
Submitted by
Thomas Raab, BSc

Submitted at
Institute of Networks and
Security

Thesis Supervisor
Univ. -Prof. Priv.-Doz.
Dr. René Mayrhofer

April 2021

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

Unlinkable Onion
Services: Improved
Resilience against
Metadata Analysis

Master Thesis
to obtain the academic degree of

Diplom-Ingenieur

in the Master’s Program

Computer Science

Sworn Declaration i

Sworn Declaration
I hereby declare under oath that the submitted Master’s degree thesis has been written solely by
me without any third-party assistance, information other than provided sources or aids have not
been used and those used have been fully documented. Sources for literal, paraphrased and cited
quotes have been accurately credited. The submitted document here present is identical to the
electronically submitted text document.

City, Date Signature

Kurzfassung ii

Kurzfassung

In unserer digitialisierten Gesellschaft, in der verschiedenste Interessengruppen versuchen die Inter-
netnutzung zu kontrollieren und zu überwachen, ist Anonymität eine der wesentlichen Eigenschaften
um Privatsphäre im Internet zu gewährleisten. Eine der Techniken, die zur Wahrung dieser Eigen-
schaft eingesetzt wird, ist das Anonymisierungsnetzwerk Tor, welches die Verbindungsdaten einer
Kommunikation so verschleiert, dass deren Initiator nicht mehr identifiziert werden kann. Da dies
aber nur den Initiator, nicht aber weitere Kommunikationsteilnehmer schützt, wurden Tor Oni-
on Services entwickelt, welche die Anonymität des Senders und Empfängers sicherstellen. Bedingt
durch die Metadaten die bei der Nutzung dieser Onion Services entstehen, könnten Angreifer durch
die Nutzung zusätzlicher Informationsquellen dennoch in der Lage sein, die Teilnehmer einer Kom-
munikation zu identifizieren.

Im Zuge dieser Arbeit wurde ein Protokoll entwickelt, welches Metadaten, die zur Identifikation
von Kommunikationsteilnehmern führen können, weitestgehend reduziert. Dazu wird ein zweistufi-
ges Addressierungsschema eingesetzt, dass Benutzern ermöglicht, eine individuelle Adresse für einen
Service über über eine öffentliche Service Adresse zu erhalten, deren Verwendung nicht zurückver-
folgt werden kann. Um die technische Machbarkeit dieses Protokolls unter Beweis zu stellen, wurde
ein Prototyp auf Basis von Python entwickelt. Da die Latenzzeit eines Services eine der ausschlag-
gebenden Kriterien in der Nutzungsentscheidung darstellt, wurde eine Performance-Analyse durch-
geführt, um die Provisionzeit von Onion Services zu messen, da diese einen maßgeblichen Einfluss
auf die Dauer der Adressausstellung hat. Die Architektur und Vorgehensweise dazu musste eigens
konzipiert und implementiert werden, da zum Zeitpunkt der Erstellung dieser Arbeit keinerlei For-
schung zur Provisionzeit von Onion Services in ihrer aktuellen Version existierte.

Eine statistische Analyse der Ergebnisse zeigte, dass die Dauer der Ausstellung individueller Adres-
sen mithilfe des entwickelten Protokolls die Akzeptanzgrenze von Benutzern mit 6.35 Sekunden
überschreitet. Das trifft jedoch nicht auf den Service-Zugriff unter Verwendung der individuellen
Adresse zu, was impliziert, dass die Verwendung des Protokolls nach einer Verbesserung des Adress-
austellungsmechanismus möglich ist. Das würde die Metadaten beim Zugriff auf einen Onion Service
reduzieren und somit zur Verbesserung der Anonymität der Kommunikationsteilnehmer beitragen.

Abstract iii

Abstract

In our digitized society, in which different organizations attempt to control and monitor Internet
use, anonymity is one of the most desired properties that ensures privacy on the Internet. One of
the technologies that can be used to provide anonymity is the anonymization network Tor, which
obfuscates the connection data of communications in a way that its initiator cannot be identified.
However, since this only protects the initiator without protecting further communication parti-
cipants, Tor Onion Services were developed, which ensure the anonymity of both the sender and
the recipient. Due to the metadata created when using these Onion Services, adversaries could still
be able to identify participants in a communication by using additional sources of information.

In the course of this thesis, a protocol was developed that reduces metadata leading to the identi-
fication of communication participants as far as possible. For this purpose, a two-staged addressing
scheme was employed that allows users to obtain an individual address for a service via its public
service address, which cannot be traced back. To prove its technical feasibility, a prototype of
the protocol was implemented based on Python. Since latency is one of the decisive criteria in
the usage decision of services, a performance analysis was carried out to measure the provision-
ing time of onion services, since this has a significant influence on the duration of address issuing.
The architecture and procedure for this had to be specially designed and implemented, as at the
time of writing no research existed on the provisioning time of onion services in their current version.

A statistical analysis of the results revealed that the duration of issuing individual addresses using
the proposed protocol exceeds the acceptance threshold of users with 6.35 seconds. However, this
does not apply to service access using the individual address, implying that the use of the protocol
is possible after improving the address issuance procedure. This would reduce the metadata when
accessing an Onion service and thus help improve the anonymity of communication participants.

Table of Contents iv

Sworn Declaration i

1 Introduction 1
1.1 Problem Statement . 3
1.2 Objectives . 3

2 Related Work 4
2.1 Performance Measurement . 4

2.1.1 Tor Performance . 4
2.1.2 Onion Service Performance . 5

2.2 Unlinkability . 6

3 Background 8
3.1 Tor . 8
3.2 Onion Services . 11

3.2.1 Service Initialization . 12
3.2.2 Service Access . 18
3.2.3 Key Types . 22
3.2.4 Time Periods and Shared Random Values . 24
3.2.5 Security Enhancements . 25

4 Unlinkable Onion Services 27
4.1 Methodological Approach . 28
4.2 Custom Addressing . 29
4.3 Unlinkable Onion Service Protocol . 31

4.3.1 Concept . 31
4.3.2 Architecture . 32
4.3.3 Identity Assignment . 33
4.3.4 Protocol Definition . 35

4.4 Proof of Concept . 38
4.4.1 Technical Building Blocks . 38
4.4.2 Proxy Module Implementation . 41
4.4.3 Server Module Implementation . 45

5 Performance Analysis 50
5.1 Methodological Approach . 50
5.2 Architecture . 53
5.3 Implementation . 55

5.3.1 Analysis Module . 55
5.3.2 Container Environment . 61
5.3.3 Analysis Server . 62

5.4 Results . 63
5.5 Discussion . 67

6 Conclusion 71
6.1 Summary . 71
6.2 Future Work . 72

References 73

Appendices 77

Table of Contents v

A Unlinkable Onion Service Protocol 77
A.1 Database Utils . 77
A.2 Connection Utils . 80
A.3 Server State Machine . 81
A.4 Server Module . 82
A.5 Server Tor Configuration . 86
A.6 Proxy State Machine . 86
A.7 Proxy Module . 87
A.8 Proxy Tor Configuration . 93

B Performance Analysis 94
B.2 Circuit Analyzer . 99
B.3 Log Analyzer . 101
B.4 Descriptor Analyzer . 102
B.5 Start Analysis . 103
B.6 Utils . 104
B.7 Docker File . 105
B.8 Analysis Server . 106
B.9 Tor Configuration . 107
B.10 Initialization Script . 107

1 Introduction 1

1 Introduction

Communication is the cornerstone of our modern society. Although the demand for communication
has not changed, the technological innovations in the last three decades caused major changes in
the nature of communication. Messages and data are now no longer transmitted in analogue form,
but exchanged via the Internet. The convenience and usefulness of the Internet made it increasingly
popular among the population, allowing it to become an integral part of both the private and the
professional daily life [1].

The foundation of communication over the Internet is the TCP/IP stack, which is a collection of
network protocols that enable end-to-end communication between network participants. The stack
is composed of four layers that describe the physical data transmission (Link Layer), the forwarding
and routing of packets (Internet Layer), the end-to-end communication (Transport Layer) and the
exchange of application-specific data (Application Layer) [2, pp. 45-48]. The Internet Protocol (IP)
is one of the eponymous protocols of this stack, whose function is the routing of packets across
network boundaries. Routing is often performed by independent devices, which are referred to as
routers. In order for the routers to determine where to forward a packet, each IP packet contains
an IP header in addition to the payload data. In order to make a routing decision, the routers must
know the destination of the IP packet. Apart from the sender address and other routing-related
information, this recipient address is part of the IP header. Due to the stateless concept of IP,
in order to enable reliable data transmission, the Transmission Control Protocol (TCP) is used to
transfer data between applications. Besides partitioning the byte stream to be sent into segments,
TCP offers error detection as well as flow control and ensures that the segments sent are eventually
reassembled in the correct order [3].

In case an IP packet is transmitted without any protection, every router on the path from the sender
to the recipient would theoretically be able to inspect and manipulate its content. To overcome
this issue, an encryption protocol such as Transport Layer Security (TLS) can be applied to TCP
segments, which provides authenticity, integrity and confidentiality for data transmission. Since
TLS operates on a higher layer in the TCP/IP stack compared to IP and the IP address of the
recipient is needed for the routing procedure, the IP header is not protected by TLS. At first glance,
this may not seem like an issue, as the actual content of the message is encrypted, nevertheless, the
following information can be obtained from the non-encrypted metadata of the communication: [2,
pp. 853-857]

• Both the sender and the recipient of the communication can be identified from the IP header.
Although it is not possible to determine what is being communicated, it is possible to discover
who is communicating with whom.

• The TCP header, which is also not encrypted when using TLS, reveals the source and destin-
ation port of the communication. This allows conclusions to be drawn about the application
that is being used in the communication (e.g. port 443 indicates that a website is accessed).

1 Introduction 2

• The frequency and time of communication can be determined from the IP header and the
intercepting system.

For example, a company could use this information to monitor whether employees are browsing
online job portals or social media during working hours, provided that only one website is running
on the monitored servers at a time or that Server Name Indication (SNI) is available. Another
example are state actors that could use the meta-information provided in the IP and TCP header
to enforce censorship and oppress their opponents’ freedom of speech by disturbing or preventing
access to their means of communication, e.g. Internet forums.

In order to protect not only the payload but also the metadata of the communication and thus the
communication participants, anonymization services like the Tor network were developed [4]. Tor
uses a concept referred to as Onion Routing to disguise the identity of the client based on TCP. A
schematic illustration of general functioning of Onion Routing is shown in Figure 1.1.

Initiator ResponderOR1 OR2 OR3

Figure 1.1: Tor Onion Routing Network

Using Onion Routing, a message is not sent directly to the recipient, but routed through several
randomly selected Onion Routers (OR). In order to prevent an OR from accessing the data of the
TCP segment, the initiator establishes a shared key with each OR in advance. It encrypts the
segment with the shared keys to generate a layered encrypted object that conceptually resembles an
onion, due to which this procedure is named. On the path from the initiator to the responder, each
OR decrypts one layer with its shared key. The decrypted data contains information on the next
hop in the path, which implies that each OR only knows its predecessor and successor. The reply
of the responder is encrypted by each OR with its shared key with the initiator, so that ultimately
only the initiator can decrypt the response. [4]

Onion Routing protects only the anonymity of the initiator, but not that of the responder, whose IP
address must be known to enable communication. To overcome this issue, Tor onion service were
developed to ensure both initiator and responder anonymity within the Tor network. In order
to achieve this level of anonymity, services are no longer addressed through their IP address, but
through an onion address. This address is based on the key material that is generated for an onion
service during its creation. Each service chooses several Introduction Points (IPs), which are the
first point of contact for communication with the onion service. Information about these IPs and
further service-related data are consolidated in service descriptors. These descriptors are uploaded
to specific Hidden Service Directories (HSDirs) depending on the initial created key material and
the time of upload. A user who wants to access the service needs to know its onion address. With
this address, the user can download the service descriptors from the HSDirs, which contain the
addresses of the IPs. Once the user obtains this information, they choose a random node in the Tor
network that will acts as its Rendezvous Point (RP) and establishes a connection to it. In principle,

1 Introduction 3

this RP eventually becomes the middleman between the service and the user. Subsequently, the
user contacts one of the IPs and provides the chosen RP. The IP relays the request to the service,
which in turn decides whether it wants to communicate with the client. If yes, it connects to the RP
provided by the client, so that both client and service are now connected to the RP, which enables
communication between client and service.

1.1 Problem Statement

Since the Tor network is run by volunteers, anyone can contribute computational resources in the
form of computers or servers, that can eventually become RP, IP or HSDir of an onion service. This
does not seem like an issue at first glance, because even if an adversary were to control one of the
onion service components, it would only be able to collect minimal amounts of metadata that on
their own can be linked to neither a server nor a client.

However, the situation is different if an adversary is able to obtain additional metadata from another
source and correlate this data with the metadata of the onion service. This scenario is particularly
effective if an adversary can control one of the HSDirs of a service. Since the descriptors are stored
encrypted on the HSDir, no information can be gained from them, but it is possible for the adversary
to determine when and how often a particular onion service is accessed, because it can monitor the
HTTP requests associated with the descriptor downloads. If the adversary is able to establish a
temporal link between the download time of the descriptor from the HSDir and other information
such as Tor traffic on the corporate network the user is connected to, it may be possible to identify
the user, or at least the device that submitted the HTTP request.

1.2 Objectives

The goal of this thesis is the proposal of a novel protocol that allows the access to an onion service,
while preventing its linkability through HSDir descriptor downloads. In order to demonstrate its
technical feasibility, a Proof of Concept (PoC) shall be implemented, that enables clients to commu-
nicate with a Hypertext Transfer Protocol (HTTP) server. In order to assess whether the proposed
protocol is usable in practice, a performance analysis shall be carried out to measure the time it
takes to provisioning an onion service, as this will be an integral part of the proposed protocol.
Thereby, the different variants of onion service shall be compared. The results of the measurements
shall be examined by means of a thorough statistical analysis to uncover any correlations. Using
the results from the prototype implementation and the performance analysis, it shall finally be de-
termined whether the developed protocol can reduce the metadata of an onion service access with
reasonable additional latency.

2 Related Work 4

2 Related Work

Since the research in the area of onion services is very focused, the related work section is structured
according to the two main components of this thesis.

2.1 Performance Measurement

Köpsell et al. [5] discovered that an increase of delay in terms of latency in anonymization services
is linearly related to the drop-out rate of users, as less security-affine participants question the
utility of this service and stop using it. This implies that the number of users decreases as the
delay in the anonymity service increases, which has a negative impact on the quantity of anonymity
provided by the service. Besides usability, this is the major motivation for conducting performance
measurements in anonymization services. The types of performance measurements can roughly
be divided into measurements of the performance of the Tor network and measurements of the
performance of onion services.

2.1.1 Tor Performance

Wendolsky et al. [6] compared the performance of the two low-latency anonymization services Tor
and AN.ON regarding the performance indicators latency and bandwidth. Based on the work of
Köpsell et al. [5] they conclude that the tolerance limit for latency is four seconds for inexperienced
users. This outcome can only partially be used for comparison with the results of this thesis, because
the architecture of Onion services is much more complex and involves more nodes. Furthermore,
Wendolsky et al. [6] noticed performance variations in the use of Tor depending on the time of day.

To measure long-term performance trends in the Tor network, Custura et al. [7] developed Onion-
Perf. This software tool measures Tor network performance by tracking the bulk download of
random data produced by traffic generators. This random data is either hosted on a local machine
to emulate access via the Internet, or the data is hosted via onion service to simulate access to an
onion service [8]. In contrast to the previously described work, Panchenko et al. [9] focused their
study on the examination of node limitations and their relations to latency and throughput. They
carried out several experiments in a private tor network as this represents an optimal environment
without external disruptive influences. One of their findings indicates that the more clients use
a node to build a circuit, the lower is its throughput. An interesting fact is that the throughput
remains constant from about 14 clients on, no matter how many circuits the node is involved in.

Furthermore, Panchenko et al. [9] analysed the effect of different parameters of path selection on the
Round Trip Time (RTT) of a circuit. The shortest mean RTT is achieved when the selection of nodes
on the path is not carried out uniformly, but weighted according to the advertised bandwidth of the
nodes. Moreover, the study indicates that the RTT of a circuit also depends on the geographical
diversity of the nodes in the circuit.

2 Related Work 5

2.1.2 Onion Service Performance

Lösing et al. [10] were the first to analyse the performance of onion services in terms of latency
in a scientific publication. In this paper, a special focus is laid on overall response time, as the
work of Köpsell et al. [5] suggests that latencies and connection setup times have a much greater
effect on service usability than bandwidth. For the measurements, two Tor instances are used. The
first instance serves as an onion service, while the other instance is configured as a relay, acting
as an Introduction Point (IP). Changes in the source code ensure that both the onion service and
the client use the IP controlled by the authors. The Rendezvous Point (RP) is not controlled by
the authors because the selection of a specific RP does not work in case of circuit cannibalization.
Clients for accessing the onion service were periodically created to avoid any caching of the Onion
Proxy (OP) on the client. Every client performs only a single access-attempt before it is discarded.
The mean overall response time for the measurements was about 24 seconds. Considering the overall
duration in relation to the individual sub-steps for accessing an onion service, it is noticeable that
building the circuits from the client to the introduction point and fetching the service descriptor
takes almost half of the overall duration.

Similarly to Lösing et al. [10], Wilms [11] measures the overall response time of the access to an
onion service by controlling the individual instances that are needed to operate the service. In
contradiction to Lösing et al. [10], Wilms [11] found a way of also controlling the RP. Despite the
RendNodes option in the Tor client configuration allowing the selection of a specific RP, a different
RP was previously selected because three internal three-hop circuits are generated during bootstrap-
ping, which are cannibalized when the connection to the RP is established. Since these internal
circuits were built without considering the desired RP, a different RP was chosen. By changing the
Tor source code, an internal circuit with the RP as last node is built at bootstrapping, which is
then cannibalized as RP circuit. The RP, the onion service and the OP are operated on the same
machine, as no direct communication between the components can introduce bias to the connection
times. Wilms [12] use the tool PuppeTor [13] to deploy the Tor clients and measure the overall
response time, which was on average about 39 seconds. This is considerably longer than the overall
response time measured by Lösing et al. [10]. However, the reason for this increase could not be
determined.

Lehnhard et al. [14] focus their work on measuring the performance of onion services in low-
bandwidth access networks, because the communication overhead of anonymization services be-
comes even more apparent in this context. As in the work of Wilms [11], the IP, RP and Onion
services are controlled by the authors and hosted on the same server. In the first measurement phase
the client uses a low-bandwidth access network (analog modulation via the telephone network and
Enhanced Data Rates for GSM Evolution (EDGE)), while the server uses a broadband network
access. In the second measurement phase, this concept is reversed, such that the measurement
server hosting the RP, IP and the onion service uses the low-bandwidth access network and the
clients uses the broadband network. Similar to the other studies, new clients for access to onion
services are regularly created, which are discarded after one access attempt in each case, in order

2 Related Work 6

to avoid incorrect measurements through caching. In addition to measuring the overall response
time, a measurement of the bootstrap time of each Tor client instance is carried out. The measure-
ment results show that the bootstrap time is a major problem when accessing onion services from
a low-bandwidth access network, since it takes about five times longer (232.9 seconds for EDGE
and 249.0 seconds for modem compared to 22.9 seconds for broadband) than using a broadband
network. Considering the overall response time, the access of a client to an onion service using a
low-bandwidth access network takes about twice as long as using a broadband network. In the re-
versed scenario where the server is using the low-bandwidth access network, the difference shrinks to
eight seconds between EDGE and broadband and only one second between broadband and modem.
The analysis of the circuit creation times shows that they represent a bottle-neck when accessing
onion services, especially when using a low-bandwidth access network.

There is currently little to no research on the provisioning time of onion services. Furthermore, all
the above mentioned work is based on the outdated onion service V2 protocol, which will no longer
be supported in the foreseeable future [15]. This work fills this gap by providing a comprehensive
performance analysis of the provisioning of a V3 onion service including all necessary sub-steps.

2.2 Unlinkability

Oeverlier et al. [16] were the first to publish an attack on the anonymity of onion services. For
this attack it is assumed that the attacker controls both a relay in the network and a client of an
onion service. Any relay in the Tor network that offers stability can be used by the onion service to
build a circuit to the RP. The attacker creates several rendezvous circuits to the onion service and
sends a specific traffic pattern over these circuits. With the help of logged time values and direction
information from the client and the relay, the attacker can determine whether his relay is part of a
circuit to the onion service. If this is the case, the attacker can further ascertain at which position
his node is located in this circuit. Since the attacker has selected the RP, he knows its address. This
enables him to determine if his node is closest to the RP. If the node has unknown addresses on
each side, it can be either the middle node in the circuit or the first node of the path to the onion
service. This distinction can be made using a timing analysis or the predecessor attack [17]. If the
attacker’s node is the first node on the path to the onion service, the attacker has the IP address of
the onion service and thus can conclude its position. To prevent this type of attack, Guard nodes
have been introduced, which are described in section 3.2.5.

Biryukov et al. [18] focus on the discovery of onion services through the collection of onion ser-
vice descriptors. They claim to have collected all service descriptors available at the time within two
days at the cost of only 100 USD. To collect the service descriptors of all onion services, it would
require a very large number of relays (approximately half the number of hosted onion services at a
given time point) acting as HSDir. Since the Tor specification limits the number of relays per IP
address to two, it would also require a high number of unique IP addresses apart from the systems.
To be able to collect the descriptors more efficiently, they use so-called shadow relays. These are
relays that do not appear in the consensus but are still monitored by the directory authorities and

2 Related Work 7

thus obtain flags. If one of the two running relays under one IP address fails, a shadow relay takes
over, which then also acts as HSDir, since it has already received the required flags. This way it
is possible to fade in and fade out HSDirs. Using this method, it was possible to operate 600 Tor
relays on just 50 IP addresses. Under each IP address 24 relays were operated, which were gradu-
ally disabled over a period of 24 hours to cover the complete range of the Tor distributed hash table
(DHT). The described attack is now no longer possible because the flag assignment vulnerability
has been fixed and the distribution of onion services V3 on the DHT works in a different way such
that positions can not be pre-calculated.

Owen et al. [19] similarly to Biryukov et al. [18], collect the addresses of onion services by placing
nodes in the DHT. As the use of shadow relays was no longer possible due to a fix in the Tor source
code, the resources in terms of time and relays are considerably higher. They were able to collect
approximately 80.000 unique onion addresses, which they subsequently classified. From the results
it can be concluded that about 80% of the requests at the time were related to onion services that
offered abusive sites (sites where the title suggests some form of sexual abuse).

