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Abstract

A service that has to interact with multiple potential biometric sensors, needs
to share information about an individualwith them. Although it is possible that
there will no interaction with such an sensor, the data is shared nevertheless.
Every shared information about biometric data of an individual could lead to
a potential leakage of sensitive data. To prevent this we introduce fuzzy hash
which prevents this problem by generating a hash that cannot be tracked back
to the original biometric data. Still, this hash can be compared against other
embeddings which allows the sensor to interact with the correct service with-
out an interactive protocol.

1. Introduction

Authorization is facing new challenges in amore ubiquitous computing world.
Traditional passwords are getting replaced by biometric informationwhich are
often used to pre-register on sensors in order to save time on interactions.
However, those biometric information should not be shared to any sensor un-
til the individual it belongs to are interacting with them. Fuzzy hash provides a
solution for this issue by preventing traceability of an individual by generating
different hashes from a collection of biometric features. The generated one-
time hash can still be compared against other embeddings without revealing
information about the owner.

There aremultiple different approaches that try to solve this issue aswell.Most
of them are using computational power to obtain this but this causes problems
on scaling especially on lowpowered distributed sensors [3, 4, 8, 10]. Other ap-
proaches are using interactive protocols which do need to actively exchange
information during the process of interaction with an individual [9, 6, 12, 11].
If the number of potential matches is increasing it will get harder to exchange
data in time. Our approach is non interactive and can comparemultiple hashes
without much computational power.

The following sections will explain the details about the concept and the im-
plementation as well as the corresponding tests to proof the functionality and
resilience against attacks.

1.1 Problem

In order to interact with a face detection sensors in the Digidow1 project, it is
necessary to register to sensors before there is an interaction with an individ-
ual. The reason for this is because the sensor does not have any information
about an individual except the information the individual provides beforehand.
With the registration, the sensor get the information needed to find a match
and knowswho to contact if it is needed. However, thuswould give each sensor
the information about the biometric information even if there will be no phys-
ical interaction with them. If an attacker would be able to gain access to such
sensors, all registered information could be linked to individuals.

1https://www.digidow.eu

https://www.digidow.eu
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1.2 Idea

To prevent leaking biometric data on a breached sensor, we introduce the con-
cept of fuzzy hash. We use a modulo operation as a trap door function to gen-
erate a new hash from one or multiple embeddings. This prevents reversing
the hash but still hold enough information to make comparisons possible. As
the generated hash cannot be reversed, it makes it very hard for an attacker to
make any assumptions to which person a hash belongs to. That is also the case
if the same embedding is usedmultiple times as the hash is saltedwith random
values each time it is generated. Therefore, the correct embedding needs to be
known on the sensor side in order to compare it against the hash. All this does
not require an interactive protocol nor does it take a lot of computational power
to make comparisons, which does make scaling easier.

2. Fuzzy hash

Image recognition does not use an image directly for the comparison process.
Instead, it will extract featureswhich then can be compared against each other.
This features are also called embeddings and they differ in size and value range
depending on the used neuronal network which produce them. In our setup, a
vector of 512 32-bit floating point numbers represents a single embedding. Al-
though the concept of fuzzy hash is not restricted by the size of an embedding,
it is conceivable that less information might perform worse. The sections bel-
low will describe the process of creation and comparison in more detail along
with different possible attack scenarios and how they can be defeated.

2.1 Creating a fuzzy hash

The basic idea of the fuzzy hash relies on the modulo operation. By choosing a
very small divisor, it will create another vector with the same amount of ele-
ments but way smaller values. This transforms values from the original value
space E into the new divisor value space D. Keep in mind that the value space E
might differ on other neuronal network models.

