stored. They provided many other guidelines as well that significantly
improved the experiment. The following sections describe the final experiment
setup including all the protections recommended by the research safety board.

51

4 Monitoring the HSDir 52

4.1.2 Technical Details

For this experiment, we deployed a set of 50 Tor relays (family: 008196DC-
449482C73CFA9712445223917F760921) which meet the requirements to obtain
the HSDir flag and log every upload and download of a V3 service descriptor
by adding two new log statements (see Listing 4.1 and 4.2) to the Tor source
code. Instead of writing those logs to disk, they are directly handled by a log
listener attached via the control protocol [122] which extracts relevant infor-
mation from the descriptors, sorts them alphabetically and stores it in a SQL
database. Just like the relays, this database was operated by us within our own
network on our own hardware. For every upload we store the blinded public
key, the relay that received the upload, and a timestamp that only contains the
year, month, day and hour of the upload. For downloads we store the same data,
except that the timestamp are reduced to daily granularity.

Listing 4.1: Logging upload requests hs_service.c

176 log_info(LD_REND, "New blinded public key: %s",blinded_pubkey);
177 /* Store the descriptor we just got. We are sure here that either
178 * we don't have the entry or we have a newer descriptor and the
179 * old one has been removed from the cache. */
180 store_v3_desc_as_dir(desc);

Listing 4.2: Logging download requests dircache.c

1367 /* After the path prefix follows the base64 encoded blinded
1368 * pubkey which we use to get the descriptor from the cache.
1369 * Skip the prefix and get the pubkey. */
1370 tor_assert(!strcmpstart(url, "/tor/hs/3/"));
1371 pubkey_str = url + strlen("/tor/hs/3/");
1372 retval = hs_cache_lookup_as_dir(HS_VERSION_THREE,
1373 pubkey_str, &desc_str);
1374 // Requested public key
1375 log_info(LD_DIR, "TTH: Received Request for Descriptor "
1376 "with ID: %s", pubkey_str);

4.1.3 Privacy considerations

In this section we describe the various privacy risks faced by the experiment as
well as the solutions applied to mitigate those risks.

DataManagement

Access to the machines involved in the experiment was exclusively granted
to the members of our research team responsible for the experiment. The
database with the collected information will be retained as long as our research
is ongoing. Once the research is concluded, the raw data will be erased perma-
nently.

4 Monitoring the HSDir 53

Traffic correlation

On a basic level, our stored data reveals which requests were made to our relays
at which time. This might allow an attacker to combine this information with
other data sources to launch time-based traffic correlation attacks. To mitigate
this issue, we decided to drop all metadata about the requests and to truncate
timestamps at the hour value for all uploads. For downloads we saw a greater
risk of attack, because they have to be triggered by clients manually, while up-
loads happen automatically and semi-regularly. Therefore, we decided to cut
upload timestamps at the day value instead of the hour. This should render our
data useless for time-based correlation attacks, without impacting statistical
significance.

Another potential source of correlation raised by the Tor research safety board
is the order in which blinded public keys are entered into the database. If that
order was the same in which the data was received, this would give attackers
an alternative way to accurately determine the time at which certain requests
were made. This is mitigated by sorting blinded public keys alphabetically be-
fore inserting them into the database.

4.1.4 Hardly used onion services

Some onion services are used for very specific tasks that require only a sin-
gle user making occasional connections. If one of our relays is a responsible
HSDir for such a service and the client selects our relay to request the service
descriptor from, our data reveals when an onion service was used. Paired with
knowledge about the purpose of an onion service belonging to a single user,
this alone might reveal more information about the user than we intended. Un-
fortunately, we have no way of knowing this in advance, so we cannot exclude
such cases during our raw data collection. Consequently, we limit access to our
raw data to the researchers responsible for the experiment and make sure that
in publications only aggregated information on barely used onion services is
published.

4.1.5 Unwanted attention

While our collected information does not contain any onion addresses, attack-
ers with knowledge of onion addresses could easily link our collected blinded
keys to addresses they know about. This allows them to use our data to esti-
mate the popularity of an onion service. Since one of the goals of onion services,
is keeping the number of users private [51], making this information publicly
available could violate the privacy of some onion service operators. Ultimately,
this violation could lead some attackers to specifically target onion services be-
cause of their popularity within our data.

While this could have been avoided entirely by not storing blinded public keys,
we decided to include them in our raw data to enable research on the usage
of well known onion addresses and their development over time. This devel-
opment is especially interesting in the current transition from V2 to V3 onion
services. To prevent abuse of our data we will never publish blinded public keys
directly (since we have no way of knowing if anyone else will link them to an
onion address) and only publish information on how many users an onion ser-
vice has, if that does not constitute a risk to that service.

4 Monitoring the HSDir 54

Figure 4.1: How often are bpks uploaded

4.2 Results

While the relays are still running and collecting more data, the collected data is
sufficient to answer several questions surrounding V3 onion services.

4.2.1 Uploads

The first interesting piece of information to know about V3 onion services is
their average lifetime but, in contrast to previous studies on V2, we have no
way of finding out if two blinded public keys belong to the same onion address.
However, we do know that similar research on V2 onion services [102] found
that most onion services did not live long enough to show up in their data mul-
tiple times. While we have no way of confirming these results for V3, we do
know that every blinded public key is valid for 48 hours and is re-uploaded at
least every 60-120 minutes [127]. Based on this we expect to see every blinded
public key uploaded on average 32 times if the Tor network remains stable. Re-
lays joining or leaving the HSDir can cause us to see fewer uploads and unstable
introduction points increase the number of observed uploads. Figure 4.1 shows
that during our experiment the amount of descriptors seen between 3 and 35
times was fairly constant, which indicates that these were caused by the dy-
namics of the hidden service directory. The spike at 38 and 39 uploads per BPK
seems to indicate that this is the average number of uploads for a stable onion
service. The high amount of BPKs with a single upload supports the theory that
there are a lot of onion services that live for a very short time. We speculate
that these instances are either created by people experimenting with onion ser-
vices or that there are onion services which are only used once (for example by
OnionShare [80]) and thus have no need to republish their descriptor.

4 Monitoring the HSDir 55

Figure 4.2: For how many different consensuses are bpks uploaded

It should be mentioned that we did detect a small number of blinded public keys
that were uploaded more than 50 times to our relays with the record holding key
being re-published 16951 times within 48 hours. But since more than 99.5% of
all BPKs were uploaded between 1 and 50 times, we feel confident that we can
ignore larger numbers as symptoms of misconfiguration of the responsible Tor
client.

This caused us to wonder if there are V3 onion services that publish the same
BPK over more than 48 hours. Figure 4.2 shows in how many different hours
(consensus freshness periods) our observed BPKs were uploaded. In this case
we did not have to exclude outliers for plotting since no blinded public key was
published more than 53 times.

Comparing Figure 4.1 and Figure 4.2 we can see that we get much closer to our
expected 32 uploads on average if we ignore re-uploads in the same consensus
freshness period that were most likely caused by changing introduction points
or issues with the Tor client of the onion service. The delta between Figure 4.1
and Figure 4.2 can therefore be interpreted as a rough estimate for how often
onion services have to re-publish their onion service for other reasons.

The main question we would like to address in this section is how many dis-
tinct V3 onion services are available within the Tor network. Before discussing
it in more detail, it should be noted that since version 0.4.6.1-alpha1 Tor also
collects metrics about the number of V3 onion service, but no statistics had
been published by the time of the FOCI’21 publication [60] and blog post [58].
Since Tor Metrics [125] has in the meantime started publishing their own es-
timates which highlighted an error in our original calculation, this section will
first present the original incorrect estimate and later provide an extended dis-
cussion of the corrected estimate.

1https://blog.torproject.org/node/2011

https://blog.torproject.org/node/2011

4 Monitoring the HSDir 56

To make this comparison as easy as possible, we adapted the specification on
how Tor Metrics generates statistics on V2 onion services [51] and only made
the necessary changes to be compatible with V3. First, we need to know the
fractions of descriptors seen by our members of the hidden service directory
based on the hash value (hsdir_hashx) that determines their position within the
HSDir. Like regular Tor clients we can derive the HSDir from a Tor consen-
sus [127] and calculate the fractions of our own relays as

hsdir_sharex =
(
hsdir_hashx – hsdir_hashx–4

)
/ 2256 / 4.

Dividing hsdir_share by 4 is necessary to counter the effect that every service
descriptor is uploaded to four consecutive relays. To estimate the total size of
the hidden service directory, we need to combine our relative share with the
number of uploaded blinded public keys (bpk_countx):

extrapolated_sizex =
(
bpk_countx ·

(
1 / hsdir_sharex

))
/ 4.

The division of the extrapolated_size by 4 is necessary to obtain the number of
distinct V3 onion addresses since every service maintains two replicas in two
time periods. Unfortunately, this is where our calculation was wrong. We be-
lieved that dividing the share by four would accommodate for the service de-
scriptor being uploaded to four different nodes within the HSDir, but this is
not the case. Dividing the hsdir_share by 4 does not reduce the estimated num-
ber of unique onion services, it increases it by a factor of four because every
onion service only sees a quarter of the uploads within its share. Extrapolating
the number of unique_bpk_uploads and the estimated_size should therefore be
done like this:

unique_bpk_uploadsx = bpk_countx ·
(
1 / hsdir_sharex

)
extrapolated_sizex = unique_bpk_uploadsx / 16

=
(
bpk_countx ·

(
1 / hsdir_sharex

))
/ 16

To aggregate this set of extrapolated sizes to a single value, we opted to use the
weighted interquartile mean [51] that the Tor metrics team uses to estimate the
V2 onion address count. Figure 4.3 shows the results of our original calculations
which indicated that the number of V3 onion services was between 600,000
and 700,000 in March and April of 2021 making them about three times more
popular than V2 onion services. Thankfully, the missing division by four can
be easily applied retroactively to conclude that the real estimate should have
been between 150,000 and 200,000 instead. The drop to zero between March
18th and March 23rd was caused by a temporary outage of the directory au-
thority Faravahar, which caused all of our relays to lose their HSDir flag until
the authority came up again. This event triggered a closer investigation into
the Tor consensus, which is presented in chapter 6. An important criterion to
judge the significance of our measurements is the relative share of the hidden
service directory we are extrapolating from. Tor metrics define a threshold of
1% for V2 onion services and excludes data for days with less information. Fig-
ure 4.4 shows the relative share of the hidden service directory we monitored
during our experiment. Although our share was quite volatile jumping between
0.8 % and 1.2 %, our average observed HSDir share was meeting the margin set
out by Tor metrics to obtain relevant information and should therefore provide
useful results.

When Tor Metrics began to publish their own estimate on the number of V3
onion services, their estimate was obviously much lower than our original es-
timate, leading to the discovery of our missing division by 4. Yet, even after
correcting for this error, our estimates did still not correspond to the numbers

4 Monitoring the HSDir 57

Figure 4.3: Incorrect extrapolated number of V3 onion services (Published at
FOCI’21 [60] and the Tor Blog [58])

provided by Tor metrics, leading us to conclude that there were additional er-
rors within our calculation. To identify our remaining issues, we downloaded
the publicly reported statistics on V3 onion service usage and tried to reproduce
the estimates published by the Tor Metrics team. Our attempts were initially
unsuccessful, until we realized that we were not the only ones with errors in
our calculation. The Tor Metrics team has not considered the fact that the V3
onion service specification introduced a new way to create the HSDir.

hsdir_share_v3x =
(
hsdir_hashx – hsdir_hashx–4

)
/ 2256 / 4

hsdir_share_v2x =
(
fingerprintx – fingerprintx–4

)
/ 2160 / 3

V2 onion service used to calculate their share (hsdir_share_v2x) based on their
static fingerprint, allowing attackers to predict the future position of a relay
within the hidden service directory. Since this was successfully exploited by re-
searchers [11], Tor made the position of V3 HSDir relays less predictable. This
change was not taken into consideration by the Tor Metrics team, causing them
to extrapolate their estimates like this:

extrapolated_size_metricsx =
(
bpk_countx ·

(
1 / hsdir_share_v2x

))
/ 16.

Obviously, this is also incorrect but assuming that no attacker is intentionally
deploying relays with specific positions within the hidden service directory, the
shares might be similar enough to have negligible impact on the final estimate.
What definitely has an impact however, is the fact that the estimate is only di-
vided by 3, which was correct for V2 onion services as they were only uploaded
to 3 HSDir nodes per replica instead of 4. In order to confirm that this was in-
deed the explanation for the differences between the estimates, we calculated

4 Monitoring the HSDir 58

Figure 4.4: Relative share of HSDir we observed

the HSDir shares for V2 and V3 onion services and used both of them for extrap-
olation. Figure 4.5 confirms our assumption by proving that our algorithm re-
produces the results by Tor metrics almost perfectly while usinghsdir_share_v2
to extrapolate network totals. The same graph also shows where the estimate
would end up, if hsdir_share_v3 were to be used instead. Unsurprisingly, the
main factor seems to be the division by 3 instead of 4 resulting in estimates
calculated from V2 shares being on average 20 % lower than they would be for
for V3. The second graph now uses the data gathered by our experiment instead
of the officially reported data. To make comparisons with the data collected by
the Tor project easy, we aggregated our data by the same 24 hour periods that
are used by the Tor project. While the variance of our estimates is much larger
than it is for the official data, the overall estimate remains similar enough to
convince us that our data is representative of the HSDir. At this point we also
decided to inform that Tor Metrics team about our findings and they confirmed
our conclusion that the current estimate for unique V3 onion addresses is in-
correct because it uses the HSDir shares for V2 onion services [57].

With both our implementation and our data verified against the results from
a second source, it is worth to discuss a few potential issues with the current
way of estimating V3 onion service usage. The first thing to address is that of-
ficial data reports only the number of unique blinded public keys observed by a
single member of the HSDir during a 24 hour period. During analysis, it is as-
sumed that those BPKs were evenly spaced across the 24 hour aggregation pe-
riod. Since our experiment is keeping track of uploads per hour, not per day, we
can actually verify this assumption. Figure 4.6 shows the estimated number of
onion services for every single hour/consensus within the observation period.
Note that this hourly estimate must be analyzed with great care. We know from

4 Monitoring the HSDir 59

Figure 4.5: Comparing estimates on number of distinct onion addresses

4 Monitoring the HSDir 60

Figure 4.6: Estimated number of distinct onion addresses per hour

Figure 4.2 that BPKs are typically only uploaded to about 32 of 48 consensuses,
which causes the estimate to be lower than it should be. At the same time, there
is a substantial share of BPKs that is only uploaded within a single hour which
are not taken into account during aggregation. The estimate of running onion
services provided by the Tor network is therefore always higher than the ac-
tual number, because not all onion services included in the 24 hour aggregation
period have been active at the same time. The more interesting observation to
make when investigating the daily estimates however, is their correlation with
the spikes in the officially reported data. The most significant spike happens
on the 05-25-2022, where the estimated number of V3 onion services jumps
from less than 1 million to more than 1.4 million for a single day. Our collected
data contains the identical spike when aggregated over 24 hour periods, but in
the hourly aggregation we realize that this spike was caused within just three
hours (between 00:00 and 03:00 to be precise).

4.2.2 Downloads

In order to assess the relevance of onion services, it is essential to estimate
the amount of users they are handling. There are no official statistics on how
many users onion services have collected by the Tor network and previous re-
search [11, 84] has focused on what onion services are used for, so there is little
data [102] on the usage of onion services and it only applies to version 2 onion
services.

We can provide some insight into how frequently onion services are being ac-
cessed by investigating the number of times every blinded public key was re-
quested from our nodes. It should be noted that descriptor downloads do not

4 Monitoring the HSDir 61

Figure 4.7: Relation between uploads and downloads

correspond to visits since the Tor client caches descriptors, but also not to vis-
itors since there are several reasons that could cause Tor to request a descriptor
multiple times. Even more specific, the download of a descriptor only tells us
that a Tor client intended to connect to an onion service, not if it actually con-
nected. So we interpret the count of descriptor downloads as an upper bound on
the number of visitors and a lower bound on the number of visitation attempts.

Tor clients use only 6 out of the 8 responsible HSDir relays for downloading (the
other two are there in case a relay goes offline). Usually, one of those 6 relays
is chosen at random, so our recorded number of descriptor downloads must
be multiplied by a factor of six to extrapolate the actual number of descriptor
requests for a specific blinded public key. The only exception to this rule are
requests for onion services that no longer exist. In this case a Tor client will
try all six responsible hidden service directories before giving up, so there is no
need to extrapolate the number of download attempts.

Since we already learned from the uploads that many onion services have a
very short lifetime we expected a high number of onion services with a very
low download count. Figure 4.7 confirms this theory by showing that the vast
majority of uploaded blinded public keys is never downloaded. When interpret-
ing this result, it is important to remember that we usually only control one out
of eight responsible hidden service directory nodes, so an unused upload does
not mean that the service was never accessed, it just means it was never down-
loaded from our node. V3 descriptors are always uploaded to 8 different nodes,
but only downloaded from 6 (the other two serve as backup if a HSDir node goes
offline), so about 25 % of our uploads are meant to be unused. The remaining
unused uploads are most likely caused by onion services that are either unused
or used so rarely that our node was never chosen by chance and remained un-

4 Monitoring the HSDir 62

Figure 4.8: Top 0.01% of most downloaded bpks

used. To get an idea for how often this might happen, Figure 4.7 distinguished
between keys that were only downloaded once and keys that were downloaded
more than once. This should provide a rough estimate for the difference be-
tween onion services with a single user and onion services with multiple users.
However, even when accounting for 25 % backup descriptors and not seeing
83.3 % of once requested BPKs, we are still left with more than half of our re-
ceived uploaded blinded public keys never being downloaded. This leads us to
conclude that the vast majority of onion services is either not used at all or at
least not on a daily basis. A fairly surprising result of our analysis was the small
overlap between uploaded and downloaded blinded public keys. Less than 11 %
of the requested blinded public keys that were only requested once had been
uploaded to our servers. For blinded public keys that were requested multiple
times, this share increases to slightly above 40 %, indicating that the vast ma-
jority of download attempts made be Tor clients actually results in failure. A po-
tential explanation for infrequent download attempts on onion services might
be crawlers that continue trying to access onion services even after they have
been disabled. Multiple crawlers running independent from each other could
also explain some of the failed download attempts for more popular onion ser-
vices.

Next, we took a look at the most downloaded blinded public keys to quantify
how successful the most popular onion services are. We found that more than
77.5 % of all download requests received by our relays were asking for the most
popular 1 % of blinded public keys with the record key being requested more
than 1.6 million times within 48 hours. This implies that around 9.6 million
attempts to visit the service were made during one day. Figure 4.8 shows the
top 0.01 % of most downloaded blinded public keys which make up 47 % of
all downloads for blinded public keys. This illustrates nicely that a very small

4 Monitoring the HSDir 63

number of onion services is responsible for the majority of onion service us-
age. While we have no way of knowing what kind of onion service would be so
popular, one idea was that some botnets might be using onion services as their
command and control server. Previous researchers have already found that V2
onion services were used to control botnets [102] and it would not be a surprise
if V3 onion services continue to be used in this way. A possible way to support
this theory is to quantify the number of requests for blinded public keys that
were never published. In contrast to humans, programs tend to repeatedly try
to connect to a no longer working onion service while humans will give up af-
ter a short time. In our data set, there are several blinded public keys that were
never published to our relays, but still requested more than one million times—
and we only observe 12.5 % of the total download attempts—over 48 hours. We
see two possible explanations for this observation: Either these keys belong to
a defunct botnet server or they were victim of a DoS attack that knocked out the
onion service in the previous time period but did not stop trying to attack.

Figure 4.7 also shows that our relays could only respond to 25.3 %
(3809864/30383515) of all descriptor download requests with a valid de-
scriptor. The remaining 74,7 % of requests were asking for blinded public keys
that were never uploaded to any of our relays. Since we do not record the exact
timing of requests, the number of failed requests is likely to be even higher
because blinded public keys might already be requested before they are being
published. While there is a low possibility that regular running onion services
might cause this behavior, this requires very specific circumstances: The onion
service would have to publish their descriptor shortly before a new consensus
is published, that new consensus would have to change the HSDir so that a
new HSDir relay becomes responsible for the descriptor, then the relay must
random a long enough descriptor interval period to never upload during this
consensus interval, and finally the next consensus would have to revert the
change back to a state where the HSDir relay that became responsible for the
onion service is no longer responsible for the onion service. In this scenario,
clients request the blinded public key of an onion service from a HSDir relay
that is completely unaware of the onion service although the onion service
is up and running. As this scenario cannot reasonable explain the large share
of failed requests, we conclude that a significant share of requested onion
addresses belongs to disabled/nonexistent onion services. The distribution
between available and unavailable onion services also applies to the blinded
public keys depicted in Figure 4.8 meaning that a majority of onion service
requests is asking for a small number of onion services that often do not exist.

The fact that so many onion service requests fail paired with the justified
assumption that many high-volume onion services are apparently used for
machine-to-machine communication means that we are unable to derive any
conclusions about how many human users connect to onion services.

4.3 Summary

This experiment provided several valuable pieces of information about the Tor
network. It confirmed our assumption that the Tor network is capable of sus-
taining a vast amount of onion services ranging from services that receive mil-
lions of requests every day down to service that regularly see no clients at all.
The observation of onion services being requested frequently without ever be-
ing published indicates that there are already a lot of systems that build on top
of the Tor network and use Tor onion services for communication. This en-
courages continued work on Tor onion services to see if they can be optimized

4 Monitoring the HSDir 64

for Tor-aware privacy preserving applications that route their entire network
communication through the Tor network. The significant amount of informa-
tion that could be collected by a small adversary with access to only 25 IP ad-
dresses also confirms the original assumption that the hidden service directory
constitutes a threat to the privacy of Digidow’s users, if their PIAs use default
Tor onion services. Further improvements will be necessary to make the net-
working approach presented in section 3 resilient against such attackers. At the
same time, the Tor project should most likely continue to investigate onion ser-
vices that cause millions of descriptor downloads, especially if the downloads
are looking to retrieve descriptors that do not exist. Understanding what they
are and removing their useless requests would most likely improve the Tor net-
work as a whole.

Chapter 5

Short-lived onion services

As discussed in section 3.6.5, PIAs need to use different onion addresses to pre-
vent multiple sensors from realizing that the same individual has registered at
all of them. Although Tor does allow Tor clients to create an arbitrary number
of Tor onion services, there was no published research available that investi-
gated the time needed to create onion services dynamically and the number of
onion services that a single Tor client can reasonable operate simultaneously.
The research presented in this chapter closed this gap when parts of it were
published at WTMC 2021 [59].

5.1 Experiment Design

To find out if it is feasible to dynamically generate onion services in any sce-
nario, the associated negative performance impact must be properly quanti-
fied. To do this, we measure the time between instructing a host to generate
an onion service and clients being able to access it. Only if this latency is suffi-
ciently low, it may be acceptable to generate onion services on-demand, with
the exact time limits depending on the situation. PIAs for example could pre-
compute onion addresses in advance to prevent the onion service creation time
from negatively impacting user experience. Our measurement setup is inspired
by previous work of Loesing et al. [87] and Lenhard et al. [82], but instead of
measuring the time it takes to access an onion service, we measure the time it
takes to create one.

5.1.1 Measurement Setup

We use the Tor Stem1 library to interact with Tor’s control protocol [122] and
generate onion services. Timing information is extracted from the log file cre-
ated by Tor and event listeners attached via the control protocol. This allows
measuring the time of the following events:

Start connecting to introduction point,

circuit to introduction point established,

introduction point ready,

service descriptor created,

start upload to HSDir, and

finish upload to HSDir.

1https://stem.torproject.org/

65

https://stem.torproject.org/

5 Short-lived onion services 66

No good solution was found to measure the time it takes Tor to select introduc-
tion nodes when creating a new onion service. It seems reasonable to assume
that this time is insignificant for the overall latency, but it could be speculated
that one host running many onion services could experience deteriorating per-
formance as Tor does not reuse introduction points2.

All our tests were conducted with version 0.4.3.5 of Tor and ran on a vir-
tual machine running Debian 10, which was monitored to ensure that no local
limitations regarding CPU, bandwidth, latency, or memory would impact our
measurements. The Internet connection (1GBit/s, low latency) was constantly
monitored to be working within “normal” parameters, in order to assure that
we do not accidentally measure latency effects or outages introduced primarily
through our own Internet link.

To ensure that measurements do not influence each other, a new Tor process is
completely bootstrapped within a fresh Docker container for every onion ser-
vice. Our test system runs one test at a time to avoid different onion services
impacting each other. To mitigate the effects of possible issues with our Inter-
net connection or the Tor network, tests are conducted in a loop. Every iteration
of the loop tests every configuration once. This loop ran more than 1500 times
over a period of 10 days to obtain a sufficiently large sample size.

The container specification and our measurement implementation are avail-
able at https://github.com/mobilesec/onion-service-time-measurement to
enable other researchers to reproduce our measurements.

5.1.2 Measured Configurations

As already mentioned, onion services are still in development and could, there-
fore, at the time of the experiment be deployed in different configurations. To
find out if the method of deployment has an impact on the provisioning time
of onion services, four different types were measured:

1. V2: A V2 onion service with default parameters: Old, no longer recom-
mended version, which was mainly included to enable comparisons with
previous research. V2 onion services were not yet deprecated when this re-
search was conducted.

2. V3: A persistent V3 onion service with default parameters.

3. Ephemeral: A V3 onion service with default parameters which can only be
created via the control protocol and will only exist as long as the control
connection to the Tor instance is maintained.

4. Vanguard: A V3 onion service with the Vanguard [6] extension to harden it
against different deanonymization attacks.

5.2 Results

Figure 5.1 provides a good summary of the results of our analysis. The changes
implemented by V3 of the onion service protocol have significantly improved
deployment times from about half a minute to less than 10 seconds. There
are no significant differences between normal and ephemeral onion services,
which is no surprise considering that the only difference between those is

2The official documentation still has an open TODO on picking nodes. However, a review of the
Tor implementation revealed that this is the case.

https://github.com/mobilesec/onion-service-time-measurement

5 Short-lived onion services 67

Figure 5.1: Overview of provisioning times

the persistence of cryptographic keys on disk. The Vanguard extension also
shows no significant changes in provisioning time, which is unexpected be-
cause modifying Tor’s behavior via the control protocol should actually cause
a performance overhead, but is apparently not relevant for our measured sce-
nario.

5.2.1 Provisioning Stages

A potentially interesting explanation for the significant differences in provi-
sioning times between V2 and V3 is provided by figure 5.2. It splits the provi-
sioning into three stages:

1. The time it takes the host to establish the introduction points for the onion
service,

2. the time it takes to generate a descriptor for uploading after introduction
nodes have been established, and

3. the time it takes to actually upload the descriptor.

The first fact to note here is that V2 onion services appear to take much longer to
generate their service descriptors. Since there was no obvious reason for such a
significant performance difference, we investigated the source code and found
that the current implementation of Tor V2 onion services waits 30 seconds be-
fore uploading a descriptor. There is no explanation in the specification [126]
as to why this delay is necessary and the source code only comments that the
delay is introduced to ensure that the descriptor is stable. Since V2 onion ser-
vices were disabled in October 2021 [47], we did not spend additional time on
analyzing this issue.

5 Short-lived onion services 68

Figure 5.2: Composition of provisioning times

Figure 5.2 also reveals other less obvious, but interesting, aspects. For exam-
ple, it confirms a suspicion that is hard to verify on the logarithmic scale of
figure 5.1, namely the fact that for V2 onion services, upload times have not
only less impact on the total provisioning time, but are also lower in absolute
numbers. The exact reasons for this behavior is analyzed in section 5.2.2.

Another interesting observation is the fact that establishing introduction nodes
is insignificant to the provisioning time of an onion service across all configu-
rations. This observation is however not fully correct because, as already men-
tioned, all our measurements were conducted with fully bootstrapped Tor in-
stances. During the bootstrapping process, several circuits (in our experiments
we encountered between 2 and 15 circuits during bootstrapping) are prepared,
so they can be used for later connections. In our setup, these circuits are always
used to connect to introduction points, so our measured time for the creation
of introduction points does not include the circuit creation time. Since Tor al-
ready collects detailed metrics on circuit creation time [86, 125], there was no
reason to analyze them at this point.

What is worth noting, is that the Vanguard plugin almost doubles the intro-
duction node building time, without impacting the overall provisioning time.
At first glance, this seems to imply that Vanguard is actually decreasing the
descriptor creation time, which is unlikely considering the fact that Vanguard
makes no changes to service descriptors. Instead, the difference is caused by
the fact that the generation and derivation of all keys required for creating a
service descriptor take a constant amount of time and can already start be-
fore the introduction points have been selected. We verified this by deploying
onion services with 10 introduction points. Naturally, they needed more time
to establish their introduction points, but they still finished creating their de-

5 Short-lived onion services 69

scriptors at the same time as services with only three introduction points. This
shows that the time needed to establish introduction points is currently irrel-
evant for the provisioning time of an onion service.

Our final observation is that the descriptor upload is the most significant factor
for total provisioning time in current onion service configurations, so we look
at them in more detail.

5.2.2 Descriptor Upload Times

Our results for descriptor upload times have to be put in context to be inter-
preted correctly: Every onion service uploads its descriptor to several nodes on
the hidden service directory. The number can be configured by each service, but
the defaults are three nodes for V2 descriptors and four nodes for V3. Both are
uploaded in two replicas, so in total there are 6 and 8 uploads. Additionally, the
V3 onion service specification requires them to always be valid in two time pe-
riods, the previous one and the current one. So when creating a new V3 service
from scratch (as done by our test setup) 16 descriptors are uploaded initially.

When Tor clients try to access an onion service, they use their current time pe-
riod. The previous one is only uploaded to avoid synchronization issues with
clients that are still in the previous time period. Tor clients randomly pick one
out of only three nodes from one of the two replicas. The fourth upload in V3
is only there to handle situations where a HSDir node goes offline. This means
that a single upload could be sufficient to allow an incoming connection. Unless
there are any issues with synchronization or failing nodes, six uploads already
enable full connectivity. Our measurement setup was not designed to take this
into account. Instead, we assume that a descriptor has been successfully pub-
lished when half of all uploads (3 for V2 and 8 for V3) have been completed. The
upload time in figure 5.2 shows how long it took on average to complete half
of all uploads. This decision removes the impact of very slow uploads and tries
to find a middle ground between trying to find the earliest time when connec-
tions are possible and the time when connections are almost certain to succeed
without retries.