Elices et al. [20] propose a method for the identification of a hidden server under the assumption
that the adversary operates on an ISP level and is able to monitor the traffic between the onion
server and its guard node. With access to this information, they are able to correlate the increment
of TCP traffic on the link between the hidden server and its guard node with a client request and
thus get the IP address of the hidden server.

Biryukov [18] et al. and Ling et al. [21] both propose a method to determine whether a relay
controlled by the attacker is the guard-node of an onion service based on characteristics of the Tor
protocol. These attacks offer a high accuracy in the identification of guard nodes, but are limited to
one onion service per attack. Chen et al [22] resolve this problem by embedding a identifier for each
attacked onion service as watermark to distinguish them. According to the authors, this speeds up
the attack process by a factor of 11.6.

Current research is focused on the identification of the IP address of onion services and on harvesting
onion service addresses. Almost every study contains measures to increase the anonymity of onion
services, but metadata is often disregarded. In the course of this work, a protocol was developed
that minimizes the linkability of an onion service through its metadata.

3 Background 8

3 Background

3.1 Tor

Tor is an open-source Onion Routing network that enables bi-directional anonymous communication
for TCP-based applications [4]. The goal of this network is to enable users to hide their identity from
services they use and limit the ability of traffic analysis [23]. This technique can be used, amongst
others, to circumvent censorship measures and access policies, to disguise the web-surfing habit of
users or to anonymously provide services to other users. In an ordinary network architecture, the
routing information provides details about the identity and location of the requesting user. Even if
the payload is encrypted, the routing information has to be transmitted in plain text, as the routers
need to be able to read it to find the right path [23].

This issue is addressed by means of Onion Routing. Each user runs a local client referred to
as Onion Proxy (OP), which handles TCP connections from applications and fetches directory in-
formation which consists, amongst others, of a list of known Onion Routers (ORs) and their current
state. As Tor utilizes the standardized SOCKS proxy protocol as specified in the RFC1928 [24],
most applications can use it without major modifications. The OP selects a path through the net-
work referred to as circuit, which consists of OR nodes that only know their direct successor and
predecessor. An example of such a circuit is depicted in Figure 3.1.

Initiator

Responder

OP OR1 OR2

OR3 OR4

Secure Site

Figure 3.1: Onion Routing Network [23]

In this example the Initiator wants to transmit data to the Responder. For this purpose its OP
builds a circuit through OR1, OR3 and OR4. Each OR holds a long-term identity key, which is
mainly used to sign TLS-certificates, router information and directories and a short-term onion key
[4]. This onion key consists of a public part, which is made available to all network participants, and
a private part, which is only known to the OR. The public part of the onion key is used to encrypt
requests during circuit creation, which can only be decrypted by the OR, who is in possession of the
corresponding private onion key. Communication in the Tor network is based on fixed-sized cells of
512 bytes, each consisting of a header and a payload. The header contains a circuit identifier circID
and a command, that specifies how the data in the payload is processed. A fundamental distinction
is made between control cells and relay cells. While control cells are interpreted directly by the
receiving node, relay cells are used to relay end-to-end data streams. A graphical representation of

3 Background 9

the structure of those two cell types is given in Figure 3.2. In comparison to control cells, relay cells
have an additional header containing a stream identifier (StreamID), which allows the multiplexation
of multiple streams over a circuit, an integrity checksum, the payload length and a relay command.
This relay command is utilized for the management of data streams over the circuit. [4]

2 1 509bytes
CircID CMD DATA

2 1 2 6 2 1 498bytes
CircID Relay StreamID Digest LEN CMD DATA

Figure 3.2: Tor Cell Types [4]

The subsequent information on the Tor protocol procedure is taken from the Tor specification [25].
In order to create a new circuit, the initiator’s OP needs to send a control cell containing the create
command to the first hop in the chosen path. For ease of reference, the path from the example
in Figure 3.1 is used. The OP chooses a circID not currently in use and sends the first half of
its handshake to OR1. This handshake is necessary for the establishment of a shared symmetric
key between the OP and each OR on the path. Currently, two different types of handshakes are
supported, which are both based on the Diffie-Hellman (DH) key exchange:

• The Tor Authentication Protocol (TAP) Handshake

Within the course of this handshake option, a regular DH handshake in Zp is performed. For
this purpose, the initiator generates a private key x randomly. The initiator constructs an
onion-skin, which refers to the DH public key gx. This onion-skin is encrypted using the
legacy hybrid encryption algorithm, in the course of which an additional symmetric key K is
generated, that is then encrypted together with the first part of the public DH key (gx) and
additional padding with the public short-term onion key of the second participant using RSA.
The second part of the public DH key (gx) is encrypted using the symmetric key K. Both
encrypted parts are transmitted to the second participant as the payload of a create cell.

The second participant first decrypts the ciphertext containing the symmetric key and the first
half of the DH handshake using its private key. Using the decrypted symmetric key K, it can
now decrypt the second part of the DH handshake and can obtain gx. After receiving the DH
public key, the participant randomly generates a private key y and is now able to compute the
shares key gxy. It sends its DH public key gy along with data that demonstrates knowledge
of the computed shared key to the initiator. Once the handshake is completed, the initiator
can calculate the shared key gxy. This shared key is used as an input to a Key Derivation
Function (KDF) that outputs keys to secure the connection between the two participants.

• The ntor Handshake

With this handshake option, multiple DH handshakes are used to generate a shared key. The
following calculations are carried out on the group curve25519 as specified by Bernstein [26].

3 Background 10

In order to perform this handshake, the initiator needs to know the public ntor onion key
(hereinafter referred to as B) and the digest of the identity key of the second participant
(Hereinafter referred to as ID). In the first step the initiator calculates a temporary keypair
x, X using a curve25519 key generation algorithm and generates a client-side handshake con-
taining the identity digest of the other participant, its ntor onion key and the public part
of the newly generated key pair (X). This handshake is referred to as client handshake and
is sent to the other participant, which in turn generates a keypair y, Y and computes the
following values using its private ntor onion key b:

secret_input = EXP (X, y) |+ EXP (X, b) | ID | B | X | Y | PROTOID

KEY _SEED = H(secret_input, t_key)
verify = H(secret_input, t_verify)
auth_input = verify | ID | B | Y | X | PROTOID |”Server”

(3.1)

The values PROTOID, t_key and t_verify are statically defined strings. The participant
generates its handshake consisting of the public key of the newly generated key pair (Y) and
a hash of auth_input and sends it to the initiator. This is referred to as the server handshake.
The initiator checks whether the received public key is a group member and calculates:

secret_input = EXP (Y, x) | EXP (B, x) | ID | B | X | Y | PROTOID

KEY _SEED = H(secret_input, t_key)
verify = H(secret_input, t_verify)
auth_input = verify | ID | B | Y | X | PROTOID | ”Server”

(3.2)

The initiator can now generate a hash of auth_input and compare this value with the value
it received from the other participant. If these match, both parties are now in possession of
a key seed, which serves as input for a KDF that generates the keys needed to secure the
communication.

As the TAP handshake is rather slow due to the usage of RSA, the ntor handshake is preferred. After
completing the handshake, relay cells between OP and OR1 are encrypted using the established key.
To extend the circuit, the OP sends a relay cell with the command extend to OR1, which contains
the next hop on the path and the ntor client handshake with OR3. OR1 creates a circuit to OR3

and decrypts the relay cell it received from OP . It copies the received half client handshake into a
create cell and passed this cell to OR3. OR3 completes the handshake and responds with a control
cell with the created command, which includes the server handshake. OR1 receives the response and
forwards it to OP using a relay cell. To extend the circuit, the OP acts as described above, always
asking the current last node in the path to extend one hop further. Once the circuit is established,
the OP shares a session key with each node on the path.To transmit data anonymously, the OP
encrypts the data layer by layer with the established session keys of the respective OR starting with
the last hop on the route [23]. This layered encryption scheme inspired the name of this mechanism,

3 Background 11

as it is reminiscent of the layers of an onion, as illustrated in 3.3. The ellipses show the encryption
layers of the onion using the session keys of the ORs (PKORx). On the way from the OP to the
responder, each node removes a layer of encryption so that the last node in the path can read the
plaintext and make a request to the desired resource. The responder’s reply to the OP is secured in
the same way. Each OR on the path adds a layer of encryption using its shared key with the OP,
such that only the OP can decrypt it.

Data
PKOR4

PKOR3

PKOR1

Figure 3.3: Onion Structure

3.2 Onion Services

Onion services, formerly known as hidden services, offer a method for providing bidirectional TCP-
based services on the internet while maintaining the anonymity of the provider. This is achieved
through the use of an intermediary node through which the communication is handled. Both the
client and the service use the Tor network to establish an anonymous connection to this interme-
diary, thus allowing communication to take place without the client knowing the location of the
service and the service knowing the location of the user. As the IP address specifies the location
of a network device, the service is now no longer contacted via its IP address, but instead via an
address that is specific to the Tor network. This address is referred to as onion address and is
unambiguously associated with the service. Despite the need to install specialized software for the
set-up of such onion services, no changes to the service to be provided are necessary.

The behaviour and functioning of onion services are specified in the Tor Rendezvous Specification,
which is currently available in version three [25] and is the basis for the information provided in
this chapter. The following subsections describe the content of this specification and the process
for providing and accessing onion service in detail. Figure 3.4 provides an illustrated overview of
the steps involved in this process. The numbered labels match the respective textual descriptions
in the subsections. [4, 25]

Client ServiceOP RP

HSD

IP

(2)

(4)
(5)

(9)

(7) (8)

(9)

(6)
(1)

(3)

Secure Site

Figure 3.4: Onion Service Architecture

3 Background 12

3.2.1 Service Initialization

1. Generate Long-term Identity Key

Initially, the provider generates a long-term key pair, which identifies the service. This key
pair is kept offline and is solely used for the generation of blinded signing keys. A detailed
description of the menagerie of keys used and their interrelationships is provided in section
3.2.3.

2. Choose Introduction Points

Once the identity keypair is created, the hidden service selects several Tor nodes as its in-
troduction points.These introduction points represent the initial contact points for clients to
contact an onion service. The number of introduction points a service uses ranges between
zero and twenty. If an onion service has zero introduction points, it cannot be reached by any
client. The default number of introduction points defined in the specification is three [25]. As
first part of the selection process, the onion service builds an anonymous three-hop circuit to
its randomly chosen introduction points. In case of a single onion service being used, which
trades service-side location privacy for improved performance [27], non-anonymous one-hop
circuits are utilized for that purpose.

Subsequently, the onion service generates a short-term introduction point authentication key
pair, which is used to ensure the authenticity of messages passed between the onion service and
the introduction point during the establishment of the introduction point. Furthermore, the
public component of this key is included in requests from clients to introduction points to
ensure that the intended introduction point was reached. In order to register an introduction
point, the onion service first builds a circuit to that node and sends an ESTABLISH_INTRO
relay cell, which contains the public part of the generated introduction point authentication
key, the length and type of the introduction point authentication key, possible extension (e.g.
DoS defence), a Message Authentication Code (MAC) and a signature, which is signed with
the private part of the introduction point authentication key. When a Tor node receives an
ESTABLISH_INTRO cell, it checks whether:

• The key type is recognized

• The key is well formatted

• The signature is correct (using the public key included in the request)

• The MAC is valid

• The circuit isn’t already a rendezvous circuit or an introduction circuit

• The key isn’t already in use

If any of this checks fail, the Tor node rejects the cell and tears down the circuit. If all above
verifications pass, the introduction point reports its status back to the onion service using an
INTRO_ESTABLISHED relay cell. From this point on, the Tor node acts as an introduction
point for the onion service.

3 Background 13

3. Build Service Descriptors

In the next step the onion service generates a set of descriptors, which contain, among other
things, information on the introduction points of the onion service, which is necessary in order
to contact them. As these descriptors are going to be encrypted twice, the first structure
generated by an onion service is referred to as the second layer plain text. The format of this
second layer plaintext is depicted in Figure 3.5.

NUM_INTRO_POINT times

create2-formats
intro-auth-required
single-onion-service
introduction-point

onion-key
auth-key
enc-key

enc-key-cert
legacy-key

legacy-key-cert

Figure 3.5: Onion Service Descriptor Second Layer Plaintext Format

The field create2-formats contains a list of accepted CREATE2 cell types. Thereby, at least
the current default handshake type ntor must be supported. As an onion service may restrict
access to authorized users, the client must be aware of the introduction-layer authentication
types the onion service supports. These types are stored in the field intro-auth-required.
Currently, authentication is possible by the use of an Ed25519 key pair or a password. The
field single-onion-service indicates whether the onion service is provisioned as a single-onion
service using non-anonymous circuit connections to introduction points and rendezvous points.
After this block specific to the onion service the second-layer-plaintext contains the following
items for each of its introduction points.

• introduction-point: Base64 encoded link specifiers and identities of the Tor node acting
as introduction point

• onion-key: Base64 encoded medium-term ntor onion key of the introduction point used
when a client extends to it.

• auth-key: A certificate cross-certifying the public introduction point authentication key
using the descriptor signing key.

• enc-key: Base64 encoded public key used to encrypt requests to the onion service.

• enc-key-cert: A certificate cross-certifying the public encryption key using the descriptor
signing key.

• legacy-key: RSA public key used for a legacy introduction point.

• legacy-cert: A certificate cross-certifying the legacy key using the descriptor signing key.

The second-layer plaintext is encrypted as specified in equation 3.3, whose design is intended
to protect the confidentiality of the descriptor against unauthorized clients.

3 Background 14

ENCRY PTED = STREAM(SECRET_IV, SECRET_KEY) XOR PLAINTEXT

(3.3)

The initialization vector SECRET_IV and the key SECRET_KEY used for this encryption
are computed as denoted in equation 3.16 in section 3.2.3.6. If client authentication is enabled,
the onion service generates 32 random bytes as a descriptor_cookie. In case client authentic-
ation is not used, the descriptor_cookie is left blank. The following parameters are used for
the key derivation:

• SECRET_DATA = blinded-public-key | descriptor_cookie

• STRING_CONSTANT = "hsdir-encrypted-data"

The ciphertext is stored in the encrypted field of the first-layer plaintext, whose structure is
depicted in Figure 3.6.

desc-auth-type
desc-auth-ephermeral-key

auth-client
encrypted

Figure 3.6: Onion Service Descriptor First Layer Plaintext Format

The field desc-auth-type describes the type of authorization which is used to protect the
descriptor. Currently, "x25519" is the only valid value for this field, which represents the multi-
staged cookie encryption scheme described below . For this the onion service generates an
ephemeral x25519 key pair, whose public key is stored in the desc-auth-emphemeral-key. It is
assumed that each authorised client holds a shared x25519 public key with the onion service. If
client authentication is enabled, the descriptor_cookie is encrypted for each authorized clients.
As multiple clients could be authorized for one onion service, the auth-client section contains
one encrypted descriptor_cookie per client. The keys for this encryption are computed as
follows:

SECRET_SEED = x25519(hs_y, client_X)
KEY S = KDF (subcredential | SECRET_SEED, 40)
CLIENT − ID = fist 8 bytes of KEYS
COOKIE −KEY = last 32 bytes of KEYS

(3.4)

where hs_y denotes the associated ephemeral x25519 privat key for the public key in desc-
auth-emphemeral-key, client_X is referred to as the pre-shared x25519 public key of the
authorized client and subcredential is generated during the key blinding phase for each period
and can be generated by clients with the knowledge of the onion service public identity key.

3 Background 15

Each line in auth-clients contains the base64 encoded CLIENT_ID, a base64 encoded initial-
ization vector iv and the base64 encoded encrypted cookie in the encrypted-cookie field. The
cookie is encrypted as described in equation 3.5.

encrypted− cookie = STREAM(iv, COOKIE −KEY) XOR descriptor_cookie (3.5)

The first-layer plaintext is eventually encrypted using the same cipher as in equation 3.3. The
following parameters are used for the key derivation, based on equation 3.16 in section 3.2.3.6:

• SECRET_DATA = blinded-public-key

• STRING_CONSTANT = "hsdir-superencrypted-data"

This can be seen as a first step towards access control, as a client needs to know the unblinded
onion address in order to calculate the blinded onion address for the respective time period.
The encrypted data blob is base64 encoded and stored in the field superencrypted of the onion
service descriptor structure, which is illustrated in Figure 3.7. The format follows the same
meta structure as other Tor directory objects [25].

max. 50 KB

hs-descriptor
descriptor-lifetime

descriptor-singing-key-cert
revision-counter
superencrypted

signature

Figure 3.7: Hidden Service Descriptor Format

The field hs-descriptor contains the version number of the descriptor, which currently is three.
The lifetime of the descriptor is specified in the field descriptor-lifetime and ranges between
30 and 720 minutes. A HSDir invalidates a descriptor when its lifetime is exceeded. The field
descriptor-signing-key-cert contains a certificate that cross-certifies the short-term descriptor
signing key with the blinded public key. The format of the certificate differs from standardized
certificate formats and is specified in the tor proposal 220 concerning the migration from RSA
to Ed25519 keys [28]. Its structure is depicted in Figure 3.8.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31bit

30 byte

63 byte

VERSION CERT_TYPE EXPIRATION_DATE →
→ EXPIRATION_DATE CERT_KEY_TYPE CERTIFIED_KEY →

CERTIFIED_KEY

→ CERTIFIED_KEY N_EXTENSION

SIGNATURE

→ SIGNATURE

Figure 3.8: Tor Certificate Format

3 Background 16

If an HSDir receives multiple descriptors for a descriptor-singing-key, the descriptor with the
higher revision number specified in the revision-counter field is sent to the requester. The
field superencrypted contains the twice encrypted and base64 encoded blob, whose creation is
described in detail above.

4. Publish Service Descriptors

In order to publish and fetch onion service descriptors, both services and clients must be
able to examine the directories responsible for the service in the given time period. This is
accomplished by the usage of HSDir hash rings, whose structure is depicted in Figure 3.9.

DESC

HSDirk+1

HSDirn

HSDir1

HSDirk−1

HSDirk

HSDirk+2

HSDirk+3

Figure 3.9: Onion Service Hash Ring Structure

For each HSDir in the consensus a hash value is calculated that includes information about
the identity of the directory, as well as information about the current time period. This hash
value specifies the position of the directory in the hash ring, as indicated by HSDirx in the
figure above, where x ranges from one to n depending on the position of the descriptor in the
hash ring. This position is computed on the basis of the blinded public key of the service and
information of the current time period and is denoted as DESC in Figure 3.9. By default, the
descriptor is uploaded to the first four directories (HSDirk to HSDirk+3), which numerically
directly follow the position of the descriptor in the hash ring. A detailed description of the
calculation of indices is provided later in this chapter.

To prevent a set of descriptor directories from censoring a service, the onion service uploads
the descriptor to several different directories that vary over time. The frequency of directory
changes (i.e. the length of the time period) depends on the hsdir-interval parameter, which
is a consensus parameter established between directories. The current default value for hsdir-
interval is 1140 minutes, which equals to one day. The time period number, which is necessary
for the calculation of the index of the onion service descriptors and its responsible directories,
is determined as shown in equation 3.6.

period_num = minutes_since_epoch− rotation_time_offset

time_period_length
(3.6)

3 Background 17

The parameter minutes_since_epoch stands for minutes since the Unix epoch1. As the de-
velopers of hidden services wanted to start the time period at 12:00 UTC, an offset is deducted
(rotation_time_offset). Finally, the difference is divided by the period length, which is spe-
cified in hsdir-interval. The result of the calculation is the time period number (period_num).
To calculate the position of a service descriptor within the hash ring, the following parameters
from the consensus are required:

• hsdir_n_replica: Number of replicas used for uploading the onion service descriptor in
the range of [1,16] with a default value of 2.

• hsdir_spread_fetch: Number of nodes a client chooses from, when fetching a onion ser-
vice descriptor in the range of [1,128] with a default value of 3.

• hsdir_spread_store: Number of nodes to which an onion service descriptor is uploaded
in the range of [1,128] with a default value of 4.

• valid-after : Uniform time value for calculating the current period number to minimize
the desynchronization of clients and services by asynchronous clocks.

• router_status: List of onion router nodes including their identity, address, port and flags.

Now for every time period, the onion service calculates:

for replicanum in 1...hsdir_n_replicas:
hs_index(replicanum) = H(”store-at-idx” |
blinded_public_key |

INT_8(replicanum) |
INT_8(period_length) |
INT_8(period_num))

(3.7)

The parameter replicanum is in the range of hsdir_n_replica. The blinded_public_key is
derived from the public master identity key as described in section 3.2.3.2. The resulting
hs_index is the index of the descriptor in the hash ring. In the next step, for every entry in
the router_status consensus parameter that has the HSDirV3 flag set, the directory index is
calculated as follows:

hsdir_index(node) = H(”node-idx” | node_identity |

shared_random_value |

INT_8(period_num) |
INT_8(period_length))

(3.8)

As for the calculation of the period_num in equation 3.7, period_length is taken from the
consensus. To limit the predictability of the position of a onion service descriptor in the

11970-01-01 00:00 UTC

3 Background 18

hash ring, the authorities generate an additional random value (shared_random_value(srv)),
which is added to the consensus and used in equation 3.8. As the transition of time period
and random values does not happen simultaneously, at every point in time there are two
valid random values. A detailed description of this behaviour can be found in chapter 3.2.4.
When an onion service wants to publish its descriptors, it calculates hs_index for every replica
and hsdir_index for every directory in the consensus. The service uploads the descriptors to
the first hsdir_spread_store (denoted as HSDirk to HSDirk+3 in Figure 3.9) nodes that
immediately follow the numerical value of hs_index. The actual upload is performed using an
HTTP POST request to the selected directory.

3.2.2 Service Access

5. Fetch Service Descriptor

In order to retrieve the descriptor from the responsible HSDirs, the client requires the onion
address of the services, which must be transmitted using any kind of out-of-the-band com-
munication. Once the client is in possession of the onion address, it is used to calculate the
blinded onion address for the current time period, as described in 3.2.3. For each node in the
consensus that obtained the HSDir (V3) flag, the hsdir_index is calculated as described in
3.2.1. Subsequently, the hs_index for both replicas is computed, based on the blinded public
key and the current time period. Now the client randomly chooses one directory randomly
from the set of responsible directories, which is composed of the first hsdir_spread_fetch dir-
ectories which numerically follow the hs_index. To fetch the descriptor, a HTTP GET request
for the URL /tor/hs/<version>/<z> is initiated, where <z> represents the base64 encoded
blinded public key of the onion service and version stands for the onion service protocol ver-
sion. If the connection attempt fails, or the descriptor is not found by the directory, other
directories form the previously chosen subset are queried.