E := {x ∈ R|min(embedding) ≤ x ≤ max(embedding)}
E := {x ∈ R| – 0.3 ≤ x ≤ 0.3}

Values from the divisor are defined by the exponentwhich will define the value
space for D like:

divisor = random(1, 10) ∗ 10–1∗exponent

D := {x ∈ R|x < divisor}

The default value for the exponent is 16 which was found out to work best on
our embeddings.Higher exponents can be chosenbutmight endupperforming
very poorly later on in the comparison process.Whereas lower valueswillmake
the hashmore prune to exhaustive brute force attacks as later discussed.

Inorder to createanewfuzzyhashweneed inputvalues.Thereare twodifferent
types of input variables; static and dynamic generated. Static input variables
can be defined once and be used for each generation. Although called static,
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they do not need to be strictly static on each generation. In fact, the validation
doesnot changebecauseall necessaryparameters are included in thehash.This
makes it possible tomake adjustments in the generation process of a new hash
if needed.

2.1.1 Static input

Static input values do not have to be change on each generation of a hash.
Therefore it is save to define them once and reuse them.

Embeddings In order to create a more stable hash it is recommended to use
multiple embeddings from a single person.

Exponent The exponent is needed to randomly creating a divisor for the
modulo operation.

Gamma To make the hashes more resilient against correlation attacks, we
add noise to the hash. The gammavalue defines the percentage used to vary
each element in the hash.

Phi For the comparison process we use the phi value to define a range in
where two hashes are assumed to be equal. It is defined as a percentage
which is added to the calculated maximal distance at the creation process.

2.1.2 Random input

As fuzzy hashes can be generatedmultiple times with the same embeddings as
input, it is necessary to add random generated input values as well. This pre-
vents correlation between hashes which is shown later in this report.

Salt The salt is a randomly generated vector with the same amount of ele-
ments as the embedding. It gets element wise multiplied with all embed-
dings used in the process.

Divisor The divisor is randomly generated with respect to the exponent.

Noise A randomly generated vector with the same size of the embedding
where the values are derived element wise from the hash and the gamma.

2.1.3 Modulo function

There are multiple modulo functions defined so we first need to define the
modulo function we are using for our fuzzy hash:

hash(f) :=

ni – divisor ∗ ⌊ ni
divisor⌋, if ni ≥ 0

ni – divisor ∗ ⌈ ni
divisor⌉, if ni < 0

As the definition shows, we treat the positive and the negative values in a dif-
ferent way to preserve the value best possible when rounding the remainder
to the direction of zero. This particular modulo operation is also known as the
euclidean division defined by Raymond T. Boute [1].
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(a) Create hashes from embeddings

(b) Create delta for hash (c) Create norms from hashes

Figure 1: Create fuzzy hash

2.1.4 Generation

Starting by generating a new salt vector which is element-wisemultiplied with
each provided embedding. Although it is possible to use a single embedding to
generate a hash, it is not recommended as a single embedding might be not as
stable as using multiple different embeddings of the same person. After gen-
erating the divisor, all salted embeddings are getting hashed giving usmultiple
hashes derived from the provided embeddings as shown in figure 1a.

The next step is to calculate the hash vector and the norm values which are the
distances between themean hash and the individual hashes of each embedding
as shownhere 1c. By calculating themean of the different hasheswe are getting
a more stable hash as outlier are getting smoothed out. Optionally, we can add
noise to thishashdefinedby thegammavalue.The reasonwhy this is optional is
becauseweareusinga salt vector anywayswhich is farmore effective tomake it
impossible to correlatehasheswithout thedownsideofmaking the comparison
worse.After this stepwearedonebycalculate thehashof theembeddingswhich
can be used to register to a sensor.

The last step is to calculate the norm of each individual hash against the mean
hash. Those values are needed to generate the delta value which defines when-
everanotherhash is likely tobe the sameembedding 1b.Themaximumdistance
is then picked andmultiplied by phi to calculate the delta.
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2.1.5 Output

The generated hash is not a single value. In order to compare it against another
embedding, we do need some additional information:

Hash

Salt

Divisor

Delta

The Rust implementation we are using does calculate all values with a floating
point precision of 64-bits. This would lead to a rather big fuzzy hash if we keep
in mind that the hash and the salt do have 512 elements each. Therefore it is
possible to use 32-bit representation of those values as well because it will not
change the comparison outcome that much. This saves 4KB of data for each
fuzzy hash!