Figure 5.3 shows the duration of individual descriptor uploads. The majority of
upload requests finish in less than 5 seconds and almost all uploads complete
after 20 seconds. A noteworthy result of our measurement is an unexpectedly
high number of upload requests that take between 100 and 105 seconds, which
occurs for all measured configurations, but happens less often for onion ser-
vices with the Vanguards extension. To further analyze this behavior we con-
ducted a second smaller experiment by running the loop only 500 times and
additionally tracking the time when upload circuits were completed. This al-
lows us to split the upload time into the time it took to create a circuit and the
time it took to actually upload the descriptor.

Figure 5.4 shows that plain uploads hardly ever exceed five seconds and even
the slowest single upload we measured only took 12 seconds to complete. The
unexplained 100 second delay is only present in the circuit creation time shown
in figure 5.5. This makes sense because this delay only happens when Tor fails
to open a circuit to a hidden service directory. In this case a 100 second timeout
occurs before another attempt is made. This also explains why Vanguards has
a positive effect on this issue. It selects a subset of candidate nodes for the sec-
ond and third hop of a circuit and tries to reduce the risk of picking a malicious
node. Apparently, this also reduces the risk of picking nodes that cause circuit
creation attempts to fail, increasing the overall performance and reliability.

5 Short-lived onion services 70

Figure 5.3: Time it took individual uploads to complete

Figure 5.4: Time to upload descriptor via established circuit

5 Short-lived onion services 71

Figure 5.5: Time to create upload circuit

Another interesting result in this context is the fact that some circuits fail again
after this 100 second timeout. In this case Tor does not wait and try for a third
time, but instead abandons the upload attempt entirely. This does not result in
any error displayed to the user, because the onion service concept is redundant
and a single failed upload has no significant impact on the availability of an
onion service. During our experiments we experienced an upload failure rate of
about 1% for upload requests without Vanguard and a failure rate of about 0.8%
for uploads with Vanguard.

Figure 5.4 confirms that V2 descriptors are published faster than V3, which is
most likely caused by the much larger descriptor size in V3. Figure 5.6 provides
a zoom-in on circuit build times below 8 seconds to facilitate comparison with
Figure 5.4 and shows that the circuit creation time has more impact on how
long it takes to publish a descriptor than the actual upload. An interesting ob-
servation is that our results seem to indicate that V2 upload circuits are cre-
ated faster than V3 upload circuits. This effect is again caused by the fact that
our Tor binaries were fully bootstrapped before any measurements were con-
ducted, which allows Tor to cannibalize general circuits for uploads if there are
any available. Since cannibalization is much faster than creating a circuit from
scratch, this means that some upload circuits can be created faster than the
rest. The lower number of uploads in the V2 onion service specification [126]
increased the relative impact of these cannibalized circuits, creating the im-
pression that V2 upload circuits are created faster. Unfortunately, we could not
properly quantify the impact of this issue, so we cannot say if there are any
other factors contributing to the increased circuit creation time in V3.

5 Short-lived onion services 72

Figure 5.6: Zoom-in on upload circuit build times below 8 seconds

5.3 Summary

While improved performance was not an explicit objective of the V3 onion ser-
vice protocol, our measurements show that the deployment performance was
improved significantly from more than 30 to about 5 seconds. Despite these
improvements, onion service deployment still takes several seconds, which is
definitely too long if users experience that delay with every onion service cre-
ation. Since the callback addresses needed for the register messages from sec-
tion 3.1.5 can be prepared in advance, the creation time might be acceptable,
but it raises several new questions: How many onion services should be pre-
pared in advance? Too few and the PIA needs several additional seconds be-
fore it can register to all sensors, too many and PIAs might end up putting too
much load on the Tor network or draining too much power on mobile devices.
A potential solution to put an upper limit on the amount of needed onion ser-
vices is to adopt the concept of rolling identifiers from the Exposure Notifica-
tion framework [45] designed to trace contacts during the Covid-19 pandemic.
They broadcast a rolling identifier that changes every 15 minutes based on the
assumption that adversaries being able to track at most 15 minutes of consecu-
tive movement would not cause relevant privacy risk. While there is no research
yet to actually confirm this assumption, it does seem reasonable. PIAs could do
the same by using rotating onion addresses instead of dynamic ones. Assum-
ing onion services being rotated every 15 minutes and timeouts of at most 60
minutes, PIAs would need at most 5 onion services at any given point in time
and the need for new onion services would be perfectly predictable, removing
the need for quick creation of onion services.

An alternative approach that also seems worth further research is based on the

5 Short-lived onion services 73

discovery that roughly 80% of the time needed for publishing an onion service
is spent on uploading descriptors to the HSDir. If the need to publish an onion
service could be removed entirely, for example by including service descriptors
in register messages instead of onion addresses, dynamic onion service gener-
ation becomes a lot more feasible. It shortens the time needed to prepare an
onion service to less than one second and reduces the load that the creation
of dynamic onion services puts on the Tor network. This might also be inter-
esting for other scenarios that cannot rely on rotating service descriptors, like
the numerous projects exploring file sharing [80] or instant messaging [13, 83,
129]. In an instant messaging scenario, an initial exchange of service descrip-
tors could take place when two individuals are in close proximity by encoding
a service descriptor in a QRcode and displaying it for the communication part-
ner to scan. Considering that v3 onion service addresses need to encode a key
already, they are not particularly easy to type or remember, making it likely
that messengers will provide a more convenient way of exchanging contact in-
formation already. After the initial contact has been established, clients could
append the next service descriptor to sent messages, thus iterating the used
onion service with every exchanged message. This would increase the time it
takes to send a message, because a new service descriptor has to be created ev-
ery time, but an additional delay of a single second might be acceptable for pri-
vacy sensitive scenarios. User experience could again be further improved by
already setting up a new onion service while the user is still typing. Avoiding
the hidden service directory entirely has the additional benefit of removing the
potential privacy leaks identified in chapter 4.

Chapter 6

Verifying the Tor consensus

6.1 Analysis

During our analysis of the Tor consensus we confirmed that many things work
exactly as expected. In this work we will not discuss any confirmatory results
and instead focus on unexpected behavior and intriguing observations that we
encountered during our analysis.

6.1.1 Data Sources

To analyze and evaluate the decisions made by directory authorities in the past,
one needs access to as much information as possible about the Tor network.
Thankfully, the Tor team archives [86, 125] all documents made available by
clients since 2005, so we do not have to worry about data collection for our re-
search. Instead, we can just use the official data archive, meaning that all of our
results and graphs reflect the state of the Tor network according to their own
archives.

We have access to all published consensus documents, the votes that were used
to create the consensus, as well as the server descriptors that provide extended
information about every relay. This data enables us to find out which and how
many directory authorities supported every single decision that went into the
Tor consensus, and provides the foundation for all the results presented in this
section.

6.1.2 Fast Relays

While our interest in this research was triggered by the variations in the as-
signment of the HSDir flag, we start our analysis with the Fast flag, because it
is a prerequisite for the HSDir flag and due to the three different methods of
determining bandwidth, we believed it to be the most likely reason for relays
temporarily losing the HSDir flag.

According to Figure 6.1, this theory appears to be incorrect, because the number
of relays granted the Fast flag does not fluctuate nearly as much as the num-
ber of relays with the HSDir flag. This also matched our own experience, since
our relays had retained their Fast flags during the period where they were not
granted the HSDir flag.

At this point it is important to remember that obtaining the Fast flag only
means that more than half of the directory authorities believed the relay to be
fast. Directory authorities which do not believe a relay to be fast (or stable for
that matter) will never consider granting the HSDir flag. For example, if a relay

74

6 Verifying the Tor consensus 75

Figure 6.1: Number of Fast relays in the consensus

gets 5/9 votes for the Fast and Stable flags, it will obtain both flags, but if just
a single one of those 5 authorities does not believe the relay to be up for more
than 96 hours, it will not obtain the HSDir flag.

To visualize this aspect, we parsed the archived votes of all directory authori-
ties and evaluated for every relay in the consensus how many votes for the Fast
flag it received. The results of this analysis are visualized in Figure 6.2 and show
that most relays received the Fast flag with 100 % of the votes. It also confirms
several of the voting patterns we expected to see based on the current state of
bandwidth measurement strategies. There are almost no relays that receive one
or two votes for the Fast flag, but there is a noticeable chunk that receives three
votes. This is caused by the directory authorities that are not bandwidth au-
thorities, as they have to believe the data reported by the relays themselves.

At first, it seems like these are relays that advertise more bandwidth than they
can actually provide. However, that is not exactly what the measurement tells
us because bandwidth tests are obviously taking place in parallel with ordi-
nary operation. If a relay is already handling one other connection during a
bandwidth test, it will split the available bandwidth between both connections,
meaning that the measured bandwidth is much lower than what was actu-
ally made available to the Tor network. A critical setting in this regard is the
MaxBandwidthBurst configuration option, that tells Tor what amount of band-
width it is allowed to consume at most. When we deployed relays with a band-
width and bandwidth burst limit of 105 KB/s, they were never found to be Fast
despite all of them fully providing their advertised bandwidth. Only after in-
creasing the burst rate to several times the bandwidth rate, relays started to
measure as Fast. It may therefore be the case that relays advertising enough
bandwidth for the Fast flag do not receive this flag because they don’t have the

6 Verifying the Tor consensus 76

Figure 6.2: How many votes for the Fast flag did relays receive

needed burst capabilities to be measured as such.

Also worth mentioning is the fact that the relative share of relays that are con-
sidered Fast by all directory authorities is increasing, so it seems like the Tor
consensus is actually getting more stable in that regard. This improvement is
likely caused by the fact that internet bandwidth is increasing globally and most
web applications and services expect users to have more than 105 KB/s of band-
width available. Raising the requirements for the Fast flag might be a good idea
to improve user experience when using the Tor network.

Another interesting observation we made when analyzing the voting behavior
on the Fast flag was that the number of voting relays is regularly lower than
nine. This includes February and March 2021, where the Tor consensus regu-
larly contained only 7 or 8 different votes. In theory, the Tor consensus should
be very resilient to the failure of individual directory authorities, so there has
to be another factor causing the high volatility of the HSDir flag.

6.1.3 HSDir Relays

Figure 6.3 visualizes the number of votes for the HSDir flag received by relays
in the consensus. It clearly shows that the number of relays that receive the
HSDir flag from all directory authorities is less than 1000 meaning that more
than 75 % of all HSDir relays in the consensus are relying on less than 9 votes.
Secondly, we can clearly see a negative spike around February 2021, where the
number of relays with 4 and 5 votes suddenly spikes. Since this is the time when
some directory authorities stopped voting, this confirms that the non-voting
directory authorities were the ones relays previously relied upon to obtain the
HSDir flag.

6 Verifying the Tor consensus 77

Figure 6.3: How many votes for the HSDir flag did relays receive

But the real question to ask at this point is why the level of disagreement be-
tween the votes of the directory authorities is so much larger for the HSDir flag
than it is for other flags like Fast. For that purpose, we define a new metric: The
number of dissenting votes. A dissenting vote happens when a directory au-
thority granted or withheld a flag in a vote, which ended up being granted by
the consensus.

Figure 6.4 shows the relative amount of dissenting votes for different flags. Un-
surprisingly, it confirms that the number of dissenting votes is highest for the
HSDir flag, reaching up to 25 % of the overall votes. Considering that the max-
imum number of possible dissenting votes is limited at 44.5 % for nine vot-
ing directory authorities, this level of dissent is reason for concern. The fact
that both Fast and Stable have significantly lower levels of dissent than HSDir
seems to imply that some directory authorities have trouble confirming the 96
hour uptime of relays. Uptime is tracked but not published by directory author-
ities, so there is no easy way to confirm this assumption. However, there is an
easy way to disprove it by checking if a directory authority considered a relay
Running for the last 96 hours. Checking the archived votes reveals that some
directory authorities do not grant the HSDir flag to relays, even if they believe
them to be Fast, Stable and Running for more than 96 hours.

Figure 6.5 shows how many dissenting votes for the HSDir flag were issued
by each of the directory authorities. Note that the directory authority moria1
has a significantly different voting behavior for this flag. While other direc-
tory authorities tend to have a very low number of dissenting votes with occa-
sional spikes that can be explained by temporary issues when measuring up-
time or bandwidth, moria1 constantly disagrees on at least 3000 votes. This
nicely aligns with the previous observation from Figure 6.3 which shows that
only a small amount of relays manages to obtain 100 % of votes.

This behavior seems to be intentional, as the operator of moria1 is one of the

6 Verifying the Tor consensus 78

Figure 6.4: Dissenting votes per flag

6 Verifying the Tor consensus 79

Figure 6.5: Dissenting HSDir votes per relay

6 Verifying the Tor consensus 80

original designers of the Tor network and is known to use his directory author-
ity to test future changes and improvements to the Tor network [54]. While we
do not believe that this is a very good argument as there are ways to test poten-
tial future flag requirements without actively introducing dissent in the current
consensus, a single directory authority not following the directory specifica-
tion does not explain the observed fluctuations in the number of HSDir relays.

To answer this question, special attention should be paid to the events around
January 28th, 2021 when the directory authorities bastet and longclaw suddenly
changed their voting behavior to align with moria1. According to the relay op-
erator mailing list [28] a denial of service attack against directory authorities
was detected on that day that forced several directory authorities to go offline.
Based on this observation, we theorize that in response to this attack the Tor
team developed a quick fix on top of the development branch that moria1 was
using and made that available to other directory authorities as well to stabi-
lize the network. That would make the changed voting behavior for HSDir flags
an unintended side effect. Unfortunately, there is no way to confirm this the-
ory because Tor relays only publish their version string without any further
indication of the actual source code they are running. Both before and after
January 28th, 2021 moria1, bastet, and longclaw published the version string
0.4.6.0-alpha-dev indicating that their Tor binary was compiled off a devel-
opment branch. The fact that these directory authorities changed their vot-
ing behavior without changing their version string clearly illustrates that cur-
rent version information provides little insight into what code is actually be-
ing run by a relay. Future versions of Tor should strive to provide more trans-
parency regarding the source code operated by directory authorities. Including
the commit hash of the source code that was used to build Tor is one one propo-
sition to achieve this.

What we have been unable to confirm is whether this dissenting voting behav-
ior is intentional or not. Longclaw returned to the officially specified voting be-
havior at the end of March 2021 but bastet did not, although their inconsistent
voting behavior was reported [41], so the Tor project must be aware of it. In-
terestingly, when longclaw reverted to voting according to the directory speci-
fication, their version string did change to 0.4.5.7. So they moved from a devel-
opment build to an older official Tor release. This leaves us wondering if two
authorities voting based on different criteria than the others provides any ben-
efits to the Tor network that justify the dissent they are causing.

Ultimately, the high fluctuations in the hidden service directory were caused
by a mixture of several issues. First the changed voting behavior of three di-
rectory authorities reduced the amount of obtainable votes to six. If any of the
remaining six relays went offline – which tends to happen during ongoing DoS
attacks – relays needed to obtain five out of five available votes. So any individ-
ual measurement failure regarding either bandwidth or uptime led to a with-
drawn HSDir flag.

6.1.4 Other voting inconsistencies

After noticing the inconsistent voting behavior for the HSDir flag, we obviously
asked ourselves if the same issue also applies to other flags. For that purpose,
we ran the same evaluation for all the other flags that can be assigned to relays
and found two more hints towards inconsistent voting criteria.

The first again seems to be tied tomoria1 and applies to the flags Valid, Exit and
V2Dir. Figure 6.6 only shows the dissent for the Valid flag because the graphs

6 Verifying the Tor consensus 81

Figure 6.6: Dissenting Valid votes per relay

6 Verifying the Tor consensus 82

for the other flags look exactly the same, which leads us to believe that the dis-
sent for all three flags was caused by a common issue. Our data shows that the
dissenting votes from moria1 started on September 26th, 2020 and continued
until January 28th, 2021. The relays bastet and longclaw adopted the voting be-
havior from moria1 on January 12th, 2021. At this point we have to consider the
adoption of unspecified voting behavior from moria1 by bastet and longclaw a
pattern. Ironically, the change that ended this inconsistent voting pattern by
all three directory authorities also caused bastet and longclaw to begin voting
against specification for the HSDir flag. So in a way we traded one inconsis-
tency for another.
The second inconsistency we found concerns the BadExit flag. This flag is a lit-
tle different from the previous ones, because there are no clear requirements
as to what a relay must do to earn this flag. According to the specification, this
flag should be given to exits that are believed to be useless as an exit node. This
would be the case if an ISP censors outgoing traffic or a firewall is too restrictive
and prevents Tor users from actually reaching the resources they are interested
in via this exit relay. Since there are no clear criteria defined, a group within the
Tor project tries to monitor the network for bad exits and flags them as such.
While they certainly are utilizing automation for this task, a non-negligible
part of their work relies on Tor users reporting relays that do not work as ex-
pected.
Considering the fact that bad exits are actively monitored, we were quite sur-
prised to see that the dissent on bad exits in Figure 6.7 also shows two clearly
unique patterns. bastet and dizumhold a reproducible minority opinion regard-
ing the BadExit flag. Maatuska started supporting them in September 2020,
leaving us again with three directory authorities that seem to consistently vote
differently from the other directory authorities. Since there are no require-
ments specified for the BadExit flag, we are unable to find out if this behavior
is in fact caused by two different sets of criteria for the flag, if there are two
different measurement methods, or if this actually valid because some relays
only work from the perspective of certain directory authorities. Without inter-
nal knowledge about the workings of the Tor bad-relays team, it is impossible
to investigate this phenomenon any further.

6.1.5 Monthly relay spikes

The final observation we would like to present in this work regards the compo-
sition of the Tor consensus. Attentive readers may have already noticed in Fig-
ures 6.2 and 6.3 that the total number of relays that are being voted on follows
a specific pattern that spikes at a certain point in time and then decreases for a
while before spiking again. Figure 6.8 highlights this behavior more clearly and
shows these spikes reliably occur on the first of every month since July 2020. To
be more precise they all join the Tor network within the first minute of the first
day of a new month. There is no clear pattern as to when they leave, but it seems
like they randomly drop out of the network over time. This behavior was inde-
pendently noticed by the Tor project1, but so far they have no explanations as
to why it happens. The findings presented in this chapter were of course made
available to the Tor project prior to publication.
The first question we asked was if those spikes were caused by new relays join-
ing the network on a monthly basis or old relays rejoining. By analyzing the
archived consensus information we were able to identify 90 relays that had re-
joined the network at the beginning of every month since July 2020. Further-
more, we found 230 relays that contributed to at least 10 of the 13 recorded

1https://gitlab.torproject.org/tpo/network-health/team/-/issues/76

https://gitlab.torproject.org/tpo/network-health/team/-/issues/76

6 Verifying the Tor consensus 83

Figure 6.7: Dissenting BadExit votes per relay

6 Verifying the Tor consensus 84

Figure 6.8: Highlight monthly spikes in number of valid relays

monthly relay spikes. So we can confirm that these relay spikes are caused by
relays regularly joining and leaving the Tor network.

The regular timing supports the theory that this pattern is produced by a com-
mon misconfiguration shared by all those relays. One of Tor’s configuration
options enables a relay to limit the amount of bandwidth used during a given
time interval (AccountingMax). This is very useful for users with a strict limit
on how much bandwidth they are allowed to consume and could be a potential
explanation. If a relay is configured to use a limited amount of bandwidth per
month, the observed pattern of relays joining the network at the beginning of a
new month and leaving randomly when they run out of bandwidth makes sense.
The only problem with this theory is that Tor should not behave like this when
this option is enabled. According to the documentation2, a relay that runs out of
bandwidth hibernates until a random time within the next time period to avoid
all relays starting at the same time. Unless there is a bug affecting several Tor
implementations, this theory does not explain the regular monthly spikes, but
it may very well explain why these relays leave the Tor network after a random
period of time.

To find out if the relays responsible for this phenomenon have anything in
common that might shed light on the subject, we extracted information about
them from the consensus documents and relay descriptors published at the
beginning of every month. Apart from the unique fingerprint that we used to
identify rejoining relays, the Tor consensus reveals the IP address and the Tor
version running on the relay. Additionally, the consensus provides the digest
needed to query server descriptors with more information about a relay, like
its uptime, family, or contact information. Additionally, we used reverse DNS

2https://www.torproject.org/docs/tor-manual.html.en

6 Verifying the Tor consensus 85

Figure 6.9: Provider assignment based on hostname for 189 relays that spiked
at least 10 of 13 times

lookups to assign hostnames to the IP addresses of the relays. Unfortunately,
there were no obvious commonalities between the different relays. The only
thing of interest is that reverse DNS responses tie a majority of relays back
to very few large cloud hosters. Figure 6.9 shows that most of the relays that
spiked more than 10 times were hosted at the German Hetzner Online GmbH3

which is one of the largest operators of Tor relays. The other hoster, Linode,
LLC4, is also responsible for a significant number of Tor relays. While it is com-
mon for relays to be run at cloud hosters, these two cloud hosters contribute to
these relay spikes far more than they contribute to the overall number of relays.
Other cloud hosters that are used to operate lots of relays like OVH do not show
up in our data at all, so the issue seems to be related to these hosters in some
way. This argument gets even stronger when we compare the total number of
relays operated at those providers to the number of relays with monthly reap-
pearances. Hetzner operates 440 relays, of which 146 (33 %) are contributing
to the monthly relay spikes. For Linode the relation is even worse with 216 re-
lays in total and 118 relays (54 %) contributing to relay spikes. This leads to the
conclusion that there is either a widely distributed Tor setup that uses an ac-
counting limit and forces a reboot of the Tor process at the beginning of every
month or there is one actor running all those relays on different cloud providers
who happens to have an accounting limit and a monthly reboot policy in place.

The tutorials for running Tor relays on both cloud providers [112, 131] do include
an accounting limit, but say nothing about monthly reboots and we could not
find any public resources that would explain a large number of users setting the
same monthly reboot policy. On the other hand however, we detected a weird

3https://www.hetzner.com/
4https://www.linode.com/

6 Verifying the Tor consensus 86

Figure 6.10: Provider assignment based on hostname for 462 relays that spiked
at least 4 of 13 times

pattern in when relays that contribute monthly spikes first joined the network.
A vast majority joined between April and June 2020, and they did so in ordered
time intervals. For example, between April 29th and May 10th, 39 relays that
contribute to relay spikes were deployed at Hetzner. Not a single one showed
up at any other hoster during that period. A week later between May 18th and
May 26th, 22 relays that contribute to relay spikes were deployed at Linode and
during that period not a single one was deployed at Hetzner. While this is no
conclusive proof, the probability of such a pattern emerging from random users
deploying Tor relays seems negligible, even if there were a shared configura-
tion source that is responsible for the monthly spikes.

The final observation we can contribute is that if we include relays that have
been contributing to relay spikes at least 4 times (see Figure 6.10), a third cloud
hosting provider, Lunanode5, shows up with all relays having contributed to
between 4 and 6 spikes. Combined with the fact that none of those relays are
still running, this indicates that there was a third cloud hosting provider that
was used in the past to operate this kind of relay. Unfortunately, we were unable
to find any hints on what those relays are being used for and could therefore not
tell if they are malicious. Further research by the Tor project [99] revealed them
to be operated by an entity named KAX17, who is indeed linked to malicious be-
havior. The relays were removed from the Tor network in December 2021 [74]
for being operated by the same entity. No conclusions were published on who is
responsible for deploying those relays or what kind of attack they were trying
to conduct, most likely because the analysis by the Tor project was limited to
the same data available to us and this data just does not provide enough infor-
mation to retroactively analyze how malicious relays attacked the network.

5https://www.lunanode.com/

6 Verifying the Tor consensus 87

6.2 Summary

Our analysis has found several inconsistencies within the Tor consensus that
have the potential to negatively impact Tor users by limiting the number of
relays available to them without good reason. The most important aspect to
improve upon would be to increase transparency on what specification direc-
tory authorities are currently employing. Just in the last year we have encoun-
tered multiple occasions where directory authorities clearly changed their vot-
ing behavior without publicly disclosing it or at least giving some indication of a
change in their Tor version string. The Tor version strings themselves turn out
to be insufficient because multiple directory authorities use self-compiled de-
veloper versions of Tor, where the version string tells us almost nothing about
the actually running code. A valuable improvement would be to include the
commit hash and branch of the code in manually compiled Tor versions. This
would still allow the Tor project to deploy hotfixes directly to directory author-
ities but keep transparency on when the running Tor version has changed. If the
development branches are publicly visible, external analysts would even be able
to find out if a deviation from the official directory specification is intended or
not, which would greatly improve the transparency of the voting process. The
endeavor to re-implement the Tor client in Rust also provides an opportunity
to make the Tor clients build process reproducible. With reproducible builds,
the version string could also include a hash value of the binary produced by the
build process. This enables external observers to verify and reproduce the be-
havior of other Tor relays and increases the probability that malicious relays
can be detected.

Furthermore, we encourage a reevaluation of absolute flag criteria like the
bandwidth required to obtain the Fast flag. The modern web is constantly de-
veloping and what was considered an acceptable bandwidth ten years ago is
no longer fitting today. In order for such flags to retain their usefulness, they
should either drop requirements specified in absolute values or have a process
in place to ensure they are updated regularly.

We also suggest searching for better ways to test potential directory specifica-
tion changes. The current strategy of having a single directory authority vot-
ing differently from the others and occasionally handing those changes out to
other authorities has already disrupted the Tor consensus more than once. One
could either introduce a new directory authority that only creates internal vote
previews without actually publishing votes or just have existing directory au-
thorities log the data upon which they base their decisions. This would also help
to avoid issues where a hotfix tested on one directory authority is accidentally
bundled with voting behavior changes that were only intended for testing pur-
poses.

Additionally, we believe that additional measures should be implemented to
automatically detect suspicious spikes or patterns in the number of available
relays. Malicious actors starting up a large number of Tor relays to launch at-
tacks have been detected [100] in the past and situations where hundreds of
relays join the network over a short period of time should be automatically de-
tected by the Tor project and not go unnoticed for a year, especially if they stand
out like this. Even if there is no sign that these relays are acting maliciously, the
evidence hinting at those relays being run by the same entity should have been
noticed by the Tor project earlier.

Finally, we would like to emphasize that our analysis has not found a single
instance where we believe that malicious actors successfully modified the Tor
consensus to attack users. Considering that Tor is a target for several nation
state actors [8], we have to assume that attacks on the Tor consensus would

6 Verifying the Tor consensus 88

have been launched if they were easy to execute. Despite the issues and im-
provement suggestions mentioned in this paper, it appears that Tor’s method
of forming a secure consensus in a globally distributed network does indeed
withstand the test of time.

Chapter 7

Improving Tor onion services

The research within the previous chapters has indeed confirmed that the Tor
network should be capable of sustaining a distributed digital identity network.
However, it also identifies several points where realistic real-world improve-
ments can be achieved by minor modifications to the Tor client. This chapter
presents three potential changes that can be implemented on individual Tor
clients without requiring additional support from the Tor network that would
significantly improve the performance of Tor-aware distributed applications
in general and the Digidow project’s networking scheme in particular. These
improvements affect the load put on the network by an onion service, the wait
times experienced by users, and the power consumption required for network-
ing.

7.1 Using Current Onion Services

The networking approach presented in section 3 can be implemented with Tor’s
current onion service implementation. In order to have a baseline for compar-
ison, this section provides an outline of how networking, especially concepts
like Pub/Sub would work with current onion services. To highlight the ineffi-
ciencies of such an implementation, we propose three metrics:

First, the number of Tor circuits needed to either register to or notify about a
match. This metric captures the load put on the Tor network as every circuit
requires communication between Tor nodes.

Second, the number of Tor circuits that need to be created or cannibalized.
This distinction is important because some circuits do not have a defined
destination. E.g., the rendezvous point can be any Tor node chosen by the
client, allowing the client to just use one of the general circuits that should
be available. Other circuits need to end at a specific relay that is not known
in advance, forcing Tor to wait until a circuit has either been constructed
or successfully cannibalized, directly adding to the overall time needed to
establish communication via an onion service.

The third metric captures the number of sequential Tor circuits that com-
munication has to go through. Every circuit consists of three Tor nodes and
each of those nodes adds network delay to a transferred message. A con-
cept like Tor onion services that communicates via several Tor circuits in a
row accrues network latency, which is very likely to negatively impact user
experience.

Figure 7.1 illustrates the number of circuits needed to set up a callback onion
service and to subscribe it to an event. Some circuits have been assigned the
same number to indicate that those circuits are created in parallel, while se-
quential numbers indicate that these circuits can only be created after the pre-
vious circuits have been established and used.

89

7 Improving Tor onion services 90

Figure 7.1: Number of circuits created for an onion service

Creating and publishing a new onion service requires 19 circuits in two stages.
In the first stage, three circuits to introduction points are created, usually by
cannibalizing general circuits. The second stage requires 16 circuits to specific
Tor nodes within the hidden service directory. This is more than Tor usually
keeps prepared, forcing Tor to wait for new circuits to be created.

Connecting to an onion service requires only 4 circuits, but those circuits are
created over 3 different stages. The first stage establishes circuits to a specific
node within the HSDIR and an arbitrary node as RP. The second stage creates a
circuit to the IP specified in the descriptor loaded from the HSDIR and the final
stage is triggered when the onion service receives the forwarded introduction
request from the IP and establishes a circuit to the RP.

Figure 7.2 illustrates the sequence of messages that must all be exchanged via
circuits before the connection to an onion service can be established. Since we
are mainly interested in the network latency added by circuits, multiple cir-
cuits being used in parallel are not shown here. Creating an onion service only
requires three message exchanges via circuits, while connecting to an onion
service requires six message exchanges. Keeping in mind that every Tor cir-
cuit consists of three nodes, that adds the accrued latency of 18 Tor nodes be-
fore communication with an onion service is possible. At this point it should
be stressed again that no content data has been exchanged between client and
onion service at this point, as this is just the effort required to allow exchanging
data.

One could argue that it is unfair to include the time needed to set up an onion
service in our analysis, as this is not necessary to connect to an onion service.
In a Pub/Sub scenario via Tor however, subscribers have to create their own
callback service descriptors. It it reasonable to assume that subscribers would
only set up this callback onion service after they have decided to subscribe to
an event for the first time. This directly adds the onion service creation time to
the absolute time needed to subscribe to an event. Further subscription later on
could of course re-use the already existing onion service.

Another reason to include the time needed to set up an onion service in our

7 Improving Tor onion services 91

Figure 7.2: Circuit latency added before connecting to an onion service

analysis is that persistent callback onion services, when used over a long time
period, can themselves become linkable identifiers for user tracking from the
point of view of publishers. Therefore, we expect subscribers to regularly ro-
tate their callback services (to the point of making them single-use) to provide
unlinkability on this level, requiring the regular creation of onion services.