6. Establish Rendezvous Point

The client decrypts the descriptor and now knows the introduction points of the service, which
can be considered as initial contact points. Prior to connecting to the introduction point of
an onion service, the client must establish a connection to a rendezvous point, which acts
as an intermediary between client and service. For this purpose, the client selects a random
Tor node, establishes a circuit to that node and sends an ESTABLISH_RENDEZVOUS cell
containing a RENDEZVOUS_COOKIE. This cookie is an arbitrary 20-byte value and is
later used when the onion service connects to the rendezvous point. The rendezvous points
acknowledges the establishment of the rendezvous point by responding to the client with a
RENDEZVOUS_ESTABLISHED cell.

7. Connect to Introduction Point

To contact the service, the client builds an anonymous circuit to one of the introduction points
contained in the descriptor. Then it sends a INTRODUCE1 cell with the following content
to the introduction point:

3 Background 19

• LEGACY_KEY_ID: Used to differentiate between legacy and new style introduction
cells. If new style cells are used, this field is zeroed.

• AUTH_KEY_TYPE : Type of the authentication key used (currently only the authen-
tication using an Ed25519 public key is possible).

• AUTH_KEY_LEN : Length of the authentication key.

• AUTH_KEY : Introduction point authentication key (taken from the second-layer plain-
text of the descriptor)

• EXTENSIONS : Possible extensions.

• ENCRYPTED: Encrypted plaintext, which provides information about the RP selected
by the client. Dependent on the type of encryption key used, there are multiple ways of
decrypting this ciphertext.

In addition to exchanging information about the RP of the client, handshake data is ex-
changed using the INTRODUCE1 cell. Thereby, the following requirements are specified for
a handshake as part of the introduction protocol:

• The onion service must be able to decrypt additional information, that contains the
rendezvous token and the information required to extend to this RP.

• During the handshake, a set of shared keys is established, which can later be used to
secure traffic between onion service and client.

• The onion service must be able to verify the authenticity of the cell, such that any
modification or manipulation since the creation of the cell would be noticed.

The Tor Authentication Protocol (TAP) handshake, which is now considered obsolete, would
meet the first two requirements, but since it does not make use of a MAC, the last requirement
would not be fulfilled. An example for a handshake that satisfies all requirements is the ntor
handshake, whose description is provided in section 3.1. In the context of onion service, several
modifications of the handshake protocol are necessary. The modified protocol is shown in
equation 3.9.

secret_input = EXP (B, x) | AUTH_KEY | X | B | PROTOID

info = m_hsexpand | subcredential

hs_keys = KDF (intro_secret_hs_input | t_hsenc |

info, S_KEY _LEN + MAC_LEN)
ENC_KEY = hs_keys[0 : S_KEY _LEN]
MAC_KEY = hs_keys[S_KEY _LEN : S_KEY _LEN + MAC_KEY _LEN]

(3.9)

Initially, the client generates a curve25519 keypair consisting of the private key x and the
public key X. The ntor onion key referred to as B in the regular ntor handshake is replaced
by the public introduction point encryption key. Furthermore, the node id is substituted by

3 Background 20

the AUTH_KEY generated previously by the onion service for the specific introduction point.
The fields t_hsenc, t_hsverify, t_hsmac and m_hsexpand are text constants which are not
discussed further. As the encrypted part of the INTRODUCE1 cell, the client sends:

• CLIENT_PK

• ENCRYPTED_DATA

• MAC

where the CLIENT_PK is the public key X, ENCRYPTED_DATA corresponds to the ori-
ginal structure of the encrypted field, which contains information about the RP and is en-
crypted with the symmetric ENC_KEY. The MAC field contains an MAC of the entire cell
using the computed MAC_KEY.

8. Relay Introduction Cell

The introduction point checks whether the authentication key matches an auth key of an
active introduction circuit. If that is the case, it sends an INTRODUCE2 cell with exactly
the same content as the INTRODUCE1 cell to the os and notifies the client of the successful
referral with an INTRODUCE_ACK cell.

9. Join Rendezvous Point

The onion service receives the INTRODUCE2 cell and checks if the AUTH_KEY or the
LEGACY_KEY_ID matches the keys for this introduction circuit. If the key match, the
next step is to verify whether the onion service has already received a cell with the same
content. If this is the case, the cell was replayed and is silently dropped by the onion service.
Otherwise, the service generates a curve25519 keypair y, Y , where y denotes the private key
and Y represent the public key. The onion service computes:

secret_input = EXP (X, b) | AUTH_KEY | X | B | PROTOID

info = m_hsexpand | subcredential

hs_keys = KDF (intro_secret_hs_input | t_hsenc |

info, S_KEY _LEN + MAC_LEN)
ENC_KEY = hs_keys[0 : S_KEY _LEN]
MAC_KEY = hs_keys[S_KEY _LEN : S_KEY _LEN + MAC_KEY _LEN]

(3.10)

The onion service is now able to decrypt the ciphertext using the ENC_KEY and check the
authenticity and integrity of the cell using theMAC_KEY. The plaintext of the ENCRYPTED
field is structured as listed below:

• RENDEZVOUS_COOKIE: Rendezvous cookie provided by the client.

• EXTENSIONS: Possible extension.

3 Background 21

• ONION_KEY_TYPE: Type of the onion key (either TAP or ntor).

• ONION_KEY_LEN : Length of the onion key.

• ONION_KEY: Onion key that must be used when extending to the rendezvous point.

• NSPEC: Refers to the number of link specifiers included in the cell.

• NSPEC times: LSTYPE, LSLEN, LSPEC: Entry for each link specifier provided includ-
ing its type and length.

• PAD: Optional padding .

In the next step the onion service finishes the ntor handshake by calculating:

rend_secret_hs_input = EXP (X, y) | EXP (X, b) | AUTH_KEY | B |

X | Y | PROTOID

NTOR_KEY _SEED = MAC(rend_secret_hs_input, t_hsenc)
verify = MAC(rend_secret_hs_input, t_hsverify)
auth_input = verify | AUTH_KEY | B | Y | X | PROTOID | ”Server”
AUTH_INPUT_MAC = MAC(auth_input, t_hsmac)

(3.11)

As mentioned for the client ntor handshake, t_hsenc, t_hsverify,t_hsmac and m_hsexpand
are text constants, which are not described further. The onion service generates a handshake
reply that contains its generated public key (Y) and the AUTH_INPUT_MAC. Subsequently
the onion service builds a circuit to the RP and sends a REDENZVOUS1 cell, which consists
of the handshake reply in the form of HANDSHAKE_INFO and the rendezvous cookie. If
this cookie corresponds to a rendezvous cookie assigned to a circuit that is not yet connected,
the RP connects the two circuits and sends a RENDEZVOUS2 cell to the client containing
the HANDSHAKE_INFO. The client is now able to finish the ntor handshake as follows:

rend_secret_hs_input = EXP (Y, x) | EXP (B, x) | AUTH_KEY | B |

X | Y | PROTOID

NTOR_KEY _SEED = MAC(ntor_secret_input, t_hsenc)
verify = MAC(ntor_secret_input, t_hsverify)
auth_input = verify | AUTH_KEY | B | Y | X | PROTOID | ”Server”
AUTH_INPUT_MAC = MAC(auth_input, t_hsmac)

(3.12)

After the validation of the authenticity of the received data by comparing AUTH_INPUT_MAC
to the AUTH field received in the HANDSHAKE_INFO, both the client and the onion ser-
vice are in possession of handshake output to derive shared keys that are used encrypt and
authenticate data end-to-end between them.

3 Background 22

3.2.3 Key Types

To ensure the integrity and authenticity of onion services, a variety of different keys are used, whose
hierarchy is shown in Figure 3.10. The only key needed to identify and access an onion service is
the public master identity key and its derived blinded public key. The remaining keys are used
internally for authentication and encryption. The following section describes the use and origin of
each key species.

public private

public private

public privatepublic private

public private

blind blind

sign

sign sign

Master identity key

Blinded signing key

Introduction Point
authentication key

Introduction point
encryption key

Descriptor signing key

Figure 3.10: Onion Service Key Hierarchy

3.2.3.1 Master Identity Key

The long-term identity key-pair is used for the generation of the blinded signing keys and can be
kept offline. As proposed in the Tor specification [29], the Ed25519 key signature system based on
the elliptic curve Curve25519 is used.

3.2.3.2 Blinded Signing Key

For every time period the onion service uses a different blinded signing key to sign directory inform-
ation. Given a nonce n, from the keypair (signing_key, public_key) a new keypair (signing_key_n,
public_key_n) can be derived. Without the knowledge of public_key, the key public_key_n can-
not be derived. Furthermore it is possible to check a signature signed with signing_key_n with
public_key_n. The complete procedure for blinding a key works as follows:

Given is a master identity key pair (a,A), where a denotes the private key, A refers to the public
key and B is the base point of the elliptic curve as specified in [30], such that A = aB and l is

3 Background 23

the prime order of B. To derive a blinded key pair (a’, A’) for a nonce N and an optional secret s,
several blinding factors are calculated:

BLIND_STRING = ”Derive temporary signing key” | INT_1(0)
N = ”key − blind” | INT_8(period− number) | INT_8(period_length)
B = Ed25519 base point as specified in [30]
h = (BLIND_STRING | A | s |B | N)

(3.13)

Additionally, according to the specification of Ed25519, some factors of h are clamped to specific
values. Using the calculated blinding factors, the blinded private key a’ for a period is calculated
as:

a′ = h a mod l

RH ′ = SHA− 512(RH_BLIND_STRING | RH)[: 32]
RH_BLIND_STRING = ”Derive temporary signing key hash input”

(3.14)

The blinded public key A’ is calculated based on the blinded private key as follows:

A′ = h A = (ha)B (3.15)

3.2.3.3 Descriptor Signing Key

The descriptor signing key is used to sign the onion service descriptors. In contrast to blinded
signing keys, these keys must be stored online at the onion service host. The key itself is signed
using the blinded signing key. The descriptor signing key pair is a newly generated X25519 key
pair and is not dependent on any other key used in this cryptographic scheme.

3.2.3.4 Introduction Point Authentication Key

The onion service generates a unique X25519 key pair for each introduction point it establishes.
When a client connects to an introduction point in order to contact the onion service, the introduc-
tion point verifies that it maintains a circuit to the service corresponding with that introduction
point authentication key. This allows the client to ensure that it is connected to the correct intro-
duction point and the onion service to check whether the contact of the client took place through
a known introduction point. The public part of the key is included in the singing-key extension of
the onion service descriptors and is cross-certified by the descriptor signing key.

3.2.3.5 Introduction Point Encryption Key

The introduction point encryption key is used to encrypt information about the rendezvous point
chosen by the client in the introduction protocol. Furthermore, the key is used as the public key of
the onion service in case the advanced ntor handshake is used to exchange shared keys material. The
X25519 key pair is generated by the onion service for every introduction point and is cross-certified
by the descriptor signing key.

3 Background 24

3.2.3.6 Descriptor Encryption Keys

The key for encrypt hidden service descriptors is derived from secret data provided by the SECRET_DATA
parameter and a string constant given by the parameter STRING_CONSTANT as follows:

SALT = 16 bytes from H(random)
secret_input = SECRET_DATA | subcredential | INT_8(revision_counter)
keys = KDF (secret_input | salt | STRING_CONSTANT, S_KEY _LEN

+ S_IV _LEN + MAC_KEY _LEN)
SECRET_KEY = first S_KEY _LEN bytes of keys
SECRET_IV = next S_IV _LEN bytes of keys
MAC_KEY = last MAC_KEY _LEN bytes of keys

(3.16)

3.2.4 Time Periods and Shared Random Values

As mentioned in 3.2.1, onion services maintain two descriptors at any time to be reachable by clients
that use the current consensus or the previous one. The descriptors are periodically published to
the responsible HSDirs. After each publication of a descriptor, a random timer between 60 and
120 minutes is set. When the timer expires, the service uploads its descriptors again to the HSDirs
responsible for that Time Period (TP) and Shared Random Value (SRV). Each consensus contains
the SRV for the current and the previous TP. The procedure for choosing the right SRV along
with the TP differs between client and service. The differences can best be explained by using an
example, which is illustrated in Figure 3.11. TP#X indicates, that from this point on a new TP
X begins. The symbol $ indicates a descriptor rotation. SRV #X means that a new SRV X will
be available from that point.

00:00
SRV#1

12:00
TP#1

00:00
SRV#2

12:00
TP#2

00:00
SRV#3

12:00
TP#3

$ $ $

Figure 3.11: Tor Hidden Service Key Hierarchy [25]

The two descriptors uploaded by the service are referred to as first and second service descriptors
and follow different upload logics and purposes:

• First Descriptor:

The first descriptor is intended for clients that have a consensus that is still in the previous
TP. To create this descriptor, the previous TP and SRV is used when the service is in the time
segment between a new TP and a new SRV (marked with ’-’ in Figure 3.11). For example, if
the service is at 14:00, shortly after TP#1, it would still upload the descriptor with TP#0
and SRV #0. If the service is in the time segment between a new SRV and a new time period
(marked with ’=’ in Figure 3.11) it uses the current TP and the previous SRV. For instance,

3 Background 25

if the service is at 02:00, shortly after SRV #2, it would upload the descriptor with TP#1
and SRV #1.

• Second Descriptor:

The second descriptor is intended for clients who have an up-to-date consensus in the same
TP as the service. In order to create this descriptor, the current TP and the current SRV
are always used to upload the descriptor if the service is in the time segment between a new
TP and a new SRV (marked with ’-’ in Figure 3.11). For example, if the service is at 14:00,
shortly after TP#1, it would upload the descriptor with TP#1 and SRV #1. If the service
is in the time segment between a new SRV and a new TP (marked with ’=’ in Figure 3.11) it
uses the next time period and the current SRV. For instance, if the service is at 02:00, shortly
after SRV #2, it would upload the descriptor with TP#2 and SRV #2.

If services receive a consensus with a valid_after time past the next SRV calculation time, they
rotate their descriptors by discarding the first descriptors, pushing the second descriptors to the
first descriptors and rebuilding the second descriptors. The client aims to synchronize TPs and SRV
when fetching descriptors, so it always tries to use TP#X with SRV #X.

3.2.5 Security Enhancements

Tor in its original implementation was vulnerable to traffic correlation attacks. Within these attacks,
adversaries attempt to de-anonymise users by monitoring both the entrance of user traffic to the
anonymity network and its exit [31]. In order to do this, the adversary must control both the first
node and the last node in a circuit. If it is able to do so, it knows both the client (because it
is directly connected to it) and the resource that the client uses. This type of attack on the Tor
network was first demonstrated by Oeverlier et al. [16] in the course of the de-anonymisation of
onion servers [31]. Based on ideas of Wright et al. [32] they introduced the idea of fixing the first
nodes in a circuit to prevent adversaries from gaining control over them. These first nodes are
referred to as entry guards or guard nodes. An illustration of a three-hop circuit utilizing this guard
nodes is provided in Figure 3.12.

Initiator ResponderEG MR ER

Figure 3.12: Security Enhanced Onion Routing Network [23]

An enhanced circuit consists of the client, in this example referred to as initiator, an entry guard as
first hop, a middle relay as second hop and an exit relay as last hop. The only node that is directly
connected to the initiator is the entry guard. The middle relay knows neither initiator nor respon-
der. At the exit relays, traffic exits the Tor network. These are the only nodes that are directly
connected to the responder and thus know their location. The entry guards are chosen from a small
subset of all relays in the consensus, which are in possession of the Guard flag. This flag indicates,

3 Background 26

that the node is stable, fast and has a specific minimal uptime [33]. This subset is further filtered
based on several performance and utility parameters to obtain a set of primary guards. Currently,
three primary guards are selected, nevertheless it is attempted to use the same guard each time [34].
To keep the probability of success of a traffic correlation attack as low as possible, the entry guard
must be persistent. Currently, the lifetime of a guard is 120 days [34]. The middle relay of a circuit
is chosen randomly from the relays available in the latest consensus weighted by bandwidth. Simil-
arly, the exit relays are selected, except that their relay must support an appropriate exit policy [34].

Since this makes it very complex to become the guard node of a service, guard discovery attacks aim
to identify the entry guard of an onion service. Once the entry guard is known to an adversary, an
attempt is made to compromise it using other methods. To complicate this, the Vanguards extension
was developed, which is written in Python. It utilizes the Tor control protocol and consists of three
components: [35]

1. Vanguards:

This is the core function of Vanguards. In addition to the entry guards, also middle relays
and exit relays are pinned for a longer period of time. With this, the time to discover an entry
guard increases from five minutes to weeks or months, even if the attacker is able to control
a significant portion of the Tor network. To protect the newly pinned nodes, the rendezvous
circuits, directory circuits, and introduction circuits are lengthened. [36]

2. Bandguards:

The Bandguard component checks whether there are traces of bandwidth side channel attacks
within circuits, that are used by adversaries to amplify traffic analysis attacks. If such traces
are found, an alarm is generated and the affected circuit is optionally closed.

3. Rendguards:

This component tracks the frequency of rendezvous point used on the onion service side.
Since some attacks rely on the aid of custom malicious rendezvous point for traffic analysis,
an overuse of certain nodes indicates a possible malevolent utilization. If certain threshold
values are exceeded, an alarm is generated and the rendezvous circuit is optionally torn down.

4 Unlinkable Onion Services 27

4 Unlinkable Onion Services

“The unlinkability of two or more items of interest from an attacker’s perspective means
that within the system (comprising these and possibly other items), the attacker cannot
sufficiently distinguish whether these items of interest are related or not.” [37]

Following this definition, three specific requirements for unlinkable onion services emerge:

1. Recurrent connections to the same onion services must not be linked to a client.

2. Multiple connections of a client to different onion services must not be relatable.

3. Connections of multiple clients to specific onion services must not be associable.

Considering the functional behaviour of onion services in version three, these requirements are only
partially met. An adversary controlling one of the Hidden Service Directories (HSDirs) of the onion
service cannot identify which users want to access the service, since the Tor clients are connected
to the Rendezvous Point (RP) of the service using anonymous circuits, but it can draw conclusions
about the number of users and the frequency of access to the service. This can become detrimental
for users in case an attacker additionally has access to further sources of information, e.g. the
network traffic of the client. Through the correlation of multiple information sources based on the
chronological sequence of traffic, the user could be identified and associated with the service. How-
ever, for a targeted attack, an adversary would need to know the address of the onion service. With
onion services in the previous version two, it was possible to collect addresses on the HSDir, because
the required information to determine the address of an onion service was stored unencrypted in the
descriptor. This weakness was fixed in onion service version three by securing the descriptor with a
multi-layered encryption scheme. Nevertheless, if the onion address is known to the adversary, an
analysis of the usage pattern of this service is possible.

Another threat to the unlinkability of onion services is constituted by the monitoring of the host
server of the onion service, which typically is a web server or an application server. Theoretically,
the usage of an anonymous circuit between the RP and the onion service protects the location of
this server, however, it has been shown that revealing the location of the onion service is possible for
instance by means of protocol-level attacks [22] [21] [18]. These attacks enable the determination
of whether a relay controlled by an adversary is the guard relay of an onion service or the guard
relay is adjacent to the controlled relay. If the adversary in fact controlls the guard node, it can
monitor the entire traffic between the onion service and its clients and can thus find out how many
connections take place and when. Additionally, the adversary would know about the IP address
of the onion service. If the guard relay is adjacent to the relay controlled by the adversary, the
identity of the guard node is known and the relay can be compromised, surveilled or coerced [35].
Therefore, the Tor project announced these so-called guard discovery attacks to be among the most
dangerous threats to onion service as of 2018 [38]. The Vanguards addon was developed to address

4 Unlinkable Onion Services 28

this problem [35], but it is not currently used in the default configuration. Similarly to the monit-
oring of the HSDir, the adversary needs to know the address of a service to carry out such attacks.

As in both of the above described threats to unlinkability, the identity (i.e. the onion address) of a
service plays a key-role, the obvious prevention consists in the decoupling of the onion service and
its identity. The following sections provide detailed information on the architecture and efficient
implementation of such a decoupled approach.

4.1 Methodological Approach

Uncoupling an onion service from its identity means that the service needs to hand out different
custom onion addresses to every client that wants to access it. In order to accomplish that, it is
necessary to change the public master key of the service as, beside the version, this key is the only
identifier of the service that is encoded in its address [39, 25]. The amendment of the public master
key of a onion service can be performed using two different approaches, partly depending on the
version of the onion service:

1. Multiple Onion Services

The straight forward way to change the identity of a service is to provision a fresh onion
service pointing to the same application. Technically this doesn’t correspond to a change of
the key, but produces a similar result. The issue with this solution is scalability. In order to
provision a new onion service, new keys have to be generated, three additional connections to
Introduction Points (IPs) have to be established and maintained and 16 descriptors have to be
created and uploaded to the HSDirs. This can best be illustrated by the example of the social
media network Facebook, which in 2016 announced, that up to 1.000.000 clients utilized the
onion service version of Facebook in a period of 30 days [40]. If each user would be provided
with a custom service address, 1.000.000 unique onion services would have to be provisioned.
In comparison, the number of unique V2 onion service has never exceeded 240.000 [41].

2. Multiple Descriptors

Rather than provisioning a separate onion service per user, a new descriptor is created for
each participant pointing to the same service. The idea of creating custom service descriptors
is not new, as it was introduced in the onion service V2 protocol as stealth mode for client
authorization to hide the activity of the service from unauthorized users. For this purpose,
the service generates an asymmetric client key and a symmetric descriptor cookie per user.
After their creation, the service communicates these two values to the authorized user in form
of a contact information string. The client key replaces the public master key (referred to
as permanent-key in V2), which causes the onion address to change since this is the base32 -
encoded hash value of this key. The descriptor cookie prevents the prediction of the storage
location of the descriptor on the HSDir, as this would require the knowledge of the descriptor.
Additionally, the descriptor cookie is used to encrypt the IPs of the service, so that only
the authorized user can contact the service. This approach is a clear advantage in terms of

4 Unlinkable Onion Services 29

unlinkability. The onion service now has full control over the dissemination of its descriptors
and thus over its accessibility. If the service stops publishing descriptors for a certain user
and said user is not able to link descriptors issued for other users to the service, it will no
longer get any information on the activities of the onion service. Moreover, the service could
theoretically only be found by authorized users, as only they know the onion address of the
service. If a non-authorised user nevertheless succeeds in obtaining one of the onion addresses
of the service (e.g. by monitoring HSDirs), it cannot use it to contact the service, as the IPs to
the service are encrypted. However, this concept does not only have advantages. As the num-
ber of descriptors increases, the load on both the onion services, which have to manage and
regularly renew these descriptors and the HSDirs, grows. In order to deal with this problem,
the maximum number of descriptors an onion service can manage in V2 has been set to 16. [39]

With onion service V3, among other innovation, a novel structure for service descriptors was
implemented, which is protected with a double-layered encryption. This prevents adversaries
from obtaining onion addresses by monitoring HSDirs. With this new structure and the
concept of key blinding, which is described in section 3.2.3.2, the stealth client authorization
is no longer needed, since an adversary is not able to find out the onion address of a service,
if it is not published. For this reason, the creation of new onion addresses using the client
authorization in V3 is no longer possible.