2.2 Comparing hashes

Tocompare anembeddingagainst a fuzzyhash,weneed toperformthe follow-
ing steps shown in the figure 2. The embedding we want to compare the hash
against needs to be element-wise multiplied with the salt first. After that, the
hash can be calculatedwith the divisor and the normof both hashes can be cal-
culated. If the norm is less equal than the provided delta, the hash most likely
belongs to the embedding.

3. Accuracy

To analyse how accurate the fuzzy hash is, we are setting up a comparisonwith
a standard embedding comparison dataset. We are using the Labeled Faces in
the Wild2 dataset, specifically the pairs dataset to make our comparison which
includes 6000 tests. This dataset provides pairwise images of the same or an-
other person and our face recognition model as well as our fuzzy hash will use
this information to check if we can find the correct matches.
However, there is a bit of a pitfall with our fuzzy hash in this comparison as
it usually takes multiple embeddings of a single person in order to calculate
a stable hash from it. As this is not possible in this scenario, we do generate
additional hashes by adding noise to the input embedding to get multiple em-
beddings.

3.1 Face recognitionmodel

In order to see how accurate our face recognition model is, we use the pairs
dataset and calculate the embeddings from the provided images. Each com-
parison will be checked with different thresholds to see which threshold is the
best. The result is shown in the figure 3 where we can see on the threshold on
the x-axis, starting from0 to 2. The lower bound of the threshold valueswe get
themost false negative whichmakes sense as the threshold is so low that it al-
lows anything. At the upper bound we see the opposite as the threshold allows
more distance as the distances from the embedding getting bigger. The sweet
spot for the threshold is around 1.5with an accuracy about 97%.
2http://vis-www.cs.umass.edu/lfw/

http://vis-www.cs.umass.edu/lfw/
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Figure 2: Comparing an embedding against a hash

3.2 Fuzzy hash

In order to compare it to the face recognition above, we need to exchange the
threshold value for the phi value from the hashes. Adjusting it should give us a
similar output which we then can compare. As already stated above, the fuzzy
hash will suffer from the fact that we only get a single embedding from the
dataset. To make it a bit more comparable, we take the first embedding and
create a second and a third one by adding noise to it before we create our hash.
This makes the results more robust and the comparison better.

Taking a look at the output in figure 4 we can see similar values. The biggest
difference however is the steepness of our false-positives and false-negatives
at the lower and upper bound of the figure. The sweet spot is around 0.31 with
an accuracy of 91%. This does not differ that much from our usual values with
a phi of 0.35 where we still get an accuracy of 83%. Considering the fact that
we usually usemultiple distinguished embeddings for the hash generation, we
only drop about 12%.

4. Attacks

Along the way of creating the concept of fuzzy hash and find methods to im-
prove it, we also did create different attack scenarios. Various attackswere per-
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Figure 3: Threshold comparison with the pair dataset

Figure 4: Phi comparison with the pair dataset

formed to see if the hash can hold up. The following sections will describe how
they were performed and also why the hash persists them.

4.1 Brute force

One of the simplest attacks is the brute force attack. The idea is to go through
all possible values and find the correct ones by comparing them against a spe-
cific target. To make the calculation easier, we first strip some details in the
generation of the hash and only focus on the modulo operation:

hash(f) :=

ni – divisor ∗ ⌊ ni
divisor⌋, if ni ≥ 0

ni – divisor ∗ ⌈ ni
divisor⌉, if ni < 0

To get all possible values of a single element from the hash we need to know
the divisor and the hash value h for this element. Given the value space E we
can calculate all the possible values R which has the original value from the
embedding in it as well.