The process of notifying a subscriber about an event requires an established
rendezvous circuit between publisher and subscriber, but it does not need to
create a new onion service. So it incurs the same setup penalties as a sub-
scription process that does not need to create an onion service. The significant
change is that a publisher will usually have to notify multiple subscribers at
once, forcing a single Tor client to create simultaneous connections to differ-
ent onion services with every one of them needing 3 different circuits, which
makes it likely that the Tor client will run out of prepared circuits and end up
having to wait for new circuits to be created.

To give a concrete idea of just how much time is needed for Pub/Sub com-
munication via onion services, we implemented a simple prototype that de-
ploys two onion services, has one service subscribe for an event at the other
one, and receives a notification about an event happening. The results, which
are presented in detail in section 7.5, show that Tor added on average 19 sec-
onds to a single Pub/Sub exchange, making it quite unfeasible for many modern
applications—especially interactive services like instant messaging or digital
identity use.

7.2 Improvement: Make the HSDIR Optional

The first component of onion services that warrants investigation is the hidden
service directory. Publishing service descriptors requires multiple circuits ev-

7 Improving Tor onion services 92

ery time, putting significant load upon the Tor network because clients always
have to communicate with the hidden service directory before they can start
connecting to an introduction point. From a functional perspective, the hid-
den service directory is responsible for translating onion addresses to current
service descriptors. Unlike onion addresses, service descriptors need to be re-
newed regularly because introduction points can go offline, forcing onion ser-
vices to create new introduction points and update their service descriptors.
In terms of privacy, the hidden service directory has been proven to be a point
of potential attacks in the past [11, 102], forcing Tor to continuously improve
the privacy protections on the hidden service directory. Chapter 4 has shown
that the hidden service directory is still leaking information about both users
and operators of onion services and chapter 5 has found that publishing to the
onion service is the most time consuming step of the onion service creation
process.

The main idea behind the first suggested improvement is simple: Distributed
systems already need a mechanism to exchange contact information about
all members. In the Digidow architecture, the sensor directory would serve
that purpose by contact information (traditionally either hostnames or IP ad-
dresses) to PIAs. If this contact information happens to be onion addresses,
members of a distributed system need to first obtain the onion addresses and
then translate those onion addresses to service descriptors, before they can ac-
tually start a connection. Tor-aware distributed systems could remove one in-
direction step by directly using service descriptors as contact information.

This introduces one new problem, namely that that the contact information
must be updated more regularly. Thankfully, the current Tor implementation
already assigns a validity period to service descriptors, which can be used to
implement different approaches for this problem: Some applications might
choose to just create new onion services instead of updating their old ones, al-
lowing the old descriptors to expire (with the added benefit of better unlink-
ability of callback services). If clients already need to set up new introduction
points, there is little difference between the effort of setting up a fresh onion
service or keeping around the old one. If the publisher also does not need to
recognize clients, like it is the case when registering at a sensor, this problem
can just be ignored. Other clients that use onion services for instant messag-
ing for example, would probably have to actively inform every contact about
changes to their descriptor. In return, their messages would be transmitted
more quickly and demand less resources from the Tor network.

Therefore, we propose an extension of the Tor protocol to optionally allow the
creation of onion services that are not published to the hidden service directory.
The service descriptor should just be made available locally, with the respon-
sibility for further distribution delegated to the application. In the same way,
Tor should also notify a managing application about changes made to a service
descriptor because of changing introduction points. Finally, other Tor clients
need a way to load a service descriptor from an external source that is not the
hidden service directory.

7.2.1 Implementation

Our proposal has already identified the three changes that are necessary to re-
alize onion services without using the hidden service directory. Thankfully, the
first step—not uploading service descriptors to the hidden service directory—
is already implemented as a configuration option (PublishHidServDescriptors).
The Tor man page explains that this option is only useful if there exists a

7 Improving Tor onion services 93

Tor controller that handles descriptor publication. Unfortunately, Tor con-
trollers have no way to either learn unpublished service descriptors or load re-
ceived service descriptors, rendering this feature mostly useless. Most likely,
the missing functionality was intended to be added to Tor, so our prototype
only adds two features that were at least at some point meant to be a part of
Tor.

As discussed in section 2.4, there are two potential ways for applications to
communicate with Tor. One can either use Tor as a SOCKS proxy or use the con-
trol protocol [122] to have full control over Tor’s behavior. We expect Tor-aware
applications will always end up using both. The control protocol to configure
Tor according to their needs and SOCKS to exchange data with other clients.

The control protocol already supports subscribing to events (another example
of Pub/Sub being used for communication between applications) and there ex-
ists an event for HS_DESC_CONTENT. However, this event is only triggered if
a descriptor is downloaded from the hidden service directory, not if a new de-
scriptor is created. Our prototype modifies Tor to also publish this event when-
ever a new onion service is created without being published to the HSDIR. Fi-
nally, we need a way to load a service descriptor directly. The current imple-
mentation does not provide that functionality yet, but it does provide a simi-
lar one. The Tor network uses other descriptors to describe every node within
the network and the control protocol can already load such node descriptors
dynamically with the POSTDESCRIPTOR function. Following the same idea, we
implemented a new POSTHSDESCRIPTOR function in the control protocol that
supports loading hidden service descriptors directly. Since this is a new func-
tion within the control protocol, it is a non-breaking change that does not im-
pact any of the current functionality of Tor.

7.2.2 Limitations

Generally, this approach is only viable if the circumstances provide a mean-
ingful way of exchanging service descriptors directly. It is important to keep
in mind that service descriptors are not static, so the exchange mechanism for
service descriptors must be able to keep service descriptors up to date.

Our prototype implementation adds another issue because it loads fully en-
crypted service descriptors via the control protocol. This allows us to reuse
the already existing code path to parse and store service descriptors. Unfor-
tunately, this requires Tor to decrypt the service descriptors and decryption is
dependent on the current time period, which causes our implementation to fail
when time periods change after a descriptor has been created but before it has
been loaded. This could be addressed by changing the implementation to both
emit and load plain text service descriptors instead of encrypted ones because
the descriptor plain text contains no references to the current time period any-
more.

Finally, our decision to re-use an already existing event (HS_DESC_CONTENT)
to learn about unpublished onion service descriptors might cause issues with
existing Tor controllers that expect this event to only happen after a descriptor
has been downloaded. We tried to minimize the number of potentially affected
users by only triggering the new events, if the PublishHidServDescriptors option
is set. If this is not sufficient, specifying a new control protocol event specifi-
cally for descriptors not uploaded to the HSDIR would completely remove this
issue.

7 Improving Tor onion services 94

7.2.3 Privacy Analysis

Utilizing this modification removes the need to interact with the hidden service
directory, meaning that the hidden service directory cannot learn any infor-
mation about the client or the onion service, which constitutes a privacy im-
provement. From the perspective of the introduction point and the rendezvous
point, the changes are transparent, because their part of the protocol remains
unchanged.

The only node that could at least detect that this modification is being used is
the guard relay of the server. If a Tor instance has three long lived outgoing
circuits that are only used to receive information, there is a high probability
that this instance is running an onion service. If that same instance does not
regularly create outgoing circuits to update the service descriptor published to
the hidden service directory, a guard relay could detect onion services oper-
ated with this modification. This is especially effective if the Tor instance is
not creating any unrelated outgoing circuits that might have been used for up-
loads. Consequently, this privacy leak could be addressed by creating dummy
upload circuits, but we believe that the minimal gain in privacy is not worth
the additional load on the Tor network and chose not to implement this for our
prototype.

It could be argued that a privacy problem is added by privacy protection tasks
being moved from the hidden service directory to the unspecified contact in-
formation distribution method of a distributed system. To understand why
this is not an issue, it is important to keep in mind that both onion addresses
and service descriptors uniquely identify an onion service and onion addresses
can easily be translated into service descriptors. Therefore, the distribution of
onion addresses requires the same amount of privacy as the distribution of ser-
vice descriptors, independent of the adoption of this improvement.

7.2.4 Security Analysis

Our modifications only add functionality to the control protocol, so from a se-
curity perspective the only potential risk would come from malicious actors
with access to the control protocol using our new features. The obvious new risk
introduced by our changes is that the capability to load arbitrary descriptors
enables attackers to load manipulated service descriptors into Tor. Fortunately,
service descriptors are already signed by their creator to prevent such manip-
ulations (after all, the nodes of the hidden service directory are not trusted ei-
ther). This means that the new attack surface introduced by our modification
is already mitigated by the standard Tor design.

An alternative malicious action would be to overload the Tor client by loading
too many service descriptors. However, access to the control protocol already
allows shutting down a Tor instance, so our modification does not increase the
attack surface there. The additional event containing information about cre-
ated service descriptors does not grant more agency to a malicious Tor con-
troller, but it provides new information that was previously unavailable. With
providing that information to Tor controllers being the primary motivation for
adding this functionality, we do not consider this a relevant security impact.

7 Improving Tor onion services 95

7.3 Improvement: Bundle Information in the INTROCell

Another aspect of onion services that could be improved is the need to use ren-
dezvous points. The time it takes to set up a circuit via a rendezvous point is one
of the main contributors to overall latency when communicating with onion
services. Without them, all traffic between onion services and clients would
have to run via the introduction points, making them centralized points that
could be either abused to monitor onion service usage or overwhelmed by the
load of popular onion services.

In the Pub/Sub model, however, communication is uni-directional: there is no
need for a bidirectional rendezvous circuit, as long as we can transfer the nec-
essary information. In order to make traffic analysis harder, Tor pads all of its
cells to a standard size, meaning that a regular INTRODUCE1 utilizes only 310
out of 498 available bytes, leaving 188 bytes of additional payload that could be
added. While that is not a lot of data, it should be enough for a simple subscribe
request containing only a list of event types and an onion address as callback.
Even message transfer for scenarios like instant messaging is plausible. SMS
for example has always had a limit of 160 characters and until 2018 Twitter only
allowed Tweets with up to 140 characters.

Data transmitted in this way would reach the onion service at a time when tra-
ditional onion services only start establishing their rendezvous circuits. This
saves the time it takes to create the rendezvous circuit, the time needed to link
the two rendezvous circuits together, and finally the time required to actually
send the message via the extended 6-hop circuit. As a side effect, this reduces
the overall load on the Tor network by removing the need for both rendezvous
circuits.

This modification should be completely opaque for outside observers, as they
see the same number of encrypted cells going from the client to the onion ser-
vice. Attackers with direct access to the onion service network traffic could no-
tice that no outgoing rendezvous circuits are being built, which will be dis-
cussed in section 7.3.3.

So, for our second improvement, we propose to give Tor clients the option to
extend their introduction requests with additional information for the onion
service. This change must be opaque for the introduction point, so that our pro-
totype remains functional on the current Tor network and does not stand out
among other unmodified onion services.

7.3.1 Implementation

The implementation of this improvement is more complex than the previous
one, because it has to change the contents of well-defined Tor cells. Thankfully,
the Tor protocols have been designed with extensibility in mind. The onion ser-
vice specification [122] defines a format for future extensions that can be used
in both INTRODUCE1 and INTRODUCE2 cells to communicate additional infor-
mation to the introduction point or the onion service. At the time of writing,
there was not a single extension published that added information to any of
those cells, but the parsing and encoding of extensions is already implemented,
meaning that any valid extension data added on the client side, is easily avail-
able at the onion service.

That leaves three specific tasks open for the prototype implementation: First,
the Tor client needs a way to send INTRODUCE1 cells to introduction points di-
rectly. This is a new requirement, because until now they were only sent when

7 Improving Tor onion services 96

a client wanted to connect to an onion address via Tor’s SOCKS proxy. In our
new scenario, there is no SOCKS connection, because there is no communi-
cation planned via the rendezvous circuits. While the control protocol already
supports modifying running circuits, it does not provide a way to launch a new
circuit manually. It would be possible to implement manual cannibalization by
changing a general circuit into a specific introduction circuit, but we opted for
the simpler solution of adding a new control protocol function that allows us to
create new introduction circuits directly. Additionally, we added a second fea-
ture that allows us to send INTRODUCE1 cells via any circuit. Combining these
two new features solves the first task, as it allows us to send introduction re-
quests to arbitrary Tor nodes.

For the second task, the Tor client does need a way to add extension informa-
tion to an INTRODUCE1 cell. Since we already have a new control protocol feature
to manually send introduction requests, it is easy to provide the extension data
there as well. The tricky bit is passing the extension information on to Tor’s in-
ternal functions, because the current Tor implementation does not expect ex-
tensions to be set dynamically. Instead, it assumes that extensions are static
and declared in a configuration file. This means that they can be read at any
point in the code by simply checking the current configuration. However, this
does not work for a Pub/Sub scheme where clients might want to subscribe to
different events. We ended up having to extend the method signature of multi-
ple functions within Tor to be able to forward dynamic extension information
via Tor.

Finally, the onion service needs to check incoming INTRODUCE2 cells for ex-
tensions and notify the application managing the onion service about any in-
coming messages. Tor’s source code already contains a comment at the posi-
tion where checks for supported extensions are supposed to be implemented.
All that had to be done was to implement a check for the new event data and a
new control protocol event, which can be used to notify the onion service about
an introduction request with an extension that provides all the necessary sub-
scription information.

7.3.2 Limitations

An important drawback of our prototype implementation is the fact that clients
embedding data in their INTRODUCE1 cell cannot continue the data exchange
via a rendezvous circuit later on, because there is no SOCKS connection that
could be attached to a rendezvous circuit. Therefore, clients can only use this
way of exchanging data if their entire message can be added to the INTRODUCE1
cell. This is not a limitation of the Tor protocol, it is just a limitation of our
implementation, so this could be changed in the future.

A minor performance limitation of our prototype is that it always creates a new
circuit for the introduction request, instead of trying to cannibalize a circuit
first. While this will slightly increase the average time needed to prepare the
circuit, it can be ignored because publishers are expected to create multiple in-
troduction circuits in parallel and will regularly run out of prepared circuits to
cannibalize.

Another disadvantage would be that clients do not receive confirmation that
their message has actually reached its destination. They do receive an IN-
TRO_ACK cell from the introduction point letting them know if their cell has
been forwarded, but any failures that occur afterwards—like the onion service
failing to decrypt the message—go unnoticed. In the current implementation

7 Improving Tor onion services 97

this is not really a problem, as Tor always notices when the onion service does
not connect to the rendezvous point in time.

Finally, it should be mentioned that this utilization of Tor extensions assumes
that no other Tor extensions are being used in parallel. With every other exten-
sion that is being used, the amount of data that can be included in the INTRO-
DUCE1 cell decreases and we would risk to exceed the available space with our
extension. However, since there has not been a single Tor extension specified
so far, we consider this a tolerable issue.

7.3.3 Privacy Analysis

Since the size of the INTRODUCE1 cell is always padded, the introduction point
cannot tell the difference between cells with or without additional extensions.
Again, the only node that can observe different behavior is the guard node of
the onion service, as it can see long-lived circuits receiving data, which usually
leads to new circuits being connected to the rendezvous point. If those connec-
tions to rendezvous points are not happening, the guard node can speculate
that the onion service is most likely using such an extension.

7.3.4 Security Analysis

This improvement adds one potential attack vectors to the Tor client, namely
the capabilities to send INTRODUCE1 cells with arbitrary extension on a random
circuit. Our added feature to launch circuits can be ignored, because the already
existing EXTENDCIRCUIT command could be used to achieve the same thing,
it would just be more tedious. The arguments from 7.2.4 also apply to newly
added control protocol events, so they will not be repeated here. Extensions
added to the introduction request are only parsed at the onion service, so this
attack vector can only threaten them. The most significant risk we see here, is
that insufficient validation while parsing the extension data received from the
clients might lead to unexpected behavior. Since the processing of received data
is application specific, we consider it out of scope for this research.

7.4 Improvement: UseMinimized Descriptors

Both improvements implemented so far are a benefit for the performance of
Pub/Sub communication, but they are not yet compatible with each other. If
a client wants to bundle a subscription request with an INTRODUCE1 cell, the
callback information has to fit within less than 189 bytes. For comparison, our
test service descriptor with three introduction points had a size of 13655 bytes,
forcing us to include the callback information as an onion address.

This raises the question of why Tor needs so much data to encode informa-
tion about the three introduction points of an onion service. The specification
of Tor’s service descriptor format [122] includes several decisions that com-
pound to create this issue. First, service descriptors are encrypted to prevent
the HSDIR from learning anything about them. Before encryption, the plaintext
is padded with null-bytes to the nearest multiple of 10K bytes. After decryption,
the size of the service descriptor reduces to only 4370 bytes, telling us that the
largest part of any descriptor consists of encrypted null-bytes. Next, there is a
rarely used feature for onion services known as client authorization. It allows

7 Improving Tor onion services 98

onion services to add a second layer of encryption to their service descriptors,
that only selected clients can decrypt. To prevent observers from finding out
if a descriptor uses client authorization, every service descriptor contains this
second encryption layer and, if it is not used, the list of clients is just filled with
16 randomly generated clients with the key for opening the second encryption
layer being included in plaintext.

Dropping the irrelevant client information reduces the descriptor size further
down to 2328 bytes. Finally, this contains the information about the three in-
troduction points (770 bytes each) along with some metadata. As explained in
section 2.5.1, the descriptor needs to at least include the identity of the intro-
duction point, along with the INTRO_AUTH_KEY and the ENC_KEY. In practice,
they do contain a lot of additional information: First, the identity of any Tor re-
lay is described by a list of link specifiers. Every entry in that list uses another way
of identifying a Tor relay and Tor requires all clients to add every link specifier
they know of in that list. This means that the identity of the introduction point
is specified redundantly by its IPv4 address, IPv6 address, RSA public key, and
ED25519 public key, which ensures compatibility with any currently deployed
Tor versions. Second, the public key of the Tor node is included, although it
could also be obtained from the consensus, since it is always published there.
Third, certificates are included to cross-certify that both the INTRO_AUTH_KEY
and ENC_KEY were chosen by the owner of the onion service’s MASTER_KEY.
Finally, there are legacy options for onion services interacting with older Tor
versions, which we will ignore because they are no longer allowed to join the
Tor network [52, 73]. Overall, this results in Tor allocating 770 bytes of data for
every introduction point, while only 96 bytes end up actually being required to
connect to an onion service.

One obvious conclusion from this analysis is that much of the reason why de-
scriptors are so large is tied to the fact that the HSDIR cannot be trusted. Obvi-
ously, the same applies to any other system where descriptors are being pub-
lished, although some of them may have more relaxed privacy requirements.
However, in a Pub/Sub scenario where a client wants to subscribe by sending a
descriptor directly to an onion service without ever publishing it, those protec-
tions can be dropped because the descriptor is exchanged directly between the
two parties who need to be able to read it. A minimal descriptor for an onion ser-
vice containing just the 96 bytes needed to establish a connection could feasibly
be included in an INTRODUCE1 cell, enabling the combination of both previous
optimizations.

7.4.1 Implementation

Implementing this feature requires a few small changes to the client control
protocol to include the necessary data and a major change to the onion service
side, as it needs to assemble a valid service descriptor from the received infor-
mation and include that service descriptor in its internal database.

Our implementation approach adds a new optional service descriptor argu-
ment to the control protocol function for sending an INTRODUCE1 request. If it
is set, the provided service descriptor is decrypted and a random introduction
point gets selected. From the chosen introduction point, information about
the INTRO_AUTH_KEY, the ENC_KEY, and the identity of the IP (170 bytes) are
extracted. At this point, our implementation optimizes memory usage by re-
purposing fields that are always present in an INTRODUCE1 cell, like the identity
of the RP. As our modified cell can never lead to a valid rendezvous, that field
can be used to store the identity of the IP of our descriptor. This leaves only two
keys which are currently added in two new extension fields.

7 Improving Tor onion services 99

Aside from the strictly necessary fields, our implementation supports adding
two more extension values: First, the subcredential of the service is also sent,
because it is needed for encrypting the content of the INTRODUCE1 cell that
should not be readable to the introduction point. However, since this subcre-
dential is derived from the onion address, which is already included in our sub-
scription request, we would expect this to change in more optimized imple-
mentations. Second, an option to specify a timeout was added. Regular service
descriptors have a lifetime of at most 48 hours because their blinded public keys
and subcredentials do change with every time period. However, clients might
want to limit the duration of their subscription even further. To support this
scenario, we added an optional extension value that sets the validity period of
the descriptor that will be created by the Tor client receiving this information.

Once an onion service receives an introduction request with all this informa-
tion, it has to construct a valid service descriptor from it that is compatible with
normal service descriptors. Naturally, the minimized descriptor leaves most of
the information that would usually be included empty. This works because all
the validation of a service descriptor (verifying signatures, cross-checking cer-
tificates) happens before the descriptor is actually loaded into internal storage.
Our implementation bypasses all of those validation steps by directly adding a
descriptor to this Tor internal storage.

7.4.2 Limitations

The minimal descriptor format consumes most of the available space in the IN-
TRODUCE1 cell: 32 bytes for the ENC_KEY, 32 bytes for the INTRO_AUTH_KEY,
32 bytes for the subcredential, 56 bytes for the onion address, and 15 bytes for
the timestamp leave only 21 bytes for the subscribe condition. However, this
limitation only applies to our prototype, more efficient implementations could
improve the amount of space available for the subscribe condition. Potential
improvements are presented in section 8.2.8.

7.4.3 Privacy Analysis

From an external perspective, this improvement is very similar to the one pre-
sented in section 7.3. It just bundles very specific information in the INTRO-
DUCE1 cell that can be used to contact the subscriber later on. Therefore, the
reasoning from section 7.3.3 also applies here, meaning that the guard relay
of an onion service can find out if this prototype is being used. It might even be
possible to learn if service descriptors are being exchanged, because connecting
to an onion service, for which the descriptor is already known, always requires
two circuits (one to the rendezvous point and one to the introduction point). If a
Tor instance only receives information through introduction circuits and uses
other circuits always in pairs of two, the guard node could reasonably assume
that the onion service is using this mode of operation.

7.4.4 Security Analysis

Accepting minimized descriptors opens up a new attack vector for malicious
actors, because without cross-certification and signatures, there is no way to
confirm that a minimal descriptor was created by the owner of the onion ser-
vice. Instead, everyone with knowledge of the original service descriptor can
generate different minimal descriptors from it. As an example, attackers could

7 Improving Tor onion services 100

abuse this to distribute minimal descriptors that seem like they point to a well-
known onion service like Facebook, while actually pointing to an onion service
under their control that simply forwards the traffic, opening up new man-in-
the-middle attacks.

Alternatively, attackers could abuse this by creating minimal descriptors that
point to a well-known onion service like Facebook and subscribe it to every
event they can find, resulting in a distributed denial-of-service attack against
the onion service. Similarly, a single publisher could be overwhelmed by sub-
scriptions from thousands of different onion services, forcing the publisher to
notify them all whenever an event happens. Technically, those problems would
also arise in a Pub/Sub implementation with regular onion services, but if the
length of a subscription request is not limited to 188 bytes, these problems can
simply be solved by signing a subscription request with the MASTER_KEY of
the callback onion service. Solving them when using this improvement would
require optimizing our implementation to support another 64 bytes of payload
that can be used to carry an ED25519 signature. Ideas on how the available pay-
load size could be increased are presented in section 8.2.8.

7.5 Performance Evaluation

In order to properly assess the improvements presented in the previous sec-
tions, it is necessary to evaluate their performance impact on the Tor network.
This quantifies the benefits that are already achieved by the presented pro-
totype implementation and provides a foundation to discuss further potential
improvements.

7.5.1 Experiment Setup

The presented prototype remains compatible with the Tor relays already de-
ployed in the Tor network. For our experiment we only need to deploy two new
Tor clients which take over the roles of publisher and subscriber. With latency
and circuit build times being highly dependent on the specific relays chosen by
Tor to build circuits with, our experiment has to be repeated often to produce a
reliable average for the current Tor network.

In order to compare our prototype against the current Tor implementation, we
implemented a simple Pub/Sub communication with and without our proposed
improvements and measured them both. Our prototype branched out from Tor
at Git commit 8ead53330c73e9bc1b82f6b7fc8946d6290638421, so a Tor binary
built from this version serves as our baseline, which will be compared against
our implemented prototype. Every run was conducted in a fresh Docker con-
tainer to prevent previous runs from impacting future measurements. The host
machine was deployed within our university network without restrictions to
Internet access and with publicly routable IPv4 addresses. All experiments were
conducted sequentially to avoid negative impacts from running more than two
Tor instances at a time, and we did not observe any immediate hardware or
network bottlenecks that might have impacted the measurement.

In terms of methodology, we used the methodology as Loesing et al. [87], which
already inspired the experiment design in chapter 5. Just like them, we measure
the time the various stages of onion service communication take by observing
log events emitted via Tor’s control protocol. Unlike them, we did not to run

1https://gitlab.torproject.org/tpo/core/tor/-/commit/8ead53330c73e9bc1b82f6b7fc8946d629063842

https://gitlab.torproject.org/tpo/core/tor/-/commit/8ead53330c73e9bc1b82f6b7fc8946d629063842
https://gitlab.torproject.org/tpo/core/tor/-/commit/8ead53330c73e9bc1b82f6b7fc8946d629063842

7 Improving Tor onion services 101

Figure 7.3: Circuit latency with our prototype

our own introduction point, because we were not interested in the individual
timings for INTRODUCE1 and INTRODUCE2 requests.

For our measurements, we expect two Tor processes to be up and running. One
of them acts as publisher and accepts incoming subscribe requests via an onion
service, while the other acts as subscriber. Afterwards, a full Pub/Sub exchange
is simulated:

1. The subscriber creates a new onion service.

2. The subscriber sends a subscribe message to the publisher.

3. The publisher receives the subscription.

4. The publisher publishes an event that the subscriber subscribed to.

5. The subscriber receives the event.

This enables us to quantify the relative performance gained by implementing
the modifications from section 7.2.

Since it is our goal to quantify the performance improvement of our proposed
changes individually, we decided that our prototype would only use the opti-
mizations from section 7.3 and 7.4 when subscribing to events. This enables
us to quantify the relative performance gained by implementing the modifica-
tions from section 7.2 by comparing the time needed to subscribe to an event
with the time needed to publish one. All the data presented in the next section
was collected over 10,000 runs between 2022-05-06 and 2022-05-11.

7.5.2 Experiment Results

Before presenting our results, it is worth discussing our expectations going into
this experiment. The unmodified baseline should take a few seconds to create
the onion service. Recent results [59] suggest waiting times of slightly below
four seconds before the onion service is ready. The time it takes to subscribe
to an event or publish a notification about an event should be equal, since both
actions need to establish a fresh connection via onion services. When measured

7 Improving Tor onion services 102

Runs Unmodified Modified

Attempted runs 4948 5052
Successful runs 4822 4569
Bootstrap timeout 48 50
Descriptor parsing failed 0 132
Descriptor download failed 78 0
Run timed out 0 271
Control protocol timeout 0 31

Table 7.1: Number of conducted test runs

in 2008 [87], connecting to an onion service took on average 24 seconds. How-
ever, Tor has continued to improve since then with more efficient cryptography
and protocols. That, in combination with the fact that the Internet as a whole
has gotten faster, leads us to expect that the time needed to connect to an onion
service should be much lower today.

The improvement presented in section 7.2 should significantly decrease the
time it takes to create an onion service, while the time needed to subscribe to
or publish an event should only decrease slightly. The modifications presented
in sections 7.3 and 7.4 should massively decrease the time it takes to subscribe
to an event, without impacting any other part of the communication. Figure 7.3
visualizes the expected improvement by showing the number of circuits needed
to connect to an onion service after all proposed modifications have been ap-
plied.

Table 7.1 shows how many runs were conducted during the experiment and
how many of them were successful. Only successful runs were included in fur-
ther performance analysis, so the failed runs are broken down to clearly define
the reasons why runs were excluded. First, runs where Tor needed more than
300 seconds for initial bootstrapping were aborted. This is independent of our
modifications and occurs equally for both implementations. Our prototype in-
troduces an expected issue with service descriptors not being parsed success-
fully, if the time period changes between the creation of a descriptor and the
publication of the descriptor, which caused 132 additional failures. It is also not
surprising that our prototype implementation does not possess the same re-
silience against common Tor issues—like circuits collapsing before they could
be used—which resulted in a total of 271 failures. Not expected were the is-
sues with failing descriptor downloads with regular onion services, which will
be discussed in more detail below, and the control protocol timeouts that hap-
pened when creating an onion service took longer than 5 seconds.

A first overview over our baseline measurements is presented in Table 7.2,
showing how long the individual stages of the Pub/Sub process took while us-
ing regular onion services. As expected, connecting to an onion service became
much faster, but it still takes more than 8 seconds on average to exchange data
with an onion service. Initially, it looked like the time needed to create an onion
service is significantly below four seconds. Unfortunately, this result is not
caused by an improvement in the Tor network, but by different interpretations
of when an onion service has been published. Hoeller et al. [59] considered an
onion service successfully published after the descriptor was uploaded to 8 out
of 16 HSDIR nodes, while the Stem library used by us only requires a single up-
load to complete. This explains why the onion service creation time was lower
than expected and why some of our experiment runs failed because a descriptor

7
Im
proving

Toronion
services

103

Description Minimum Maximum Median Average Variance StdDev

Creating and publishing callback onion service 1.3322 26.2639 1.7956 2.0985 0.9469 0.9731
Sending subscribe to publisher 1.1526 208.9262 3.4638 8.4719 381.1696 19.5236
Sending event notification to subscriber 1.1253 206.3544 3.5483 8.5836 361.2280 19.0060

Total time 4.1885 272.0048 9.8988 19.4779 774.0817 27.8223

Table 7.2: Pub/Sub duration (in seconds) with unmodified baseline Tor implementation

Description Minimum Maximum Median Average Variance StdDev

Loading descriptor via control protocol 0.0019 0.0215 0.0041 0.0047 0.0000 0.0021
Creating callback onion service 1.0220 6.0388 1.0729 1.3544 0.3396 0.5827
Creating introduction circuit 0.0419 35.2306 0.3809 0.5949 2.0276 1.4239
Sending subscribe event to publisher 0.0465 29.7967 0.1770 0.2354 0.3171 0.5631
Sending event notification to subscriber 0.7203 58.3497 2.2798 3.1695 17.6772 4.2044

Total time 2.1152 60.8921 4.2544 5.3740 21.4259 4.6288

Table 7.3: Pub/Sub duration (in seconds) with modified Tor prototype

7 Improving Tor onion services 104

could not be downloaded. If the first descriptor is not used in the current time
period, then the Tor client will fail to download the service descriptor, because
it has not yet been published for the current time period. As shown in Table 7.1,
within our 4948 runs we encountered this issue 78 times.