As onion services V2 will no longer be supported in the foreseeable future [15] and onion services V3
don’t support stealth client authorization, creating multiple descriptors to generate custom onion
addresses and thus provide unlinkability is not feasible at the moment.Therefore, the first prototype
implementation of unlinkable onion services will create a custom onion service per user, which im-
plies that the scaling problem still remains. A potential solution could be to not provision a custom
service for each user, but instead manage a pool of custom onion addresses and randomly hand out
onion addresses from this pool. However, due to time restrictions the solution for this problem is
not part of this thesis and is therefore considered future work.

In the next step it must be determined how the generated addresses can be exchanged in the most
effective way. In principle, a distinction can be drawn between two approaches, which differ in
terms of the size of the expected user pool of a service. These two approaches are described in the
following two sections.

4.2 Custom Addressing

Services that have a rather small user pool can take advantage of a simple implementation of
unlinkability referred to as custom addressing, whose purpose is the provisioning of a per-client
ephemeral onion service and the exchange of the resulting onion address. For the sake of simplicity,
the application server, which provides the actual service, and the onion service in combination are
referred to as server. The idea of this approach is that the server is aware of all its communication
partners due to the limited number of users. The service provisions an onion service for every user it
wants to communicate with and sends the custom onion addresses of these services to the respective

4 Unlinkable Onion Services 30

clients using a secure channel. As no communication from the client to the server is required, only
uni-directional communication between server and client is intended. The sequence diagram of the
custom addressing procedure is depicted in Figure 4.1.

ClientClient ServerServer

custom onion address

Provision
Onion Service

Figure 4.1: Custom Adressing

The major advantage of this approach is its simplicity. No additional complexity is added through
the use of a protocol. If the client only uses the provided custom onion address to contact the server,
unlinkability is ensured. Furthermore, a server would have full control over its own accessibility
since if a server want to be accessed by a client, it simply tears down its custom onion service. In
case this client is not able to obtain the custom onion address of another client, it will no longer
receive any information about the onion service and its activity. The major disadvantage of this
approach is constituted in its scalability. Although there is no theoretical limit of onion services a
tor instance can create [25], both the HSDirs and the Tor client are not designed for operating hun-
dreds of thousands of onion services, as for instance the Facebook onion service would require [40].

Furthermore, this approach is based on the assumption that the first contact originates from the
server, which excludes any new clients not yet known to the server. This means that a client must
be aware of the communication channel for receiving its custom address previous to the first contact.
The communication channel cannot utilize the Tor network, as the server has no point of contact
with the client, which implies that the server would need to know the identity (e.g. the IP address)
of the client. This eliminates the concept of anonymity. An adversary that operates on the Internet
Access Provider (ISP) tier would be able to monitor the initial communication and link the client to
the server. A remedy could be the use of an anonymous communication service such as ProtonMail
[42] for the initial communication between the server and the client. ProtonMail uses public-key
cryptography to ensure the confidentiality of messages sent between users. For this to work, the
server would need to be in possession of a public key of all its users. Due to the restricted user
pool, this is feasible. However, the use of communication based on public-key cryptography raises
another problem. Both the server and the client must be able to verify the authenticity of the
key material used. This could be solved, for example, by using certificates, but this in turn would
undermine the principle of anonymity, since the client would need to authenticate itself again a
central Certificate Authority (CA) in order to obtain the certificate. To simplify the exchange of
custom onion addresses, the Unlinkable onion Service Protocol (UOSP) was designed.

4 Unlinkable Onion Services 31

4.3 Unlinkable Onion Service Protocol

4.3.1 Concept

As exemplified in section 4.2, the exchange of custom onion addresses between server and client
is not a trivial problem. For the sake of usability, accessing an unlinkable service must not differ
drastically from accessing a normal onion service from a client’s perspective. This implies, that the
client must be able to retrieve a custom onion address for a service without additional knowledge and
without the need of using a separate secure communication channel. For this purpose, a standardized
approach in the form of a protocol must be defined, which specifies the exact procedure from the
first request of the client to the receipt of the custom onion address. With the Unlinkable Onion
Service Protocol (UOSP), such a standardized approach was designed and is described in this section
in detail.
The basic conceptual difference of the UOSP compared to Custom Addressing consists in the types
of addresses a clients uses to contact a service. In a regular onion service access, the service’s onion
address is used for the initial request and then data is exchanged between client and service. In the
UOSP, the address used for exchanging data between client and server is referred to as data address.
In addition, the UOSP uses a second type of address, whose only purpose is the initial contact of a
client to a service and the exchange of each client’s custom data onion address. Therefore, this ad-
dress type is called introduction address. Beside their different purposes, the two address types also
have different levels of confidentiality. As the introduction address is needed in order to establish
an initial contact to a service, this address needs to be publicly available. It could for instance be
posted in internet forums or handed out to the clients who should be able to reach a certain service.
The data address on the other hand, is personal to a specific client and needs to be kept secret in
order to remain unlinkable. If the address were to be published, adversaries could try to manipulate
the service’s Hidden Service Directories (HSDirs) and thereby gain information about the utiliza-
tion of the service. This would lead to linkability and render the reason for using the UOSP obsolete.

For this reason, in order to ensure the unlinkability of onion services, the following environmental
assumptions are considered to be met:

1. The introduction address of an onion service is published in a way that all clients that need
to communicate with the service can obtain it. The address does not have to be kept secret.

2. The data address of an onion service is private to a single client or a client group and is therefore
not published in a way that other clients or other client groups that are not authorized can
obtain it.

In this context authorized means that the onion service has designated the client or the client group
to use its data address and is not associated with a cryptographic meaning. Authorization in the
cryptographic sense would require that each authorized client obtains information in advance (e.g. a
key pair) with which it can unambiguously prove that it is authorized to use a service. However, this
would lead to the same implications as with Custom Addressing, that are described in section 4.2.

4 Unlinkable Onion Services 32

4.3.2 Architecture

Since each unlinkable onion service needs to provide at least one public introduction address and
probable multiple private data addresses, it must provision services for responding to requests to
introduction addresses as well as for responding to requests to data addresses. Both of these services
must be implemented as onion services, otherwise their location (i.e. the IP address of the service)
cannot be hidden. The minimal set of components needed for the provisioning of an unlinkable
onion service is illustrated in Figure 4.2.

Tor NetworkUser Tor Client

Introduction service

Data services

Figure 4.2: Minimal Set of Components Required for Unlinkable Onion Services

The Tor client of the users acts as its onion proxy, which establishes a connection to the Tor network.
The introduction service is hosted as a single onion service, whose address represents the UOSP
introduction address. Although the introduction service and the data service are illustrated as
separate servers, both services must be hosted on a single server because the introduction service
must be in control of the provisioning of data services. The application to which the data services
point does not necessarily have to be operated on the same server. The basic procedure of a UOSP
request is structured as follows:

1. The user obtains the introduction address of an unlinkable onion service through out-of-band-
communication (e.g. through an email) or other communication platforms. It is assumed that
the creator of the introduction address is trusted.

2. The user then sends a request to the introduction address. The protocol utilized for this
request is not limited to web protocols, in principle any TCP-based protocol can be used.
Moreover, the environment with which the request is submitted is not specified; it could be a
browser, for example. It has to be noted that this request is linkable since a publicly known
introduction address of a service is used for this purpose.

3. The request reaches the introduction service, where it is interpreted. At this point, authoriz-
ation mechanisms such as the client authorization embedded in onion service could be used,
which decide whether the service communicates with the user or not. Subsequently, the service
provisions a custom onion address and responds to the user.

4 Unlinkable Onion Services 33

4. The user checks the well-formedness of the received custom onion address. This can easily
be achieved, since the length of a valid onion address is defined in the specification [25].
The obtained custom onion address must be memorized for further requests, as each request
would otherwise result in a request to the introduction address, which in turn would lead to
linkability.

5. At this point, the user can submit a request to the custom onion address received. The data
service responsible for that custom onion address will respond with the requested data.

As indicated in the basic sequence, the user has to perform a number of tasks by himself. This
includes the manual query of the custom onion address, the check of its well-formedness and the
memorization of previously queried addresses. This might be feasible for technically proficient
persons, but is rather unusable for normal users. For this reason, apart from client and server, a
third main component in the form of a proxy is introduced. This proxy handles the tasks that
previously had to be performed by the user and must be placed between the user and the Tor
client, since the data traffic between the Tor client and the Tor network is already encrypted. For
reasons of usability, requirements are placed on the transparency and performance of the proxy. If
the latency introduced by the proxy is too high, users will not use it [5]. The situation is similar in
regard to transparency. If the user experiences a significant increase in the complexity of using a
service through the use of the proxy, it will not be used.

4.3.3 Identity Assignment

Essentially, there are two approaches for assigning individual onion addresses to users. These
approaches and their advantages and disadvantages are described below.

• Key Derivation:

With this method, a key exchange between proxy and server is initially performed. After the
key exchange, both parties are in possession of the same symmetric key, from which further
keys can be derived. These derived keys can be used to provision onion services, for which
only the client and the server know the address, as its partly based on the symmetric key. To
implement this approach, a two-phased protocol was considered in reference to the phase-based
mode of operation of Transport Layer Security (TLS) [43]:

1. Key Exchange Phase:
This phase serves the establishment of a shared symmetric master key, which could be
implemented using an asymmetric key exchange protocol, such as the Diffie-Hellman key
exchange. The key exchange protocol requires a number of domain parameters to be
agreed upon in advance.

2. Usage Phase:
In the second phase, both parties can derive keys from the shared symmetric master key
established in phase one. For the key derivation, a double ratchet algorithm is used,
which offers future secrecy. The derived key is used to establish an onion service on

4 Unlinkable Onion Services 34

the server side, which can only be accessed by the client due to the knowledge of the
symmetric key used.

This approach offers the possibility of generating ephemeral onion services, which can be
changed at a defined interval by deriving a new key to avoid a correlation of service usage.
Furthermore, it provides an additional mechanism for access control. If the server tears down
the previous custom onion service of a client each time it derivates a new temporary key and
provisions new custom onion service, an adversary that gets into possession of that tempor-
ary key can only monitor the service that is bound to it. The adversary can not obtain the
temporary key of a new time interval, neither can he obtain the temporary key of a previous
time interval due to future secrecy.

Nevertheless, this approach does have a number of implications. As mentioned in the descrip-
tion of phase one, both the client and the server must agree on domain parameters in advance.
This goal can be achieved by specifying the parameters in the protocol definition since they
must not be kept secret. A more serious issue lies in the synchronization. Both participants
must synchronize the derivation of new temporary keys, otherwise the client might use an
address for a service that is no longer available or the server might offer a service that is no
longer used. This synchronization is partly accomplished by specifying a time interval for
the derivation of new temporary keys in the protocol definition. The interval by itself does
not solve the issue. Fixed time points that define the start of an interval are required, which
have to be identical for both systems. Furthermore, additional synchronization messages are
needed in case one participant is offline during the beginning of a new interval.

• Random Assignment:

An alternative approach is the randomized assignment of custom onion addresses. This is
based on the premise that when a new onion service is provisioned, a new master keypair is
created for each service, which cannot be associated with the keypair of other services. In the
context of the UOSP this means that each time a new data address is requested, a dedicated
onion service is provisioned, whose onion address is only dependent on the master identity
public key and the version of the onion service and cannot be linked with previously created
data addresses or to the introduction address of a service. This onion address is used as data
address and can be considered random, as there are, beside the version, no parameters that
influence its generation.

This requires neither key exchange nor key derivation or synchronization, which reduces the
complexity of the protocol since the assignment, which can be reduced to an onion service
provisioning, is entirely handled by Tor.

Both options offer similar properties in terms of unlinkability. In both approaches, data addresses
cannot be linked to other data addresses or introduction addresses. The Key derivation approach
has the advantage that new data addresses can be generated without re-contacting the introduction
address, but it has a significantly higher inherent complexity. As the requirements for unlinkability
are met by both approaches, the Random Assignment is used due to its simplicity and lightweights.

4 Unlinkable Onion Services 35

4.3.4 Protocol Definition

The individual components of the protocol, as well as the basic procedure for the creation of unlink-
able onion services have been described in the previous sections. In this section, a formal definition
of the protocol will be presented. According to Holzmann et al. [44] a protocol specification consists
of the five following components:

• “The service to be provided by the protocol”

• “The assumptions about the environment in which the protocol is executed”

• “The vocabulary of messages used to implement the protocol”

• “The encoding (format) of each message in the vocabulary”

• “The procedure rules guarding the consistency of message exchanges”

In the course of this section these components are defined for the UOSP.

• Service Specification

The purpose of this protocol is the provisioning of one or multiple per-client ephemeral onion
services, whose addresses are referred to as data addresses. The protocol is intended for the
use in a client-server architecture. A proxy arranged between client and server abstracts the
complexity of the protocol from the user. The initial connection from client to proxy takes
place unidirectionally using a fixed onion address referred to as introduction address, whose
sole purpose is the initial communication between proxy and server. No payload data must
be exchanged over this connection. The proxy maintains a cache to store the results of previ-
ous requests to the introduction addresses of services. This is mandatory in order to ensure
unlinkability for future requests. Each entry in the cache consists of the issued data address,
its validity and the introduction address that was used to issue this data address. Once the
proxy receives a request from the client, it first checks whether there is a valid data address
in the cache for the introduction address in the request. If this is the case, the valid data
address is structured in a UOSP Client Response and is sent back to the client.

If the proxy does not hold a cached address, it extracts the required data from the request
and generates a UOSP Request, which it then forwards to the server. The server provisions a
new ephemeral onion service and responds to the proxy with the public key of the newly pro-
visioned onion service encoded as its onion address. Additionally, the validity of the generated
address is transferred as metadata. This validity set by the server controls how long a service
can be accessed via its address. After the validity period has expired, the server tears down
the onion service, which is thus no longer accessible. The proxy confirms the reception of the
public key and its metadata by sending an acknowledgement message in form of a UOSP Ack
to the server. Attached to this acknowledgement is a hash of the previously received public
key. The server in turn hashes the public key of the previously provisioned onion service and
is now able to compare both values.

4 Unlinkable Onion Services 36

If these values do not match, the integrity of the public key sent cannot be verified and it can
be concluded that an error has occurred either in the transmission path from server to proxy
or from proxy to server. To alert the proxy about this error, the server sends a UOSP Error
to the proxy and tears down the previously provisioned service. The proxy relays this error
to the client. If the two hash values match, the integrity of the public key is assured. To end
the protocol cycle, the server sends a finalization note in the form of a UOSP Fin message to
the proxy. The proxy caches the data address for future requests and sends a UOSP Client
Response to the client. This response can either contain textual information about the newly
provisioned data address or a protocol-specific redirect.

• Environmental Assumptions

The environment in which the protocol is executed consists of a client, a proxy, a server and a
transmission channel. It is assumed that the proxy is local to the client, which implies that the
client’s onion proxy and the proxy are located on the same system. Nevertheless, the operation
of a remote proxy would be possible, but would not serve its purpose in terms of unlinkability,
since information on the client’s service usage could no longer be managed locally. As this
protocol operates on the application layer in the Open Systems Interconnection model (OSI
model), segmentation, flow control, congestion control and transport of protocol messages is
performed by the underlying layers. This underlying layers assure that packets arrive at their
destination in the correct order without data corruption. It is assumed that all components
are online during a protocol cycle. Any archiving of protocol messages for later transmission
is not considered. Both the proxy and the server must have a mutual consent on the time
zone, which is used for temporal functions that are dependent on time.

• Protocol Vocabulary

The protocol vocabulary specifies eight distinct types of messages:

– UOSP Request:
Requests the provisioning of a new temporary data address. The required introduction
address is extracted from the UOSP client request.

– UOSP Response:
Response to a UOSP request. The payload of this response contains the encoded public
key of the newly created data service, as well as metadata.

– UOSP Client Request:
Request from the client to the proxy. This requests must contain a valid destination
address. The destination address can be an arbitrary address including introduction
addresses and data addresses.

– UOSP Client Response:
Response to a UOSP client request that includes the data address of the newly provisioned
data service. This response can either take a textual form or be implemented as a
protocol-specific redirection.

4 Unlinkable Onion Services 37

– UOSP Ack:
Acknowledgement of the reception of a UOSP response, which includes the hash of the
encoded public key received with the UOSP response.

– UOSP Fin:
Indicates the successful completion of a protocol cycle.

– UOSP Error:
Signals a corruption of the integrity of the transmitted encoded public key on the trans-
mission path between proxy and server.

• Message Format

Every UOSP message contains at least the UOSP specifier, which indicates whether the mes-
sage is UOSP related or not and the UOSP version, which currently is 0.1. This basic message
structure is referred to as standard message format. Dependent on the protocol message sent,
the extended validity UOSP message format or the extended data UOSP message format is
used. The extended validity format includes the validity of a data address transferred through
the message, whereas the extended data format contains an indicator of whether data is trans-
ferred over a UOSP connection or not. The menagerie of message formats is depicted in Figure
4.3. The optional payload in all three message formats is stored in the data field.

UOSP UOSP Version DATA

(a) Standard UOSP Message Format
UOSP UOSP Version UOSP Validity DATA

(b) Extended Validity UOSP Message Format
UOSP UOSP Version UOSP Data DATA

(c) Extended Data UOSP Message Format

Figure 4.3: UOSP Message Formats

The standard message format is used by the UOSP Request, UOSP Ack, UOSP Fin and UOSP
Error. The extended validity format is used in UOSP responses. The UOSP client request
and UOSP client response are not specified, as the client request is dependent on the protocol
used (e.g. HTTP) and the client response should be adjustable to the users’ environment.
The extended data UOSP format is soleley used for data transfer using data addresses.

• Procedure Rules

1. The resource a client wants to access must be provided by an onion service and thus have
an onion address.

2. The proxy must store previous requests to an introduction address and the responses
containing the data addresses for these requests.

4 Unlinkable Onion Services 38

3. If the client requests an introduction address for which a data address has been provi-
sioned previously, the cached address must be used. If the proxy does not hold a cached
address, it must send a request to the server.

4. The cache of the proxy must delete entries that are invalid. This validity check must be
carried out either periodically or with each request.

5. If the server receives a valid request for an introduction address associated with the
server, it must provision a new onion service with its associated data address.

6. The response to a valid UOSP request must contain a valid data address for a temporary
data service.

7. Every UOSP response must be acknowledged. This acknowledgement is used to ensure
that the response has been received. To each acknowledgement the hash value of the
data address must be appended in order to assure the integrity of the received address.

8. If the integrity check fails, the server must alarm the other participants by sending an
error message.

9. The server must maintain all provisioned data services within their validity period.

10. If services exceed their validity periods, they must be teared down by the server. It
is therefore mandatory that also the server maintains a cache storage for provisioned
services and their validity.

11. The protocol ends by either a UOSP Fin or a UOSP Error message.

A complete overview of the UOSP can be obtained in the Unified Modeling Language (UML)
sequence diagram in Figure 4.4.

4.4 Proof of Concept

To demonstrate the feasibility of the unlinkable onion service protocol proposed in section 4.3, a
Proof of Concept (PoC) is implemented, which consists of a proxy module and a server module. In
principle, the protocol is applicable for all TCP-based communication, however, for this implement-
ation, the Hypertext Transfer Protocol (HTTP) was chosen, as this is apart from Skynet (botnet)
the most common used protocol for onion services [45].
In the subsequent section, the technical components used for both the proxy and the server module
are delineated. The implementations of the server and proxy module are described in detail in
separate sections.

4.4.1 Technical Building Blocks

4.4.1.1 Tor Stem

Both the proxy and the server module are implemented with Python 3.7, due to the availability of the
Tor Stem library [46]. Stem is a controller library written in Python, that enables communication
with a Tor binary using the Tor control protocol. The library is composed of three different API
modules at its core [46]:

4 Unlinkable Onion Services 39

ProxyProxyClientClient ServerServer

UOSP Client Request

Check cache

ALTALT

 Address not in cache

 Address in cache

UOSP Client Response

UOSP Request

UOSP RESPONSE

(KEYPUB, METADATA)

Provision
Onion Service

UOSP Ack
(H(KEYPUB))

UOSP Fin

Cache address

UOSP Client Response

ALTALT

 Received invalid hash

 Received valid hash

UOSP Error

UOSP Error

Figure 4.4: Unlinkable Onion Service Protocol Sequence

4 Unlinkable Onion Services 40

• Controller: The controller module enables authenticated communication with the Tor control
socket and abstracts low-level connection details.

• Descriptor: The descriptor module can be used to retrieve, manage and generate a variety
of data structures used in Tor. These include server descriptors, micro descriptors, network
status documents, directories information and many more.

• Utilities: Helper functions of the two modules controller and descriptor are bundled in the
utilities module. These include functions for retrieving system information, handlers for the
textual configuration files, helper functions related to IP communication, string tools and
functions for working with the underlying system.

In the course of this thesis, only the Controller module and its helper functions from the utilities
module are used.

4.4.1.2 Socket Server

To implement the communication between proxy and server, the Python module socketserver is
used. This module is a framework for creating network servers, which provides classes for the syn-
chronous processing of network requests for different protocols and connection types. The processing
of a request is thereby performed by two different classes. The server classes take care of the low-
level communication tasks like listening on a socket or accepting connections. The protocol-specific
processing, is performed by the handler classes. Their tasks include, for example, processing and
interpreting incoming data and sending responses back to the requester. The advantage of divid-
ing the responsibility for processing a request between communication-specific and protocol-specific
classes is their re-usability. This re-usability enables users to utilize existing server classes for basic
communication (e.g. TCP) without major changes and to adapt the protocol-specific handler to
the respective application. [47]

A socket server is constructed by instantiating an object of a server class. Thereby, the address to
be listened to by the server and a request handler class, which is called when a request is processed,
must be passed as parameters. All request handler classes are based on the BaseRequestHandler
super-class, which defines three interfaces, which must be implemented by handler classes inheriting
from it: [47, 48]

• Setup: The setup method is called prior to the handle method. It prepares the request
handler for the request by performing all initial actions required.

• Handle: The handle method carries out all the real work required to handle a request. This
contains parsing the request, processing it and sending a response.

• Finish: The finish method is called after the handle method completed and performs a clean-
up of anything created during the setup.