N := {n ∈ N|⌊2 ∗ max(E)
divisor

⌋}

R := {∀x ∈ N|n ∗ divisor + h}
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However, because we choose a very small number as the divisor, we get a lot
of possible values just for a single element from the hash. Considering all the
possible combinations from the 512 elements from the embedding, we do get
quite a big probability value P.

P(hash) :=
1

R512

P(hash) ≈ 1
2.59 ∗ 108087

Even if all possible values are compared against a specific embedding it is not
certain that the hash really belongs to it as, after all, it is a hash which do have
a limited value space and could produce false positives. Another factor we did
not considered here is the noise we are adding in the generation process which
would prevent an exact reverse and only give approximated embeddings any-
ways.

4.2 Recalculation

There exists a more sophisticated method to recalculate the original embed-
ding in comparison to the brute force attack. Lets assume that an attacker gets
two hasheswhich definitely belongs to the same individual. In order to find the
correct values, it is necessary to go through the value space of E in respect to
the divisors. For each value x in the embedding we need to find the value of the
correlating values for hash1 and hash2.

This is not an easy task either, but in contrast to the brute force attack, it is pos-
sible to do this calculation for each element in the embedding individually. But
there is a pitfall in recovering the embedding this way as each of the possible
fitting values we find could also be a multiple of itself. Although the amount
of possible embeddings are smaller, this results inmultiple possible values for
the embedding again.

However, this method is not very stable. The script we are using to make this
attack does not factor in the noise we add to the hash. Although it is possible to
add this factor in if the exact gamma is known which was used to generate the
noise, it will result in a basically brute force attack.

There is another issue with this approach. We assumed that an attacker knows
that two hashes are definitely from the same individual. This is rather unlikely
to be the case as it is not possible to find any correlation between two generated
hashes (as shown in the next section). Assuming that the registration process
is anonymized, the attacker do not have an attack surface.

4.3 Correlation analysis

Because we are using the same embeddings to create multiple hashes we need
to ensure that those hashes do not correlate. This is done by using correlation
analysis.

Although there are multiple correlation analysis methods, the following two
are well known in the embedding community [5, 7, 2, 13, 14].

PCA principal correlation analysis

T-SNE t-distributed stochastic neighbor embedding



Privacy Preserving Hash for Biometrics 11

(a) 100 hashes without salt (b) 100 hashes with salt

Figure 5: Correlation analysis with PCA

Tensorflow does provide a tool called Projector3 which can perform those two
methods online. Both methods will reduce the 512 dimensions down to 3 or 2
respectively and visualize those either in a 3d or 2d. In our case we choose the
2d version for this report which means that an embedding will be rendered as
a single point on a 2d surface.

4.3.1 PCA

We created two samples which we can compare. A sample holds 11 individuals
with 100 hashes each. The first sample includes hashes without using salt and
thePCAclearly showshow those individuals canbedistinguished (figure5a). As
a color stands for an individual we can see that hashes from a single individual
can be grouped. However, it is notable that there are two individuals colored
black and brown in this figure which are overlapping quite a bit.

The second sample is holding the same 11 individuals but using salt. This time
we can see that the different colors which representing an individual are dis-
tributed evenly throughout the figure5b. It can be concluded that the hashes do
not correlate with each other which is exactly what we want to see.

4.3.2 T-SNE

In contrast to thePCA analysis, theT-SNE is iterativewhichmeans that theout-
come will take a bit more time. There are also multiple parameters which we
can adjust to get better results (described inmore detail on the Projector home-
page).

We also did the same testing from the PCA analysis with T-SNE. The first figure
shows the resultwithoutusing salt 6a.Wecansee that the 100hashes fromeach
individuals are clearly grouped and distinguishable. There is no overlapping of
individuals in this method compared to the PCA previously.

Infigure6bweareusing salt for thehashing.Herewegot the same result again,
all hashes from the individuals are well distributed and cannot be correlated.