At this point we considered repeating our experiment to obtain more reliable
results for onion service creation time. However, it turns out that it is actually
quite hard to define when an onion service has been successfully published:
Do all uploads have to complete? Or is it enough if half of them have com-
pleted? Should uploads for current and backup descriptor be weighted differ-
ently? Would that weighting depend on the current time, since backup descrip-
tors are more likely to be used around time period changes? Depending on how
one answers these questions, the time needed to publish an onion service can
change drastically. Since we are trying to measure an objective improvement
over the current Tor implementation, selecting the most favorable definition
for Tor does seem fair and that happens to be what the Stem library is doing by
requiring just a single upload to complete.

Putting that issue aside, it is worth highlighting that the median for connecting
to an onion service is much lower than the mean, with only about 3.5 seconds.
This indicates that the mean is increased by (potentially few) outlier requests
needing a long time to finish, which is also confirmed by the high variance and
standard deviation. This is most likely caused by circuits being built through
unreliable or currently overloaded/unstable Tor relays and is inherent to the
design of the Tor network. Nevertheless, such latency spikes are a problem in
latency sensitive domains like instant messaging and discourage users from
adopting privacy preserving applications build on top of the Tor network, so
reducing them as much as possible should remain a goal.

We can now compare our improvements against this baseline of an unmodified
Tor implementation. Table 7.3 shows the time needed by the new steps intro-
duced by our prototype, as well as the old steps that should have been sped up.
The overall trend is promising, with the median time needed for a full Pub/Sub
exchange reduced from 9.9 to 4.3 seconds. A more detailed comparison of our
measurements is presented in Figure 7.4.

The newly introduced function to load service descriptors via the control pro-
tocol barely has any impact on the overall timing, confirming that loading de-
scriptors directly is feasible for applications that can distribute them. Remov-
ing the step of publishing service descriptors to the hidden service directory
did improve the time needed to prepare an onion service. It should be noted
though, that this time difference is most likely irrelevant in practice, because
the time needed to distribute the service descriptor to potential clients is sure
to be longer than the time needed for the descriptor to be published. Therefore,
we consider the performance gained at this stage irrelevant for the overall per-
formance of a tor-aware Pub/Sub implementation.

Of much greater relevance is the time needed for subscribing and publishing, as
those are the operations that users are likely to be waiting for. Subscribing to an
event was measured in two parts. First, we measured the time it takes to create
a custom introduction circuit. This time is interesting, because our prototype
implementation always creates a fresh introduction circuit, instead of trying to
cannibalize an existing one first. So the time needed to create an introduction
circuit also gives us an estimate on how long it takes Tor to create a new cir-
cuit from scratch. With an average duration of 0.6 seconds, the time needed to
create the introduction circuit is more than double of what it takes to send the
INTRODUCE1 cell via the introduction point to the onion service, which requires
going through two different circuits and only takes 0.24 seconds on average.
This means that data bundled with the INTRODUCE1 cell needs on average less

7 Improving Tor onion services 105

Figure 7.4: Comparison of Subscribe and Publish times

than a second to reach its destination, compared to more than 8 seconds if data
is transmitted the traditional way. However, this comparison is not completely
fair because this subscribe request also benefits from not having to communi-
cate with the hidden service directory.

To evaluate the performance improvement by skipping the hidden service di-
rectory, the time needed for sending event notifications back to the subscriber
can be analyzed. As expected, this request takes much longer than the subscrip-
tion, because it establishes a regular rendezvous circuit. Our measurements
show that the median time needed to send a subscription was reduced from
about 3.5 seconds to only 2.3 seconds.

Especially interesting was the fact that the variance in our measured times
was decreased significantly by our proposed modifications, although that was
never an explicit goal. The variance for sending an event notification dropped
from more than 361.2 seconds down to only 17.7 seconds. To rule out that
the observed improvements were not caused by outliers within the significant
variance of the baseline, we conducted an unequal variances t-test (Welch’s
test) for both the time needed to send an event notification to the subscriber
and the total time to test the assumption that our prototype resulted in faster
executions than the baseline. The results of these tests (provided in Table 7.4)
do confirm that the observed time improvements are statistically significant,
despite the high variance.

We originally speculated that this behavior is tied to our incorrect check for
when onion services are published. If Tor has to connect to multiple nodes in
the hidden service directory before finding the descriptor, the time needed to
obtain the service descriptor becomes much less predictable. To confirm this
theory, we repeated our experiment by conducting another 10,000 runs of our
experiment between 2022-05-26 and 2022-06-06 where we added an arti-

7 Improving Tor onion services 106

Chosen test input t-metric p-value

Sending event notification 19.2889 1.73 · 10–80

Total time 34.6989 2.43 · 10–237

Table 7.4: Results of Welch’s Tests on collected data

ficial delay of 10 seconds after the creation of the onion service. According to
data collected in the past by Hoeller et al. [59] this should be enough time for
most uploads to finish, but we did not observe a significant decrease in vari-
ance, indicating that our assumption was incorrect. This leads us to conclude
that omitting the HSDIR has also decreased the variance in onion service con-
nection times.

7.6 Summary

This chapter concludes the scientific contributions presented in this thesis by
demonstrating several potential improvements that could be applied to the Tor
network to significantly improve the performance of distributed systems run-
ning on top of the Tor network. Making the hidden service directory optional
provides benefits both for performance and for privacy and can be done with
minimal changes to the current Tor implementation. Using the initial intro-
duction request to transfer additional information benefits applications that
need to transfer lots of short messages to different recipients like the regis-
tration requests made by sensors. The final improvement makes these regis-
tration requests even more efficient by including a minimal service descriptor.
This enables the sensor to send the responding match request without contact-
ing the HSDir first, which again cuts down the response time by more than 50 %
even if the messages are exchanged via a regular rendezvous circuit.

This resulted in a Tor version that can reduce the average time needed for the
first half of a Digidow transaction from almost 20 seconds to slightly above 5
seconds. While this is still not enough to meet the objectives from section 1.2, it
constitutes a significant improvement over the current state of the art and re-
veals paths towards further improvements in the future. Preparing onion ser-
vices in advance or rotating them as suggested in section 5.3 would remove
more than a second from the transaction time, and if match or credential re-
quests could also be bundled within Introduce1 cells, the transaction time would
decrease even more drastically. Other use cases that require peer-to-peer con-
nections via Tor—like privacy preserving instant messaging for example—
also benefit from these optimizations because a lower number of circuits and
cells needed leads to lower transmission times and less battery drain. The final
chapter will provide a discussion on further research needed before a network-
ing scheme for privacy preserving digital identity systems can be finalized.

Chapter 8

Conclusion and Outlook

8.1 Conclusion

After all the research presented in this thesis, it is time to check how close we
are to meeting the objectives laid out in section 1.2. The first goal of having a
distributed system can be achieved with the networking strategy presented in
section 3. Although many details still require additional work, there is no doubt
on our minds that the proposed networking strategy can achieve the desired at-
tribute of distribution. The second requirement dealt with preserving the pri-
vacy of users. Our analysis in section 2.2 concluded that the Tor network is the
only currently available system that can provide the network anonymity re-
quired to protect the privacy of users of a decentralized digital identity system.
However, we have also identified several issues within the Tor network that re-
duce our trust. The HSDir leaking information about when and how often onion
services are being used (see section 4), the missing transparency of directory
authorities about their voting behavior (see section 6), and the fact that attack-
ers have repeatedly managed to gain control over significant fractions of the
Tor network [74, 99, 100] are all good reasons to remain careful when trust-
ing entities like the Tor project. Nevertheless, the Tor project is still the best
and most feasible effort towards anonymous networking, and we believe that
building on top of it provides a very reasonable compromise between privacy,
latency, and feasibility. The topic of scalability was not directly addressed very
much during this thesis because fully decentralized systems have a tendency
to scale very well. The biggest weakness in this regards is the Tor project itself
because it is not fully decentralized. In 2009 McLachlan et al. [92] raised the
issue that the Tor network is putting a lot of load on directory authorities be-
cause they have to distribute the Tor consensus to every client in the network.
The Tor project has taken some measures to mitigate this issue—supporting
consensus diffs [124] for example—and there are other ideas like the use of
private information retrieval [93] to further reduce the scalability issues faced
by the Tor network. As long as the Tor network manages to scale, we are con-
fident that our proposed networking scheme will also scale. This brings us to
the final objective: Keeping the latency of network transactions low enough to
remain acceptable for users. We learned from section 7.5 that every interaction
with an onion service takes more than 8 seconds. A minimal Digidow transac-
tion (see section 3.1.5) consists of a registration, a match and a credential which
would take more than 24 seconds in total. If the PIA manages to correctly regis-
ter in advance, the time needed for the registration can even be dropped leaving
only about 16 seconds for network latency. While this is below the maximum of
30 seconds for transaction times, there are many scenarios where such a long
waiting time would be unacceptable. However, the improvements presented in
section 7 show that it is possible to exchange the critical requests (the match
and the credential) within less than two seconds instead. This improvement
is enough to convince us that the network for a privacy preserving distributed
digital identity system can be feasibly implemented today, if the privacy level

107

8 Conclusion and Outlook 108

provided by the Tor network is acceptable for the specific scenario. There is a
lot of implementation work that remains to be done, but all the necessary parts
are available.

8.2 FutureWork

Unfortunately, the research conducted during this thesis had a tendency to
bring up more questions than it answered. Despite my best efforts, the time
available for this dissertation is limited and many questions remain unan-
swered. This section will outline some research questions that will hopefully
be addressed by other researches in the future to improve the tools and knowl-
edge available to engineers who want to design privacy protecting technolo-
gies. Since the Tor project is currently undergoing an effort to re-implement
the Tor application in the Rust programming language [90], it also seems like
a good opportunity to propose changes that make the Tor network more useful
for the future.

8.2.1 Improve I2PMetrics

The I2P network is—as discussed in section 2.3.1—designed to support anony-
mous distributed networks. However, its low number of users has not yet at-
tracted enough outside review to justify trust into their network. One founda-
tion to enable further research is to obtain better information about the cur-
rent state of the I2P network. Efforts have been made to collect metrics [56]
but there is a lot of information missing that is readily available for the Tor net-
work. First, there is no information on client behavior or network performance.
We have no statistics on how many connections are made via the I2P network,
their available bandwidth, or how long it takes to establish them. Answering
these questions is tricky because nodes within the I2P network are only aware
of a small subset of other running nodes within the network. Obviously, the
performance experienced by individual nodes is heavily impacted by the sub-
set of the network they use to create their onion routed connections. To account
for this, data must be collected on a large scale to derive meaningful averages
and variances. Especially the variance would be interesting because it quanti-
fies the randomness in performance introduced by the distribution of subsets
instead of all nodes. There are also issues regarding the information available
on the nodes that make up the network. Statistical information about them can
be obtained by operating multiple I2P routers at once and combining their data.
However, we only get an estimate on the amount of routers, their flags and
their countries. Further relevant information like the AS (autonomous system)
a node is located in, the version of I2P running on the router, their uptime, or
something like a contact information are not available for I2P. This makes it
harder for researchers to investigate detailed aspects of the I2P network be-
cause they have no data as a starting point to go from. Even worse, it also has
a negative impact on the security of the network because the I2P network has
no real way of preventing malicious nodes from joining. The much larger Tor
network is regularly forced to remove relays from the network [74, 100], while
I2P has no way of either detecting or removing large groups of malicious relays.
As long as this remains the case, it is hard to justify trust in the I2P network.

8 Conclusion and Outlook 109

8.2.2 Rework the Estimate for Unique V3 Onion Services

As discussed in section 4.2.1, the current estimates for unique V3 onion ad-
dresses published by the Tor project are calculated with the outdated HSDir
shares that only apply for version 2. While this is one problem that can be ad-
dressed quite easily, there are a few other questions that arise from re-using
the algorithm for the estimation of V2 onion services: First, the way how data
is aggregated should be reviewed more carefully. V2 onion service counts were
collected in 24 hours periods with random starting points, while V3 onion ser-
vice counts use 24 hour periods with a fixed starting point. This means that the
current algorithm goes through a lot of effort to account for overlaps between
the estimates of different relays, although the estimates for V3 should not over-
lap anymore. The second question deals with the aggregation of hsdir_shares.
This is necessary because a new consensus (and with it a new HSDir) is pub-
lished every hour but the data reported by relays is aggregated by days. In the-
ory, this would be a simple average over the 24 fractions calculated for the 24
different consensuses within the time period, but this is again not enforced be-
cause support for random starting times means that periods will usually have
25 valid consensuses. This issue is especially problematic because some re-
lays report statistics that do not fit the specification. The collection period of
reported statistics is often larger than the expected 86,400 seconds. Slightly
higher values are negligible (the calculation already calculated with 25 consen-
suses instead of 24), but some relays report ridiculous data collection periods of
more than 4000 days instead of just 24 hours. Other relays report wildly differ-
ent estimates for the same time period, making it hard to decide which estimate
is more legitimate. The current algorithm includes all of these reports into its
aggregation. It is uncertain how much of an impact they have on the overall es-
timation, but investigating why these reports are made and how they should be
handled to produce accurate statistics would definitely be worth additional re-
search time. Finally, the chosen method of aggregating the reports from differ-
ent relays into a single estimate should also be discussed. This currently hap-
pens with a weighted interquartile mean that discards estimates from relays
whose share is either in the first or fourth quartile. A weighted mean is then
calculated from the remaining estimates, with each estimate being weighted
by its share. This prevents relays with very small or very high shares from im-
pacting the overall result too much. This was most likely included because the
V2 specification for onion services used the fingerprint of a relay to position it
on the HSDir and a relay can choose its fingerprint freely, enabling the opera-
tors of Tor relays to control their share of the HSDir. Ignoring values reported
by both very small and very large shares makes it harder for single entities to
falsify the results. However, V3 onion services are no longer suffering from that
issue because the share a relay is responsible for changes daily and is no longer
predictable. Filtering statistics based on their total impact on the onion service
instead of their weight might lead to more accurate predictions for the amount
of available v3 onion services.

8.2.3 Compare Downloads of Known and Unknown Onion Services

The analysis presented in section 4.2.2 is very superficial and does not even
attempt to a find out what onion services are being used for. The introduc-
tion of key blinding makes it impossible to reproduce previous research on V2
onion services—like the work of Owen and Savage [102]—because the onion
addresses can no longer be harvested in this manner. If provided with a list of
valid onion addresses, it would be easy to retroactively calculate their blinded
public keys and find out how often they were observed by the experiment from

8 Conclusion and Outlook 110

section 4.1 and make an estimated guess about the amount of visitors they re-
ceive. There are public resources that collect onion service addresses [62, 97]
that could be used to create a list of known onion addresses. These are very
likely only a tiny fraction of all existing onion addresses but they should be re-
sponsible for a significant share of onion service downloads. It would be inter-
esting to see how much onion service activity can be attributed to these known
onion services and how much remains unaccounted for. This could also serve as
a baseline for further research into how onion addresses are distributed. After
all, onion services delegate the distribution of onion addresses to their opera-
tors, so successful onion services must have a way for users to learn their con-
tact information. If onion services with thousands of users are not included in
public resources, they must either have currently unknown ways of onion ad-
dress distribution or utilize onion services in a fashion where a few individuals
cause a large amount of descriptor downloads. In any case, it seems likely that
further analysis of the data harvested during our experiment will provide more
and new insights into the usage of V3 onion services.

8.2.4 SingleHopOnionService vs. Public Service via Tor

A discussion that was shortly addressed in section 3.6.2 is the trade-off be-
tween running a service with a public IP address and expecting clients to con-
nect via the Tor network and operating an onion service in HiddenServiceSin-
gleHopMode. This mode was designed for service providers that wish to operate
an onion service but do not need to keep their identity private [49]. It improves
the performance of such onion services by shortening the length of circuits to a
single hop instead of three. While it is obvious that this will improve the perfor-
mance of an onion service, there is little research available on how significant
that benefit is and more specifically, if it outperforms public services being ac-
cessed via onion services. There is some public data available on how the service
latency is affected [36] but this was specifically measured for VOIP and cannot
be easily generalized. A single-hop onion service connection consists of four
hops, three from the client and one from the server but does not include an exit
node. Considering that exit nodes are the most problematic to operate, it seems
like a reasonable assumption that they are more likely to become a bottleneck
during data transfer, so removing them from the equation could be beneficial.
However, that benefit is immediately offset by the fact that a single-hop onion
service connection still requires four hops instead of three, which increases the
chance for one of the relays to be overloaded as well as overall latency by adding
another indirection step. Another point to consider is that exitnodes might also
add random latency on their path to the destination server, which is highly de-
pendent on the location of the exit node.

Aside from the latency during an established connection, the time needed to
establish a connection would also be an interesting point of comparison. Tor
onion services require connections to the HSDir and rendezvous point while
exit nodes need to do DNS resolution before they can continue to establish their
connections. It would be interesting to measure how much of the onion service
overhead is offset by exit nodes being overloaded. Finally, these measurements
could also include the optimizations presented in chapter 7 to quantify the po-
tential performance gains that could be achieved for distributed systems that
only need to preserve the anonymity of a part of their members.

8 Conclusion and Outlook 111

8.2.5 Evaluate Service Descriptor Lifetime

Another interesting question that arises when exchanging service descriptors
directly (as proposed in section 7.2) is the one about the expected lifetime of
service descriptors. While the encrypted service descriptor changes every 12
hours, the decrypted information about introduction points can remain valid
for much longer. As long as the onion service is still connected to one of the
introduction points specified within a descriptor, that descriptor can still be
used to connect to the onion service, even if it has already expired. This leads
to the question of how frequently a distributed system that exchanges service
descriptors directly (like the sensor directory) would have to update their data
to remain functional. Tor has selected a period of between 60 and 120 minutes
for this purpose, but there is no research on the lifetime of service descrip-
tors to confirm that this is indeed necessary. Based on the data presented in
section 4.2.1 it should be possible to predict how often service descriptors are
changed in practice. However, changing a single introduction point does not
mean that clients with an outdated descriptor cannot connect anymore. If the
Tor client fails to connect to one of the introduction points listed within a ser-
vice descriptor, it continues to try the other introduction points and only fails
if none of them are operational. So, as long as one of the introduction points in
the current descriptor is also present in an outdated service descriptor, the out-
dated service descriptor can still be used to connect to the service. Measuring
the average lifetime after which a service descriptor cannot be used to connect
to an onion service any more would be quite interesting for the design of de-
scriptor distribution schemes. The question becomes even more complicated
when minor Tor changes are considered. A service descriptor can contain up to
20 different introduction points, which would massively increase the probabil-
ity of at least one of those introduction points remaining available for extended
periods of time. Alternatively, onion services could limit the candidate pool for
introduction points to only stable relays. At least in theory, this should result in
service descriptors with significantly increased lifetimes. Finally, the policy of
creating a new introduction point as soon as a currently running one fails could
be modified to give a relay that is only offline for a short period of time (for a
restart for example) the opportunity to become available again. By creating a
new introduction circuit to the same relay with the same INTRO_AUTH_KEY,
the onion service could recover from the restart of a Tor client without a need
to update/change their service descriptor.

8.2.6 Harden Onion Services against DDOSAttacks

A very active field of current research is the challenge of hardening onion ser-
vices against distributed denial-of-service attacks [5]. The Tor project has al-
ready taken steps to mitigate the issue by implementing an extension [50, 127]
that enables introduction points to drop connections early. Additionally, tools
like onionbalance [16] can be used to distribute onion services and increase the
volume of traffic they can handle. Unfortunately, both of these defenses have
their issues: Telling IPs to drop requests after a certain threshold prevents the
onion service from being overwhelmed but it also prevents valid users from
connecting to the service, which was most likely the goal of the attacker. In-
creasing the traffic the onion service can handle makes attacks harder, but ad-
versaries with enough computation power can still overwhelm the onion ser-
vice. The key reason for this weakness lies in the design of onion services. Ev-
ery valid INTRODUCE2 cell triggers the creation of a new rendezvous circuit to a
destination controlled by the attacker. If the attacker is only interested in over-
whelming the onion service, it won’t even connect to the rendezvous point it-

8 Conclusion and Outlook 112

self, just forcing the victim to create a new circuit is enough. This is especially
critical because the amount of outgoing circuits that can be created within the
current Tor network is limited because the current Tor implementation never
uses the same relay for two different circuits in parallel. While the attacker
can create one circuit after the other, the onion service has to make sure that
the INTRODUCE2 cell is invalid every single time. This unbalanced workload is
the core reason why denial-of-service attacks against onion services have re-
mained feasible.

The Tor project currently investigates two approaches to resolve this situa-
tion [5]. Either by the use of digital credentials like PrivacyPass [25] that is-
sue anonymous tokens to Tor clients for good behavior and allow them to use
this tokens afterwards to access services under attack or by introducing a new
extension that allows onion services to ask clients for a proof-of-work before
it creates the rendezvous circuit [69]. Both of these ideas bring their own set
of challenges, like what behavior should award tokens or how hard should the
proof-of-work be, which have so far prevented the Tor project from imple-
menting them. More research into this area is necessary to identify the best ap-
proach to tackle this issue. Within the network architecture proposed in chap-
ter 3 the sensor is the device most vulnerable to such attacks. Its contact in-
formation is publicly available and successful attacks would have significant
impact on both users and businesses, enabling attackers to blackmail sensor
operators for not overloading their sensors.

8.2.7 Unlinkable Service Descriptors

As discussed in section 3.6.5, unlinkability between multiple registration re-
quests made by a PIA to different sensors can be achieved by creating sepa-
rate onion services. Technically, it is not necessary to create new onion ser-
vices, it would be sufficient to create new introduction points, as they are the
ones that provide linkability via their INTRO_AUTH_KEYs. With the optimiza-
tion presented in section 7.2, establishing new introduction points is by far
the most time consuming part of creating new onion services, so this distinc-
tion is not particularly helpful on its own. However, it leads to the conclusion
that changing the INTRO_AUTH_KEY to no longer uniquely identify an onion
service would enable onion services to hand out multiple service descriptors
that all lead to the same destination. To be fair, the ENC KEY provides just as
much linkability as the INTRO AUTH KEY but an onion service can simply cre-
ate multiple ENC KEYs and attempt decryption with all of them, so they are not
as much of a challenge as the INTRO AUTH KEYs are. Making them unlinkable
requires a change to the logic for introduction points that would have to prop-
agate throughout the Tor network before it could be widely adopted. This could
for example be achieved by the same key blinding mechanism that is used to
create blinded public keys to identify service descriptors. Instead of including
the INTROAUTHKEY directly in the service descriptor, a service descriptor could
contains a blinded intro auth key along with the NONCE used to create that key.
Attackers with access to multiple service descriptors would no longer be able
to realize if two service descriptors were related or not, but the introduction
point could still identify the correct introduction circuit if provided with both
the NONCE and the blinded intro auth key by simply blinding all INTRO AUTH
KEYS it currently knows with the NONCE and comparing them to the requested
blinded intro auth key.

The interesting research question to answer is if this is sufficient to render ser-
vice descriptors unlinkable. After all, attackers could still identify the Tor relay
that is used as an introduction point, they would just be unable to confirm that

8 Conclusion and Outlook 113

the introduction point is forwarding all of those requests to the same onion
service. Onion services with multiple introduction points are likely to remain
identifiable just based on the identities of their introduction points. Service de-
scriptors that only contain a single introduction point would also suffer from
this problem, but they would be much harder to correlate. While there are no
public estimates on the number of onion services that an average relay acts
as introduction point for, we do know that there are less than 7000 Tor re-
lays in total that service more than 600.000 onion services. Calculating with an
average of three introduction points per onion service, the average Tor relay
has more than 250 active introduction circuits open. In practice, it seems rea-
sonable to assume that long-lived relays are handling many more introduction
point connections than relays that are restarted regularly, but there is no pub-
lic data available on that topic. This might be enough noise to prevent attackers
from easily finding out if service descriptors belong to the same onion service
by just looking at the identity of the introduction point. Statistical evaluations
on how much easier this gets when service descriptors include more than one
introduction point would be necessary to decide if this approach might be use-
ful for future Tor versions. At the same time it should be evaluated if blinding
every INTRO AUTH KEY for every introduction request is too time consuming to
be applied in practice.

8.2.8 Optimize Space in Introduce1 Cells

A core limitation of the improvement presented in section 7.3 is the space avail-
able for additional messages. As already hinted at in section 7.3.2, there are
several ideas how the available space within an INTRODUCE1 cell could be used
more efficiently. In order to remain compatible with the current Tor network,
an INTRODUCE1 cell always has to have a size of 512 bytes, so this constitutes a
theoretical upper limit on the data available for transmission. Since the INTRO-
DUCE1 cell allocates 14 bytes for headers, 498 bytes remain available to transmit
data. The necessary data can logically be divided into two categories (cmp. Fig-
ure 2.5): Unencrypted information for the introduction point and encrypted in-
formation for the onion service itself. The introduction point currently expects
55 bytes of data in order to forward the cell to the onion service. However, 20
of those 55 bytes are still reserved for a legacy key that is no longer needed, be-
cause relays old enough to rely on it are no longer allowed to be part of the Tor
network [48, 52, 73]. Unfortunately, dropping the legacy key would be a break-
ing change because current Tor versions expect this key to be included in the
INTRODUCE1 cell, which is why we did not include this in our prototype imple-
mentation. It should however be removed in the future as it does not serve any
purpose currently. This leaves a maximum of 463 bytes available for the con-
tent of the INTRODUCE2 cell (once the legacy key has been removed). For the
current version, only 443 bytes remain available. The optimal utilization of the
data forwarded within the INTRODUCE2 cell could be achieved by defining a new
cell format that drops all information about the rendezvous point from the cell.
The less optimal yet more generic alternative is to utilize regular introduction
cells and Tor extensions—as our prototype for chapter 7.3 does—to forward
information directly from a client to the onion service. In this case, space is
used less efficiently because onion services expect to find all the information
needed to connect to a rendezvous point, even if the extension tells them not
to connect to it. As demonstrated in section 7.4, there is room for improvement
in this area as well, by encoding other information (like parts of a minimal ser-
vice descriptor) in fields that usually provide information about the rendezvous
point. Unused fields, like the rendezvous cookie and onion key, could be used
to transfer an additional 52 bytes of data to the onion service.

8 Conclusion and Outlook 114

Finally, it is worth discussing how Tor uses link-specifiers to identify nodes
within the network. They are included in service descriptors to disclose the
identity of introduction points or in INTRODUCE2 requests to tell the onion ser-
vice which node acts as rendezvous point. There are four different ways how
relays can be identified:

1. IPv4 address + port (4+2 bytes): Must be included in every onion service.

2. RSA fingerprint (20 bytes): Fingerprint of the relays RSA identity key. Must
always be included.

3. Ed25519 identity key (32 bytes): Complete identity key of the relay. Must
always be included because there are no V3 onion service implementations
that do not support ed25519 keys.

4. IPv6 address + port(16+2 bytes): Should be included, if applicable, but is not
mandatory.

Since every single link specifier needs to specify a type and length to be parsed
correctly, the total size of a complete link specifier should sum up to 8+ 6+20 +
32 + 18 = 84 bytes. However, the actual payload is larger because a Tor struct
always allocates enough space to handle any potential input and the largest po-
tential input would be the ed25519 key. This causes 4 ∗ (2 + 32) = 136 bytes of
memory to be allocated for the link specifiers and because the specification re-
quires link-specifiers to be transmitted in base64 encoding, the total size they
take up within the INTRODUCE2 cell actually ends up around 180 bytes. It is un-
derstandable that Tor used redundant link specifiers to ensure that every relay
on a circuit understands at least one of them, but considering that every sup-
ported Tor version understands ED25519 identity keys [52] and unsupported
versions are not allowed to join the Tor network anymore [48, 73], the inclusion
of this additional identity information seems no longer useful today. Allowing
introduction requests to only include the ED25519 key as link-specifier would
save about 130 additional bytes of data that could be made available for transac-
tions, which definitely seems like a worthwhile improvement. The Tor project
might even want to consider dropping the need for alternative link-specifiers
entirely in future versions.

8.2.9 EncodeMinimal Service Descriptors in Hostnames

The minimized service descriptors presented in section 7.4 are actually short
enough to be encoded with less than 256 bytes, which is the maximum host-
name length supported by SOCKS [81]. This would in theory allow the creation
of hostnames that encode all the information needed to connect to them within
their own name. Tools like OnionShare [80] that cannot reasonably forward
service descriptors because they make no assumptions on how the share link is
forwarded, might find this a viable approach to circumvent the HSDir and reap
the performance and privacy benefits that can be obtained by doing so. The only
downside is that onion addresses become significantly longer, but onion ad-
dresses are already too long to be typed conveniently, resulting in copy & paste
being the preferred mode of exchanging them. When copying a URL or clicking
on a link, the length of the hostname is irrelevant and even in situations where
it is not, the use of url shortener services can be used to work around the issue
(at the cost of leaking information to a third party). Implementing this func-
tionality would require the logic within the Tor SOCKS proxy that interprets
and parses regular onion addresses to also support service descriptors directly
encoded within the hostname. The engineering effort required to achieve this
goal would be fairly limited if the Tor project ever decides to adopt the concept
of minimized service descriptors.

8 Conclusion and Outlook 115

8.2.10 Minor Implementation Improvements

Distribute unencrypted descriptors

In order to reliably bypass the hidden service directory, it should be possible to
load descriptors in an unencrypted form to avoid timing issues during time pe-
riod changes. It might make sense to also publish them in an unencrypted for-
mat, which would require the definition of a new control protocol event. This is
not strictly necessary, since decryption is straight forward when the time pe-
riod is well defined.

Make PublishHidServDescriptors a per-service option

Right now, a single Tor instance can either publish all its onion services or none
of them, but some scenarios might benefit from being able to selectively pub-
lish individual onion services. This could be achieved by setting the Publish-
HidServDescriptors option per onion service rather than globally. We did not ad-
dress this issue in our work, because the control protocol does support manu-
ally publishing service descriptors, so for prototypes this use case can already
be implemented.

8.3 Epilogue

This thesis documents a 4-year long research endeavor that started with a sim-
ple questions (How to achieve network privacy in a distributed digital identity
system) and ended with multiple extensions to Tor onion services. We started
with a detailed investigation in the technologies already available in section 2.2
before deciding how to continue. For chapter 4, we designed a real world ex-
periment that required great care to not endanger users, interacted with an
ethics board to double check our design, and finally ran the experiment for sev-
eral months to learn more about the Tor network. We proved our capability
to independently analyze large amounts of data by extracting numerous in-
teresting statistics about the current usage of V3 onion services from our col-
lected data. Notably, we presented the first public estimate on the number of
V3 onion services operated within the Tor network. This estimate later became
even more interesting when Tor metrics published their own estimates which
did not match with our estimates at all. As a researcher, I do not consider this
to be an issue at all. The scientific process asks researchers to obtain knowl-
edge in a structured process that can be documented and reproduced by others
to enable reproduction and verification of knowledge. While the original esti-
mate on the number of V3 onion services was wrong, the wrong formula was
publicly documented and published at FOCI’21 [60] after passing peer-review
(showing that even peer-review cannot guarantee correct results). Thankfully,
the Tor Metrics team had documented their calculation publicly, enabling us to
identify our own errors and find some errors within their calculation, resulting
in a more accurate estimate on the total number of onion services than before.
This stands as an excellent example for the scientific process working as in-
tended.