4 Unlinkable Onion Services 41

For both stream-based and datagram-based traffic, there are pre-defined base classes that inherit
from the BaseRequestHandler and have already implemented the setup and finish methods so that
only the actual request handling must be supplemented. As mentioned before, requests are processed
synchronously. This means that a request must be completed before the next request can be
processed, which implies that parallel processing of requests is not possible. To overcome this
limitation, mix-in classes can be used to enable asynchronous processing in the form of a separate
thread per request (ThreadingMixIn), or a separate process per request (ForkingMixIn). [47, 48]

4.4.1.3 Caching Database

As stated in the protocol definition in section 4.3.4, the data address of a newly provisioned tempor-
ary data service must be stored on both the server and the proxy. To avoid complications through
inter thread communication or inter process communication, a central database is used to store
the addresses. This database should generate as little overhead as possible. Therefore, renowned
database management systems such as MySQL or PostgreSQL are excluded, as only a fraction of
the functions offered are required.

The alternative lightweight database approach used for this prototype is the Zope Object Database
(ZODB) [49]. As the name suggests, this is an object database management system, which was
originally developed for the Zope web application server. ZODB is entirely written in Python and
can therefore be seamlessly integrated in the code, as no separate language for database operations is
used. Furthermore, no object-rational mapping is necessary, since the database can directly persist
Python objects. This persistence does not have to be manually triggered by the user, nor any code
is needed to read or write objects. The persistent objects are attached to a container, which works
similarly to a Python dictionary. This dictionary is referred to as the root of the database. Every
object that can be pickled into a standard serial format can be stored in the database. [49]

4.4.1.4 State Machine

Both the proxy and server module of the PoC are implemented using a finite state machine. This
enforces the compliance of the implementation to the protocol specification, since only defined
transitions are possible. In this prototype the light-weight, object-oriented Python implementation
transitions is used [50].

4.4.2 Proxy Module Implementation

The basic operation of the proxy module entails that the client sends an HTTP request to the proxy,
which evaluates the request. If the requested address is a UOSP introduction address, the proxy
checks whether it has already stored an associated UOSP data address from previous requests.
In this case, it sends this address as a response to the client. Otherwise, the proxy forwards the
request to the server. The server provisions a new UOSP data service and sends its address to the
proxy. The proxy forwards this address to the client and caches it for future requests. A detailed
description of the protocol sequence can be found in section 4.3.4. The implementation of the proxy

4 Unlinkable Onion Services 42

module is described on the basis of its finite state machine in Figure 4.5. For the sake of readability,
generic names were used for states and transitions, which are described in Table 4.1.

S0start S1 S2

S5

S3 S4

ERRS6

a0 a1 a2 a3

a4 a5
a6 a7

Figure 4.5: Finite State Machine of the UOSP Proxy Implementation

S_0 S_1 S_2 S_3 S_4 S_5 S_6 ERR

Initial state
Client request

sent
Server public
key received

Client ack
sent

Server Fin
received

Cache address
used

Data response
received

Error

a_0 a_1 a_2 a_3 a_4 a_5 a_6 a7

Send request
Receive public

key
Send UOSP

Ack
Receive server

Fin
Use cache
address

Receive data
response

Public key
malformed

Server hash
invalid

Table 4.1: Proxy Finite State Machine Legend

In the subsequent chapters, the implementation of the individual states and their transitions are
described in detail. The complete source code of the proxy module can be found on GitLab [51]
and in Annex A.

4.4.2.1 Initial State

To be able to receive requests from the client, the proxy uses the TCP server class of the socktserver
module described in section 4.4. As this class processes request synchronously, the optional mix-
in class ForkingMixIn is used. As a result, a new process is forked for each request, which can be
handled asynchronously. The ThreadMixIn class, which would create a new thread for each request,
was not used because each individual request needs to be isolated to avoid protocol failures. During
the forking of a process, a state machine is automatically created for each request handler. This
state machine is used throughout the protocol execution to keep track of the state of the process.
Starting from the initial state, there are two possible transitions.

In order to decide which of the two possible transitions shall be carried out, the HTTP request
received from the client must be analysed. For this purpose, the Python module http-parser [52] is
utilized, which automatically parses the request and maps its data structure to an object. From the
request header, the original destination address and its port are required. In this proof of concept
implementation, it is assumed that the proxy only handles client requests whose top-level domain
of the destination address is .onion and whose destination is port 80. HTTP requests whose pat-
tern differ from this are forwarded to their intended destination, but are not considered part of the
protocol.

4 Unlinkable Onion Services 43

In the next step, the proxy examines whether a UOSP data address has previously been issued for
the UOSP introduction address used in the request and whether this data address is still valid. For
this purpose, the proxy maintains an object database as described in section 4.4. This database is
referred to as cache in the future. The class diagram of the objects stored in this cache is depicted
in Figure 4.6:

UospIntroAddress

- uosp_intro_address : str
- uosp_data_addresses : PersistentList

+ add_data_address(uosp_data_address: str, uosp_validity : datetime) : void
+ remove_data_address(uosp_data_address : str) : void
+ revise_validity() : void
- get_latest_valid_data_address() : str
- get_data_address_count() : int
- get_address_index(uosp_data_address : str) : int
- check_validity(uosp_data_address : str) : bool

Figure 4.6: Proxy Database Objects

For each UOSP introduction address not known to the proxy, an instance of the class UospIn-
troAddress is created. The properties of these instances are the introduction address and a list
of associated data addresses. The data type used for uosp_data_addresses is specific to the im-
plementation of the ZODB object database used. If the Python list datatype were used for this
property, changes to the list would not be recognized by the ZODB and thus would not be persisted.
The UospIntroAddress class provides methods for adding, removing and revising the validity of
UOSP data addresses. To check whether valid UOSP data addresses are stored on the proxy
for a UOSP introduction address, first a revision of the existing addresses is carried out us-
ing revise_validity. Subsequently, the number of stored UOSP data addresses is checked using
get_data_address_count. If this number is greater than zero, the cache of the proxy contains a
valid UOSP data address. In this case, transition a4 is triggered, otherwise the proxy has not stored
a valid UOSP data address and must make a request to the server. For this purpose, a socket
connection is established with the server. Although for this prototype implementation HTTP is
used on the proxy side, the traffic between proxy and server module is encrypted using the python
ssl module to avoid the leakage of data addresses. As the server functionality is provided as an
onion service, the request must be done within the Tor network. In this proxy implementation Tor
version 0.4.3.5 is used, whose configuration can be found in Appendix A.8.

By default, Tor automatically starts a SOCKS proxy on port 9050 if it is not manually deactivated
[53]. This SOCKS proxy is used by the proxy module to be able to communicate over the Tor
network. The proxy module sends a request to the server using the standard UOSP message format
illustrated in Figure 4.3a, which triggers transition a0.

4 Unlinkable Onion Services 44

4.4.2.2 Cache Address Used

The program execution transitions into this state if the proxy has a valid UOSP data address for
a UOSP introduction address in its cache. This UOSP data address is sent to the client using the
extended validity UOSP message format illustrated in Figure 4.3b. The payload of this message is
an HTML page advising the user to use the UOSP data address provided. Alternatively, a HTTP
redirect to the UOSP data address can be sent, which is carried out automatically by a browser,
for example. As this is a final state, the protocol ends after submitting the response to the client
and the process is stopped.

4.4.2.3 Client Request Sent

After sending a UOSP request the proxy enters an exchange loop where it waits for the response
of the server. If a response is received, it is parsed in the first step using the Python module
http_parser. This separates the HTTP headers from the payload and examines which type of
response was retrieved, which results in three options:

1. The response has the form of an extended data UOSP message illustrated in 4.3c and thus
is the response to a request that used a UOSP data address. The exchange of user data,
although included in this state machine, is not part of the UOSP.

2. The response has the form of an extended validity UOSP message illustrated in 4.3b and thus
is the response to a request that utilized a UOSP introduction address.

3. The response does not have a UOSP header and thus is a response to an onion service not
capable of performing UOSP. The data received is relayed to the client, although the client
data exchange is not part of the UOSP and is therefore not shown in the state machine.

In the first case, transition a4 is triggered, whereby the state Data response received is reached. The
reception of a public key as in the second case triggers transition a1 and leads to the state Server
public key received.

4.4.2.4 Data Response Received

In case of a response to a request that used a UOSP data address, the payload of the response
must be forwarded. The payload is extracted from the response and sent to the client in the form
of a standard UOSP message, whose structure is shown in Figure 4.3a. As this is a final state, the
protocol ends after submitting the response to the client and the process is stopped.

4.4.2.5 Server Public Key Received

Once the public key has been received, its validity is checked in the first step. This can be imple-
mented very simply, as the public key is available in its encoded form as onion service V3 address,
which must contain exactly 56 characters. According to the rendezvous specification [25], it should
additionally be checked whether the key contains a torsion component, as this would allow attackers
to create multiple onion addresses with the same key for a single service. As this is only a prototype

4 Unlinkable Onion Services 45

implementation, this check is not implemented and can be considered as future work. If the public
key is malformed, transition a6 is triggered which results in the error state. Otherwise, it is verified
in the next step that the integrity of the transferred key was not violated during the transmission.
For this purpose, the obtained key is hashed with the SHA-256 hash function, which is provided
by the Python module hashlib [54]. The resulting hash value is appended as payload to a standard
UOSP message, whose structure is illustrated in Figure 4.3a. This message is referred to as UOSP
Ack in the protocol and triggers transition a2.

4.4.2.6 Client Ack Sent

After the UOSP Ack has been sent to the server, the proxy waits for its response in the form of
an extended Data UOSP message. If the integrity validation fails, meaning that the hash value
the server created doesn’t match the hash value provided by the proxy, the response contains the
payload ERR, which triggers transition a7 and leads to the error state. Otherwise, the payload is
FIN, which triggers transition a3 and results in the state Server Fin received.

4.4.2.7 Server Fin Received

If the proxy receives the protocol message Fin, a new UOSP data address has been successfully
generated. This address is sent to the client in the form of an extended validity UOSP message.
As mentioned in the description of the state Cache address used, an HTTP redirect can be sent
alternatively. Finally, the UOSP data address is cached. The datastructure used for the storage
of the data addresses is depicted in diagram 4.6. If no UOSPIntroAddress object with the UOSP
introduction address exists yet, a new object is instantiated. Subsequently, the UOSP data address
is added using the add_data_address method. As this is a final state, the protocol ends after
submitting the response to the client and the process is stopped.

4.4.3 Server Module Implementation

The primary function of the server module in the UOSP consists in the provisioning of temporary
data services. These provisions are triggered by the proxy module through a specially formatted
HTTP request to a UOSP introduction address. After validating the responsibility for the received
request, the server module connects to the Tor binary, which is used to provision an ephemeral
onion service. The onion address of this newly created onion service is stored in the server cache
to be able to manage all the services provisioned. Subsequently, the address is transmitted to the
proxy module using a UOSP message. The proxy module receives the address and responds with
its hash value. The server module compares the received hash value with the hash value of the
onion address generated by itself and determines whether the integrity has been compromised on
the transmission path. If this is the case, it sends an error message to the proxy module. Otherwise,
the server responds with a message that indicates the end of the protocol cycle. The implementation
of the server module is described on the basis of its finite state machine in Figure 4.7. For the sake
of readability, generic names were used for states and transitions, which are described in Table 4.2.

4 Unlinkable Onion Services 46

S0start S1 S2 S3 S4

S5 S6

ERR

a0 a1 a2 a3

a4

a5

a6

Figure 4.7: Finite State Machine of the UOSP Server Implementation

S_0 S_1 S_2 S_3 S_4 S_5 S_6 ERR

Initial state
Client request

received
UOSP response

sent
UOSP Ack
received

Server Fin
sent

Data response
sent

Legacy HTTP
response sent

Error

a_0 a_1 a_2 a_3 a_4 a_5 a_6

Receive request
Send UOSP
response

Receive UOSP
Ack

Send server
Fin

Send data
response

Send legacy
data response

Public key
malformed

Table 4.2: Server Finite State Machine Legend

In the following, the implementation of the individual states and their transitions are described in
detail. The complete source code of the server module can be found on GitLab [51] and in Annex
A.

4.4.3.1 Initial State

In order to be able to receive and respond to HTTP requests from the proxy, the server module
must maintain an HTTP server, which needs to be provided as onion service. For the provision-
ing of the HTTP server, the Python module http.server [54] is used, which is a sub-class of the
socketserver base classes described in section 4.4. This module includes a special sub-class of the
BaseRequestHandler that allows to handle GET and POST requests in a straightforward way. As
with the proxy module, the mix-in class ForkingMixIn is used, which creates a new process for each
request. In addition, the python module ssl is used to encrypt the traffic between proxy and server
module. It must be noted, that the ssl configuration used is intended for experimental purposes
only and should not be used in a production environment. Since the server must be reachable via
the tor network, the server module needs to launch a Tor binary. In this server implementation,
Tor version 0.4.3.5 is used whose configuration excerpt can be found in Listing 1. The complete
configuration is provided in Annex A.5.

1 ControlPort 9051

2 HashedControlPassword 16:0717EF71CDF228DE60E93242A4AFE681FB525080DC1A330A103FAD9782

Listing 1: Excerpt from the Tor Configuration of the Server Module

In contrast to the Tor configuration of the proxy, the configuration of the server activates the control
port and protects it with a hashed password. To make the HTTP server accessible via an onion

4 Unlinkable Onion Services 47

service, the Tor Stem library is utilized. For the usage of Stem, auxiliary functions were developed,
whose source code can be found on GitLab [51] and in Annex A.2. The headers of these auxiliary
methods are provided in Listing 2.

1 def establish_connection(address=CONTROL_ADDRESS, port=CONTROL_PORT, password=None)

2 def create_ephemeral_hidden_service(controller, source_port, target_port, version)

3 def create_hidden_service(controller, path, port)

Listing 2: Header of the Tor Stem Auxiliary Methods

The method establish_connection is used to connect to the Tor control socket, while the methods
create_ephemeral_hidden_service and create_hidden_service are used to create onion services.
Ephemeral onion services are bound to the control connection through which they were created,
which means that the ephemeral onion services in this implementation would be teared down after
the protocol cycle is finished. To overcome this issue, the Tor Stem flag detached=True is used,
which detaches the service from the controller so that it can continue to exist after the end of the
control connection.

After the provisioning of its introduction service, the server module resides in its initial state and
waits for a client GET request to arrive. A list of UOSP introduction addresses provided by the
server module is maintained in order to be able to distinguish them from UOSP data addresses later
on. The reception of a request triggers the transition a0, which leads to the state Client request
received.

4.4.3.2 Client Request Received

Once the UOSP request has been received, it must be ensured that the connection is not terminated
after the request has been processed and the response has been sent, since the server module must
wait for the UOSP Ack. In order to avoid the connection tear-down, the argument close_connection
of the handler class must be set to false. In the next step, the server examines whether the request
received is a UOSP message, which is characterized by the presence of specific UOSP headers, as
illustrated in Figure 4.3. If this is not the case, the message is a legacy HTTP request and the
server sends an according response in the form of an extended data UOSP message to the proxy,
which triggers transition a5. In this prototype, the data addresses can only be accessed via the
proxy, since their direct utilization could lead to a dis-balanced usage of certain data addresses in
terms of frequency and could potentially render the protocol useless.
If, on the other hand, the request contains the required UOSP headers, a further distinction must
be made:

1. The requested address is one of the UOSP data addresses of the server module.

2. The requested address is one of the UOSP introduction addresses of the server module.

4 Unlinkable Onion Services 48

In the first case, the server must respond with the web page the client intended to reach. Therefore,
an extended data UOSP message with the service’s user data is created and sent to the proxy. This
triggers transition a4, which results in state Data response sent. It must be pointed out that the
exchange of data (both legacy and data requests) is not part of the UOSP, but has been implemen-
ted in this prototype.

In the second case, a new UOSP data service must be provisioned. For this purpose, a connec-
tion with the Tor control socket is established and an ephemeral onion service is provisioned using
the auxiliary method excerpted in Listing 2. Each provisioned address is automatically assigned a
validity by the server, which is currently set to 24 hours. A detailed analysis of the impact of the
length of the validity period on the unlinkability of onion service is considered future work. After
the validity period has expired, the service is torn down, which requires the server module to store
information on all provisioned UOSP data services. For this purpose, the server maintains an object
database as described in section 4.4.1. This database will be referred to as cache in the future. The
class diagram of the object stored in this cache is depicted in Figure 4.8.

UospDataAddress

- uosp_data_addresses : PersistentMapping

+ add_data_address(uosp_data_address: str, uosp_validity : datetime) : void
+ remove_data_address(uosp_data_address : str) : void
+ revise_validity(controller: Tor Stem Controller) : void
- check_validity(uosp_data_address : str) : bool

Figure 4.8: Server Database Objects

In contrast to the proxy, the server module does not create a new object for each UOSP intro-
duction address, as the distinction is not relevant when invalidating UOSP data services. For this
reason, there is only one instance of the UospDataAddress class that is used by all processes. The
only property of this object is a dictionary like data type that contains the provisioned UOSP data
addresses as keys and their validity as values.

In a separate thread, the server periodically checks whether the validity period of one of the data
services in the uosp_data_addresses list has exceeded by utilizing the method revice_validity. A
handle for communication with the Tor control socket is passed to the method so that exceeded
services can be teared down immediately. Finally, the service is deleted from the list using re-
move_data_address.

In case of a newly provisioned data service, its onion address is added to the database using the
method add_data_address. Subsequently, the server prepares an extended validity UOSP message,
whose structure is illustrated in Figure 4.3b and appends this address as payload. Finally, this
message is sent to the proxy, which triggers transition a1.

4 Unlinkable Onion Services 49

4.4.3.3 Data Response Sent & Legacy HTTP Request Sent

After sending the data response to the proxy, the work for the server module is done. As this is a
final state, the protocol ends and the process for handling the request is stopped.

4.4.3.4 UOSP Response Sent

Once the UOSP response has been sent to the proxy, the server module waits for its acknowledge-
ment. Since data is transmitted with this response, the server expects the usage of the HTTP
POST method rather than the HTTP GET method. The reception of that acknowledgement trig-
gers transition a2, which results in the state UOSP Ack received.

4.4.3.5 UOSP Ack Received

In the first step, the received acknowledgement is divided into header and body. Since the http.server
Python module was used for providing the HTTP server, no additional tools or modules are ne-
cessary in order to achieve this separation. It is assumed that the body of the acknowledgement
solely contains the hashed public key that has been sent to it in the previous state. To assure the
integrity of the transmission channel, the server also calculates the hash value of the address of the
provisioned UOSP data service. Similarly to the proxy, a SHA-256 hash is generated using the
Python module hashlib. The hash value contained in the acknowledgement is then compared with
the generated hash value. If these values differ, the encoded public key of the UOSP data service
has been changed during transmission. This triggers the transition a6, which leads to the error
state. Otherwise, the server sends a response in the form of an extended data UOSP message to
the proxy that indicates the successful completion of the protocol cycle. This trigger transition a3,
which results in the final state Server Fin sent.

4.4.3.6 Server Fin Sent

After sending the finalize message to the proxy, the work for the server module is done. As this is
a final state, the protocol ends and the process for handling the request is stopped.

5 Performance Analysis 50

5 Performance Analysis

As stated in the related work section, Köpsell et al. [5] discovered that the increase in latency of an
anonymized service is linearly related to the drop-out rate of users. Based on these findings, Wendol-
sky et al. [6] were able to define the tolerance level of inexperienced users with regard to the latency
of a service at about four seconds. This implies that an initial response to a user request must not
exceed this duration, otherwise the usability of the service is limited. That also applies to the Un-
linkable Onion Services Protocol (UOSP) specified in section 4. Additional latency is added to the
communication through the provisioning of UOSP data services and the exchange of their addresses.

This section examines whether the increase in the latency of an onion service through the use of
the UOSP can be reconciled with the latency limit defined by Wendolsky et al. [6]. Since the
provisioning of UOSP data services will most likely account for the majority of the additional
latency, it is necessary to find a method to measure the duration of the provisioning of an onion
service. Several temporal measurements of onion services have already been carried out [10, 12,
14], but these measurements focused primarily on the access-time of services and were designed
for the out-of-date V2 onion services. This thesis fills this gap by designing and implementing a
system to measure the performance of onion services with respect to their provisioning time. In
the following sub-sections, the methodological approach, the architecture and the implementation
of this system are described in detail. To conclude, the results of the implementation and its impact
on the usability of the UOSP will be discussed.

5.1 Methodological Approach

In order to be able to measure the provisioning time of an onion service it must be defined from
which point on a service is considered to be provisioned. For this purpose, it is necessary to
look at the individual steps that are involved in the provisioning. Initially, the service randomly
selects Tor nodes that shall act as its introduction points. It builds anonymous three-hop circuits
to those nodes and utilizes the Extensible ESTABLISH_INTRO protocol [25] to register them as
introduction points for the service. Once it receives the acknowledgements for this registrations in
the form of INTRO_ESTABLISHED cells, the onion service builds its descriptors, which contain,
among other things, information on the established introduction points. After the completion of
descriptor creation, anonymous circuits to the Hidden Service Directories (HSDirs) responsible for
the service for the respective time period and replica are established. Taking into account both
replicas and the two time periods under consideration (current and previous), there are a total of 16
responsible directories, to which a descriptor upload is initiated. Since the uploads are conducted
in parallel, the order in which the uploads are started need not correspond to the order in which
they are finished. Therefore, the successful completion of a specific upload event is not sufficient to
determine whether the provisioning of the service has been completed. In principle, there are three
different approaches to identifying the finalization of an onion service provisioning:

• The provisioning of an onion service is completed if all of its descriptor uploads are finished.
This would imply that provisioning fails if one of the 16 uploads is not successful.

5 Performance Analysis 51

• The provisioning of an onion service is completed if the service can be accessed by clients,
which indicates that at least one upload has successfully finished. This approach is used by
the Tor stem library to determine whether the service was published or not.

• The provisioning of an onion service is completed if at least 50 percent of all uploads finished
successfully. The sequence of the uploads is thereby not relevant.

In this work, a blend of two of the approaches described above is used. All service provisions in
which one of the uploads has failed are counted as failed provisions. This is necessary to preserve
the comparability of individual measurements. On the other hand, for the calculation of the overall
provisioning time of an onion service, only the time required to complete 50 percent of the uploads
is taken into account.

Another methodological consideration concerns the granularity of the measurements. For the meas-
urement of the provisioning time, it would be sufficient to measure the total time from the creation
of the service until the completion of the required uploads. Nevertheless, this would prevent the
detection of any performance bottlenecks, which could be mitigated by measures and would signi-
ficantly complicate troubleshooting in case of performance issues. For this reason, all sub-steps of
the provisioning of an onion service shall be observed. A list of all measurable steps is provided in
Table 5.1.