3https://projector.tensorflow.org

https://projector.tensorflow.org
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(a) 100 hashes with salt (b) 100 hashes with salt

Figure 6: Correlation analysis with T-SNE

4.3.3 Continuity

Wedid another analysis to showhow the divisor is affecting the hash. This time
we do not using salt to show that very small changes in the divisor also leads to
very small changes in thehash7.Toshowthedifferences,wecreate ahash from
a random divisor and then create 100more hashes by incrementing the divisor
by a step of 10–17. Then we calculate the distance of each of those 100 hashes to
theoriginal hash to seehowmuch thedistancewill change. As thefigure shows,
ifwe change the divisormore andmore, the distance is also getting bigger. This
shows that the distance from a hashwill change accordingly to divisor changes
which means that the hash itself is not created randomly and thus can be used
to compare embeddings.

Figure 7: Distance of 100 hashes with small changes in divisor

5. Discussion

Althoughweproofed that thehashdoesnot correlate to otherhashes generated
from the same data, it remains unclear why the actual fuzzy hash works. The
most compelling explanation is that the generated vector from the hash func-
tionprovides enoughspace toplace similar embeddings in anearby location. By
using the euclidean distance to determine if two hashes are nearby emphasize
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this. It might also explain why some of the generated hashes are doing worse
than others in the comparison process, as the divisor might was chosen un-
lucky and spread similar embeddings more in the hash space. Unfortunately,
this is unproven and remains open for future work.

5.1 Input variables

Asexplained in the sectionof creationandcomparisonof ahash, it is possible to
change the static input variables to create a new hash. The comparison process
does not need any adoptionwhichmeans that one side can change input values
whereas the other side can compare such a changed hash without any issue.
However, this alsomeans that the part which creates a hash can change values
such that the created hashwill fit to every embedding. This could be used to get
informed if a sensor interacts with an individual.

Currently, this is subject for future investigation as it might can be solved by
using an interactive protocol at the registration process.

5.2 Multiple registrations

To further increase the accuracy on sensors, it would be possible to gener-
ate multiple hashes from different embeddings, like frontal, left- and right-
side. As they are not traceable, the sensor would not gain more information
but the service would potentially get multiple matches back with a confidence
value that can be used tomake the validationmore precise. Multiple registered
hashes also increase the overall accuracy as it has shown that drops of accuracy
occur depending on the random generated divisor. This can lead to significant
drops from 98% down to 85%.

5.3 Bidirectional hashes

To validate if the sensor really interacted with the individual a service repre-
sents, it is useful that the sensor sends further information about the individ-
ual. Currently, the embedding from the sensor is sent back.However, this could
also lead to leaks as such as an embeddingmight get send to the wrong service.
To prevent this, the sensor itself could also make use of the hashes and create
a fresh hash from the embedding which is then send to the service (as shown
in figure 8). The service again only can compare the hash if it holds the correct
embedding. As the servicemayholdmultiple embeddings, it could verify itwith
a higher accuracy if this hash represents the correct embedding.

5.4 Performance

The performance of the creation of a hash depends howmany embeddings are
used. However, it is very fast to create hashes and compare them. On an actual
Intel i7-10850H on 2.4GHz single threaded we get the following results:

Creation of 1.000 hashes: 370ms (including parsing 5 embeddings from SSD
each time)

Comparing of 10.000 hashes: 760ms (including parsing the embeddings for
the comparison from SSD each time)
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Figure 8: Sending back a hash instead of the embedding

This is without optimization like multi threading which would be easy to im-
plement as the process of generating a and comparing can be split in multiple
smaller tasks which can be run parallel.

6. Conclusion

Our fuzzy hash implementation can be used to create multiple unique hashes
fromthesameembeddingswhichcanbeused to register toa sensorwithout re-
veal the original embeddings.We showed that it is resistant against correlation
which prevents linkingmultiple hashes to a single individual. Furthermore, we
tested our hashing method with an open dataset and compared it against our
face recognition method directly. The results are in the lower 90 percentage
which are good considering that the dataset were not optimal for our method
as it gets better with multiple embeddings from an individual.
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