Chapter 5 saw us conducting yet another experiment on the live Tor network.
Contrary to the experiment in chapter 4 where we had no specific question in
mind, this experiment was specifically designed to answer one question: How

8 Conclusion and Outlook 116

long does it take to deploy a V3 onion service? Our experiment successfully pro-
vided the information necessary to answer that question and provided insight
into which parts of creating an onion service are the most time consuming. This
information directly resulted in the decision to search for ways to circumvent
the hidden service directory in certain situations.

Probably most interesting from a research perspective, is the work documented
in chapter 6. It was never expected that this issue would be investigated during
research into using onion services for distributed systems. The maintenance
of multiple Tor relays for the experiment in chapter 4 raised multiple ques-
tions into how the Tor consensus was being formed. We tried to understand
these questions and ended up confirming that the Tor network is not always
acting according to its own public specification. During this investigation, we
also noticed a group of relays displaying a pattern that piqued our curiosity once
again. Their decision to restart at the beginning of every month seemed harm-
less enough, there were several reasonable explanations for such a behavior,
and it did not seem relevant for the research question addressed in this the-
ses, so there was no real need to follow up on this question. Our persistence
was rewarded, as we were able to confirm that all of these relays were actu-
ally operated by a single (most likely malicious) entity and they were removed
from the Tor network once the Tor project had successfully reproduced our re-
sults. Admittedly, this did not contribute to answering our research questions,
but it made every single user of the Tor network safer than they had been be-
fore. Beyond that, it proves that another important aspect of the scientific pro-
cess was observed during the research for this thesis. Experiments should al-
ways be conducted with specific questions, but not specific answers in mind.
In our case, conducting an experiment on onion services led us to analyze the
Tor consensus and identify a group of malicious relays. It should also be noted,
that the Tor project once again showed their own commitment to the scientific
process by reproducing our results—which was easy to do because we provided
them with a structured way of doing so—and only taking action after they had
reached the same conclusions as us.

Chapter 7 stands somewhat apart as the chapter where we stopped learning
about the state of the current Tor network and progressed to proposing changes
based on the results of our previous research. The research in chapter 5 had
told us that onion services spent most of their creation time on creating cir-
cuits and most circuits were only created to upload to the hidden service di-
rectory. This directly inspired the idea to bypass the HSDir (cf. section 7.2) and
reduce the number of circuits needed by directly forwarding information in-
side the INTRODUCE1 request (cf. section 7.3). It seemed like a reasonable theory
that combining those two improvements (cf. section 7.4) would result in sig-
nificant latency gains that should improve user experience significantly. Once
again, this assumption was confirmed by an experiment conducted on the live
Tor network to quantify the performance gained by our proposed changes. The
results were more than satisfying and we do expect the Digidow project to try
and continue building on this foundation in the future.

Unfortunately, the time available for a dissertation is limited and research of-
ten has a habit of raising more new questions than it answers. This also held
true for this research project and section 8.2 on future work is full of unan-
swered questions and further ideas that could and should be worked on in the
future. The goal of this thesis is to demonstrate that the author is capable of
conducting scientific research on his own and the presented work is hopefully
sufficient to come to that conclusion.

Bibliography

[1] Shweta Agrawal, Subhashis Banerjee, and Subodh Sharma. 2017. Pri-
vacy and Security of Aadhaar A Computer Science Perspective, (Septem-
ber 2017).

[2] Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste, and Thomas
Zacharias. 2017. MCMix: Anonymous Messaging via Secure Multiparty
Computation. In 26th USENIX Security Symposium (USENIX Security 17).
USENIX Association, Vancouver, BC, (August 2017), pp. 1217–1234.
ISBN: 978-1-931971-40-9. https://www.usenix.org/conference/use
nixsecurity17/technical-sessions/presentation/alexopoulos.

[3] Smart Card Alliance. 2011. Transit and Contactless Open Payments: An
Emerging Approach for Fare Collection. Whitepaper TC-11002. Smart
Card Alliance, (November 2011). https://www.securetechalliance.org
/resources/pdf/Open_Payments_WP_110811.pdf.

[4] Pieter Arntz. 2021. Was threat actor KAX17 de-anonymizing the Tor
network? (December 2021). Retrieved 09/26/2022 from https : / / www
.malwarebytes.com/blog/news/2021/12/was-threat-actor-kax17-de-
anonymizing-the-tor-network.

[5] asn. 2020. Retrieved 08/30/2022 from https://blog.torproject.org/stop
-the-onion-denial/.

[6] asn. 2018. Announcing the Vanguards Add-On for Onion Services. Re-
trieved 08/06/2022 from https://github.com/mikeperry-tor/vanguard
s.

[7] Felipe Astolfi, Jelger Kroese, and Jeroen Van Oorschot. 2015. I2P - The
Invisible Internet Project. Web Technology Report. Media Technology,
Leiden University. https://staas.home.xs4all.nl/t/swtr/documents/wt2
015_i2p.pdf.

[8] James Ball, Bruce Schneier, and Glenn Greenwald. 2013. NSA and GCHQ
target Tor network that protects anonymity of web users. (October
2013). Retrieved 07/28/2022 from https://www.theguardian.com/wo
rld/2013/oct/04/nsa-gchq-attack-tor-network-encryption.

[9] Lamiaa Basyoni, Noora Fetais, Aiman Erbad, Amr Mohamed, and
Mohsen Guizani. 2020. Traffic Analysis Attacks on Tor: A Survey. In
2020 IEEE International Conference on Informatics, IoT Enabling Tech-
nologies (ICIoT), pp. 183–188. DOI: 10.1109/ICIoT48696.2020.9089497.

[10] Patrick Beuth. 2021. Im Tor-Netzwerk hat sich ein unbekannter
Beobachter ausgebreitet. (December 2021). Retrieved 09/26/2022 from
https://www.spiegel.de/netzwelt/web/mysterium-kax17-im-tor-net
zwerk-hat-sich-ein-unbekannter-beobachter-ausgebreitet-a-9891
a67e-303d-4252-a1af-87d9c87407ec.

[11] Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Weinmann.
2013. Trawling for Tor Hidden Services: Detection, Measurement,
Deanonymization. In Proceedings of the 2013 IEEE Symposium on Security
and Privacy (SP ’13). IEEE Computer Society, USA, pp. 80–94. ISBN:
9780769549774. DOI: 10.1109/SP.2013.15. https://doi.org/10.1109/SP.2
013.15.

117

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/alexopoulos
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/alexopoulos
https://www.securetechalliance.org/resources/pdf/Open_Payments_WP_110811.pdf
https://www.securetechalliance.org/resources/pdf/Open_Payments_WP_110811.pdf
https://www.malwarebytes.com/blog/news/2021/12/was-threat-actor-kax17-de-anonymizing-the-tor-network
https://www.malwarebytes.com/blog/news/2021/12/was-threat-actor-kax17-de-anonymizing-the-tor-network
https://www.malwarebytes.com/blog/news/2021/12/was-threat-actor-kax17-de-anonymizing-the-tor-network
https://blog.torproject.org/stop-the-onion-denial/
https://blog.torproject.org/stop-the-onion-denial/
https://github.com/mikeperry-tor/vanguards
https://github.com/mikeperry-tor/vanguards
https://staas.home.xs4all.nl/t/swtr/documents/wt2015_i2p.pdf
https://staas.home.xs4all.nl/t/swtr/documents/wt2015_i2p.pdf
https://www.theguardian.com/world/2013/oct/04/nsa-gchq-attack-tor-network-encryption
https://www.theguardian.com/world/2013/oct/04/nsa-gchq-attack-tor-network-encryption
https://doi.org/10.1109/ICIoT48696.2020.9089497
https://www.spiegel.de/netzwelt/web/mysterium-kax17-im-tor-netzwerk-hat-sich-ein-unbekannter-beobachter-ausgebreitet-a-9891a67e-303d-4252-a1af-87d9c87407ec
https://www.spiegel.de/netzwelt/web/mysterium-kax17-im-tor-netzwerk-hat-sich-ein-unbekannter-beobachter-ausgebreitet-a-9891a67e-303d-4252-a1af-87d9c87407ec
https://www.spiegel.de/netzwelt/web/mysterium-kax17-im-tor-netzwerk-hat-sich-ein-unbekannter-beobachter-ausgebreitet-a-9891a67e-303d-4252-a1af-87d9c87407ec
https://doi.org/10.1109/SP.2013.15
https://doi.org/10.1109/SP.2013.15
https://doi.org/10.1109/SP.2013.15

Bibliography 118

[12] Blueprint for Free Speech. [n. d.] Ricochet Refresh. Retrieved
09/24/2022 from https://www.ricochetrefresh.net.

[13] Blueprint for Speech. 2019. Recichet Refresh. Retrieved 08/06/2022
from https://www.ricochetrefresh.net.

[14] Nikita Borisov, George Danezis, Prateek Mittal, and Parisa Tabriz.
2007. Denial of Service or Denial of Security? How Attacks on Relia-
bility can Compromise Anonymity. In Proceedings of CCS 2007. Asso-
ciation for Computing Machinery, (October 2007), pp. 92–102. ISBN:
9781595937032. DOI: 10.1145/1315245.1315258.

[15] John Brooks. [n. d.] Ricochet. Retrieved 09/24/2022 from https://ricoc
het.im.

[16] Donncha Ó Cearbhaill and George Kadianakis. 2015. onionbalance. Re-
trieved 09/06/2022 from https://github.com/asn-d6/onionbalance.

[17] David L Chaum. 1981. Untraceable electronic mail, return addresses, and
digital pseudonyms. Communications of the ACM, 24, 2, (February 1981),
84–90.

[18] Chen Chen, Daniele Asoni, David Barrera, George Danezis, and Adrain
Perrig. 2015. HORNET: High-Speed Onion Routing at the Network
Layer. InProceedings of the 22ndACMSIGSACConference onComputer and
Communications Security (CCS ’15). Association for Computing Machin-
ery, Denver, Colorado, USA, pp. 1441–1454. ISBN: 9781450338325. DOI:
10.1145/2810103.2813628. https://doi.org/10.1145/2810103.2813628.

[19] Muqian Chen, Xuebin Wang, Tingwen Liu, Jinqiao Shi, Zelin Yin, and
Binxing Fang. 2019. SignalCookie: Discovering Guard Relays of Hidden
Services in Parallel. In 2019 IEEE Symposium on Computers and Commu-
nications (ISCC), pp. 1–7. DOI: 10.1109/ISCC47284.2019.8969639.

[20] Muqian Chen, Xuebin Wang, Jinqiao Shi, Can Zhao, Meiqi Wang, and
Binxing Fang. 2020. Napping Guard: Deanonymizing Tor Hidden Ser-
vice in a Stealthy Way. In 2020 IEEE 19th International Conference on
Trust, Security and Privacy in Computing and Communications (TrustCom),
pp. 699–706. DOI: 10.1109/TrustCom50675.2020.00097.

[21] Catalin Cimpanu. 2021. A mysterious threat actor is running hundreds
of malicious Tor relays. (December 2021). Retrieved 09/26/2022 from
https://therecord.media/a-mysterious-threat-actor-is-running-hu
ndreds-of-malicious-tor-relays/.

[22] Alissa Cooper, Hannes Tschofenig, Bernard Aboba, Jon Peterson, John
Morris, Marit Hansen, and Rhys Smith. 2013. Privacy Considerations for
Internet Protocols. RFC 6973. RFC Editor, (July 2013). https://datatrack
er.ietf.org/doc/html/rfc6973.

[23] David Cooper, Stefan Santesson, Sharon Boeyen, Russel Housley, and
Tim Polk. 2008. Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. RFC. RFC Editor, (May 2008).
https://www.ietf.org/rfc/rfc5280.txt.

[24] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. 2015. Riposte:
An Anonymous Messaging System Handling Millions of Users. In 2015
IEEE Symposium on Security and Privacy, pp. 321–338. DOI: 10.1109/SP.2
015.27.

[25] Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and
Filippo Valsorda. 2018. Privacy Pass: Bypassing Internet Challenges
Anonymously. Proc. Priv. Enhancing Technol., 2018, 3, 164–180.

https://www.ricochetrefresh.net
https://www.ricochetrefresh.net
https://doi.org/10.1145/1315245.1315258
https://ricochet.im
https://ricochet.im
https://github.com/asn-d6/onionbalance
https://doi.org/10.1145/2810103.2813628
https://doi.org/10.1145/2810103.2813628
https://doi.org/10.1109/ISCC47284.2019.8969639
https://doi.org/10.1109/TrustCom50675.2020.00097
https://therecord.media/a-mysterious-threat-actor-is-running-hundreds-of-malicious-tor-relays/
https://therecord.media/a-mysterious-threat-actor-is-running-hundreds-of-malicious-tor-relays/
https://datatracker.ietf.org/doc/html/rfc6973
https://datatracker.ietf.org/doc/html/rfc6973
https://www.ietf.org/rfc/rfc5280.txt
https://doi.org/10.1109/SP.2015.27
https://doi.org/10.1109/SP.2015.27

Bibliography 119

[26] Claudia Diaz, Harry Halpin, and Aggelos Kiayias. 2021. The Nym Net-
work. Whitepaper 1. Nym Technologies SA, (February 2021). https://ny
mtech.net/nym-whitepaper.pdf.

[27] Roger Dingledine. 2015. Did the FBI Pay a University to Attack Tor Users?
(November 2015). Retrieved 07/29/2022 from https://blog.torproject.o
rg/did-fbi-pay-university-attack-tor-users/.

[28] Roger Dingledine. 2021. Exit relay operators please help test #2667
branch. (January 2021). Retrieved 08/07/2022 from https://lists .torp
roject.org/pipermail/tor-relays/2021-January/019258.html.

[29] Roger Dingledine. 2013. Improving Tor’s anonymity by changing guard
parameters. (October 2013). Retrieved 08/01/2022 from https://blog.to
rproject.org/improving-tors-anonymity-changing-guard-paramete
rs/.

[30] Roger Dingledine. 2014. Tor security advisory: ”relay early” traffic con-
firmation attack. (July 2014). Retrieved 07/29/2022 from https://blog.t
orproject.org/tor-security-advisory-relay-early-traffic-confirmatio
n-attack/.

[31] Roger Dingledine. 2022. We’re trying out guard-n-primary-guards-
to-use=2. (July 2022). Retrieved 08/01/2022 from https://forum.torp
roject.net/t/tor-relays-were-trying-out-guard-n-primary-guards-
to-use-2/3790.

[32] Roger Dingledine, Nicholas Hopper, George Kadianakis, and Nick
Mathewson. 2014. One fast guard for life (or 9 months). In 7thWorkshop
on Hot Topics in Privacy Enhancing Technologies (HotPETs 2014). (July
2014). https://petsymposium.org/2014/papers/Dingledine.pdf.

[33] Roger Dingledine and Nick Mathewson. 2003. Tor Protocol Specifica-
tion. Retrieved 07/29/2022 from https://github.com/torproject/torspe
c/blob/main/tor-spec.txt.

[34] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The
Second-Generation Onion Router. In 13th USENIX Security Symposium
(USENIX Security ’04). https : / / www . usenix . org / conference / 13th - us
enix - security - symposium / tor - second - generation - onion - router.
USENIX Association, San Diego, CA, (August 2004).

[35] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. 2004. Fuzzy extrac-
tors: How to generate strong keys from biometrics and other noisy data.
In International conference on the theory and applications of cryptographic
techniques. Springer, pp. 523–540.

[36] Quentin Dufour. 2021. High-throughput real-time onion networks to pro-
tect everyone’s privacy. PhD thesis. http://www.theses.fr/2021REN1S02
4/document. 2021REN1S024.

[37] Roya Ensafi, Philipp Winter, Abdullah Mueen, and Jedidiah R Crandall.
2015. Analyzing the Great Firewall of China Over Space and Time. Proc.
Priv. Enhancing Technol., 2015, 1, 61–76.

[38] European Comission. 2022. Proposal for a REGULATION OF THE EURO-
PEAN PARLIAMENT AND OF THE COUNCIL laying down rules to prevent
and combat child sexual abuse. (May 2022). Retrieved 07/25/2022 from
https://ec.europa.eu/home-affairs/proposal-regulation-laying-dow
n-rules-prevent-and-combat-child-sexual-abuse_en.

[39] Directorate-General for Migration European Commission and Home
Affairs. 2014. Technical study on smart borders : final report. Publications
Office, (October 2014). DOI: doi/10.2837/86143.

https://nymtech.net/nym-whitepaper.pdf
https://nymtech.net/nym-whitepaper.pdf
https://blog.torproject.org/did-fbi-pay-university-attack-tor-users/
https://blog.torproject.org/did-fbi-pay-university-attack-tor-users/
https://lists.torproject.org/pipermail/tor-relays/2021-January/019258.html
https://lists.torproject.org/pipermail/tor-relays/2021-January/019258.html
https://blog.torproject.org/improving-tors-anonymity-changing-guard-parameters/
https://blog.torproject.org/improving-tors-anonymity-changing-guard-parameters/
https://blog.torproject.org/improving-tors-anonymity-changing-guard-parameters/
https://blog.torproject.org/tor-security-advisory-relay-early-traffic-confirmation-attack/
https://blog.torproject.org/tor-security-advisory-relay-early-traffic-confirmation-attack/
https://blog.torproject.org/tor-security-advisory-relay-early-traffic-confirmation-attack/
https://forum.torproject.net/t/tor-relays-were-trying-out-guard-n-primary-guards-to-use-2/3790
https://forum.torproject.net/t/tor-relays-were-trying-out-guard-n-primary-guards-to-use-2/3790
https://forum.torproject.net/t/tor-relays-were-trying-out-guard-n-primary-guards-to-use-2/3790
https://petsymposium.org/2014/papers/Dingledine.pdf
https://github.com/torproject/torspec/blob/main/tor-spec.txt
https://github.com/torproject/torspec/blob/main/tor-spec.txt
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
http://www.theses.fr/2021REN1S024/document
http://www.theses.fr/2021REN1S024/document
https://ec.europa.eu/home-affairs/proposal-regulation-laying-down-rules-prevent-and-combat-child-sexual-abuse_en
https://ec.europa.eu/home-affairs/proposal-regulation-laying-down-rules-prevent-and-combat-child-sexual-abuse_en
https://doi.org/doi/10.2837/86143

Bibliography 120

[40] European Parliament and Council. 2014. REGULATION (EU) No
910/2014 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL
of 23 July 2014 on electronic identification and trust services for elec-
tronic transactions in the internal market and repealing Directive
1999/93/EC. (June 2014). Retrieved 07/22/2022 from http://data.europ
a.eu/eli/reg/2014/910.

[41] Toralf Förster. 2021. Questions about consensus votes. (April 2021). Re-
trieved 08/07/2022 from https://lists.torproject.org/pipermail/tor-rel
ays/2021-April/019604.html.

[42] Mengle Gautam. 2019. Major Aadhaar data leak plugged: French secu-
rity researcher. Retrieved 07/26/2022 from https://www.thehindu.com
/sci-tech/technology/major-aadhaar-data-leak-plugged-french-se
curity-researcher/article26584981.ece.

[43] David Goldschlag, Michael Reed, and Paul Syverson. 1999. Onion rout-
ing. Communications of the ACM, 42, 2, (February 1999), 39–41. DOI: do
i/10.1145/293411.293443. https://dl.acm.org/doi/pdf/10.1145/293411.29
3443.

[44] Google. 2014. FCM Architectural Overview. Retrieved 10/06/2022 from
https://firebase.google.com/docs/cloud-messaging/fcm-architecture
.

[45] Google and Apple. 2020. Exposure Notification – Bluetooth® Specifi-
cation. whitepaper Version 1.2. (April 2020). https://covid19-static.cdn
-apple.com/applications/covid19/current/static/contact-tracing/pdf
/ExposureNotification-BluetoothSpecificationv1.2.pdf.

[46] David Goulet. 2018. Bug26367 035 01. (July 2018). Retrieved 08/30/2022
from https://github.com/torproject/tor/pull/218.

[47] David Goulet. 2020. Onion Service version 2 deprecation timeline. Re-
trieved 07/29/2022 from https://blog.torproject.org/v2-deprecation-t
imeline/.

[48] David Goulet. 2019. Removing End-Of-Life Relays from the Network.
(October 2019). Retrieved 08/08/2022 from https://blog.torproject.org
/removing-end-life-relays-network/.

[49] David Goulet. 2016. What’s new in Tor 0.2.9.8? (December 2016). Re-
trieved 08/12/2022 from https://blog.torproject.org/whats-new-tor-
0298/.

[50] David Goulet and Roger Dingledine. 2019. ESTABLISH_INTRO Cell DoS
Defense Extension. Retrieved 09/06/2022 from https://github.com/tor
project/torspec/blob/main/proposals/305-establish-intro-dos-defen
se-extention.txt.

[51] David Goulet, Aaron Johnson, George Kadianakis, and Karsten Loesing.
2015. Hidden-service statistics reported by relays. Technical report
2015-04-001. The Tor Project, (April 2015). https://research.torproje
ct.org/techreports/hidden-service-stats-2015-04-28.pdf.

[52] David Goulet, Nick Mathewson, and George Kadianakis. 2022. CoreTor-
Releases. (April 2022). Retrieved 08/08/2022 from https://gitlab.torpr
oject.org/tpo/core/team/-/wikis/NetworkTeam/CoreTorReleases.

[53] Government of India. 2009. Unique Identification Authority of India.
(January 2009). Retrieved 07/25/2022 from https://uidai.gov.in/.

[54] Sebastian Hahn. 2021. Questions about consensus votes. (April 2021).
Retrieved 08/07/2022 from https://lists.torproject.org/pipermail/to
r-relays/2021-April/019603.html.

http://data.europa.eu/eli/reg/2014/910
http://data.europa.eu/eli/reg/2014/910
https://lists.torproject.org/pipermail/tor-relays/2021-April/019604.html
https://lists.torproject.org/pipermail/tor-relays/2021-April/019604.html
https://www.thehindu.com/sci-tech/technology/major-aadhaar-data-leak-plugged-french-security-researcher/article26584981.ece
https://www.thehindu.com/sci-tech/technology/major-aadhaar-data-leak-plugged-french-security-researcher/article26584981.ece
https://www.thehindu.com/sci-tech/technology/major-aadhaar-data-leak-plugged-french-security-researcher/article26584981.ece
https://doi.org/doi/10.1145/293411.293443
https://doi.org/doi/10.1145/293411.293443
https://dl.acm.org/doi/pdf/10.1145/293411.293443
https://dl.acm.org/doi/pdf/10.1145/293411.293443
https://firebase.google.com/docs/cloud-messaging/fcm-architecture
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ExposureNotification-BluetoothSpecificationv1.2.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ExposureNotification-BluetoothSpecificationv1.2.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ExposureNotification-BluetoothSpecificationv1.2.pdf
https://github.com/torproject/tor/pull/218
https://blog.torproject.org/v2-deprecation-timeline/
https://blog.torproject.org/v2-deprecation-timeline/
https://blog.torproject.org/removing-end-life-relays-network/
https://blog.torproject.org/removing-end-life-relays-network/
https://blog.torproject.org/whats-new-tor-0298/
https://blog.torproject.org/whats-new-tor-0298/
https://github.com/torproject/torspec/blob/main/proposals/305-establish-intro-dos-defense-extention.txt
https://github.com/torproject/torspec/blob/main/proposals/305-establish-intro-dos-defense-extention.txt
https://github.com/torproject/torspec/blob/main/proposals/305-establish-intro-dos-defense-extention.txt
https://research.torproject.org/techreports/hidden-service-stats-2015-04-28.pdf
https://research.torproject.org/techreports/hidden-service-stats-2015-04-28.pdf
https://gitlab.torproject.org/tpo/core/team/-/wikis/NetworkTeam/CoreTorReleases
https://gitlab.torproject.org/tpo/core/team/-/wikis/NetworkTeam/CoreTorReleases
https://uidai.gov.in/
https://lists.torproject.org/pipermail/tor-relays/2021-April/019603.html
https://lists.torproject.org/pipermail/tor-relays/2021-April/019603.html

Bibliography 121

[55] Harry Halpin and Ania Piotrowska. 2022. Achieving Network Privacy In
Bitcoin: VPNs And Tor Help, But Mixnets Are Needed. (January 2022).
Retrieved 07/27/2022 from https://bitcoinmagazine.com/technical/w
hy-mixnets-are-needed-to-make-bitcoin-private.

[56] Nguyen Phong Hoang, Panagiotis Kintis, Manos Antonakakis, and
Michalis Polychronakis. 2018. An Empirical Study of the I2P Anonymity
Network and Its Censorship Resistance. In Proceedings of the Inter-
net Measurement Conference 2018 (IMC ’18). ACM, Boston, MA, USA,
pp. 379–392. ISBN: 978-1-4503-5619-0. DOI: 10.1145/3278532.32785
65. http://doi.acm.org/10.1145/3278532.3278565.

[57] Tobias Höller. 2022. Estimate for V3 onion services uses network frac-
tions for V2. (August 2022). Retrieved 09/02/2022 from https://gitlab.t
orproject.org/tpo/network-health/metrics/website/-/issues/40064.

[58] Tobias Höller. 2021. V3 onion services usage. (September 2021). Re-
trieved 07/26/2022 from https://blog.torproject.org/v3- onion- serv
ices-usage.

[59] Tobias Höller, Thomas Raab, Michael Roland, and René Mayrhofer.
2021. On the feasibility of short-lived dynamic onion services. In 2021
IEEE Security and PrivacyWorkshops (SPW). IEEE, San Francisco, CA, USA,
(May 2021), pp. 25–30. DOI: 10.1109/SPW53761.2021.00012.

[60] Tobias Höller, Michael Roland, and René Mayrhofer. 2021. On the state
of V3 onion services. In Proceedings of the ACM SIGCOMM 2021 Workshop
onFree andOpenCommunications on the Internet (FOCI ’21). ACM, Virtual,
(August 2021), pp. 50–56. DOI: 10.1145/3473604.3474565.

[61] I2P. 2003. The Invisible Internet Project. Retrieved 07/28/2022 from ht
tps://geti2p.net/.

[62] Dark River Systems Inc. 2022. Hunchly Daily Dark Web Reports. Re-
trieved 09/06/2022 from https://www.hunch.ly/darkweb-osint/.

[63] International Organization for Standardization. 2021. Cards and se-
curity devices for personal identification — Building blocks for iden-
tity management via mobile devices. ISO/IEC DIS 23220-1. (November
2021). https://www.iso.org/standard/74910.html.

[64] International Organization for Standardization. 2016. Personal iden-
tification — ISO-compliant driving licence — Part 5: Mobile driv-
ing licence (mDL) application. en. Standard ISO/IEC TR 29110-1:2016.
Geneva, CH. https://www.iso.org/standard/62711.html.

[65] Anja Jerichow, Jan Muller, Andreas Pfitzmann, Birgit Pfitzmann,
and Michael Waidner. 1998. Real-time mixes: a bandwidth-efficient
anonymity protocol. IEEE Journal on Selected Areas in Communications,
16, 4, (May 1998), 495–509. DOI: 10.1109/49.668973. https://doi.org/1
0.1109/49.668973.

[66] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul Syver-
son. 2013. Users Get Routed: Traffic Correlation on Tor by Realistic Ad-
versaries. In Proceedings of the 2013 ACM SIGSAC Conference on Computer
& Communications Security (CCS ’13). Association for Computing Ma-
chinery, Berlin, Germany, pp. 337–348. ISBN: 9781450324779. DOI: 1
0.1145/2508859.2516651. https://doi.org/10.1145/2508859.2516651.

[67] Eric C Johnson. 1998. From the Inkpad to the Mousepad: IAFIS and Fin-
gerprint Technology at the Dawn of the 21’t Century. Washington, DC:
Bureau of Justice Assistance.

[68] juga. 2019. How Bandwidth Scanners Monitor The Tor Network. Re-
trieved 07/29/2022 from https://blog.torproject.org/how- bandwidt
h-scanners-monitor-tor-network.

https://bitcoinmagazine.com/technical/why-mixnets-are-needed-to-make-bitcoin-private
https://bitcoinmagazine.com/technical/why-mixnets-are-needed-to-make-bitcoin-private
https://doi.org/10.1145/3278532.3278565
https://doi.org/10.1145/3278532.3278565
http://doi.acm.org/10.1145/3278532.3278565
https://gitlab.torproject.org/tpo/network-health/metrics/website/-/issues/40064
https://gitlab.torproject.org/tpo/network-health/metrics/website/-/issues/40064
https://blog.torproject.org/v3-onion-services-usage
https://blog.torproject.org/v3-onion-services-usage
https://doi.org/10.1109/SPW53761.2021.00012
https://doi.org/10.1145/3473604.3474565
https://geti2p.net/
https://geti2p.net/
https://www.hunch.ly/darkweb-osint/
https://www.iso.org/standard/74910.html
https://www.iso.org/standard/62711.html
https://doi.org/10.1109/49.668973
https://doi.org/10.1109/49.668973
https://doi.org/10.1109/49.668973
https://doi.org/10.1145/2508859.2516651
https://doi.org/10.1145/2508859.2516651
https://doi.org/10.1145/2508859.2516651
https://blog.torproject.org/how-bandwidth-scanners-monitor-tor-network
https://blog.torproject.org/how-bandwidth-scanners-monitor-tor-network

Bibliography 122

[69] George Kadianakis, David Goulet, and Roger Dingledine. 2020. A First
Take at PoW Over Introduction Circuits. Retrieved 09/06/2022 from ht
tps://github.com/torproject/torspec/blob/main/proposals/327-pow-
over-intro.txt.

[70] George Kadianakis, Mike Perry, David Goulet, and tevador. 2020. A
First Take at PoW Over Introduction Circuits. (April 2020). Retrieved
08/30/2022 from https : / / gitlab . torproject . org / tpo / core / torspec/ -
/blob/main/proposals/327-pow-over-intro.txt.

[71] Achim Killer. 2021. Killer’s Security: Aus dem Dunkel des Netzes. (De-
cember 2021). Retrieved 09/26/2022 from https://www.br.de/nachrich
ten/netzwelt/killer-s-security-aus-dem-dunkel-des-netzes,SrBF0h
7.