Source Target Event Measurable Measured
1 Service Service Started onion service provisioning Yes Yes
2 Service Introduction Points Started the creation introduction circuits Yes Yes
3 Service Introduction Points Finished the creation of introduction circuits Yes Yes
4 Service Introduction Points Sended ESTABLISH_INTRO cells Yes Yes
5 Introduction Point Introduction Point Registered introduction points Yes No
6 Service Introduction Points Received INTRO_ESTABLISHED cells Yes Yes
7 Service Service Started the creation of service descriptors Yes Yes
8 Service Service Finished the creation of service descriptors Yes Yes
9 Service HSDirs Started the descriptor uploads Yes Yes
10 Service Service Started the creation of upload circuits Yes No
11 Service HSDirs Finished the creation of upload circuits Yes Yes
12 Service HSDirs Finished the descriptor uploads Yes Yes

Table 5.1: Measurable Events During the Provisioning of an Onion Service

All actions in this table are referred to as events. The first event that takes place in the course of
an onion service provisioning is the service creation. Thereby, two different types of services can be
created. Non-ephemeral onion services are generated by either changing the in-memory Tor config-
uration or the Tor configuration file (torrc). In the latter case, the Tor binary must be reloaded in
order to recognize the modification. For each non-ephemeral onion service, a new folder is created
in the file system of the service host, which contains, among other things, the key material of the
service, keys for client authentication and the host name of the service. On a restart of the Tor
binary, all onion services contained in the Tor configuration are automatically re-provisioned. In
contrary, ephemeral onion services are not created via the configuration file, but via the control

5 Performance Analysis 52

socket of the Tor binary. For this purpose, for example, the Tor Stem library can be used. Eph-
emeral services exist only as long as their control connection exists. If the process through which
the service was created using the control protocol is terminated, the service is also torn down. To
decouple the services from their process, the attribute detached must be set to True when the service
is provisioned. However, this has no effect on the persistence of ephemeral services. Restarting the
Tor binary will not re-provisioning ephemeral onion services. Since both types of services can be
created using the Tor control protocol, the creation timestamp of an onion service corresponds to
the time the required control command was issued.

The second measurable event is the start of the creation of the circuits from the service to the
chosen introduction points. If available, Tor tries to use existing pre-built circuits for that purpose,
which only need to be extended by one hop [14]. This technique is referred to as cannibalization and
decreases the time for the service provisioning, since the usage of a cannibalized circuit does not
introduce further delay [14]. The completion of introduction circuit creation is measured by means
of the third event. Through the measurement of the start and end times of introduction circuit
creations, their duration can be computed. The fourth measurable event after the creation of the in-
troduction circuits is the sending of the ESTABLISH_INTRO cells, which are needed to register the
chosen Tor nodes as introduction points of the service. Once the Tor nodes receives the requests from
the service, they carry out cryptographical validations and sanity checks and register themselves
as introduction points. The duration of this registration can only be measured on the introduction
points themselves, which means that, for the measurement, an introduction point would have to be
operated and the Tor source code would have to be modified such that this introduction point is
selected by the service. As this would not provide any significant new insights, this specific duration
is not measured in the course of this thesis. The introduction points acknowledge the registration
by sending an INTRO_ESTABLISHED cell to the service. This is understood as the completion
of the establishment of the introduction points and is measured as the sixth event. Since the start
and end times of the introduction point establishments are measured, its duration can be computed.

Using the established introduction points, the service generates its service descriptors in the next
step. The start and the end time of this generation are captured in the seventh and eighth event,
which allows the duration of this process to be measured. In the last step, the created descriptors
are uploaded to the responsible HSDirs. For this purpose, circuits to the responsible directories
must be established. Similarly to the introduction circuits, cannibalization can be used to speed
up this process. It may seem odd that the event that indicates the start of the descriptor upload
chronologically precedes the event for the creation of the upload circuits, but this event triggers the
whole upload process, without which the circuits would not be created. Since the time gap between
the ninth and tenth event corresponds to a median of about 0.00144 seconds, the start of the upload
circuit creation is not measured, instead, the start of the descriptor uploads also marks the start of
the circuit creation. The completion of the upload circuit creation is measured in event eleven and
simultaneously indicates the start of the descriptor uploads. The uploads are asynchronous, which
means that the sequence in which the uploads start does not necessarily influence the sequence in

5 Performance Analysis 53

which they end. Completion of uploads is measured in the twelfth event. As the start and end times
of the descriptor uploads are measured, its duration can be calculated. Additionally, the HSDirs
for the individual descriptor uploads are recorded.

Finally, it must be determined how the events specified in Table 5.1 can actually be measured.
Essentially, there are two possible approaches:

1. Tor offers an extensive log system, which can be enabled by appropriate entries in the torrc
configuration file. Individual severity levels or functionality domains can be selected, whose
log messages are then redirected to a file, the standard output or syslog, for example [53].
Therefore, one possible approach is to configure custom logging, which saves the required
events to the chosen medium. On completion of provisioning, the log events from the selected
medium are read out and evaluated.

2. All required events can be obtained through the use of the Tor control protocol. Thereby,
a user or a program can register for specific event classes and then receive all log events
corresponding to this class.

In the course of this work, the events are obtained via the Tor control protocol using the Tor Stem
library, as this provides a considerably better handling in Python than reading from files or reading
the standard output. In addition, each event class can be handled in its own thread, which enables
parallel processing.

In principle, the focus of the measurement is set on V3 onion services, as V2 onion services will no
longer be supported in the foreseeable future [15]. Nevertheless, currently more than 170,000 V2
onion services are still running, which renders them a non-negligible group in terms of their high
prevalence [41]. Therefore, V2 onion services are included in the measurements in order to be able
to compare their temporal behaviour and performance with the current version. In addition, the
influence of the method used to create the onion service (ephemeral and non-ephemeral) and the
use of additional security features, as described in 3.2.5, is measured.

5.2 Architecture

In order to obtain measurement results that are ideally unaffected by possible sources of interference,
these interferences must be identified in the first step. Since the components used to perform
the measurements are most likely operated within an university or corporate network, they are
subject to fluctuations in network performance dependent on the time of day and number of users.
Furthermore, if the underlying hardware of the server on which the components are operated is
shared with other applications, their utilization can influence the hardware’s resource consumption
and thus influence the measurement performance. Similarly, the Tor network, which is used for
the provisioning of onion services, is subject to fluctuations in terms of bandwidth and circuit
build times that could potentially have an impact on the measurement results. To prevent these
short-term fluctuations in the networks and systems from having an effect on the measured values,
numerous measurements must be performed at different points in time.

5 Performance Analysis 54

In order to achieve this, an architecture is required that automatically provisions onion services,
measures the events that occur in this process and outputs them in a format that can be used for
analysis. To avoid measurements influencing each other (e.g. through caching), each measurement
must be carried out completely isolated from the other measurements. This requires an environment
that can be reset or recreated for each measurement with no significant overhead. In order to achieve
this, containers are used, which are inherently isolated from each other through operating system
features. In addition to avoiding interfering influences, a significant advantage of using containers
consists in the fact that faulty measurements do not influence other measurements in terms of a
temporal delay.

The minimal set of components required for measuring the provisioning time of onion services using
containers are depicted in Figure 5.1. In the following, the individual components and their mode
of operation are described.

torrc

TOR

Analysis Server Analysis Module

instantiates

registers events

receives events Tor Network

starts

receives results

Containerized environment

Figure 5.1: Performance Measurement Architecture

• Analysis Server

The Analysis server constitutes the backbone of the measurement system. It periodically
initiates a new measurement instance by starting a new measurement container. This container
performs all necessary steps for the measurement and returns the result to the analysis server
in a pre-defined format. Irrespective of the wording, the analysis server does not necessarily
have to deployed on a separate physical server, but can be located on the same server as the
host of the measurement containers.

• Analysis Module

All steps necessary for measuring the provisioning time of an onion service are performed by
the Analysis Module. In the first step, a new Tor process is created and Tor is bootstrapped
using the configuration in the provided torrc file. Subsequently, the module connects to the
Tor control socket using the Tor stem library and registers for several protocol events. When
these events occur, the module receives notifications containing all information about the
events. Once all event listeners are registered, a new onion service is created. Now the time
values relevant for the measurement are received by means of the previously registered event

5 Performance Analysis 55

listeners. As soon as the generation of the service and its measurement are completed, these
time values are analysed and correlated. The result of this analysis is returned to the analysis
server in a pre-defined format.

• Tor Binary

The Tor binary represents the connection between the analysis module and the components of
the onion service to be provisioned in the Tor network. To avoid distorting the measurements,
it is important that no caching of any kind is performed on the side of the Tor binary. This
is ensured by creating a new Tor process for each measurement.

• Tor Network

Since onion services can only be provisioned and accessed in the Tor network, the analysis
module and respectively the Tor binary must be connected to it.

The advantages of this architecture are its modularity and its ease of use. Since the analysis
module is implemented as a container, it includes all components required for the measurement.
A measurement process is initiated simply by starting the container, which returns the result in
a format that can be read by a wide range of analysis tools. The most important configuration
settings can be set with parameters that are specified when the container is started, without having
to change the container. In addition, it is possible to replace the analysis server with another
solution and thus integrate the analysis module into another software project.

5.3 Implementation

As described in section 5.2, the architecture for measuring the provisioning time of onion ser-
vices consists of the three main components Analysis Server, Analysis Module and the Tor binary.
In the following subsections, the implementation and usage of these components and all decisions
made in their development process are described in detail. Since space is limited, only excerpts
from the source code can be shown in the solution description. The complete source code of the
implementation is provided on GitLab [55] and in Annex B.

5.3.1 Analysis Module

The analysis module forms the core of the measurement system. It is implemented in Python 3.7,
due to the dependency on the Tor Stem library [46], which is used to measure the events listed in
Table 5.1. A description of the structure of this library can be found in section 4.4.1. The analysis
module consists of several Python files, whose structure is shown in Figure 5.2.

5 Performance Analysis 56

startAnalysis.py analysis.pyinvoke
results

circ
uit

events

circuitAnalyzer.py

descriptorAnalyzer.py

logAnalyzer.py

descriptor events

results
log eventsresults

Figure 5.2: Analysis Module Program Structure

In order to be able to connect to the Tor control socket and ensure that there is no timing cor-
ruption, it is important to verify that the Tor process is fully bootstrapped. This verification is
realized within the file startAnalysis.py by matching a predefined string sequence that indicates the
completion of the bootstrap using regular expressions. The source code is provided in Annex B.5.

Once a match is found, the actual measurement activity is started by invoking the function start in
the file analysis.py. The header of this function is shown in Listing 3.

1 def start(version, ephemeral, timeout, num_intro_points)

Listing 3: Measurement Invocation

Thereby the main measurement settings are passed as function parameters. The parameter ver-
sion specifies the version of the onion service to be provisioned and measured. Currently, the only
recognized values are version two and version three. If ephemeral is set to true, the module pro-
visions an ephemeral onion service. Otherwise, a non-ephemeral onion service is generated. The
parameter timeout defines the maximum overall duration a measurement process may last before
it is aborted. This is intended to prevent a failed or incomplete measurement from delaying the
measurement procedure. The number of introduction points an onion service uses can be specified
in the parameter num_intro_points. However, this value is only used to inform the module of how
many introduction points are expected and has no influence on the number of the actual introduc-
tion points used, which can be set by manipulating the Tor source code.

In the first step of the measurement process, a connection with the Tor control socket is established
using the from_port function of the Stem library, which returns a connection handle referred to as
controller. Subsequently, this controller is used to register event listeners for certain groups of Tor
events using the Stem function add_event_listener. As parameters, this function is provided with
the event or group of events to be listened to and the name of the function to which the event or
group of events should be relayed. The following groups of events are required to measure the onion
service performance: [46]

5 Performance Analysis 57

• CIRC

A CIRC event takes place when a circuit has changed. The content layout of the information
contained in the event is shown in Figure 5.3. One of the most valuable fields in this structure
with regard to the comprehensibility of the measured information is the id. This represents
the unique identifier of a circuit, which can be used to track it. The status field provides
information about the status of a circuit. The fingerprints and nicknames of all Tor relays
currently used by the circuit are contained in the field path. The field purpose contains a
description of the purpose of the circuit. Information on the other fields can be obtained from
the Stem manual [46].

id status path build_flags

purpose hs_state rend_query created

reason remote_reason socks_username socks_password

Figure 5.3: Structure of a CircuitEvent

All circuit events are forwarded to the function circCallback provided in the file circuitAna-
lyzer.py, whose source code is provided in Annex B.2. As described in Table 5.1, the start and
end time of the introduction circuit creation and the end time of the upload circuit creation
are measured. For this purpose, all circuits elements in relation to the onion service must be
recorded. This is achieved by evaluating the fields of the circuit event. Due to the gradual
nature of circuit building, it is necessary to extract the individual circuit relays from a circuit
event and assign them to their corresponding circuit according to the circuit id in the id field.
This is accomplished by extracting the circuit fingerprints from the path field of the event and
assign the relay to the circuit it extended.

In order to be able to effectively access all the nodes of a circuit, a class for storing the
individual circuit elements was developed, whose class diagram is provided in Figure 5.4.

circuitElement

- time_added : datetime
- fingerprint : string

+ getTime() : datetime
+ getFingerprint() : string

Figure 5.4: Circuit Element Class Diagram

Each node in the circuit is identified by its unique fingerprint. The time at which the node
was added to the circuit is stored in the attribute time_added. This attribute is decisive for
the subsequent time measurement. Both attributes can be obtained using a getter method.

5 Performance Analysis 58

To be able to assign the individual circuit elements to their circuits, a dictionary entry is
created for each circuit, whose key is the unique circuit id. The values of these dictionary
entries are lists to which the individual circuit elements are appended. In the end, all elements
of a circuit can be retrieved by accessing the dictionary using the specific circuit id.

• CIRC_MINOR

As the name suggests, the CIRC_MINOR events is triggered when minor changes to circuits
are performed. The structure of the information contained in the event is illustrated in Fig-
ure 5.5. Since this is also a circuit event, the fields id, path, build_flags, purpose, hs_state,
rend_query and created are identical to the CIRC event. The event field provides information
about the minor change that has been carried out on the circuit. Thereby it is distinguished
whether an existing circuit is cannibalized or the purpose of the circuit has changed. Inform-
ation on the other fields can be obtained from the Stem manual [46].

id event path build_flags

purpose hs_state rend_query created

old_purpose old_hs_state

Figure 5.5: Structure of a CircuitMinorEvent

This event is used to distinguish between a newly built or a cannibalized circuit by using only
the fields id and event. For this, all circuit minor events are forwarded to the callback hand-
ler circMinorCallback provided in the file circuitAnalyzer.py. The procedure of the callback
handler is identical to the procedure of circCallback described above.

• HS_DESC

Any operations that affect the descriptors of an onion service trigger the HSDescEvent event,
whose structure is depicted in Figure 5.6. The field action contains the description of the action
carried out. An identifier of the Hidden Service Directory (HSDir) to which the descriptor is
uploaded is contained in the field directory_fingerprint. Information on the other fields can
be obtained from the Stem manual [46].

action address authentication directory

directory_fingerprint directory_nickname descriptor_id reason

replica index

Figure 5.6: Structure of a HSDescEvent

5 Performance Analysis 59

All descriptor events are relayed to the method descCallback provided in the file descriptor-
Analyzer.py, whose source code is provided in Annex B.4. The events are necessary for the
measurement of the duration of the descriptor creation and the descriptor upload. To distin-
guish the individual events, the field action is utilized. The action CREATED indicates that
the onion service descriptor was just created, whereas the action UPLOAD and UPLOADED
mark the beginning and the end of the descriptor upload. Since numerous descriptor events
take place during the provisioning of an onion service, the events are stored separately and
are correlated and analysed later on. For storing the events, an object structure similar to
the structure of the circuit events is used, which is illustrated in Figure 5.4. Instead of the
circuit fingerprint, the fingerprint of the HSDir the descriptor is uploaded to is stored in the
attribute fingerprint.

• LogEvent

With the help of LogEvents one gains access to all log events of the Tor process. Each time the
process generates a log entry, this event is triggered. The structure of a log event is illustrated
in Figure 5.7. The runlevel refers to the importance rating of the event, while the actual log
message is contained in the field message.

runlevel message

Figure 5.7: Structure of a LogEvent

Using the log events, the completion of the introduction point establishment can be recognized.
For this purpose, all log events are forwarded to the methods logCallback_v2 or logCallback_v3
provided in logAnalyzer.py, depending on the version of the onion service to be measured.
The source code of this file is provided in Annex B.3. The duration of the introduction
point establishment is calculated in the analysis using the end time of the introduction circuit
creation and the introduction point established notification from the log events. To be able
to link these two types of events, the unique circuit id must be extracted from the log event.
This is achieved by using the regular expressions shown in Listing 4.

1 INTRO_ESTABLISHED_REGEX_V3 = 'service_handle_intro_established\(\):

Successfully received an INTRO_ESTABLISHED cell on circuit ([0-9]{1,})

\(id: ([0-9]{1,})\)'

↪→

↪→

2 INTRO_ESTABLISHED_REGEX_V2 = 'rend_service_intro_established\(\): Received

INTRO_ESTABLISHED cell on circuit ([0-9]{1,}) \(id: ([0-9]{1,})\)'↪→

Listing 4: Introduction Point Establishment Log Event Regular Expressions

Depending on the service version, a different regular expression is used. In addition to the
circuit ids, the time at which the event was received is stored.

In the next step, all results have to be collected from the individual event handlers. Since each
event handler is operated in its own thread, a solution for safe inter-thread communication has to

5 Performance Analysis 60

be used to exchange the results. For this purpose, synchronized queues are used. As the threads
are implicitly created by Stem and are not aware of when the provisioning of an onion service is
completed, it is difficult to obtain the results from the queues, because it is not possible to check
the content of a queue element without removing it from the queue. For this reason, a workaround
was developed in which the queue elements are removed from the queue for checking at periodic
intervals and are added to the queue again by the handlers at the same frequency. This procedure
is terminated and the Tor event listeners are detached once all required values are available. In
order to determine when this is the case, the onion service protocol values from its specification
are utilized (e.g. number of introduction points). A timer prevents the measurement process from
taking too long due to missing or faulty values. Currently, this time-out is set to 180 seconds.

Finally, the collected results have to be correlated and processed in order to be analysed and stored
in an uniform format. This necessary post-processing is individual and depends on the data to be
processed. The following processing steps were carried out in the course of this thesis:

• Descriptor Events:

In case of the descriptor analyzer, the individual events have already been divided into three
lists based on their appropriate action (created, upload and uploaded), which simplifies their
processing. One further advantage lies in the storage of the individual events, which now
enables an effective correlation. To obtain the descriptor creation time, the object-method
getTime is used to receive the creation time stamp of the descriptor event objects in the cre-
ated list. These time values are assigned a label, which allows them to be associated with the
respective descriptor. The assignment of upload events to their corresponding uploaded events
has proven to be more complex, since both events are stored in separate lists. In the first step,
all upload event objects are read from the list of upload events and placed in the dictionary,
such that the individual upload procedure can be accessed using a label. Subsequently, the rel-
evant uploaded event is extracted from the list of all uploaded events on the basis of its unique
circuit fingerprints. Finally, the timestamps of these uploaded events are obtained using the
object method getTime and assigned to the upload procedure using its label. In addition, the
path of the upload circuit and the directory used for each upload are stored. Thereby, the path
of an upload circuit is obtained from circuit events and the responsible directory is obtained
by querying the Tor network status using the unique relay fingerprint from the upload events.

• Circuit Events:

To obtain the start and end time of the introduction circuit creation, initially the circuit id
of the circuit to be analysed has to be obtained. This is done by firstly parsing the log events
that indicate the establishment of an introduction point. These events contain, amongst other
information, the circuit ids of all introduction circuits. This circuit ids can then be used as key
in the dictionary of introduction circuits to get all circuit elements that correspond to a specific
circuit. The temporally first and last element can now be selected from this set of elements,
which results in the start and end events of the introduction circuit. Finally, the time stamps
of these elements are extracted using the getTime method of the circuit element objects.

5 Performance Analysis 61

• Log Events:

The last time values to be obtained are the introduction point establishment times. As
mentioned above, the log events are utilized for this purpose. Since these events are not stored
within objects, the time stamps are passed in the form of lists, which contain, apart from the
timestamp, the ids of the introduction circuits. The time stamps are extracted and saved in
a labeled data structure, to be then assigned to their corresponding introduction circuits.

All measurement fields for which no value could be determined due to a timeout or any other error
are assigned the value FAIL in order to be able to distinguish them from regular fields later in the
evaluation. Finally, the measurement results are saved in a csv file using the Python module csv,
as this format is supported by the most common analysis tools.

5.3.2 Container Environment

As described in section 5.2, the measurement is carried out in a containerized environment to avoid
falsification of the results by any influences. The virtualization software Docker is used for this pur-
pose, which uses operating system on-board techniques like control groups or namespaces to isolate
the individual environments [56]. Its architecture consists primarily of three parts. The Docker
Client communicates with the Docker Daemon, which is responsible for the building, running and
distribution of Docker containers. All containers are based on an image, which is a template that
contains all necessary building blocks for the application that shall be hosted. Docker Registries
are services that store and provide such images. Besides the predefined images, one can also create
customized images, which are either written from scratch or based on other images. All the steps
that are necessary to create a custom image are collected in a so-called Dockerfile. [56]

Since the requirements for the onion service measurement cannot be fulfilled by a standard envir-
onment, a custom image based on Debian was created. The most important excerpts from the
Dockerfile created for this purpose are described below. The complete file is provided on GitLab
[57] and in Annex B.7.

One of the main components of the resulting image is the Tor binary, which is required for the com-
munication with the Tor network. As described in section 5.3.1, in addition to circuit and descriptor
events, log events are also required to measure the provisioning time of an onion service. Thereby,
the logs contain the notifications of the establishments of introduction points, which are then linked
to the corresponding introduction circuit events. This linking takes place on the basis of the unique
circuits identifiers. Since circuit events and log events use different storage structures that have
different identifiers in the context of introduction circuits, the Tor source code had to be adapted
to establish a shared identifier. Specifically, the log outputs of the introduction point establishment
notification for V2 services (see Listing 5) and V3 (see Listing 6) services were changed in a way
that, in addition to the structure-specific identifier, the global circuit identifier is also provided.
This enables the linking of circuit and log events.