[72] Stephan A. Kollmann and Alastair R. Beresford. 2017. The Cost of Push
Notifications for Smartphones Using Tor Hidden Services. In 2017 IEEE
European Symposium on Security and Privacy Workshops (EuroS&PW),
pp. 76–85. DOI: 10.1109/EuroSPW.2017.55.

[73] Georg Koppen. 2022. Keep rejecting relays/bridges with EOL version
showing up. (March 2022). Retrieved 08/08/2022 from https://gitlab
.torproject.org/tpo/network-health/team/-/issues/210.

[74] Georg Koppen. 2022. Malicious relays and the health of the Tor network.
(April 2022). Retrieved 07/26/2022 from https://blog.torproject.org/m
alicious-relays-health-tor-network/.

[75] Michael Koster, Ari Keränen, and Jaime Jimenez. 2022. Publish-
Subscribe Broker for the Constrained Application Protocol (CoAP).
Internet-Draft draft-ietf-core-coap-pubsub-10. https://datatracker.i
etf.org/doc/html/draft-ietf-core-coap-pubsub-10. Work in progress.
Internet Engineering Task Force, (May 2022), 24 pages.

[76] Jan Koum and Brian Acton. [n. d.] WhatsApp. Retrieved 09/24/2022
from https://www.whatsapp.com.

[77] Stefan Krempl. 2021. Tor-Netzwerk: KAX17 führt massive
Deanonymisierungsangriffe durch. (December 2021). Retrieved
09/26/2022 from https://www.heise.de/news/Tor-Netzwerk-KAX17-
fuehrt-massive-Deanonymisierungsangriffe-durch-6286564.html.

[78] Bernd Kreuss. [n. d.] TorChat. Retrieved 09/24/2022 from https://githu
b.com/prof7bit/TorChat.

[79] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. 2016. Rif-
fle: An Efficient Communication System with Strong Anonymity. In
Proceedings on Privacy Enhancing Techonologies Symposium 2016. Vol-
ume 2016. Walter de Gruyter GmbH, pp. 115–134. DOI: 10.1515/popets
-2016-0008. https://petsymposium.org/popets/2016/popets-2016-0
008.php.

[80] Micah Lee. 2014. OnionShare. Retrieved 08/06/2022 from https://onio
nshare.org/.

[81] Marcus Leech, Matt Ganis, Ying Da Lee, Ron Kurs, David Koblas, and
LaMont Jones. 1996. SOCKS Protocol Version 5. RFC 1928. RFC Editor,
(March 1996). https://datatracker.ietf.org/doc/html/rfc1928.

[82] Jörg Lenhard, Karsten Loesing, and Guido Wirtz. 2009. Performance
Measurements of Tor Hidden Services in Low-Bandwidth Access Net-
works. In Applied Cryptography and Network Security. Springer Berlin
Heidelberg, pp. 324–341. ISBN: 9783642019579.

https://github.com/torproject/torspec/blob/main/proposals/327-pow-over-intro.txt
https://github.com/torproject/torspec/blob/main/proposals/327-pow-over-intro.txt
https://github.com/torproject/torspec/blob/main/proposals/327-pow-over-intro.txt
https://gitlab.torproject.org/tpo/core/torspec/-/blob/main/proposals/327-pow-over-intro.txt
https://gitlab.torproject.org/tpo/core/torspec/-/blob/main/proposals/327-pow-over-intro.txt
https://www.br.de/nachrichten/netzwelt/killer-s-security-aus-dem-dunkel-des-netzes,SrBF0h7
https://www.br.de/nachrichten/netzwelt/killer-s-security-aus-dem-dunkel-des-netzes,SrBF0h7
https://www.br.de/nachrichten/netzwelt/killer-s-security-aus-dem-dunkel-des-netzes,SrBF0h7
https://doi.org/10.1109/EuroSPW.2017.55
https://gitlab.torproject.org/tpo/network-health/team/-/issues/210
https://gitlab.torproject.org/tpo/network-health/team/-/issues/210
https://blog.torproject.org/malicious-relays-health-tor-network/
https://blog.torproject.org/malicious-relays-health-tor-network/
https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-pubsub-10
https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-pubsub-10
https://www.whatsapp.com
https://www.heise.de/news/Tor-Netzwerk-KAX17-fuehrt-massive-Deanonymisierungsangriffe-durch-6286564.html
https://www.heise.de/news/Tor-Netzwerk-KAX17-fuehrt-massive-Deanonymisierungsangriffe-durch-6286564.html
https://github.com/prof7bit/TorChat
https://github.com/prof7bit/TorChat
https://doi.org/10.1515/popets-2016-0008
https://doi.org/10.1515/popets-2016-0008
https://petsymposium.org/popets/2016/popets-2016-0008.php
https://petsymposium.org/popets/2016/popets-2016-0008.php
https://onionshare.org/
https://onionshare.org/
https://datatracker.ietf.org/doc/html/rfc1928

Bibliography 123

[83] Sarah Jamie Lewis. 2018. Cwtch: Privacy Preserving Infrastructure for
Asynchronous, Decentralized, Multi-Party and Metadata Resistant Ap-
plications. https://cwtch.im/cwtch.pdf.

[84] Sarah Jamie Lewis. 2016. The OnionScan Project. Retrieved 08/05/2022
from https://onionscan.org/.

[85] Ji Li, Chunxiang Gu, Xieli Zhang, Xi Chen, and Wenfen Liu. 2021. AttCorr:
A Novel Deep Learning Model for Flow Correlation Attacks on Tor. In
2021 IEEE International Conference on Consumer Electronics and Computer
Engineering (ICCECE), pp. 427–430. DOI: 10.1109/ICCECE51280.2021.93
42534.

[86] Karsten Loesing, Steven J. Murdoch, and Roger Dingledine. 2010. A Case
Study on Measuring Statistical Data in the Tor Anonymity Network.
In Proceedings of the Workshop on Ethics in Computer Security Research
(WECSR 2010) (LNCS). Springer, Tenerife, Canary Islands, Spain, (Jan-
uary 2010).

[87] Karsten Loesing, Werner Sandmann, Christian Wilms, and Guido Wirtz.
2008. Performance Measurements and Statistics of Tor Hidden Ser-
vices. In 2008 International Symposium on Applications and the Internet,
pp. 1–7.

[88] Ewen Macaskill and Gabriel Dance. 2013. NSA Files: Decoded. (Novem-
ber 2013). Retrieved 07/26/2022 from https://www.theguardian.com/w
orld/interactive/2013/nov/01/snowden-nsa-files-surveillance-revela
tions-decoded.

[89] Moxie Marlinspike. [n. d.] Signal. Retrieved 09/24/2022 from https://si
gnal.org.

[90] Nick Mathewson. 2021. Announcing Arti, a pure-Rust Tor implementa-
tion. (July 2021). Retrieved 08/12/2022 from https://blog.torproject.or
g/announcing-arti/.

[91] René Mayrhofer, Michael Roland, and Tobias Höller. 2020. Poster: To-
wards an Architecture for Private Digital Authentication in the Physi-
cal World. In Network and Distributed System Security Symposium (NDSS
Symposium 2020), Posters. San Diego, CA, USA, (February 2020).

[92] Jon McLachlan, Andrew Tran, Nicholas Hopper, and Yongdae Kim.
2009. Scalable onion routing with torsk. In Proceedings of the 16th ACM
conference on Computer and communications security, pp. 590–599.

[93] Prateek Mittal, Femi Olumofin, Carmela Troncoso, Nikita Borisov, and
Ian Goldberg. 2011. {PIR-Tor}: Scalable Anonymous Communication
Using Private Information Retrieval. In 20th USENIX Security Symposium
(USENIX Security 11).

[94] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash Sys-
tem. The Cryptography Mailing List, (October 2008). https://bitcoin.org
/en/bitcoin-paper.

[95] Milad Nasr, Alireza Bahramali, and Amir Houmansadr. 2018. Deep-
Corr: Strong Flow Correlation Attacks on Tor Using Deep Learning. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS ’18). Association for Computing Machinery,
Toronto, Canada, pp. 1962–1976. ISBN: 9781450356930. DOI: 10 . 1145
/3243734.3243824. https://doi.org/10.1145/3243734.3243824.

[96] Iynkaran Natgunanathan, Abid Mehmood, Yong Xiang, Gleb Beliakov,
and John Yearwood. 2016. Protection of privacy in biometric data. IEEE
access, 4, 880–892.

[97] Juha Nurmi. 2014. Ahmia. Retrieved 09/06/2022 from https://ahmia.fi/.

https://cwtch.im/cwtch.pdf
https://onionscan.org/
https://doi.org/10.1109/ICCECE51280.2021.9342534
https://doi.org/10.1109/ICCECE51280.2021.9342534
https://www.theguardian.com/world/interactive/2013/nov/01/snowden-nsa-files-surveillance-revelations-decoded
https://www.theguardian.com/world/interactive/2013/nov/01/snowden-nsa-files-surveillance-revelations-decoded
https://www.theguardian.com/world/interactive/2013/nov/01/snowden-nsa-files-surveillance-revelations-decoded
https://signal.org
https://signal.org
https://blog.torproject.org/announcing-arti/
https://blog.torproject.org/announcing-arti/
https://bitcoin.org/en/bitcoin-paper
https://bitcoin.org/en/bitcoin-paper
https://doi.org/10.1145/3243734.3243824
https://doi.org/10.1145/3243734.3243824
https://doi.org/10.1145/3243734.3243824
https://ahmia.fi/

Bibliography 124

[98] nusenu. 2020. How Malicious Tor Relays are Exploiting Users in 2020
(Part I). (August 2020). Retrieved 07/29/2022 from https://nusenu.me
dium.com/how-malicious-tor-relays-are-exploiting-users-in-202
0-part-i-1097575c0cac.

[99] nusenu. 2021. Is “KAX17” performing de-anonymization Attacks
against Tor Users? (November 2021). Retrieved 07/26/2022 from ht
tps://nusenu.medium.com/is-kax17-performing-de-anonymization
-attacks-against-tor-users-42e566defce8.

[100] nusenu. 2021. say hi (and goodbye) to >1000 new exit relays at OVH. Re-
trieved 08/07/2022 from https://lists.torproject.org/pipermail/tor-rel
ays/2021-May/019644.html.

[101] Open Privacy Research Society. [n. d.] cwtch. Retrieved 09/24/2022
from https://cwtch.im/.

[102] Gareth Owen and Nick Savage. 2016. Empirical analysis of Tor Hidden
Services. IET Information Security, 10, 3, 113–118. DOI: 10.1049/iet-ifs.2
015.0121.

[103] Pierluigi Paganini. 2021. KAX17 threat actor is attempting to
deanonymize Tor users running thousands of rogue relays. (December
2021). Retrieved 09/26/2022 from https://securityaffairs.co/wordpres
s/125248/hacking/kax17-threat-actor-tor.html.

[104] Tom Phillips. 2020. Kazakhstan to roll out face recognition transit tick-
eting in 2021. (October 2020). Retrieved 07/27/2022 from https://www
.nfcw.com/2020/10/20/368773/kazakhstan-to-roll-out-face-recogn
ition-transit-ticketing-in-2021/.

[105] Tom Phillips. 2020. Moscow Metro to roll out biometric ticketing across
entire network. (September 2020). Retrieved 07/27/2022 from https://
www.nfcw.com/2020/09/10/367826/japanese-passengers-test-facial
-recognition-ticketing-on-driverless-buses/.

[106] Tom Phillips. 2021. Moscow Metro to roll out biometric ticketing across
entire network. (September 2021). Retrieved 07/27/2022 from https://w
ww.nfcw.com/transit-ticketing-today/moscow-metro-to-roll-out-
biometric-ticketing-across-entire-network/.

[107] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and
George Danezis. 2017. The Loopix Anonymity System. In 26th USENIX
Security Symposium (USENIX Security 17). USENIX Association, Vancou-
ver, BC, (August 2017), pp. 1199–1216. ISBN: 978-1-931971-40-9. http
s://www.usenix.org/conference/usenixsecurity17/technical-sessions
/presentation/piotrowska.

[108] Khaira Rachna. 2018. Rs 500, 10 minutes, and you have access to billion
Aadhaar details. Retrieved 07/26/2022 from https://www.tribuneindia
.com/news/archive/nation/rs-500-10-minutes-and-you-have-acce
ss-to-billion-aadhaar-details-523361.

[109] Nalini K. Ratha, Jonathan H. Connell, and Ruud M. Bolle. 2001. Enhanc-
ing security and privacy in biometrics-based authentication systems.
IBM systems Journal, 40, 3, 614–634.

[110] Eric Rescorla. 2018. The Transport Layer Security (TLS) Protocol Ver-
sion 1.3. RFC 8446. RFC Editor, (August 2018). https://datatracker.ietf.o
rg/doc/html/rfc8446.

[111] Michael Rogers, Saitta Eleanor, Torsten Grote, Julian Dehm, Nico Alt,
Benedikt Wieder, Ernir Erlingsson, Jack Grigg, and Bernard Tyers. [n.
d.] Briar. Retrieved 09/24/2022 from https://briarproject.org/.

https://nusenu.medium.com/how-malicious-tor-relays-are-exploiting-users-in-2020-part-i-1097575c0cac
https://nusenu.medium.com/how-malicious-tor-relays-are-exploiting-users-in-2020-part-i-1097575c0cac
https://nusenu.medium.com/how-malicious-tor-relays-are-exploiting-users-in-2020-part-i-1097575c0cac
https://nusenu.medium.com/is-kax17-performing-de-anonymization-attacks-against-tor-users-42e566defce8
https://nusenu.medium.com/is-kax17-performing-de-anonymization-attacks-against-tor-users-42e566defce8
https://nusenu.medium.com/is-kax17-performing-de-anonymization-attacks-against-tor-users-42e566defce8
https://lists.torproject.org/pipermail/tor-relays/2021-May/019644.html
https://lists.torproject.org/pipermail/tor-relays/2021-May/019644.html
https://cwtch.im/
https://doi.org/10.1049/iet-ifs.2015.0121
https://doi.org/10.1049/iet-ifs.2015.0121
https://securityaffairs.co/wordpress/125248/hacking/kax17-threat-actor-tor.html
https://securityaffairs.co/wordpress/125248/hacking/kax17-threat-actor-tor.html
https://www.nfcw.com/2020/10/20/368773/kazakhstan-to-roll-out-face-recognition-transit-ticketing-in-2021/
https://www.nfcw.com/2020/10/20/368773/kazakhstan-to-roll-out-face-recognition-transit-ticketing-in-2021/
https://www.nfcw.com/2020/10/20/368773/kazakhstan-to-roll-out-face-recognition-transit-ticketing-in-2021/
https://www.nfcw.com/2020/09/10/367826/japanese-passengers-test-facial-recognition-ticketing-on-driverless-buses/
https://www.nfcw.com/2020/09/10/367826/japanese-passengers-test-facial-recognition-ticketing-on-driverless-buses/
https://www.nfcw.com/2020/09/10/367826/japanese-passengers-test-facial-recognition-ticketing-on-driverless-buses/
https://www.nfcw.com/transit-ticketing-today/moscow-metro-to-roll-out-biometric-ticketing-across-entire-network/
https://www.nfcw.com/transit-ticketing-today/moscow-metro-to-roll-out-biometric-ticketing-across-entire-network/
https://www.nfcw.com/transit-ticketing-today/moscow-metro-to-roll-out-biometric-ticketing-across-entire-network/
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/piotrowska
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/piotrowska
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/piotrowska
https://www.tribuneindia.com/news/archive/nation/rs-500-10-minutes-and-you-have-access-to-billion-aadhaar-details-523361
https://www.tribuneindia.com/news/archive/nation/rs-500-10-minutes-and-you-have-access-to-billion-aadhaar-details-523361
https://www.tribuneindia.com/news/archive/nation/rs-500-10-minutes-and-you-have-access-to-billion-aadhaar-details-523361
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8446
https://briarproject.org/

Bibliography 125

[112] sednet. 2013. TOR wants your spare bandwidth. Retrieved 08/07/2022
from https://www.linode.com/community/questions/8475/tor-wants
-your-spare-bandwidth.

[113] David Shaw. 2003. The OpenPGP HTTP Keyserver Protocol (HKP).
(March 2003). Retrieved 08/03/2022 from https://datatracker.ietf.org
/doc/html/draft-shaw-openpgp-hkp-00.

[114] Ming Song, Gang Xiong, Zhenzhen Li, Junrui Peng, and Li Guo. 2013. A
de-anonymize attack method based on traffic analysis. In 2013 8th In-
ternational Conference on Communications andNetworking in China (CHI-
NACOM), pp. 455–460. DOI: 10.1109/ChinaCom.2013.6694639.

[115] Manu Sporny, Dave Longley, and David Chadwick. 2022. Verifiable Cre-
dentials Data Model. W3C Recommendation vc-data-model-20220303.
W3C, (March 2022). https://www.w3.org/TR/2022/REC-vc-data-mod
el-20220303/%22.

[116] Vudali Srinath. 2019. Aadhaar details of 7.82 crore from Telangana
and Andhra found in possession of IT Grids (India) Pvt Ltd. Retrieved
07/26/2022 from https://timesofindia.indiatimes.com/city/hyderabad
/aadhaar-details-of-7-82-crore-from-telangana-and-andhra-fou
nd-in-possession-of-it-grids-india-pvt-ltd/articleshow/68865938
.cms.

[117] sukhbir. 2018. Sunsetting Tor Messenger. (April 2018). Retrieved
09/24/2022 from https : / / blog . torproject . org / sunsetting - tor - mes
senger/.

[118] sukhbir. 2015. Tor Messenger Beta: Chat over Tor, Easily. (October
2015). Retrieved 09/24/2022 from https : / / blog . torproject . org / tor -
messenger-beta-chat-over-tor-easily/.

[119] The Thales Group. 2020. Automated Fingerprint Identification System
(AFIS) overview - A short history. (January 2020). Retrieved 08/02/2022
from https://www.thalesgroup.com/en/markets/digital-identity-and
-security/government/biometrics/afis-history.

[120] The Tor Project. 2008. Bridges. Retrieved 07/28/2022 from https://tb-
manual.torproject.org/bridges/.

[121] The Tor Project. 2014. Research Safety Board. Retrieved 08/05/2022
from https://research.torproject.org/safetyboard.

[122] The Tor Project. 2004. TC: A Tor control protocol (Version 1). Retrieved
07/29/2022 from https://github.com/torproject/torspec/blob/main/co
ntrol-spec.txt.

[123] The Tor Project. 2004. The Tor Project. Retrieved 07/28/2022 from.
[124] The Tor Project. 2005. Tor directory protocol, version 3. Retrieved

07/29/2022 from https://github.com/torproject/torspec/blob/main
/dir-spec.txt.

[125] The Tor Project. 2021. Tor Metrics. Retrieved 07/29/2022 from https :
//metrics.torproject.org.

[126] The Tor Project. 2005. Tor Rendezvous Specification. Retrieved
07/28/2020 from https : / / github . com / torproject / torspec / blob / ma
in/attic/rend-spec-v2.txt.

[127] The Tor Project. 2018. Tor Rendezvous Specification - Version 3. Re-
trieved 07/28/2022 from https://github.com/torproject/torspec/blo
b/main/rend-spec-v3.txt.

[128] Speek! UG. [n. d.] Speek. Retrieved 09/24/2022 from https://speek.net
work.

https://www.linode.com/community/questions/8475/tor-wants-your-spare-bandwidth
https://www.linode.com/community/questions/8475/tor-wants-your-spare-bandwidth
https://datatracker.ietf.org/doc/html/draft-shaw-openpgp-hkp-00
https://datatracker.ietf.org/doc/html/draft-shaw-openpgp-hkp-00
https://doi.org/10.1109/ChinaCom.2013.6694639
https://www.w3.org/TR/2022/REC-vc-data-model-20220303/%22
https://www.w3.org/TR/2022/REC-vc-data-model-20220303/%22
https://timesofindia.indiatimes.com/city/hyderabad/aadhaar-details-of-7-82-crore-from-telangana-and-andhra-found-in-possession-of-it-grids-india-pvt-ltd/articleshow/68865938.cms
https://timesofindia.indiatimes.com/city/hyderabad/aadhaar-details-of-7-82-crore-from-telangana-and-andhra-found-in-possession-of-it-grids-india-pvt-ltd/articleshow/68865938.cms
https://timesofindia.indiatimes.com/city/hyderabad/aadhaar-details-of-7-82-crore-from-telangana-and-andhra-found-in-possession-of-it-grids-india-pvt-ltd/articleshow/68865938.cms
https://timesofindia.indiatimes.com/city/hyderabad/aadhaar-details-of-7-82-crore-from-telangana-and-andhra-found-in-possession-of-it-grids-india-pvt-ltd/articleshow/68865938.cms
https://blog.torproject.org/sunsetting-tor-messenger/
https://blog.torproject.org/sunsetting-tor-messenger/
https://blog.torproject.org/tor-messenger-beta-chat-over-tor-easily/
https://blog.torproject.org/tor-messenger-beta-chat-over-tor-easily/
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/biometrics/afis-history
https://www.thalesgroup.com/en/markets/digital-identity-and-security/government/biometrics/afis-history
https://tb-manual.torproject.org/bridges/
https://tb-manual.torproject.org/bridges/
https://research.torproject.org/safetyboard
https://github.com/torproject/torspec/blob/main/control-spec.txt
https://github.com/torproject/torspec/blob/main/control-spec.txt
https://github.com/torproject/torspec/blob/main/dir-spec.txt
https://github.com/torproject/torspec/blob/main/dir-spec.txt
https://metrics.torproject.org
https://metrics.torproject.org
https://github.com/torproject/torspec/blob/main/attic/rend-spec-v2.txt
https://github.com/torproject/torspec/blob/main/attic/rend-spec-v2.txt
https://github.com/torproject/torspec/blob/main/rend-spec-v3.txt
https://github.com/torproject/torspec/blob/main/rend-spec-v3.txt
https://speek.network
https://speek.network

Bibliography 126

[129] Speek! UG. 2022. speek. Retrieved 08/07/2022 from https://speek.netw
ork.

[130] Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich.
2015. Vuvuzela: Scalable Private Messaging Resistant to Traffic Analy-
sis. In Proceedings of the 25th Symposium on Operating Systems Principles
(SOSP ’15). Association for Computing Machinery, Monterey, California,
pp. 137–152. ISBN: 9781450338349. DOI: 10.1145/2815400.2815417. htt
ps://doi.org/10.1145/2815400.2815417.

[131] youiopmop. 2019. Setup a Tor relay on FreeBSD 12. (2019). Retrieved
08/07/2022 from https://community.hetzner.com/tutorials/setup-
a-tor-relay-on-freebsd-12.

https://speek.network
https://speek.network
https://doi.org/10.1145/2815400.2815417
https://doi.org/10.1145/2815400.2815417
https://doi.org/10.1145/2815400.2815417
https://community.hetzner.com/tutorials/setup-a-tor-relay-on-freebsd-12
https://community.hetzner.com/tutorials/setup-a-tor-relay-on-freebsd-12

Appendix A

Measure onion service creation times

This appendix extends the research presented in chapter 5 by explaining in
detail how the information needed for the analysis of onion service deploy-
ment performance was obtained. An important remark to make here is that
this research was conducted in the second half of 2020 when V2 onion services
were not yet deprecated and the functionality of the Vanguards extension was
not yet included in the regular Tor code. With the exception of V2 onion ser-
vices, the measurement for V3 onion services, ephemeral V3 onion services and
ephemeral V3 onion services with Vanguard should be reproducible with the in-
formation provided below. Pay attention however, that newer Tor releases have
started to include parts of the Vanguard extension, so comparing onion services
with and without Vanguard would require modification of the Tor code or using
an older client.

To measure the times needed to create an onion service, timestamps for the
following events were needed:

1. Circuits to introduction points are launched

2. Circuits to introduction points are established

3. Introduction points are ready

4. Creation of the main descriptor starts

5. Creation of the backup descriptor starts

6. Circuit to HSDir is launched (6x for V2 and 16x for V3)

7. Circuit to HSDir is established (6x for V2 and 16x for V3)

8. Upload to HSDir begins (6x for V2 and 16x for V3)

9. Upload to HSDir finishes (6x for V2 and 16x for V3)

Most of those events were tracked by subscribing to events already supported
by Tor’s control protocol [122]. We used the STEM1 library for Python to sub-
scribe to those events and extract timestamps from them. The only excep-
tion to this rule was the question when introduction points are ready. List-
ings A.1 and A.2 show the log statements we listened for to timestamp this
event.

Listing A.1: Logging V2 INTRO_ESTABLISHED cells rendservice.c

3437 intro->circuit_established = 1;
3438 /* We might not have every introduction point ready but at this
3439 * point we know that the descriptor needs to be uploaded. */
3440 service->desc_is_dirty = time(NULL);

1https://stem.torproject.org/

127

Appendix A Measure onion service creation times 128

3441 circuit_change_purpose(TO_CIRCUIT(circuit),
3442 CIRCUIT_PURPOSE_S_INTRO);
3443
3444 log_debug(LD_REND, "Received INTRO_ESTABLISHED cell on circuit"
3445 " %u (id: %" PRIu32 ") for service %s",
3446 (unsigned)circuit->base_.n_circ_id,
3447 circuit->global_identifier, serviceid);
3448
3449 /* Getting a valid INTRODUCE_ESTABLISHED means we've
3450 * successfully used the circ */
3451 pathbias_mark_use_success(circuit);

Listing A.2: Logging V3 INTRO_ESTABLISHED cells hs_service.c

3469 /* Update metrics. */
3470 hs_metrics_new_established_intro(service);
3471
3472 log_info(LD_REND, "Successfully received an INTRO_ESTABLISHED "
3473 "cell on circuit %u for service %s",
3474 TO_CIRCUIT(circ)->n_circ_id,
3475 safe_str_client(service->onion_address));
3476 return 0;

The remaining timestamps were collected by listening for these control proto-
col events:

CIRC event2: Indicates that a circuit has changed. This happens every time
a circuit is either launched or fully established. So this event alone provides
all the information needed to find out when introduction point and HSDir
upload circuits are both launched and ready.

HS_DESC event3: Indicates that something happened with a hidden service
descriptor. This event notifies us about the creation of new service descrip-
tors, attempted uploads and successful uploads.

Combining the information provided by these two events with the timestamps
for the log messages mentioned above, enabled us to collect all the informa-
tion needed for the analysis of the onion service creation timings presented in
chapter 5.

2https://stem.torproject.org/api/response.html#stem.response.events.CircuitEvent
3https://stem.torproject.org/api/response.html#stem.response.events.HSDescEvent

https://stem.torproject.org/api/response.html#stem.response.events.CircuitEvent
https://stem.torproject.org/api/response.html#stem.response.events.HSDescEvent

Appendix B

Improve Onion Service Latency

This appendix provides the source code of the modifications needed to achieve
the improvements presented in chapter 7. For optimal readability, the pre-
sented code will always follow the same structure: An initial listing provides
a diff with all the changes necessary to achieve the desired improvement. This
listing omits complex sequences of code that were added (visualized by …) as
those are then provided in follow up listings with appropriate syntax high-
lighting. This provides readers with a good overview over the changes made
as well as an easy to read source code when it comes to newly implemented
features. Development branched out from Git commit 8ead53330c73e9bc1b82-
f6b7fc8946d6290638421 and each of the presented improvements build upon
the changes from previous sections.

B.1 Make the HSDir Optional

Making the HSDir optional requires two changes. Listing B.1 shows the loca-
tion in the Tor source code where a change was necessary to emit additional
DESCRIPTOR_CONTENT events and listing B.2 shows the source code that was
added.

Listing B.1: Changes to notify about unpublished descriptors

diff --git a/src/feature/hs/hs_service.c b/src/feature/hs/hs_service.c
--- a/src/feature/hs/hs_service.c
+++ b/src/feature/hs/hs_service.c
@@ -62,6 +62,9 @@
#include "trunnel/hs/cell_common.h"
#include "trunnel/hs/cell_establish_intro.h"

+//TH: Added dependency here:
+#include "feature/control/control_events.h"
+
#ifdef HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif

@@ -3008,6 +3011,16 @@ upload_descriptor_to_all(const hs_service_t *service,
tor_assert(service);
tor_assert(desc);

+ /* Check if the descriptor will be published. If it is not, trigger a
+ * HS_DESC_CONTENT event to enable users to use the service. */

1https://gitlab.torproject.org/tpo/core/tor/-/commit/8ead53330c73e9bc1b82f6b7fc8946d629063842

129

https://gitlab.torproject.org/tpo/core/tor/-/commit/8ead53330c73e9bc1b82f6b7fc8946d629063842
https://gitlab.torproject.org/tpo/core/tor/-/commit/8ead53330c73e9bc1b82f6b7fc8946d629063842
https://gitlab.torproject.org/tpo/core/tor/-/commit/8ead53330c73e9bc1b82f6b7fc8946d629063842

Appendix B Improve Onion Service Latency 130

+ if (!get_options()->PublishHidServDescriptors) {
…

+ }
+

Listing B.2: Emitting unpublished descriptors hs_service.c

3016 /* TH: Check if the descriptor will be published. If it is not,
3017 * trigger a HS_DESC_CONTENT event to enable users to use the
3018 * service. */
3019 if (!get_options()->PublishHidServDescriptors) {
3020 char *logged_desc = NULL;
3021 char base64_blinded_pk[ED25519_BASE64_LEN + 1];
3022 service_encode_descriptor(service, desc, &desc->signing_kp, &logged_desc);
3023 ed25519_public_to_base64(base64_blinded_pk,

&desc->desc->plaintext_data.blinded_pubkey);↪→
3024 control_event_hs_descriptor_content(service->onion_address, base64_blinded_pk,

NULL,logged_desc);↪→
3025 }

The second change required to bypass the HSDir implements the capability to
load service descriptors directly via the control protocol. The changes neces-
sary to add a new function to the control protocol are shown in listing B.3.

Listing B.3: Diff for loading a new service descriptor

diff --git a/src/feature/control/control_cmd.h b/src/feature/control/control_cmd.h
index 8cbe70a2ed..9ecb4db434 100644
--- a/src/feature/control/control_cmd.h
+++ b/src/feature/control/control_cmd.h
@@ -76,6 +76,7 @@ typedef struct control_cmd_syntax_t {
#ifdef CONTROL_CMD_PRIVATE
#include "feature/hs/hs_service.h"

+ #include "feature/hs/hs_cache.h"
#include "lib/crypt_ops/crypto_ed25519.h"

/* ADD_ONION secret key to create an ephemeral service. The command

@@ -2021,6 +2021,55 @@ handle_control_del_onion(control_connection_t *conn,
return 0;

}
+ static const char *posthsdescriptor_keywords[] = {
+ "address", NULL,
+ …
+ }
+
static const control_cmd_syntax_t obsolete_syntax = {
.max_args = UINT_MAX

};

@@ -2148,6 +2197,7 @@ static const control_cmd_def_t CONTROL_COMMANDS[] =
ONE_LINE(onion_client_auth_add, CMD_FL_WIPE),
ONE_LINE(onion_client_auth_remove, 0),

Appendix B Improve Onion Service Latency 131

ONE_LINE(onion_client_auth_view, 0),
+ MULTLINE(posthsdescriptor, 0),

Listing B.4 shows the actual implementation of the new control protocol func-
tion. The initial definitions of posthsdescriptor_keywords and posthsdescrip-
tor_syntax are used to define how the new control protocol function should
be called and which arguments it should accept. In this case, the function ac-
cepts one named argument, the onion address of the service descriptor, and
allows the client to append additional data lines to the request. This addi-
tional data has to contain the service descriptor that should be loaded. The
function itself is very simple, it essentially calls one of Tor’s internal func-
tions (hs_cache_store_as_client) to store the service descriptor in Tor’s internal
cache.

Listing B.4: Function to load new descriptors control_cmd.c

2032 static const char *posthsdescriptor_keywords[] = {
2033 "address", NULL,
2034 };
2035
2036 static const control_cmd_syntax_t posthsdescriptor_syntax = {
2037 .max_args = 0,
2038 .accept_keywords = true,
2039 .allowed_keywords = posthsdescriptor_keywords,
2040 .want_cmddata = true,
2041 };
2042
2043 /**
2044 * Called when we receive a POSTHSDESCRIPTOR event. Accepts same arguments
2045 * as POSTDESCRIPTOR.
2046 *
2047 */
2048 static int
2049 handle_control_posthsdescriptor(control_connection_t *conn,
2050 const control_cmd_args_t *cmd_args) {
2051
2052 log_warn(LD_GENERAL, "Received newly created control port event for loading a

hidden service descriptor with data %s", cmd_args->cmddata);↪→
2053 const config_line_t *line;
2054 line = config_line_find_case(cmd_args->kwargs, "address");
2055 if (line) {
2056 log_warn(LD_GENERAL, "Successfully received encoded onion address argument: %s",

line->value);↪→
2057
2058 }else {
2059 //TODO Should the function also support loading descriptors for directory

purposes?↪→
2060 control_write_endreply(conn, 400, "No address provided, cannot decrypt

descriptor");↪→
2061 return -1;
2062 }
2063
2064 //TODO2: Need to convert that onion address in the right format.
2065 ed25519_public_key_t identity_pk;
2066 hs_parse_address(line->value, &identity_pk, NULL, NULL);
2067

Appendix B Improve Onion Service Latency 132

2068 int status = hs_cache_store_as_client(cmd_args->cmddata, &identity_pk);
2069 log_warn(LD_GENERAL, "The attempt to load the descriptor led to: %i", status);
2070 if(status<0){
2071 control_write_endreply(conn, 400, "Failed to parse provided descriptor");
2072 return 1;
2073 }else {
2074 send_control_done(conn);
2075 return 0;
2076 }
2077 }

B.2 Bundle Information in the INTROCell

Bundling additional information in the INTRODUCE1 cell required more
changes, because support for extensions is only present in the protocol imple-
mentation, not in the functions that are used to build the actual messages. This
can be seen in the diff for hs_cell.cwhere the line that statically sets the number
of extensions to zero was removed by our changes. The changes presented in
listing B.5 can be roughly split in three different categories:

1. Add an extension to INTRODUCE1 cells

2. Send an INTRODUCE1 cell via the control protocol

3. Handle extensions within INTRODUCE1 cells.

Changes in header files indicate that new functionality had to be added to a
file that was previously not needed there. This mostly occurred for the con-
trol_cmd.h file where new functionality was needed to support manual crafting
of INTRODUCE1 cells.

Listing B.5: Diff for extended introduction requests

diff --git a/src/feature/control/control_cmd.c b/src/feature/control/control_cmd.c
index 2d51ae1b84..46381c2875 100644
--- a/src/feature/control/control_cmd.c
+++ b/src/feature/control/control_cmd.c
@@ -33,6 +33,7 @@
#include "feature/control/control_getinfo.h"
#include "feature/control/control_proto.h"
#include "feature/hs/hs_control.h"
+#include "feature/hs/hs_client.h"
#include "feature/hs/hs_service.h"
#include "feature/nodelist/nodelist.h"
#include "feature/nodelist/routerinfo.h"
@@ -54,6 +55,13 @@

#include "app/config/statefile.h"

+#include "lib/crypt_ops/crypto_curve25519.h"
+#include "lib/crypt_ops/crypto_ed25519.h"
+#include "core/or/extend_info_st.h"
+#include "core/or/relay.h"
+#include "feature/hs/hs_cell.h"
+#include "core/or/crypt_path_st.h"

Appendix B Improve Onion Service Latency 133

+
static int control_setconf_helper(control_connection_t *conn,
const control_cmd_args_t *args,
int use_defaults);
@@ -2073,1 +2073,211 @@ handle_control_posthsdescriptor(control_connection_t *conn,

+static const char *launch_by_extend_keywords[] = {
+ "onionaddress", NULL,
+ …
+}
+
+/*TH: Helper Function for POSTHSSUB to create the cell extension fields. */
+static void
+cell_extension_set_field_to_string(trn_cell_extension_field_t *inp, const char*

value, uint8_t type){↪→
+ …
+}
+
+static const char *posthssub_keywords[] = {
+ "publisher", "circuit", "callback", "condition", NULL,
+ …
}

@@ -2198,5 +2420,7 @@ static const control_cmd_def_t CONTROL_COMMANDS[] =
ONE_LINE(onion_client_auth_remove, 0),
ONE_LINE(onion_client_auth_view, 0),
MULTLINE(posthsdescriptor, 0),
+ ONE_LINE(posthssub, 0),
+ ONE_LINE(launch_by_extend, 0),
};

diff --git a/src/feature/control/control_events.c
b/src/feature/control/control_events.c↪→

index e2aca6c03e..e740d32c09 100644
--- a/src/feature/control/control_events.c
+++ b/src/feature/control/control_events.c
@@ -109,6 +109,7 @@ const struct control_event_t control_event_table[] = {
{ EVENT_HS_DESC, "HS_DESC" },
{ EVENT_HS_DESC_CONTENT, "HS_DESC_CONTENT" },
{ EVENT_NETWORK_LIVENESS, "NETWORK_LIVENESS" },
+ { EVENT_HS_SUB, "HS_SUB"},
{ 0, NULL },
};

@@ -2249,6 +2250,14 @@ control_event_hs_descriptor_upload_failed(const char *id_digest,
id_digest, reason);
}

+/** Send HS_SUB event to inform controller about incoming subscription
+ * via one of our onion services
+ */
+void
+control_event_hs_sub(const char *condition, const char *callback){
+ send_control_event(EVENT_HS_SUB, "650 HS_SUB %s %s\r\n", condition, callback);
+}
+
void
control_events_free_all(void)
{

Appendix B Improve Onion Service Latency 134

diff --git a/src/feature/control/control_events.h
b/src/feature/control/control_events.h↪→

index 68269cabba..5dcc5a13e2 100644
--- a/src/feature/control/control_events.h
+++ b/src/feature/control/control_events.h
@@ -222,6 +222,8 @@ void cbt_control_event_buildtimeout_set(const

circuit_build_times_t *cbt,↪→
int control_event_enter_controller_wait(void);

+void control_event_hs_sub(const char *condition, const char *callback);
+
void control_events_free_all(void);

#ifdef CONTROL_MODULE_PRIVATE
@@ -281,6 +283,7 @@ typedef uint64_t event_mask_t;
#define EVENT_PT_LOG 0x0024
#define EVENT_PT_STATUS 0x0025
#define EVENT_MAX_ 0x0025
+#define EVENT_HS_SUB 0x0026

/* sizeof(control_connection_t.event_mask) in bits, currently a uint64_t */
#define EVENT_CAPACITY_ 0x0040

diff --git a/src/feature/hs/hs_cell.c b/src/feature/hs/hs_cell.c
index f84407de9e..152aa5fc6c 100644
--- a/src/feature/hs/hs_cell.c
+++ b/src/feature/hs/hs_cell.c
@@ -17,6 +17,8 @@

#include "core/or/origin_circuit_st.h"

+#include "feature/control/control_events.h"
+
/* Trunnel. */
#include "trunnel/ed25519_cert.h"
#include "trunnel/hs/cell_common.h"
@@ -372,6 +374,20 @@ introduce1_encrypt_and_encode(trn_cell_introduce1_t *cell,
tor_free(encrypted);
}

+/*TH: Add function to add strings of any length into an extension field. */
+static void
+cell_extension_set_field_to_string(trn_cell_extension_field_t *inp, const char*

value, uint8_t type){↪→
+ …
+}
+
/** Using the INTRODUCE1 data, setup the ENCRYPTED section in cell. This means
* set it, encrypt it and encode it. */
static void
@@ -388,9 +404,23 @@ introduce1_set_encrypted(trn_cell_introduce1_t *cell,
tor_assert(enc_cell);

/* Set extension data. None are used. */
+ //TH: TODO Need to add functionality here to allow setting extensions.
ext = trn_cell_extension_new();
tor_assert(ext);

Appendix B Improve Onion Service Latency 135

- trn_cell_extension_set_num(ext, 0);
+ //TH: Create 3 fields for condition, callback and descriptor
+ trn_cell_extension_field_t *condition = trn_cell_extension_field_new();
+ trn_cell_extension_field_t *callback = trn_cell_extension_field_new();
+ trn_cell_extension_field_t *descriptor = trn_cell_extension_field_new();
+ //TH: Set values:
+ cell_extension_set_field_to_string(condition, "Face: 123123124123123123", 31);
+ cell_extension_set_field_to_string(callback, "blablablablabla.onion", 32);
+ cell_extension_set_field_to_string(descriptor, "here could be a service

descriptor", 33);↪→
+ //TH: Now set extension size and add to values
+ trn_cell_extension_set_num(ext, 3);
+ trn_cell_extension_setlen_fields(ext, 3);
+ trn_cell_extension_set_fields(ext, 0, condition);
+ trn_cell_extension_set_fields(ext, 1, callback);
+ trn_cell_extension_set_fields(ext, 2, descriptor);
trn_cell_introduce_encrypted_set_extensions(enc_cell, ext);

/* Set the rendezvous cookie. */
@@ -413,6 +443,43 @@ introduce1_set_encrypted(trn_cell_introduce1_t *cell,
trn_cell_introduce_encrypted_free(enc_cell);
}

+
+introduce1_set_extended_encrypted(trn_cell_introduce1_t *cell,
+ const hs_cell_introduce1_data_t *data,
+ trn_cell_extension_t *private_extensions)
+{
+ …
+}
+
+
/** Set the authentication key in the INTRODUCE1 cell from the given data. */
static void
introduce1_set_auth_key(trn_cell_introduce1_t *cell,
@@ -863,6 +930,45 @@ hs_cell_parse_introduce2(hs_cell_introduce2_data_t *data,
}

/* XXX: Implement client authorization checks. */
+ //TH: First draft of my own extension handling.
+ …
+

/* Extract onion key and rendezvous cookie from the cell used for the
* rendezvous point circuit e2e encryption. */
@@ -975,6 +1081,46 @@ hs_cell_build_introduce1(const hs_cell_introduce1_data_t *data,
return cell_len;
}

+/** Build an INTRODUCE1 cell with arbitrary extensions from the given data.
+ * The encoded cell is put in cell_out which must be of at least size
+ * RELAY_PAYLOAD_SIZE. On success, the encoded length is returned else a
+ * negative value and the content of cell_out should be ignored. */
+ssize_t
+hs_cell_build_extended_introduce1(const hs_cell_introduce1_data_t *data,
+ trn_cell_extension_t *public_extensions,
+ trn_cell_extension_t *private_extensions,
+ uint8_t *cell_out)
+{

Appendix B Improve Onion Service Latency 136

+ …
+}
+
+
+
/** Build an ESTABLISH_RENDEZVOUS cell from the given rendezvous_cookie. The
* encoded cell is put in cell_out which must be of at least
* RELAY_PAYLOAD_SIZE. On success, the encoded length is returned and the
diff --git a/src/feature/hs/hs_cell.h b/src/feature/hs/hs_cell.h
index dc083ca03f..5be2c2e656 100644
--- a/src/feature/hs/hs_cell.h
+++ b/src/feature/hs/hs_cell.h
@@ -11,6 +11,7 @@

#include "core/or/or.h"
#include "feature/hs/hs_service.h"
+#include "trunnel/hs/cell_common.h"

/** An INTRODUCE1 cell requires at least this amount of bytes (see section
* 3.2.2 of the specification). Below this value, the cell must be padded. */
@@ -96,6 +97,10 @@ ssize_t hs_cell_build_rendezvous1(const uint8_t *rendezvous_cookie,
uint8_t *cell_out);
ssize_t hs_cell_build_introduce1(const hs_cell_introduce1_data_t *data,
uint8_t *cell_out);
+ssize_t hs_cell_build_extended_introduce1(const hs_cell_introduce1_data_t *data,
+ trn_cell_extension_t *public_extensions,
+ trn_cell_extension_t *private_extensions,
+ uint8_t *cell_out);
ssize_t hs_cell_build_establish_rendezvous(const uint8_t *rendezvous_cookie,
uint8_t *cell_out);

Listing B.6 shows the first of the two new functions that were added to the con-
trol protocol to support manual transmission of INTRODUCE1 cells. Its structure
is similar to the function shown in listing B.4 because it is again a new control
protocol function. It is used to launch new circuits directly. As discussed in sec-
tion 7.3.4, this function was added for convenience because the control protocol
already has the capability to create new circuits. This function made testing our
implementation easier, but is unlikely to be included in a stable implementa-
tion of this improvement.

Listing B.6: Launching introduction circuits control_cmd.c

2083 static const char *launch_by_extend_keywords[] = {
2084 "onionaddress", NULL,
2085 };
2086
2087 static const control_cmd_syntax_t launch_by_extend_syntax = {
2088 .max_args=0,
2089 .accept_keywords= true,
2090 .allowed_keywords = launch_by_extend_keywords,
2091 .want_cmddata = false,
2092 };
2093
2094 static int handle_control_launch_by_extend(control_connection_t *conn,
2095 const control_cmd_args_t *cmd_args){
2096

Appendix B Improve Onion Service Latency 137

2097 const config_line_t *arg;
2098 for (arg = cmd_args->kwargs; arg; arg = arg->next) {
2099 log_info(LD_GENERAL, "THDEBUG: Received keyword argument with key %s and value

%s", arg->key, arg->value);↪→
2100 }
2101 const config_line_t *destination=config_line_find_case(cmd_args->kwargs,

"onionaddress");↪→
2102 if (destination){
2103 //Setting up the flags
2104 int flags = CIRCLAUNCH_NEED_CAPACITY;
2105 //if (want_onehop) flags |= CIRCLAUNCH_ONEHOP_TUNNEL;
2106 int need_internal=1;
2107 int need_uptime=0;
2108 if (need_uptime) flags |= CIRCLAUNCH_NEED_UPTIME;
2109 if (need_internal) flags |= CIRCLAUNCH_IS_INTERNAL;
2110 log_info(LD_GENERAL, "Flags have been set up to %i", flags);
2111 //Setting up the Purpose
2112 uint8_t new_circ_purpose = CIRCUIT_PURPOSE_C_INTRODUCING;
2113 ed25519_public_key_t identity_key;
2114 hs_parse_address(destination->value, &identity_key, NULL, NULL);
2115 hs_ident_edge_conn_t *hs_ident= hs_ident_edge_conn_new(&identity_key);
2116 edge_connection_t edge_conn;
2117 edge_conn.hs_ident = hs_ident;
2118 extend_info_t *extend_info = hs_client_get_random_intro_from_edge(&edge_conn);
2119
2120 if(!extend_info){
2121 log_info(LD_GENERAL, "Failed to get introduction point");
2122 }
2123 log_info(LD_GENERAL, "Ready to launch introduction circuit");
2124 origin_circuit_t *circ = circuit_launch_by_extend_info(new_circ_purpose,

extend_info, flags);↪→
2125 circ->hs_ident=hs_ident_circuit_new(&identity_key);
2126 log_info(LD_GENERAL, "intro circuit (%i) has been launched",

circ->global_identifier);↪→
2127 control_printf_midreply(conn, 250, "%i", circ->global_identifier);
2128 send_control_done(conn);
2129 return 0;
2130 }else{
2131 control_write_endreply(conn, 400, "No valid destination onion address was

provided");↪→
2132 return 1;
2133 }
2134 }

There is only one documented use of extensions within the current Tor imple-
mentation (DDoS protection at the introduction point), but it seems like Tor
usually defines new extension types for stable extensions and has therefore no
code that would easily allow users to use the generic extension format. List-
ing B.7 shows the function we implemented for this purpose. We do not ex-
pect this function to be part of a stable implementation of this improvement,
it purely serves as a helper to lower the development effort required for this
prototype.

Appendix B Improve Onion Service Latency 138

Listing B.7: Defining a string extension control_cmd.c

2132 /*TH: Helper Function for POSTHSSUB to create the cell extension fields. */
2133 static void
2134 cell_extension_set_field_to_string(trn_cell_extension_field_t *inp, const char*

value, uint8_t type){↪→
2135 size_t string_length;
2136 string_length=strlen(value);
2137 trn_cell_extension_field_set_field_type(inp, type);
2138 trn_cell_extension_field_set_field_len(inp, (uint64_t) string_length);
2139 trn_cell_extension_field_setlen_field(inp, string_length);
2140 for (unsigned long i=0;i<string_length;i++) {
2141 char c = value[i];
2142 trn_cell_extension_field_set_field(inp, (size_t) i, (uint8_t)c);
2143 }
2144 }

Just like listing B.6, listing B.8 specifies a new control protocol function. This
function is used to send an INTRODUCE1 cell directly via a circuit. It accepts four
named arguments: The onion address of the receiver of the message, the circuit
where the cell should be sent, the callback address that should be notified about
events, and the condition when events should be sent. Note that this function
does not yet support arbitrary extension data, at this point in development the
prototype only supported static extension content.

Listing B.8: Send extended intro request control_cmd.c

2150 static const char *posthssub_keywords[] = {
2151 "publisher", "circuit", "callback", "condition", NULL,
2152 };
2153
2154 static const control_cmd_syntax_t posthssub_syntax = {
2155 .max_args = 0,
2156 .accept_keywords = true,
2157 .allowed_keywords = posthssub_keywords,
2158 .want_cmddata = false,
2159 };
2160
2161 /**
2162 * Called when we receive a POSTHSSUB request
2163 * Accepts two arguments:
2164 * "publisher" -> The onion address of the service to subscribe to
2165 * "circuit" -> The circuit to use for creating the service
2166 * "callback" -> The onion address to send as callback source
2167 * "condition" -> The condition expected to trigger the callback
2168 */
2169 static int
2170 handle_control_posthssub(control_connection_t *conn,
2171 const control_cmd_args_t *cmd_args)
2172 {
2173 //First read arguments:
2174 const config_line_t *arg;
2175
2176 for (arg = cmd_args->kwargs; arg; arg = arg->next) {

Appendix B Improve Onion Service Latency 139

2177 log_info(LD_GENERAL, "Received keyword argument with key %s and value %s",
arg->key, arg->value);↪→

2178 }
2179 log_info(LD_GENERAL, "Finished receiving keywords");
2180 const config_line_t *publisher,*circuit,*callback,*condition;
2181 publisher = config_line_find_case(cmd_args->kwargs, "publisher");
2182 circuit = config_line_find_case(cmd_args->kwargs, "circuit");
2183 callback = config_line_find_case(cmd_args->kwargs, "callback");
2184 condition = config_line_find_case(cmd_args->kwargs, "condition");
2185 log_info(LD_GENERAL, "Received command to sub at %s requesting event info for '%s'

to: %s", publisher->value, condition->value, callback->value);↪→
2186
2187 ed25519_public_key_t identity_key;
2188 hs_parse_address(publisher->value, &identity_key, NULL, NULL);
2189 //First, we need the correct circuit to send the intro request for:
2190 origin_circuit_t *circ = get_circ(circuit->value);
2191 if (circ->hs_ident == NULL) {
2192 log_err(LD_GENERAL, "Error, no hs_ident on circuit");
2193 }
2194 if (circ!=NULL && circ->base_.state == CIRCUIT_STATE_OPEN){
2195 log_info(LD_GENERAL, "Circuit open, Start building introduction data");
2196 const hs_descriptor_t *descriptor= hs_cache_lookup_as_client(&identity_key);
2197 const hs_desc_intro_point_t *intro_point=NULL;
2198 log_info(LD_GENERAL, "Descriptor ready, starting loop");
2199 SMARTLIST_FOREACH_BEGIN(descriptor->encrypted_data.intro_points,
2200 const hs_desc_intro_point_t *, ip) {
2201 log_info(LD_GENERAL, "Entering loop");
2202 if (ed25519_pubkey_eq(&circ->hs_ident->intro_auth_pk,
2203 &ip->auth_key_cert->signed_key)) {
2204 log_info(LD_GENERAL, "Found introduction point!");
2205 intro_point= ip;
2206 break;
2207 }
2208 } SMARTLIST_FOREACH_END(ip);
2209 log_info(LD_GENERAL, "Introduction Point found");
2210 if (intro_point == NULL) {
2211 control_write_endreply(conn, 400, "Could not find out which IP we are using");
2212 return 1;
2213 }
2214
2215 curve25519_keypair_t rend_pubkey;
2216 uint8_t rend_cookie[REND_COOKIE_LEN];
2217 for (int i=0;i<REND_COOKIE_LEN;i++){
2218 uint8_t value=222;
2219 rend_cookie[i]=value;
2220 }
2221 curve25519_keypair_generate(&rend_pubkey, 0);
2222
2223 //create my own introduce1_data
2224 hs_cell_introduce1_data_t intro1_data;
2225 intro1_data.auth_pk = &intro_point->auth_key_cert->signed_key;
2226 intro1_data.enc_pk = &intro_point->enc_key;
2227 intro1_data.subcredential = &descriptor->subcredential;
2228 intro1_data.link_specifiers = intro_point->link_specifiers;
2229 intro1_data.onion_pk = &intro_point->onion_key;
2230 intro1_data.rendezvous_cookie=rend_cookie;
2231 intro1_data.client_kp=&rend_pubkey;
2232
2233 // Create extension data to send along

Appendix B Improve Onion Service Latency 140

2234 log_info(LD_GENERAL, "Start building extensions to send along!");
2235 trn_cell_extension_t *public_extensions=trn_cell_extension_new();
2236 trn_cell_extension_t *private_extensions=trn_cell_extension_new();
2237 trn_cell_extension_field_t *condition_ext = trn_cell_extension_field_new();
2238 trn_cell_extension_field_t *callback_ext = trn_cell_extension_field_new();
2239 trn_cell_extension_field_t *callback_data_ext = trn_cell_extension_field_new();
2240 //TH: Set values:
2241 cell_extension_set_field_to_string(condition_ext, condition->value, 31);
2242 cell_extension_set_field_to_string(callback_ext, callback->value, 32);
2243 cell_extension_set_field_to_string(callback_data_ext, "TODO: Insert long

descriptor here!", 33);↪→
2244 //TH: Now set extension size and add to values
2245 trn_cell_extension_set_num(private_extensions, 3);
2246 trn_cell_extension_setlen_fields(private_extensions, 3);
2247 trn_cell_extension_set_fields(private_extensions, 0, condition_ext);
2248 trn_cell_extension_set_fields(private_extensions, 1, callback_ext);
2249 trn_cell_extension_set_fields(private_extensions, 2, callback_data_ext);
2250
2251 uint8_t cell_out[RELAY_PAYLOAD_SIZE]={0};
2252 log_info(LD_GENERAL, "Building introduce1 cell");
2253 ssize_t length=hs_cell_build_extended_introduce1(&intro1_data,

public_extensions, private_extensions, cell_out);↪→
2254
2255 if(length<0){
2256 log_info(LD_GENERAL, "THDEBUG: Error, failed to build extended introduce1

cell!");↪→
2257 }else{
2258 int returnCode=relay_send_command_from_edge(CONTROL_CELL_ID, TO_CIRCUIT(circ),
2259 RELAY_COMMAND_INTRODUCE1,
2260 (const char*) cell_out, length, circ->cpath->prev);
2261 if (returnCode) {
2262 log_warn(LD_GENERAL, "TH: Unable to send introduce cell on circuit %u",

TO_CIRCUIT(circ)->n_circ_id);↪→
2263 } else{
2264 circuit_change_purpose(TO_CIRCUIT(circ),

CIRCUIT_PURPOSE_C_INTRODUCE_ACK_WAIT);↪→
2265 }
2266 }
2267
2268 //int status = hs_client_send_introduce1(circ, &rend_circ_mock);
2269 log_info(LD_GENERAL, "Intro1 cell should have been sent");
2270 send_control_done(conn);
2271 return 0;
2272 }else{
2273 control_write_endreply(conn, 400, "Circuit is not yet ready for connection");
2274 return -1;
2275 }
2276 }

Listings B.9 and B.11 show the new functions needed to add extensions to the
INTRODUCE1 cell. This is necessary because the current implementation of the
Tor client assumes extensions to always be empty, so functions have no op-
tional argument via which extensions could be passed. This forced us to either
change the method signatures of core parts of the Tor application or duplicate
functions. To keep the changes made to the Tor client down to a minimum,
we opted to duplicate the functions with an additional argument for exten-
sions. The function introduce1_set_extended_encrypted is a duplication of intro-
duce1_set_encrypted with an additional argument for potential extensions.

Appendix B Improve Onion Service Latency 141

Listing B.9: Support extensions in introduction cells hs_cell.c

447 introduce1_set_extended_encrypted(trn_cell_introduce1_t *cell,
448 const hs_cell_introduce1_data_t *data,
449 trn_cell_extension_t *private_extensions)
450 {
451 trn_cell_introduce_encrypted_t *enc_cell;
452 trn_cell_extension_t *ext;
453
454 tor_assert(cell);
455 tor_assert(data);
456
457 enc_cell = trn_cell_introduce_encrypted_new();
458 tor_assert(enc_cell);
459
460 trn_cell_introduce_encrypted_set_extensions(enc_cell, private_extensions);
461
462 /* Set the rendezvous cookie. */
463 memcpy(trn_cell_introduce_encrypted_getarray_rend_cookie(enc_cell),
464 data->rendezvous_cookie, REND_COOKIE_LEN);
465
466 /* Set the onion public key. */
467 introduce1_set_encrypted_onion_key(enc_cell, data->onion_pk->public_key);
468
469 /* Set the link specifiers. */
470 introduce1_set_encrypted_link_spec(enc_cell, data->link_specifiers);
471
472 /* Set padding. */
473 introduce1_set_encrypted_padding(cell, enc_cell);
474
475 /* Encrypt and encode it in the cell. */
476 introduce1_encrypt_and_encode(cell, enc_cell, data);
477
478 /* Cleanup. */
479 trn_cell_introduce_encrypted_free(enc_cell);
480 }

Listing B.10 shows how to handle an INTRODUCE1 cell with extensions. This re-
quires iterating through the included extensions, extracting their values and
deciding what to do with them. If all the necessary extensions are present, the
newly added HS_SUB event is triggered to inform the onion service about the
received subscription.

Listing B.10: Handle received extensions hs_cell.c

934 trn_cell_extension_t *extensions=
trn_cell_introduce_encrypted_get_extensions(enc_cell);↪→

935 uint8_t count=trn_cell_extension_get_num(extensions);
936 if (count > 0){
937 char *condition,*callback;
938 for(size_t i=0; i<count; i++) {
939 trn_cell_extension_field_t *field = trn_cell_extension_get_fields(extensions, i);
940 uint8_t type=trn_cell_extension_field_get_field_type(field);
941 uint64_t length=trn_cell_extension_field_get_field_len(field);
942 char content[length+1];

Appendix B Improve Onion Service Latency 142

943 for(size_t j=0; j<length; j++) {
944 char c = (char) trn_cell_extension_field_get_field(field, j);
945 content[j]=c;
946 }
947 content[length]='\0';
948 log_debug(LD_GENERAL, "THDEBUG: Detected Extension with Type %i and %lu bytes of

data: %s", type, length, content);↪→
949 switch(type){
950 case 31:
951 condition=calloc(length+1, sizeof(char));
952 strcpy(condition, content);
953 break;
954 case 32:
955 callback=calloc(length+1, sizeof(char));
956 strcpy(callback, content);
957 break;
958 case 33:break; //TODO: Implement logic to load descriptor if descriptor is

present. Need to verify size restrictions first↪→
959 default: log_warn(LD_GENERAL, "TH: Detected unknown Extension with Type %i and

%lu bytes of data: %s", type, length, content);↪→
960 }
961 }
962 //TH: Now send the descriptor event, if possible
963 if (condition && callback){
964 log_info(LD_GENERAL, "TH: Received an HSSUB-Extension");
965 control_event_hs_sub(condition, callback);
966 free(condition);
967 free(callback);
968 goto done;
969 }

Listing B.11: Build extended intro request hs_cell.c

1084 ** Build an INTRODUCE1 cell with arbitrary extensions from the given data.
1085 * The encoded cell is put in cell_out which must be of at least size
1086 * RELAY_PAYLOAD_SIZE. On success, the encoded length is returned else a
1087 * negative value and the content of cell_out should be ignored. */
1088 ssize_t
1089 hs_cell_build_extended_introduce1(const hs_cell_introduce1_data_t *data,
1090 trn_cell_extension_t *public_extensions,
1091 trn_cell_extension_t *private_extensions,
1092 uint8_t *cell_out)
1093 {
1094 ssize_t cell_len;
1095 trn_cell_introduce1_t *cell;
1096 trn_cell_extension_t *ext;
1097
1098 tor_assert(data);
1099 tor_assert(cell_out);
1100
1101 cell = trn_cell_introduce1_new();
1102 tor_assert(cell);
1103
1104 /* Set extension data.*/
1105 //TODO: This assumes that extensions is not empty, should probably be checked
1106 trn_cell_introduce1_set_extensions(cell, public_extensions);

Appendix B Improve Onion Service Latency 143

1107
1108 /* Set the authentication key. */
1109 introduce1_set_auth_key(cell, data);
1110
1111 /* Set the encrypted section. This will set, encrypt and encode the
1112 * ENCRYPTED section in the cell. After this, we'll be ready to encode. */
1113 introduce1_set_extended_encrypted(cell, data, private_extensions);
1114
1115 /* Final encoding. */
1116 cell_len = trn_cell_introduce1_encode(cell_out, RELAY_PAYLOAD_SIZE, cell);
1117
1118 trn_cell_introduce1_free(cell);
1119 return cell_len;
1120 }

B.3 UseMinimized Descriptors

The third improvement requires two significant changes. First, the service de-
scriptor information has to be included in the INTRODUCE1 cell, meaning that
several new extension fields have to be added. Second, the capability to con-
struct a descriptor from the information included in the INTRODUCE1 cell must
be implemented. This change is quite extensive, because Tor does not expect to
load unencrypted descriptors as there has not been a use case for this before.
Listing B.12 provides an overview over both of these changes.