5 Performance Analysis 62

1 //rendservice.c:3443

2 log_debug(LD_REND, "Received INTRO_ESTABLISHED cell on circuit %u (id: %" PRIu32 ")

for service %s", (unsigned)circuit->base_.n_circ_id, circuit->global_identifier,

serviceid);

↪→

↪→

Listing 5: Tor Source Code Log Extensiveness Extension V2

1 //hs_services.h:3324

2 log_debug(LD_REND, "Successfully received an INTRO_ESTABLISHED cell on circuit %u

(id: %" PRIu32 ") for service

%s", TO_CIRCUIT(circ)->n_circ_id,circ->global_identifier,

safe_str_client(service->onion_address));

↪→

↪→

↪→

Listing 6: Tor Source Code Log Extensiveness Extension V3

The modified Tor source code is added to the container and built using build automation tools.
The second important component of the container is the Python measurement environment required
to measure the provisioning time of onion services. In order to be able to use it in the container,
the Python environment and a package-management system are installed in the first step. The
package-management system is used to install the Python modules Stem and Vanguards. Stem
provides the basis for the measurement procedure and is described in section 4.4.1. The Vanguards
module adds additional security features to onion service, which are delineated in section 3.2.5.
These security features can be additionally adjusted by a configuration file. To obtain comparable
results, the default configuration of Vanguards was used in the course of this work. In order to
make the analysis module usable, finally its source code is added into the container.

Additionally, in order to automatize the measuring process as far as possible, a script was developed
which performs all necessary steps to start the measurement procedure based on the measurement
parameters provided. These parameters include the version and type of the onion service to be meas-
ured, a timeout which is awaited before the measurement is aborted and the number of introduction
points used. The script starts the Tor process using the containers torrc file and subsequently starts
the Python measurement procedure that generates a csv file with the measurement results. To
ensure that this script is invoked when the container is executed, the script is set as the entry point
of the Docker image. The source code of the script is provided in Annex B.10.

5.3.3 Analysis Server

If a container based on the containerized measurement environment is executed, one measurement
cycle is performed. To obtain representative results, it is necessary to automatically carry out nu-
merous measurements cycles. For this purpose, the analysis server in the form of a bash script was
developed, whose source code can be found in Annex B.8.

5 Performance Analysis 63

The following parameters can be set in this script:

• Target directory: Path to the directory where the results of the measurements are stored.

• Docker image: Name and tag of the custom docker image to be executed.

• Timeout: Individual measurement timeout.

• Introduction points: Number of introduction points to be expected.

In order to be able to conduct the measurements of the individual versions and types of onion
services under comparable conditions, all measurement variants are carried out serially one after
the other within one measurement cycle. Finally, the individual files of the measurement cycles are
merged with the help of a Python script in order to obtain one single csv file for each measurement
type.

5.4 Results

The provisioning times of onion services were measured in the four different variants V2, V3, V3
non-ephemeral and V3 with Vanguards using the implementation described in section 5.3. To obtain
the results presented in this section, two measurement sessions were conducted:

1. In the course of the first measurement session, 1520 individual measurements per variant
were carried out. This session covered a time period of about three days, which reduces the
sensitivity of the measurement results to errors due to temporal fluctuations in the performance
of the server or the Tor network.

2. As the first measurement session revealed interesting irregularities, which could not be ana-
lysed without additional data material, a second measurement was carried out with an exten-
ded measurement scope. In the course of this second session approximately 500 measurements
were carried out per variant.

Table 5.2 shows the most important statistical characteristics of the first measurement session. Note
that all values in the table are specified in seconds.

Type Samples Mean Median SD 25% 75% Min Max Error
V2 default 1520 32.82 32.53 3.88 31.83 32.95 26.93 133.53 4.21%
V3 default 1520 5.13 4.23 3.76 3.10 4.23 0.57 93.35 12.69%
V3 non-ephemeral 1520 5.04 4.19 3.85 3.07 6.02 0.79 104.53 14.27%
V3 vanguards 1520 5.49 4.36 5.09 3.25 6.30 1.15 94.08 15.26%

Table 5.2: Total Provisioning Time of Different Onion Service Types

A graphical representation of these numbers in the form of a box plot is provided in Figure 5.8.

5 Performance Analysis 64

Figure 5.8: Total provisioning Time of different Onion Service Types

The provisioning time of a V2 service averaged at 32.82 seconds, that of V3 services at 5.13 seconds,
that of non-ephemeral V3 services at 5.04 seconds and that of V3 services with Vanguards plugin
enabled at 5.49 seconds. These numbers indicate that the average provisioning time of an onion
service V3 is equivalent to about one sixth of the provisioning time of an onion service V2. Also,
the minimum provisioning time of V2 services is significantly higher compared to V3 services. The
maximum values of the provisioning time also differ, but not as drastically as the minimum val-
ues. The error rate, which indicates whether one of the sub-steps in the provisioning of an onion
service has failed, is about two-thirds higher for onion service based on V3 than for V2 services.
Since the median and the mean of the individual measurements variants are close to each other,
the results appear to be evenly distributed. In order to be able to use statistical tests to compare
the provisioning times of the individual variants, it is necessary to ascertain whether the data are
normally distributed. In the first step, this assessment is accomplished with the help of a quantile-
quantile (q-q) diagram, which is shown in Figure 5.9.

The q-q diagram is an efficient way to compare the distributions of two data sets. Thereby, the
quantiles of a distribution are plotted against the quantiles of another distribution. If the quantiles
of the two distributions are approximately equal, the quantile-quantile points in the diagram should
form a straight line, represented by the red line in the graph. In order to check if the measured
data is normally distributed, it is plot against generated normally distributed data. [58]

As can be seen in the individual graphs in Figure 5.9, the results of none of the measurement variants
are normally distributed, since q-q points significantly deviate from the ideal line. To confirm the

5 Performance Analysis 65

Figure 5.9: Quantile-Quantile (Q-Q) Diagram

graphical results quantitatively, a Shapiro-Wilk normality test with a significance level of 1% was
carried out for all measurement variants, which also came to the conclusion that the results are not
normally distributed. Therefore, the non-parametric Mann-Whitney U test is used to compare the
provisioning times. In this analysis, the overall provisioning time is the dependent variable and the
measurement variable is independent. The following hypotheses are used in the tests:

• H0: The samples of both measurement variants are from the same distribution. This means
that there are no significant deviations in the provisioning times of the two onion service vari-
ants considered.

• H1: The samples of both measurement variants are not from the same distribution. This means
that there are significant deviations in the provisioning times of the two onion service variants
considered.

The results of the Mann-Whitney U test are shown in Table 5.3.

Type one Type two p Result
V2 default V3 default < 0.0001 reject H0
V3 default V3 non-ephemeral 0.0125 can’t reject H0
V3 default V3 vanguards 0.5255 can’t reject H0
V3 non-ephemeral V3 vanguards 0.0016 reject H0

Table 5.3: Results of the Mann-Whitney U Test

5 Performance Analysis 66

Based on a significance level of 1%, H0 is rejected if the p value of the Mann-Whitney U test is less
than 0.01. Comparing the measured values of the provisioning times of V2 and V3 onion services,
the null hypothesis is rejected, which means that the two distributions differ significantly. The same
applies to the comparison of non-ephemeral V3 services and V3 services that use the Vanguards
plugin. There is no significant difference between V3 onion services and the two onion services V3
based variants. From this results in can be concluded, that there are significant differences in the
provisioning times of V2 onion services and V3 onion services while the different variants of the V3
onion services differ only slightly.

The bar chart in Figure 5.10 provides a visual comparison of the duration of the individual sub-steps
of the provisioning of the different onion service variants. The mean values of the provisioning sub-
steps used for this plot are also provided in Table 5.4. The term SD stands for standard deviation
and all values in this table are provided in seconds.

Type
Introduction Point
Establishment

SD
Descriptor
Creation

SD Upload SD

V2 default 0.3955 0.3594 30.9890 0.6475 1.4383 3.8020
V3 default 0.4173 0.6143 0.7665 0.2463 3.9725 3.7332
V3 non-ephemeral 0.3585 0.3319 0.8178 0.2775 3.9200 3.8398
V3 vanguards 0.6350 0.3921 0.6220 0.4095 4.2403 5.0283

Table 5.4: Sub-steps of the Provisioning Time of Different Onion Service Types

Figure 5.10: Onion Service Provisioning Sub-step Duration

In comparison to the mean duration of the other sub-steps involved in the provisioning of an onion
service, the time required for the establishment of introduction points had the least impact on

5 Performance Analysis 67

the overall provisioning time. This applies to all four variants, for which the introduction point
establishment took approximately the same amount of time. This contrasts with the descriptor
creation time that took about 30.98 seconds for onion service V2, which is about 38 times longer
than for the other variants. Also the upload time differs significantly between V2 and V3 services.
Since the standard deviation of the upload times is very high compared to the standard deviation
of the other sub-steps, it can be assumed that the upload times are spread out and not clustered
around the median. The distribution of the upload times is shown in the bar chart in Figure 5.11.

Figure 5.11: Onion Service Upload Time Distribution

From the graph it can be concluded that the majority of uploads took about 5 seconds, while al-
most all uploads were completed after 20 seconds. An interesting result of the analysis is that some
uploads required more than 100 seconds. In order to further investigate this issue, additional meas-
urement values were collected during the second measurement session, which allow the subdivision
of the upload time into the duration of the creation of the upload circuits and the actual HTTP
upload time. The resulting distributions are depicted in Figure 5.12 and Figure 5.13. From these
bar plots it can be concluded that the conspicuously high total upload time is due to issues with
the creation of the upload circuits.

5.5 Discussion

The results of the performance measurements provided in section 5.4 indicate that the usage of
the Unlinkable Onion Services Protocol (UOSP) in its current version in principle is not feasible
with regard to its additional latency. According to the work of Wendolsky et al. [6], the duration
inexperienced users of anonymization services are willing to wait is approximately four seconds.
Assuming that the data service provisioned in the course of the UOSP is an onion service version

5 Performance Analysis 68

Figure 5.12: Onion Service HTTP Upload Duration

Figure 5.13: Onion Service Upload Circuit Creation Duration

5 Performance Analysis 69

three, this provisioning would require 5.13 seconds on average. In addition to provisioning, the
overall response time is composed of the following three HTTP round trips:

1. Client UOSP request to the proxy and its response

2. Proxy UOSP request to the server and its response

3. Proxy UOSP acknowledgement to the server and its response

To be able to approximate the overall response time, HTTP Round Trip Times (RTTs) from the
measurement server to an external HTTP server were conducted, whose results are shown in Table
5.5. In total 1000 measurements were performed. The payload of the HTTP responses was kept
minimal to simulate UOSP messages.

Mean Median SD 25% 75% Min Max
0.4097 0.3964 0.0408 0.3845 0.4216 0.3665 0.8124

Table 5.5: HTTP Round Trip Times (RTT)

Based on the average RTT, a client would have to wait approximately 6.35 seconds for the first
response from the proxy, which clearly exceeds the four-second limit. In contrast, if a UOSP data
service has already been provided and its address is in the cache of the proxy, the overall response
time consists solely of an HTTP round trip and the query of the cache of the proxy. This would
significantly fall below the four-second limit and thus enable the use of the UOSP.

As can be observed from the data in Table 5.2, the average provisioning of onion service V2 is
considerably slower compared to V3 services. After combining this finding with the durations of the
provisioning sub-steps in Table 5.4, it becomes apparent that the creation of the service descriptors
takes up almost the entire provisioning time. This is particularly remarkable because the generation
of V2 descriptors requires much less cryptographic effort than V3 descriptors. The first assump-
tion to explain this discrepancy was that the cryptography used in V2 performed poorly on the
measurement system. Since at the time of descriptor creation the RSA key pair of the V2 service
is already generated, this cannot have any impact on the duration of the descriptor creation. The
cryptographic operations performed during the creation of the descriptors are the hashing of values
and the signing of the descriptor. For hashing, the outdated hash algorithm SHA1 is used, whose
execution on the measurement system took place in less than 0.0001 seconds. The signature is an
RSA signature that uses the PKCS.1 padding. Such a signature could be created on the mesas-
urement system in about 0.59 seconds on average. These results suggest that the cryptographic
operations are not decisive for the long creation time of the descriptors of V2 onion service. The
real reason for the significantly increased descriptor creation times was finally found in the source
code. The first time a descriptor for a V2 onion service is published, a random delay is added, to
ensure that the descriptor is stable before it is uploaded. The minimal delay is 30 seconds, which
explains the clustering of descriptor creation times at around 31 seconds. Nevertheless, the V2

5 Performance Analysis 70

descriptors required less upload time, which is most likely due to their reduced size compared to
the V3 descriptors. [39]

It was anticipated that the provisioning times would not differ drastically between the different
V3 services. In principle, this can be confirmed on the basis of the measurement results, but
there were significant differences between non-ephemeral onion services and onion services that use
the Vanguards plugin. This becomes particularly evident in the comparison of introduction point
establishment times, where V3 services that used vanguards required about twice the time of non-
ephemeral onion services. This is probably due to the fact that introduction circuits are extended
by one node when using the Vanguards plugin. Surprisingly, services using Vanguards built their
descriptors faster than the rest of the variants. This seemed initially unreasonable, since there is no
difference in how the descriptors are built. In order to provide an explanation for this phenomenon,
a number of measurements were performed with different numbers of introduction points. These
measurements yielded interesting results, as measurements that used more introduction points took
longer to establish their introduction points, but completed the creation of their descriptor at the
same time as services that used fewer introduction points. This implies that parts of the descriptors
are created in parallel to the establishment of the introduction points, which in turn indicates that
the number of introduction points has no effect on the overall provisioning time. As expected, the
descriptor upload took the longest with the services that use Vanguards, as the upload circuits also
contain an additional hop.

A remarkable finding in the results was the high standard deviation of the upload duration compared
to the durations of the other sub-steps. The bar plot in Figure 5.11 revealed that a large proportion of
the descriptor uploads are completed within a reasonable time frame (1-10 seconds), whereas several
of the descriptor uploads required more than 100 seconds. To determine the cause of this behaviour,
a further measurement was conducted that allows the distinction between the upload circuit creation
time and the mere HTTP upload time. An analysis of the results of these measurements showed
that, contrary to expectations, the upload circuit creation was the main issue. A further source
code analysis revealed that there is a 100 second timeout for the creation of circuits to the HSDirs,
after which a new connection attempt is made, which is the reason for the delay.

6 Conclusion 71

6 Conclusion

This chapter provides a summary of the main findings of this thesis and their implications for Tor
onion services. As this is a very broad field of research and the time limitations of a Master’s thesis
do not allow to investigate all aspects in detail, several open research topics are noted in the future
work section.

6.1 Summary

The functional principles of Hidden Service Directories (HSDirs) provide adversaries with the ability
to determine when and how often a service is accessed if the attacker is able to control one or more
HSDirs of that service. Combining this information with temporal metadata from an additional
source (e.g. the log data of a company’s network traffic) could allow the identification of the service
client or at least its device. As the behaviour of the HSDirs does not in itself constitute a vulnerab-
ility, it cannot be assumed that their functional principle will be changed in the foreseeable future.
This is a particular threat to those who use the Tor network and Tor onion service to protect their
identity against government repression and surveillance.

This thesis aimed to address this problem by developing a protocol that reduces and, if possible, pre-
vents the collection of metadata at the HSDirs. The fundamental problem consists in the fact that a
service can be uniquely identified by its onion address and thus tracked by a potential adversary. In
order to dissolve the relation between the service and its address, a two-tier addressing concept was
developed. This concept allows clients to issue temporal limited individual onion addresses for a
service via a publicly known service address referred to as introduction address. An adversary is not
able to establish a connection between this individual address and an onion service, provided that
the client does not share the address. However, this only applies to service requests issued using
the individual onion address. The initial request to the public introduction address constitutes the
same threat to anonymity as it would without the protocol. To prove the feasibility of the proposed
protocol, a Proof of Concept (PoC) was implemented in Python for Hypertext Transfer Protocol
(HTTP) services.

Since the latency of a service is a crucial factor in terms of its usability, a comprehensive performance
analysis was carried out, measuring the provisioning time of onion services in different variants,
as this is the most time-consuming component of the protocol. The results reveal that the latency
involved in issuing an individual onion addresses is approximately 6.35 seconds. According to
the previous investigation on latency acceptance of Wendolsky et al. [6], this latency exceeds the
acceptable limit, which would lead to the protocol not being used. However, this limitation does
not apply to the usage of the issued individual onion addresses, whose latency is significantly below
the limit. This implies that the usage of the protocol is in principle feasible, but the commissioning
process of the individual onion addresses must be expedited.
The use of the protocol minimizes the ability of collecting metadata on the HSDirs. However, the
proposed protocol has two known limitations:

6 Conclusion 72

1. Each client must cache the individual addresses issued to it in order to avoid the necessity
of making a request to the introduction address every time it accesses an onion service as
this would eliminate the advantage of non-linkable addresses. Nevertheless, this has the
effect that the cache of the client allows a complete associability of individual addresses to
the introduction addresses, which an adversary could use to monitor which services a client
accesses. This trade-off is necessary and the risk of compromise is considered low as the cache
is under the control of the client in the current protocol proposal.

2. The approach does not scale. As a new onion service must be provisioned for each individual
address, the number of addresses is limited. One possible solution to this problem is to no
longer provide each user with their individual address, but to randomly select an address from
a pool of addresses.

3. The additional latency introduced through the use of UOSP leads to an average Round Trip
Time of 6.35 seconds, which exceeds the acceptable latency limit of 4 seconds proposed by
Wendolsky et al. [6]. This circumstance is mitigated in practical use, as the caching of the
UOSP data addresses on the proxy side considerably reduces this Round Trip Time.

6.2 Future Work

The following research topics regarding the reduction of metadata when accessing onion services re-
mained unprocessed due to temporal limitations of the master thesis:

• Quantitative Onion Service Anonymity Measurement

In order to be able to better compare and classify the improvements of the proposed protocol or
any changes to the onion service specification, it is necessary to develop a method to quantify
the anonymity of onion services.

• Scalability Issues

The current protocol proposal suffers from scaling issues, as a new onion service must be
provisioned for each individual onion address, which limits the number of possible clients and
addresses. A possible solution is to no longer issue an individual address to each user, but
to randomly choose an already provided address from a pool. For example, this could be
implemented with OnionBalance [59], which combines introduction points of several services
in a super descriptor, which are then randomly selected by the client.

• Pool Size

In case a solution with a pool of onion addresses is considered, the size of this pool and its
impact on the anonymity of the clients has to be investigated.

• Validity Period

Currently, the validity period of individual onion addresses is set to 24 hours. In order to
determine an ideal period, the impact of the validity period on the anonymity of onion ser-
vices needs further investigation.

References 73

References

[1] Christina Gardner and Donald L. Amoroso. ‘Development of an instrument to measure the
acceptance of internet technology by consumers’. In: Proceedings of the Hawaii International
Conference on System Sciences 37.C (2004), pp. 4143–4152. issn: 10603425. doi: 10.1109/
hicss.2004.1265623.

[2] Andrew S Tanenbaum and David J Wetherall. Computer Networks. 5th. Upper Saddle River,
NJ: Prentice Hall Press, 2010. isbn: 0132126958.

[3] J. Postel. Transmission Control Protocol. USA, Sept. 1981. doi: 10.17487/rfc0793. url:
https://www.rfc-editor.org/info/rfc0793.

[4] Roger Dingledine, Nick Mathewson and Paul Syverson. ‘Tor: The second-generation onion
router’. In: Proceedings of the 13th Conference on USENIX Security Symposium - Volume 13.
San Diego, CA: USENIX Association, 2004, p. 21. doi: 10.5555/1251375.1251396.

[5] Stefan Köpsell. ‘Low Latency Anonymous Communication – How Long Are Users Willing
to Wait?’ In: Emerging Trends in Information and Communication Security. Ed. by Günter
Müller. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 221–237. isbn: 978-3-540-
34642-5.

[6] Rolf Wendolsky, Dominik Herrmann and Hannes Federrath. ‘Performance Comparison of Low-
Latency Anonymisation Services from a User Perspective’. In: Privacy Enhancing Technolo-
gies. Ed. by Nikita Borisov and Philippe Golle. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 233–253. isbn: 978-3-540-75551-7.

[7] Ana Custura et al. Onionperf. 2020. url: https://gitlab.torproject.org/tpo/metrics/
onionperf (visited on 03/12/2020).

[8] Ana Custura, Iain Learmonth and Gorry Fairhurst. ‘Measuring mobile performance in the tor
network with onionperf’. In: TMA 2019 - Proceedings of the 3rd Network Traffic Measurement
and Analysis Conference (2019), pp. 233–238. doi: 10.23919/TMA.2019.8784601.

[9] Andriy Panchenko, Lexi Pimenidis and Johannes Renner. ‘Performance analysis of anonymous
communication channels provided by tor’. In: ARES 2008 - 3rd International Conference on
Availability, Security, and Reliability, Proceedings (2008), pp. 221–228. doi: 10.1109/ARES.
2008.63.

[10] Karsten Loesing et al. ‘Performance measurements and statistics of Tor hidden services’. In:
Proceedings - 2008 International Symposium on Applications and the Internet, SAINT 2008
(2008), pp. 1–7. doi: 10.1109/SAINT.2008.69.

[11] Christian Wilms. ‘Improving the Tor Hidden Service Protocol Aiming at Better Performances’.
Master Thesis. Otto-Friedrich Universität Bamberg, 2008.

[12] Christian Wilms. ‘Performance Evaluation of Tor Hidden Services’. In: (2007).

[13] Helge Rausch. Puppetor. 2013. url: https://github.com/tsujigiri/puppetor (visited on
05/12/2020).

https://doi.org/10.1109/hicss.2004.1265623
https://doi.org/10.1109/hicss.2004.1265623
https://doi.org/10.17487/rfc0793
https://www.rfc-editor.org/info/rfc0793
https://doi.org/10.5555/1251375.1251396
https://gitlab.torproject.org/tpo/metrics/onionperf
https://gitlab.torproject.org/tpo/metrics/onionperf
https://doi.org/10.23919/TMA.2019.8784601
https://doi.org/10.1109/ARES.2008.63
https://doi.org/10.1109/ARES.2008.63
https://doi.org/10.1109/SAINT.2008.69
https://github.com/tsujigiri/puppetor

References 74

[14] Jörg Lenhard, Karsten Loesing and Guido Wirtz. ‘Performance measurements of tor hidden
services in low-bandwidth access networks’. In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5536
LNCS.March (2009), pp. 324–341. issn: 03029743. doi: 10.1007/978-3-642-01957-9_20.

[15] David Goulet. Onion Service version 2 deprecation timeline. 2020. url: https : / / blog .
torproject.org/v2-deprecation-timeline?page=1 (visited on 05/12/2020).