Listing B.12: Diff for minimized descriptors

diff --git a/src/feature/control/control_cmd.c b/src/feature/control/control_cmd.c
index 46381c2875..8ca564855d 100644
--- a/src/feature/control/control_cmd.c
+++ b/src/feature/control/control_cmd.c
@@ -2050,10 +2050,6 @@ handle_control_posthsdescriptor(control_connection_t *conn,

const control_cmd_args_t *cmd_args) {↪→
log_warn(LD_GENERAL, "Received newly created control port event for loading a hidden
service descriptor with data %s", cmd_args->cmddata);↪→

- //Verify if the command line arguments work they way they are expected to.
-
- // Try to load the provided descriptor into the cache.
- //TODO1: Need to also provide the onion address (= identity key) so descriptor can

be decrypted↪→
const config_line_t *line;
line = config_line_find_case(cmd_args->kwargs, "address");
if (line) {

@@ -2124,6 +2120,7 @@ static int handle_control_launch_by_extend(control_connection_t
*conn,↪→
origin_circuit_t *circ = circuit_launch_by_extend_info(new_circ_purpose,
extend_info, flags);↪→
circ->hs_ident=hs_ident_circuit_new(&identity_key);
log_info(LD_GENERAL, "intro circuit (%i) has been launched",
circ->global_identifier);↪→

+ control_printf_midreply(conn, 250, "%i", circ->global_identifier);

Appendix B Improve Onion Service Latency 144

send_control_done(conn);
return 0;

}else{
@@ -2132,7 +2129,6 @@ static int handle_control_launch_by_extend(control_connection_t

*conn,↪→
}

}

-
/*TH: Helper Function for POSTHSSUB to create the cell extension fields. */
static void
cell_extension_set_field_to_string(trn_cell_extension_field_t *inp, const char*

value, uint8_t type){↪→
@@ -2146,6 +2142,16 @@ cell_extension_set_field_to_string(trn_cell_extension_field_t

inp, const char↪→
trn_cell_extension_field_set_field(inp, (size_t) i, (uint8_t)c);

}
}

+static void
+cell_extension_set_field_to_bytes(trn_cell_extension_field_t *inp, uint64_t length,

const uint8_t* data, uint8_t type){↪→
+ trn_cell_extension_field_set_field_type(inp, type);
+ trn_cell_extension_field_set_field_len(inp, length);
+ trn_cell_extension_field_setlen_field(inp, length);
+ for (unsigned long i=0;i<length;i++) {
+ uint8_t byte = data[i];
+ trn_cell_extension_field_set_field(inp, (size_t) i, byte);
+ }
+}

static const char *posthssub_keywords[] = {
"publisher", "circuit", "callback", "condition", NULL,

@@ -2155,7 +2161,7 @@ static const control_cmd_syntax_t posthssub_syntax = {
.max_args = 0,
.accept_keywords = true,
.allowed_keywords = posthssub_keywords,

- .want_cmddata = false,
+ .want_cmddata = true,
};

/**
@@ -2165,6 +2171,7 @@ static const control_cmd_syntax_t posthssub_syntax = {
* "circuit" -> The circuit to use for creating the service
* "callback" -> The onion address to send as callback source
* "condition" -> The condition expected to trigger the callback

+ * "duration" -> A UTC timestamp how long you want to sub (default=1hour)
*/
static int
handle_control_posthssub(control_connection_t *conn,

@@ -2177,58 +2184,39 @@ handle_control_posthssub(control_connection_t *conn,
log_info(LD_GENERAL, "Received keyword argument with key %s and value %s",
arg->key, arg->value);↪→
}
log_info(LD_GENERAL, "Finished receiving keywords");

- const config_line_t *publisher,*circuit,*callback,*condition;
+ const config_line_t *publisher,*circuit,*callback,*condition, *duration;

publisher = config_line_find_case(cmd_args->kwargs, "publisher");
circuit = config_line_find_case(cmd_args->kwargs, "circuit");
callback = config_line_find_case(cmd_args->kwargs, "callback");

Appendix B Improve Onion Service Latency 145

condition = config_line_find_case(cmd_args->kwargs, "condition");
+ duration = config_line_find_case(cmd_args->kwargs, "duration");

log_info(LD_GENERAL, "Received command to sub at %s requesting event info for '%s'
to: %s", publisher->value, condition->value, callback->value);↪→
ed25519_public_key_t identity_key;
hs_parse_address(publisher->value, &identity_key, NULL, NULL);
//First, we need the correct circuit to send the intro request for:
origin_circuit_t *circ = get_circ(circuit->value);

- if (circ->hs_ident == NULL) {
+ if (circ == NULL || circ->hs_ident == NULL) {

log_err(LD_GENERAL, "Error, no hs_ident on circuit");
+ control_write_endreply(conn, 400, "Error: No HS_IDENT set on provided circuit.

Cannot send HSSUB");↪→
+ return -1;

}
if (circ!=NULL && circ->base_.state == CIRCUIT_STATE_OPEN){

- log_info(LD_GENERAL, "Circuit open, Start building introduction data");
const hs_descriptor_t *descriptor= hs_cache_lookup_as_client(&identity_key);
const hs_desc_intro_point_t *intro_point=NULL;

- log_info(LD_GENERAL, "Descriptor ready, starting loop");
SMARTLIST_FOREACH_BEGIN(descriptor->encrypted_data.intro_points,

const hs_desc_intro_point_t *, ip) {
- log_info(LD_GENERAL, "Entering loop");

if (ed25519_pubkey_eq(&circ->hs_ident->intro_auth_pk,
&ip->auth_key_cert->signed_key)) {

- log_info(LD_GENERAL, "Found introduction point!");
intro_point= ip;
break;

}
} SMARTLIST_FOREACH_END(ip);

- log_info(LD_GENERAL, "Introduction Point found");
if (intro_point == NULL) {

- control_write_endreply(conn, 400, "Could not find out which IP we are using");
+ control_write_endreply(conn, 400, "Could not find out which IntroPoint we are

using");↪→
return 1;

}
- //SMARTLIST_FOREACH_BEGIN(descriptor->encrypted_data.intro_points,

hs_desc_intro_point_t*, ip) {↪→
-
- //if(memcmp(&ip->onion_key, &extend_info->curve25519_onion_key,

sizeof(curve25519_public_key_t))) {↪→
- // log_info(LD_GENERAL, "Found correct introduction point");
- //ed25519_pubkey_copy(&circ->hs_ident->intro_auth_pk,

&ip->auth_key_cert->signed_key);↪→
- //ip_enc_key=&ip->enc_key;
- //}else{
- // log_info(LD_GENERAL, "Not a correct key");
- //}
- //} SMARTLIST_FOREACH_END(ip);
-
- //Get Prepare the mocked rend_circuit
- //origin_circuit_t rend_circ_mock;
- //hs_ident_circuit_t hs_ident_mock;
- //rend_circ_mock.hs_ident=&hs_ident_mock;
- //cpath_build_state_t build_state_mock;
- //build_state_mock.chosen_exit=extend_info;
- //rend_circ_mock.build_state=&build_state_mock;

Appendix B Improve Onion Service Latency 146

+
curve25519_keypair_t rend_pubkey;
uint8_t rend_cookie[REND_COOKIE_LEN];
for (int i=0;i<REND_COOKIE_LEN;i++){

@@ -2237,52 +2225,121 @@ handle_control_posthssub(control_connection_t *conn,
}
curve25519_keypair_generate(&rend_pubkey, 0);

- //create my own introduce1_data
hs_cell_introduce1_data_t intro1_data;
intro1_data.auth_pk = &intro_point->auth_key_cert->signed_key;
intro1_data.enc_pk = &intro_point->enc_key;
intro1_data.subcredential = &descriptor->subcredential;

- intro1_data.link_specifiers = intro_point->link_specifiers;
intro1_data.onion_pk = &intro_point->onion_key;

- intro1_data.rendezvous_cookie=rend_cookie;
- intro1_data.client_kp=&rend_pubkey;

- // Create extension data to send along
- log_info(LD_GENERAL, "Start building extensions to send along!");

trn_cell_extension_t *public_extensions=trn_cell_extension_new();
trn_cell_extension_t *private_extensions=trn_cell_extension_new();

+
+ …
+
+ // Create extension data to send along
+ log_debug(LD_GENERAL, "Start building extensions to send along!");

trn_cell_extension_field_t *condition_ext = trn_cell_extension_field_new();
trn_cell_extension_field_t *callback_ext = trn_cell_extension_field_new();

- trn_cell_extension_field_t *callback_data_ext = trn_cell_extension_field_new();
+ trn_cell_extension_field_t *duration_ext = trn_cell_extension_field_new();

//TH: Set values:
cell_extension_set_field_to_string(condition_ext, condition->value, 31);
cell_extension_set_field_to_string(callback_ext, callback->value, 32);

- cell_extension_set_field_to_string(callback_data_ext, "TODO: Insert long
descriptor here!", 33);↪→

+ if(duration){
+ cell_extension_set_field_to_string(duration_ext, duration->value, 33);
+ }else{
+ char* default_duration=tor_calloc(22, sizeof(char));
+ log_debug(LD_GENERAL, "Got until here");
+ log_debug(LD_GENERAL, "Time is: %li", time(NULL));
+ log_debug(LD_GENERAL, "Expiry deadline is: %li + %li", time(NULL), 7200l);
+ time_t expiry_time=time(NULL) + (time_t)7200;
+ log_debug(LD_GENERAL, "Expiry deadline is: %li + %li = %li", time(NULL), 7200l,

expiry_time);↪→
+ snprintf(default_duration,(size_t) 22, "%li", time(NULL) + 7200l);
+ cell_extension_set_field_to_string(duration_ext, default_duration, 33);
+ free(default_duration);
+ }

//TH: Now set extension size and add to values
- trn_cell_extension_set_num(private_extensions, 3);
- trn_cell_extension_setlen_fields(private_extensions, 3);

trn_cell_extension_set_fields(private_extensions, 0, condition_ext);
trn_cell_extension_set_fields(private_extensions, 1, callback_ext);

- trn_cell_extension_set_fields(private_extensions, 2, callback_data_ext);
+ trn_cell_extension_set_fields(private_extensions, 2, duration_ext);

uint8_t cell_out[RELAY_PAYLOAD_SIZE]={0};

Appendix B Improve Onion Service Latency 147

log_info(LD_GENERAL, "Building introduce1 cell");
ssize_t length=hs_cell_build_extended_introduce1(&intro1_data, public_extensions,
private_extensions, cell_out);↪→
if(length<0){

- log_info(LD_GENERAL, "THDEBUG: Error, failed to build extended introduce1
cell!");↪→

+ log_info(LD_GENERAL, "TH: Error, failed to build extended introduce1 cell!");
+ control_write_endreply(conn, 400, "Error: Error occurred when building extended

introduce1 cell");↪→
+ return -1;

}else{
+ log_info(LD_GENERAL, "TH: Sending introduce cell of size %li (of %i

available)",length, RELAY_PAYLOAD_SIZE);↪→
int returnCode=relay_send_command_from_edge(CONTROL_CELL_ID, TO_CIRCUIT(circ),

RELAY_COMMAND_INTRODUCE1,
(const char*) cell_out, length,

circ->cpath->prev);↪→
if (returnCode) {

- log_warn(LD_GENERAL, "TH: Unable to send introduce cell on circuit %u",
TO_CIRCUIT(circ)->n_circ_id);↪→

+ log_err(LD_GENERAL, "TH: Unable to send introduce cell on circuit %u",
TO_CIRCUIT(circ)->n_circ_id);↪→

+ control_write_endreply(conn, 400, "Error: Could not send introduce cell on
provided circuit");↪→

+ return -1;
} else{

circuit_change_purpose(TO_CIRCUIT(circ),
CIRCUIT_PURPOSE_C_INTRODUCE_ACK_WAIT);↪→

}
}

-
- //int status = hs_client_send_introduce1(circ, &rend_circ_mock);
+

log_info(LD_GENERAL, "Intro1 cell should have been sent");
send_control_done(conn);
return 0;

@@ -2420,7 +2477,7 @@ static const control_cmd_def_t CONTROL_COMMANDS[] =
ONE_LINE(onion_client_auth_remove, 0),
ONE_LINE(onion_client_auth_view, 0),
MULTLINE(posthsdescriptor, 0),

- ONE_LINE(posthssub, 0),
+ MULTLINE(posthssub, 0),

ONE_LINE(launch_by_extend, 0),
};

diff --git a/src/feature/hs/hs_cache.c b/src/feature/hs/hs_cache.c
index cf8e377313..ed8c93c028 100644
--- a/src/feature/hs/hs_cache.c
+++ b/src/feature/hs/hs_cache.c
@@ -412,7 +412,7 @@ remove_v3_desc_as_client(const hs_cache_client_descriptor_t *desc)
}

/** Store a given descriptor in our cache. */
-static void
+void
store_v3_desc_as_client(hs_cache_client_descriptor_t *desc)
{
hs_cache_client_descriptor_t *cached_desc;

Appendix B Improve Onion Service Latency 148

diff --git a/src/feature/hs/hs_cache.h b/src/feature/hs/hs_cache.h
index dd55f54ba4..fb6c8130a2 100644
--- a/src/feature/hs/hs_cache.h
+++ b/src/feature/hs/hs_cache.h
@@ -148,6 +148,9 @@ STATIC size_t cache_clean_v3_as_dir(time_t now, time_t

global_cutoff);↪→
STATIC hs_cache_client_descriptor_t *
lookup_v3_desc_as_client(const uint8_t *key);

+void
+store_v3_desc_as_client(hs_cache_client_descriptor_t *desc);
+
#endif /* defined(HS_CACHE_PRIVATE) */

#endif /* !defined(TOR_HS_CACHE_H) */
diff --git a/src/feature/hs/hs_cell.c b/src/feature/hs/hs_cell.c
index 152aa5fc6c..01a6e43342 100644
--- a/src/feature/hs/hs_cell.c
+++ b/src/feature/hs/hs_cell.c
@@ -407,20 +407,6 @@ introduce1_set_encrypted(trn_cell_introduce1_t *cell,

//TH: TODO Need to add functionality here to allow setting extensions.
ext = trn_cell_extension_new();
tor_assert(ext);

- //TH: Create 3 fields for condition, callback and descriptor
- trn_cell_extension_field_t *condition = trn_cell_extension_field_new();
- trn_cell_extension_field_t *callback = trn_cell_extension_field_new();
- trn_cell_extension_field_t *descriptor = trn_cell_extension_field_new();
- //TH: Set values:
- cell_extension_set_field_to_string(condition, "Face: 123123124123123123", 31);
- cell_extension_set_field_to_string(callback, "blablablablabla.onion", 32);
- cell_extension_set_field_to_string(descriptor, "here could be a service

descriptor", 33);↪→
- //TH: Now set extension size and add to values
- trn_cell_extension_set_num(ext, 3);
- trn_cell_extension_setlen_fields(ext, 3);
- trn_cell_extension_set_fields(ext, 0, condition);
- trn_cell_extension_set_fields(ext, 1, callback);
- trn_cell_extension_set_fields(ext, 2, descriptor);

trn_cell_introduce_encrypted_set_extensions(enc_cell, ext);

/* Set the rendezvous cookie. */
@@ -443,7 +429,7 @@ introduce1_set_encrypted(trn_cell_introduce1_t *cell,

trn_cell_introduce_encrypted_free(enc_cell);
}

-
+static void
introduce1_set_extended_encrypted(trn_cell_introduce1_t *cell,

const hs_cell_introduce1_data_t *data,
trn_cell_extension_t *private_extensions)

@@ -929,12 +915,41 @@ hs_cell_parse_introduce2(hs_cell_introduce2_data_t *data,
}

}

/* XXX: Implement client authorization checks. */
//TH: First draft of my own extension handling.
trn_cell_extension_t *extensions=
trn_cell_introduce_encrypted_get_extensions(enc_cell);↪→
uint8_t count=trn_cell_extension_get_num(extensions);

Appendix B Improve Onion Service Latency 149

if (count > 0){
char *condition,*callback;

+ int contains_descriptor=0;
+ long duration=0l;
+ hs_subcredential_t subcred;
+ ed25519_public_key_t auth_pubkey;
+ curve25519_public_key_t enc_key;

for(size_t i=0; i<count; i++) {
trn_cell_extension_field_t *field = trn_cell_extension_get_fields(extensions,

i);↪→
uint8_t type=trn_cell_extension_field_get_field_type(field);

@@ -955,11 +970,68 @@ hs_cell_parse_introduce2(hs_cell_introduce2_data_t *data,
callback=calloc(length+1, sizeof(char));
strcpy(callback, content);
break;

- case 33:break; //TODO: Implement logic to load descriptor if descriptor is
present. Need to verify size restrictions first↪→

+ case 33:
+ duration=atol(content);
+ break;
+ case 34:
+ for (int j=0;j<32;j++){
+ subcred.subcred[j]=(uint8_t)content[j];
+ }
+ contains_descriptor=1;
+ break;
+ case 35:
+ for (int j=0;j<32;j++){
+ auth_pubkey.pubkey[j]=(uint8_t)content[j];
+ }
+ contains_descriptor=1;
+ break;
+ case 36:
+ for (int j=0;j<32;j++){
+ enc_key.public_key[j]=(uint8_t)content[j];
+ }
+ contains_descriptor=1;
+ break;

default: log_warn(LD_GENERAL, "TH: Detected unknown Extension with Type %i and
%lu bytes of data: %s", type, length, content);↪→

}
}

- //TH: Now send the descriptor event, if possible
+ //TH:Put the included descriptor in the hs_cache, if there is any
+ …

if (condition && callback){
log_info(LD_GENERAL, "TH: Received an HSSUB-Extension");
control_event_hs_sub(condition, callback);

@@ -968,7 +1040,6 @@ hs_cell_parse_introduce2(hs_cell_introduce2_data_t *data,
goto done;

}
}

-

/* Extract onion key and rendezvous cookie from the cell used for the
* rendezvous point circuit e2e encryption. */

@@ -983,14 +1054,14 @@ hs_cell_parse_introduce2(hs_cell_introduce2_data_t *data,
for (size_t idx = 0;

idx < trn_cell_introduce_encrypted_get_nspec(enc_cell); idx++) {

Appendix B Improve Onion Service Latency 150

link_specifier_t *lspec =
- trn_cell_introduce_encrypted_get_nspecs(enc_cell, idx);
+ trn_cell_introduce_encrypted_get_nspecs(enc_cell, idx);

if (BUG(!lspec)) {
goto done;

}
link_specifier_t *lspec_dup = link_specifier_dup(lspec);
if (BUG(!lspec_dup)) {
goto done;

- }
+ }

smartlist_add(data->link_specifiers, lspec_dup);
}

@@ -1093,7 +1164,6 @@ hs_cell_build_extended_introduce1(const
hs_cell_introduce1_data_t *data,↪→

{
ssize_t cell_len;
trn_cell_introduce1_t *cell;

- trn_cell_extension_t *ext;

tor_assert(data);
tor_assert(cell_out);

@@ -1113,8 +1183,7 @@ hs_cell_build_extended_introduce1(const
hs_cell_introduce1_data_t *data,↪→
introduce1_set_extended_encrypted(cell, data, private_extensions);

/* Final encoding. */
- cell_len = trn_cell_introduce1_encode(cell_out, RELAY_PAYLOAD_SIZE, cell);
-
+ cell_len = trn_cell_introduce1_encode(cell_out, 16384, cell);

trn_cell_introduce1_free(cell);
return cell_len;

}
diff --git a/src/feature/hs/hs_cell.h b/src/feature/hs/hs_cell.h
index 5be2c2e656..ddc5bb0eb4 100644
--- a/src/feature/hs/hs_cell.h
+++ b/src/feature/hs/hs_cell.h
@@ -13,6 +13,10 @@
#include "feature/hs/hs_service.h"
#include "trunnel/hs/cell_common.h"

+#define HS_CACHE_PRIVATE
+#include "feature/hs/hs_cache.h"
+#include "src/feature/nodelist/nodelist.h"
+
/** An INTRODUCE1 cell requires at least this amount of bytes (see section
* 3.2.2 of the specification). Below this value, the cell must be padded. */
#define HS_CELL_INTRODUCE1_MIN_SIZE 246

Listing B.13 shows the code needed to extract the relevant fields from a valid
service descriptor to include a minimal service descriptor within an INTRO-
DUCE1 cell. There are two ways how a service descriptor can be specified to be
used as a callback. If it has already been loaded into the Tor client’s cache, it
is sufficient to specify the onion address, otherwise the descriptor has to be
included as request data, just like it is done when loading service descriptors.
Once the descriptor has been found, we select a random introduction point
from it, extract the information for a minimal descriptor, and put it in exten-

Appendix B Improve Onion Service Latency 151

sion fields that can be forwarded to the onion service.

Listing B.13: Insert callback information control_cmd.c

2237 ed25519_public_key_t callback_public_key;
2238 hs_descriptor_t *callback_descriptor=NULL;
2239 if (hs_parse_address(callback->value, &callback_public_key, NULL, NULL) != 0){
2240 log_err(LD_GENERAL, "Could not parse provided callback address. Aborting

HSPOST");↪→
2241 control_write_endreply(conn, 400, "Error: Your provided callback address could

not be parsed");↪→
2242 return -1;
2243 }
2244 if(cmd_args->cmddata_len > 0) {
2245 log_debug(LD_GENERAL, "We received a callback descriptor, try to pack

descriptor in INTRODUCE1");↪→
2246
2247 //OK, we have a valid onion address as callback
2248 hs_client_decode_descriptor(cmd_args->cmddata, &callback_public_key,

&callback_descriptor);↪→
2249 if (callback_descriptor == NULL){
2250 control_write_endreply(conn, 400, "Error: Your provided descriptor data

could not be parsed");↪→
2251 return -1;
2252 }
2253 } else{
2254 log_debug(LD_GENERAL, "We received a callback address without descriptor.

Checking if descriptor is in cache:");↪→
2255 callback_descriptor=(hs_descriptor_t*)hs_cache_lookup_as_client(

&callback_public_key);↪→
2256 }
2257
2258 if (callback_descriptor) {
2259 hs_desc_intro_point_t* ip=NULL;
2260 ip = (hs_desc_intro_point_t*)

smartlist_get(callback_descriptor->encrypted_data.intro_points, 0);↪→
2261
2262 if(ip == NULL){
2263 control_write_endreply(conn, 400, "Error: You specified a service descriptor

without introduction points");↪→
2264 return -1;
2265 }
2266 ed25519_public_key_t sign_key= ip->auth_key_cert->signed_key;
2267 hs_subcredential_t subc = callback_descriptor->subcredential;
2268 intro1_data.link_specifiers=ip->link_specifiers;
2269 intro1_data.client_kp=&rend_pubkey;
2270 //TODO I have 20 bytes of data left I can encode in there
2271 intro1_data.rendezvous_cookie=rend_cookie;
2272
2273 //Set up extensions that only get added in this case:
2274 trn_cell_extension_set_num(private_extensions, 6);
2275 trn_cell_extension_setlen_fields(private_extensions, 6);
2276 trn_cell_extension_field_t *callback_subcredential =

trn_cell_extension_field_new();↪→
2277 trn_cell_extension_field_t *callback_authkey = trn_cell_extension_field_new();
2278 trn_cell_extension_field_t *callback_enc_key = trn_cell_extension_field_new();
2279 cell_extension_set_field_to_bytes(callback_subcredential, 32, subc.subcred,

34);↪→
2280 cell_extension_set_field_to_bytes(callback_authkey, 32, sign_key.pubkey, 35);

Appendix B Improve Onion Service Latency 152

2281 cell_extension_set_field_to_bytes(callback_enc_key, 32,
ip->enc_key.public_key, 36);↪→

2282 trn_cell_extension_set_fields(private_extensions, 3, callback_subcredential);
2283 trn_cell_extension_set_fields(private_extensions, 4, callback_authkey);
2284 trn_cell_extension_set_fields(private_extensions, 5, callback_enc_key);
2285
2286 }else{
2287 intro1_data.link_specifiers = intro_point->link_specifiers;
2288 intro1_data.rendezvous_cookie=rend_cookie;
2289 intro1_data.client_kp=&rend_pubkey;
2290
2291 trn_cell_extension_set_num(private_extensions, 3);
2292 trn_cell_extension_setlen_fields(private_extensions, 3);
2293 }

The final task that remains is creating a valid service descriptor object from
the extension data received by the onion service. Listing B.14 shows the code
added to achieve this goal. The extension data includes the required keys and
link identifiers and from that data a hs_descriptor_t struct is created and in-
serted into Tor’s internal descriptor cache.

Listing B.14: Build minimal descriptor from callback info hs_cell.c

997 //TH:Put the included descriptor in the hs_cache, if there is any
998 if(contains_descriptor>0){
999 log_info(LD_GENERAL, "Received HSSUB with callback-descriptor, building

descriptor now");↪→
1000 hs_descriptor_t *descriptor=tor_calloc(1, sizeof(hs_descriptor_t));
1001 hs_cache_client_descriptor_t

*desc_entry=tor_calloc(1,sizeof(hs_cache_client_descriptor_t));↪→
1002
1003 desc_entry->encoded_desc="MINIMAL_DESCRIPTOR";
1004 desc_entry->expiration_ts=(time_t) duration;
1005 hs_parse_address(callback, &desc_entry->key, NULL, NULL);
1006 descriptor->plaintext_data.lifetime_sec=3600;
1007 descriptor->subcredential=subcred;
1008 hs_desc_intro_point_t *ip = hs_desc_intro_point_new();
1009 ip->auth_key_cert = tor_calloc(1, sizeof(tor_cert_t));
1010 ip->auth_key_cert->signed_key=auth_pubkey;
1011 smartlist_t *ip_link_specifiers=smartlist_new();
1012 ed25519_public_key_t node_id;
1013 SMARTLIST_FOREACH_BEGIN(data->link_specifiers,
1014 const link_specifier_t *, ls) {
1015 link_specifier_t* ls_intro=link_specifier_dup(ls);
1016 if (link_specifier_get_ls_type(ls_intro) == 3) {
1017 memcpy(node_id.pubkey,
1018 link_specifier_getconstarray_un_ed25519_id(ls_intro),
1019 ED25519_PUBKEY_LEN);
1020 }
1021 smartlist_add(ip_link_specifiers, ls_intro);
1022 } SMARTLIST_FOREACH_END(ls);
1023 ip->link_specifiers=ip_link_specifiers;
1024 ip->enc_key=enc_key;
1025 const node_t *ip_node = node_get_by_ed25519_id(&node_id);
1026 ip->onion_key= *node_get_curve25519_onion_key(ip_node);
1027 smartlist_t *intro_points=smartlist_new();

Appendix B Improve Onion Service Latency 153

1028 smartlist_add(intro_points, ip);
1029 descriptor->encrypted_data.intro_points=intro_points;
1030 desc_entry->desc=descriptor;
1031 store_v3_desc_as_client(desc_entry);
1032 }
1033 log_info(LD_GENERAL, "Descriptor was stored successfully");
1034 //TH: Now fire the descriptor event, if possible
1035 if (condition && callback){
1036 log_info(LD_GENERAL, "TH: Received an HSSUB-Extension");
1037 control_event_hs_sub(condition, callback);
1038 free(condition);
1039 free(callback);
1040 goto done;
1041 }
1042 }

	Abstract
	Kurzfassung
	Contents
	Introduction
	Motivation
	Objectives
	Non-Objectives

	Approach
	Contributions
	Publications
	Outline

	Background
	The Digidow Project
	Network Anonymization
	Mix Networks

	Onion Routing
	I2P
	Tor

	The Tor Network
	Directory Authorities

	Tor Onion Services
	Creating a New Onion Service
	The Hidden Service Directory
	Connecting to an Onion Service

	Metadata resilient messaging

	Network Architecture
	Network Interactions
	Publishing a Sensor
	Requesting Sensor Information
	Issuing Attributes
	Communication with the PIA's Owner
	Digidow Transactions

	Service Discovery
	Initiate Service Discovery
	Evaluation
	Finalizing Service Discovery

	The Sensor Directory
	Functional Requirements
	Privacy Requirements
	Potential Approaches

	Threat Model
	Threats

	Attackers
	Countermeasures
	Network Unlinkability
	Acceptable Risks

	Securing Network Interactions
	Publishing a Sensor
	Requesting Sensor Information
	Issuing Attributes
	Communication with the PIA's Owner
	Digidow Transactions
	Unresolved Threats

	Monitoring the HSDir
	Preparation
	Ethical considerations
	Technical Details
	Privacy considerations
	Hardly used onion services
	Unwanted attention

	Results
	Uploads
	Downloads

	Summary

	Short-lived onion services
	Experiment Design
	Measurement Setup
	Measured Configurations

	Results
	Provisioning Stages
	Descriptor Upload Times

	Summary

	Verifying the Tor consensus
	Analysis
	Data Sources
	Fast Relays
	HSDir Relays
	Other voting inconsistencies
	Monthly relay spikes

	Summary

	Improving Tor onion services
	Using Current Onion Services
	Improvement: Make the HSDIR Optional
	Implementation
	Limitations
	Privacy Analysis
	Security Analysis

	Improvement: Bundle Information in the INTRO Cell
	Implementation
	Limitations
	Privacy Analysis
	Security Analysis

	Improvement: Use Minimized Descriptors
	Implementation
	Limitations
	Privacy Analysis
	Security Analysis

	Performance Evaluation
	Experiment Setup
	Experiment Results

	Summary

	Conclusion and Outlook
	Conclusion
	Future Work
	Improve I2P Metrics
	Rework the Estimate for Unique V3 Onion Services
	Compare Downloads of Known and Unknown Onion Services
	SingleHopOnionService vs. Public Service via Tor
	Evaluate Service Descriptor Lifetime
	Harden Onion Services against DDOS Attacks
	Unlinkable Service Descriptors
	Optimize Space in Introduce1 Cells
	Encode Minimal Service Descriptors in Hostnames
	Minor Implementation Improvements

	Epilogue

	Bibliography
	Measure onion service creation times
	Improve Onion Service Latency
	Make the HSDir Optional
	Bundle Information in the INTRO Cell
	Use Minimized Descriptors