[16] Lasse Øverlier and Paul Syverson. ‘Locating hidden servers’. In: Proceedings - IEEE Sym-
posium on Security and Privacy 2006 (2006), pp. 100–114. issn: 10816011. doi: 10.1109/SP.
2006.24.

[17] Matthew K. Wright et al. ‘The predecessor attack’. In: ACM Transactions on Information and
System Security 7.4 (2004), pp. 489–522. issn: 1094-9224. doi: 10.1145/1042031.1042032.

[18] Alex Biryukov, Ivan Pustogarov and Ralf Philipp Weinmann. ‘Trawling for tor hidden services:
Detection, measurement, deanonymization’. In: Proceedings - IEEE Symposium on Security
and Privacy (2013), pp. 80–94. issn: 10816011. doi: 10.1109/SP.2013.15.

[19] Gareth Owen and Nick Savage. ‘Empirical analysis of Tor hidden services’. In: IET Information
Security 10.3 (2016), pp. 113–118. issn: 17518717. doi: 10.1049/iet-ifs.2015.0121.

[20] Juan A. Elices and Fernando Pérez-González. ‘Locating Tor hidden services through an
interval-based traffic-correlation attack’. In: 2013 IEEE Conference on Communications and
Network Security, CNS 2013 2 (2013), pp. 385–386. doi: 10.1109/CNS.2013.6682740.

[21] Zhen Ling et al. ‘Protocol-level hidden server discovery’. In: Proceedings - IEEE INFOCOM
(2013), pp. 1043–1051. issn: 0743166X. doi: 10.1109/INFCOM.2013.6566894.

[22] Muqian Chen et al. ‘SignalCookie: Discovering Guard Relays of Hidden Services in Parallel’.
In: 2019 IEEE Symposium on Computers and Communications (ISCC). Vol. 2019-June. IEEE,
June 2019, pp. 1–7. isbn: 978-1-7281-2999-0. doi: 10.1109/ISCC47284.2019.8969639. url:
https://ieeexplore.ieee.org/document/8969639/.

[23] David M. Goldschlag, Michael G. Reed and Paul F. Syverson. ‘Hiding routing information’. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) 1174 (1996), pp. 137–150. issn: 16113349. doi: 10.1007/
3-540-61996-8_37.

[24] M Leech et al. SOCKS Protocol Version 5. USA, Mar. 1996. doi: 10.17487/rfc1928. url:
https://www.rfc-editor.org/info/rfc1928.

[25] Cristopher Baines et al. Tor Rendezvous Specification - Version 3. 2020. url: https : / /
gitweb.torproject.org/torspec.git/tree/rend-spec-v3.txt.

[26] Daniel J Bernstein. ‘Curve25519: New Diffie-Hellman Speed Records’. In: Public Key Crypto-
graphy - PKC 2006. Ed. by Moti Yung et al. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 207–228. isbn: 978-3-540-33852-9.

[27] Tim Wilson-Brown et al. Proposal 260 - Rendezvous Single Onion Services. 2017. url: https:
//github.com/torproject/torspec/blob/master/proposals/260-rend-single-onion.
txt.

https://doi.org/10.1007/978-3-642-01957-9_20
https://blog.torproject.org/v2-deprecation-timeline?page=1
https://blog.torproject.org/v2-deprecation-timeline?page=1
https://doi.org/10.1109/SP.2006.24
https://doi.org/10.1109/SP.2006.24
https://doi.org/10.1145/1042031.1042032
https://doi.org/10.1109/SP.2013.15
https://doi.org/10.1049/iet-ifs.2015.0121
https://doi.org/10.1109/CNS.2013.6682740
https://doi.org/10.1109/INFCOM.2013.6566894
https://doi.org/10.1109/ISCC47284.2019.8969639
https://ieeexplore.ieee.org/document/8969639/
https://doi.org/10.1007/3-540-61996-8_37
https://doi.org/10.1007/3-540-61996-8_37
https://doi.org/10.17487/rfc1928
https://www.rfc-editor.org/info/rfc1928
https://gitweb.torproject.org/torspec.git/tree/rend-spec-v3.txt
https://gitweb.torproject.org/torspec.git/tree/rend-spec-v3.txt
https://github.com/torproject/torspec/blob/master/proposals/260-rend-single-onion.txt
https://github.com/torproject/torspec/blob/master/proposals/260-rend-single-onion.txt
https://github.com/torproject/torspec/blob/master/proposals/260-rend-single-onion.txt

References 75

[28] Nick Mathewson. Proposal 220 - Migrate server identity keys to Ed25519. 2013. url: https:
//gitweb.torproject.org/torspec.git/plain/proposals/220-ecc-id-keys.txt.

[29] Roger Dingledine and Nick Mathewson. Tor Protocol Specification. 2020. url: https : / /
gitweb.torproject.org/torspec.git/plain/tor-spec.txt.

[30] Simon Josefsson and Ilari Liusvaara. Edwards-Curve Digital Signature Algorithm (EdDSA).
Tech. rep. Jan. 2017. doi: 10.17487/RFC8032. url: https://tools.ietf.org/html/
rfc8032https://www.rfc-editor.org/info/rfc8032.

[31] Aaron Johnson et al. ‘Users get routed: Traffic correlation on Tor by realistic adversaries’.
In: Proceedings of the ACM Conference on Computer and Communications Security (2013),
pp. 337–348. issn: 15437221. doi: 10.1145/2508859.2516651.

[32] M Wright et al. ‘Defending anonymous communications against passive logging attacks’. In:
2003 Symposium on Security and Privacy, 2003. 2003, pp. 28–41. doi: 10.1109/SECPRI.
2003.1199325.

[33] George Kadianakis et al. Tor directory protocol. 2021. url: https://gitweb.torproject.
org/torspec.git/tree/dir-spec.txt.

[34] Isis Lovecruft et al. Tor Guard Specification. 2020. url: https://gitweb.torproject.org/
torspec.git/plain/guard-spec.txt.

[35] George Kadianakis. Announcing the Vanguards Add-On for Onion Services. 2018. url: https:
/ / blog . torproject . org / announcing - vanguards - add - onion - services (visited on
13/01/2021).

[36] George Kadianakis and Mike Perry. Mesh-based vanguards. 2021. url: https://gitweb.
torproject.org/torspec.git/commit/proposals/292-mesh-vanguards.txt.

[37] Andreas Pfitzmann and Marit Hansen. A terminology for talking about privacy by data minim-
ization: Anonymity, Unlinkability, Undetectability, Unobservability, Pseudonymity, and Iden-
tity Management. Aug. 2010. url: http://dud.inf.tu- dresden.de/literatur/Anon_
Terminology_v0.34.pdf.

[38] Mike Perry. Tor’s Open Research Topics: 2018 Edition. 2018. url: https://blog.torproject.
org/tors-open-research-topics-2018-edition (visited on 11/12/2020).

[39] Roger Dingledine, Nick Mathewson and Paul Syverson. Tor Rendezvous Specification - Version
2. 2019. url: https://gitweb.torproject.org/torspec.git/tree/rend-spec-v2.txt.

[40] Alec Muffett. 1 Million People use Facebook over Tor. 2016. url: https://www.facebook.
com/notes/facebook-over-tor/1-million-people-use-facebook-over-tor/865624066877648/
(visited on 17/12/2020).

[41] Tor Metrics. Unique .onion addresses (version 2 only). 2020. url: https : / / metrics .
torproject.org/hidserv-dir-onions-seen.csv (visited on 17/12/2020).

[42] Andy Yen. ProtonMail. 2020. url: https://protonmail.com (visited on 19/12/2020).

[43] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. USA, Aug. 2018.
doi: 10.17487/RFC8446. url: https://www.rfc-editor.org/info/rfc8446.

https://gitweb.torproject.org/torspec.git/plain/proposals/220-ecc-id-keys.txt
https://gitweb.torproject.org/torspec.git/plain/proposals/220-ecc-id-keys.txt
https://gitweb.torproject.org/torspec.git/plain/tor-spec.txt
https://gitweb.torproject.org/torspec.git/plain/tor-spec.txt
https://doi.org/10.17487/RFC8032
https://tools.ietf.org/html/rfc8032 https://www.rfc-editor.org/info/rfc8032
https://tools.ietf.org/html/rfc8032 https://www.rfc-editor.org/info/rfc8032
https://doi.org/10.1145/2508859.2516651
https://doi.org/10.1109/SECPRI.2003.1199325
https://doi.org/10.1109/SECPRI.2003.1199325
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://gitweb.torproject.org/torspec.git/plain/guard-spec.txt
https://gitweb.torproject.org/torspec.git/plain/guard-spec.txt
https://blog.torproject.org/announcing-vanguards-add-onion-services
https://blog.torproject.org/announcing-vanguards-add-onion-services
https://gitweb.torproject.org/torspec.git/commit/proposals/292-mesh-vanguards.txt
https://gitweb.torproject.org/torspec.git/commit/proposals/292-mesh-vanguards.txt
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0.34.pdf
https://blog.torproject.org/tors-open-research-topics-2018-edition
https://blog.torproject.org/tors-open-research-topics-2018-edition
https://gitweb.torproject.org/torspec.git/tree/rend-spec-v2.txt
https://www.facebook.com/notes/facebook-over-tor/1-million-people-use-facebook-over-tor/865624066877648/
https://www.facebook.com/notes/facebook-over-tor/1-million-people-use-facebook-over-tor/865624066877648/
https://metrics.torproject.org/hidserv-dir-onions-seen.csv
https://metrics.torproject.org/hidserv-dir-onions-seen.csv
https://protonmail.com
https://doi.org/10.17487/RFC8446
https://www.rfc-editor.org/info/rfc8446

References 76

[44] Gerard J Holzmann and William Slattery Lieberman. Design and Validation of Computer
Protocols. Vol. 94. New Jersey: Prentice hall Englewood Cliffs, 1991, p. 500. isbn: 0135399254.

[45] Alex Biryukov et al. ‘Content and popularity analysis of tor hidden services’. In: Proceedings -
International Conference on Distributed Computing Systems 30-June-20 (2014), pp. 188–193.
doi: 10.1109/ICDCSW.2014.20. arXiv: 1308.6768.

[46] Damian Johnson. Stem. 2020. url: https://stem.torproject.org/ (visited on 01/01/2021).

[47] Doug Hellmann. SocketServer - Creating network servers. 2010. url: https://bip.weizmann.
ac . il / course / python / PyMOTW / PyMOTW / docs / SocketServer / index . html (visited on
01/01/2021).

[48] Python Software Foundation. socketserver - A framework for network servers. 2021. url:
https://docs.python.org/3/library/socketserver.html (visited on 02/01/2021).

[49] Zope Foundation. ZODB - a native object database for Python. 2016. url: http://www.zodb.
org/en/latest/ (visited on 02/01/2021).

[50] Tal Yarkoni. Transitions. 2020. url: https://github.com/pytransitions/transitions
(visited on 02/01/2021).

[51] Thomas Raab. Prototype Unlinkability. 2021. url: https : / / git . ins . jku . at / proj /
digidow/prototype-unlinkability (visited on 13/02/2021).

[52] Benoit Chesneau. http-parser. 2020. url: https://github.com/benoitc/http- parser/
(visited on 03/01/2021).

[53] Tor Project. Configuration file for a typical Tor user. 2019. url: https://raw.githubusercontent.
com/torproject/tor/master/src/config/torrc.sample.in (visited on 04/01/2021).

[54] Python Software Foundation. http.server - HTTP servers. 2021. url: https://docs.python.
org/3/library/http.server.html (visited on 05/01/2021).

[55] Thomas Raab. Prototype Timing-Analysis. 2021. url: https://git.ins.jku.at/proj/
digidow/prototype-timing-analysis (visited on 13/02/2021).

[56] Docker Inc. Docker overview. 2020. url: https : / / docs . docker . com / get - started /
overview/ (visited on 17/01/2021).

[57] Thomas Raab. tor-docker. 2021. url: https://git.ins.jku.at/students/tor-docker
(visited on 14/02/2021).

[58] John M Chambers et al.Graphical Methods for Data Analysis. London: Chapman and Hall/CRC,
Jan. 2018. isbn: 9781351072304. doi: 10.1201/9781351072304.

[59] George Kadianakis. Cooking with Onions: Finding the Onionbalance. 2016. url: https://
blog.torproject.org/cooking-onions-finding-onionbalance (visited on 07/02/2021).

https://doi.org/10.1109/ICDCSW.2014.20
https://arxiv.org/abs/1308.6768
https://stem.torproject.org/
https://bip.weizmann.ac.il/course/python/PyMOTW/PyMOTW/docs/SocketServer/index.html
https://bip.weizmann.ac.il/course/python/PyMOTW/PyMOTW/docs/SocketServer/index.html
https://docs.python.org/3/library/socketserver.html
http://www.zodb.org/en/latest/
http://www.zodb.org/en/latest/
https://github.com/pytransitions/transitions
https://git.ins.jku.at/proj/digidow/prototype-unlinkability
https://git.ins.jku.at/proj/digidow/prototype-unlinkability
https://github.com/benoitc/http-parser/
https://raw.githubusercontent.com/torproject/tor/master/src/config/torrc.sample.in
https://raw.githubusercontent.com/torproject/tor/master/src/config/torrc.sample.in
https://docs.python.org/3/library/http.server.html
https://docs.python.org/3/library/http.server.html
https://git.ins.jku.at/proj/digidow/prototype-timing-analysis
https://git.ins.jku.at/proj/digidow/prototype-timing-analysis
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://git.ins.jku.at/students/tor-docker
https://doi.org/10.1201/9781351072304
https://blog.torproject.org/cooking-onions-finding-onionbalance
https://blog.torproject.org/cooking-onions-finding-onionbalance

Appendix 77

Appendix A: Unlinkable Onion Service Protocol

A.1 Database Utils

1 import persistent
2 import persistent.list
3 from datetime import datetime, timezone
4 import pytz
5 import logging
6 from ZODB import DB, FileStorage
7

8 utc = pytz.UTC
9

10 TIME_FORMAT = '%Y-%m-%d %H:%M:%S'
11

12 """
13 Class for connecting to the ZODB database file
14 """
15

16

17 class MyZODB(object):
18 def __init__(self, path):
19 self.storage = FileStorage.FileStorage(path)
20 self.db = DB(self.storage)
21 self.connection = self.db.open()
22 self.dbroot = self.connection.root()
23

24 def close(self):
25 self.connection.close()
26 self.db.close()
27 self.storage.close()
28

29

30 """
31 Data representation for storing and managing custom UOSP data addresses on the server

side↪→

32 """
33

34

35 class UospDataAddresses(persistent.Persistent):
36 def __init__(self):
37 self.__uosp_data_addresses = persistent.mapping.PersistentMapping()
38

39 """
40 Add a custom UOSP data address to the servers database
41

42 :param uosp_data_address: Custom UOSP data address to be added to the servers
database↪→

43 :param uosp_validity: Validity of the newly provisioned address
44 """
45

46 def add_data_address(self, uosp_data_address, uosp_validity):
47 self.__uosp_data_addresses[uosp_data_address] = uosp_validity
48 logging.info(f"Added data address {uosp_data_address}")
49

50 """
51 Remove a custom UOSP data address from the servers database
52

Appendix 78

53 :param uosp_data_address: Custom UOSP data address to be removed from the servers
database↪→

54 """
55

56 def remove_data_address(self, uosp_data_address):
57 if uosp_data_address in self.__uosp_data_addresses:
58 del self.__uosp_data_addresses[uosp_data_address]
59 logging.info(f"Removed data address {uosp_data_address}")
60

61 """
62 Check the validity of a custom UOSP data address
63

64 :param uosp_data_address: Custom UOSP data address whose validity shall be
checked↪→

65 :return: True, iff the custom address provided is still valid, false otherwise
66 """
67

68 def __check_validity(self, uosp_data_address):
69 if uosp_data_address in self.__uosp_data_addresses:
70 # get time stamp
71 uosp_validity = self.__uosp_data_addresses[uosp_data_address]
72 # compare time stamps
73 if datetime.now(timezone.utc) > uosp_validity:
74 return False
75 else:
76 return True
77

78 """
79 Revise the validity of all currently provisioned custom UOSP addresses
80

81 :param controller: Handle for the stem tor controller
82 """
83

84 def revise_validity(self, controller):
85 for uosp_address in self.__uosp_data_addresses.copy():
86 if not self.check_validity(uosp_address):
87 # remove invalid entries from the database
88 self.remove_data_address(uosp_address)
89 # discontinue invalid services (tear them down)
90 controller.remove_ephemeral_hidden_service(uosp_address)
91

92

93 """
94 Data representation for storing and managing custom UOSP data addresses on the client

side↪→

95 """
96

97

98 class UospIntroAddress(persistent.Persistent):
99

100 def __init__(self, uosp_intro_address):
101 self.__uosp_intro_address = uosp_intro_address
102 self.__uosp_data_addresses = persistent.list.PersistentList()
103

104 """
105 Add a custom UOSP data address to the proxy's database
106

107 :param uosp_data_address: Custom UOSP data address to be added to the proxy's
database↪→

108 :param uosp_validity: Validity of the newly provisioned address

Appendix 79

109 """
110

111 def add_data_address(self, uosp_data_address, uosp_validity):
112 self.__uosp_data_addresses.append([uosp_data_address, uosp_validity])
113 logging.info(f"Added data address {uosp_data_address} for intro addresss

{self.__uosp_intro_address}")↪→

114

115 """
116 Remove a custom UOSP data address from the proxy's database
117

118 :param uosp_data_address: Custom UOSP data address to be removed from the
proxy's database↪→

119 """
120

121 def remove_data_address(self, uosp_data_address):
122 for address_entry in self.__uosp_data_addresses:
123 if uosp_data_address == address_entry[0]:
124 self.__uosp_data_addresses.remove(address_entry)
125 logging.info(f"Removed data address {uosp_data_address} for intro

addresss {self.__uosp_intro_address}")↪→

126

127 """
128 Revise the validity of all currently provisioned custom UOSP addresses of the

objects intro address↪→

129 """
130

131 def revise_validity(self):
132 for uosp_address in self.__uosp_data_addresses:
133 if not self.__check_validity(uosp_address[0]):
134 self.remove_data_address(uosp_address[0])
135

136 """
137 Get the index of a custom UOSP address in the list of addresses for the objects

intro address↪→

138

139 :param uosp_data_address: Custom UOSP address
140 :return: Index of the entry if available, None otherwise
141 """
142

143 def __get_address_index(self, uosp_data_address):
144 for uosp_address in self.__uosp_data_addresses:
145 if uosp_address[0] == uosp_data_address:
146 return self.__uosp_data_addresses.index(uosp_address)
147 return None
148

149 """
150 Check the validity of a custom UOSP data address
151

152 :param uosp_data_address: Custom UOSP data address whose validity shall be
checked↪→

153 :return: True, iff the custom address provided is still valid, false otherwise
154 """
155

156 def __check_validity(self, uosp_data_address):
157 index = self.__get_address_index(uosp_data_address)
158 if index is not None:
159 uosp_validity = datetime.strptime(self.__uosp_data_addresses[index][1],

TIME_FORMAT)↪→

160 uosp_validity = utc.localize(uosp_validity)
161 # compare time stamps+

Appendix 80

162 if datetime.now(timezone.utc) > uosp_validity:
163 return False
164 else:
165 return True
166

167 """
168 Revise the validity of all custom UOSP addresses of the objects intro address and

return the latest valid entry↪→

169

170 :return: Latest valid custom UOSP address for the objects intro address
171 """
172

173 def get_latest_valid_data_address(self):
174 self.revise_validity()
175 if len(self.__uosp_data_addresses) > 0:
176 # return last = latest entry
177 return self.__uosp_data_addresses[-1]
178

179 """
180 Return the count of custom UOSP addresses for the objects into address
181 """
182

183 def get_data_address_count(self):
184 return len(self.__uosp_data_addresses)

A.2 Connection Utils

1 import sys
2 import stem.control
3 import stem.connection
4 import logging
5

6 """
7 Establish a connection to the control port of tor and authenticate
8 """
9 CONTROL_PORT = 9051

10 CONTROL_ADDRESS = '127.0.0.1'
11

12 logging.basicConfig(level=logging.INFO)
13 logging.getLogger("stem").setLevel(logging.ERROR)
14

15

16 def establish_connection(address=CONTROL_ADDRESS, port=CONTROL_PORT, password=None):
17 # get connection to tor via the control port
18 try:
19 # the explicit declaration of the port isn't necessary since it's the default

port↪→

20 controller = stem.control.Controller.from_port(address, port)
21 except stem.SocketError as exc:
22 logging.error(f"Unable to connect to port control port 9051 ({exc})")
23 sys.exit(1)
24

25 if controller:
26 # authenticate
27 try:
28 if password != None:
29 controller.authenticate(password=password)
30 else:

Appendix 81

31 controller.authenticate()
32 logging.info("Connection established and authenticated")
33 return controller
34 except stem.connection.PasswordAuthFailed:
35 logging.error("Unable to authenticate, password is incorrect")
36 sys.exit(1)
37 except stem.connection.AuthenticationFailure as exc:
38 logging.error(f" * Unable to authenticate: {exc}")
39 sys.exit(1)
40

41

42 """
43 Create new ephemeral Hidden Service and return its onion id
44 """
45

46

47 def create_ephemeral_hidden_service(controller, source_port, target_port, version):
48 try:
49 if version == 2:
50 hs = controller.create_ephemeral_hidden_service({source_port:

target_port}, await_publication=False,↪→

51 key_type="NEW",
key_content="RSA1024",
detached=True)

↪→

↪→

52 else:
53 hs = controller.create_ephemeral_hidden_service({source_port:

target_port}, await_publication=False,↪→

54 detached=True,
key_type='NEW',
key_content='BEST')

↪→

↪→

55 if hs.service_id:
56 return hs.service_id
57 else:
58 return None
59

60 except stem.ControllerError as exc:
61 logging.error(f"Unable to create the hidden service ({exc})")
62 sys.exit(1)
63

64

65 def create_hidden_service(controller, path, port):
66 try:
67 controller.create_hidden_service(path, port, target_address='127.0.0.1')
68 except stem.ControllerError as exc:
69 logging.error(f"Unable to create the hidden service ({exc})")
70 sys.exit(1)

A.3 Server State Machine

1 from transitions import Machine
2 import logging
3

4

5 class UOSPServerStateMachine(object):
6 states = ['initial_state', 'client_req_received', 'legacy_http_resp_sent',

'uosp_resp_sent', 'data_resp_sent',↪→

7 'uosp_ack_received', 'server_fin_sent', 'ERROR']
8

Appendix 82

9 # Functions
10

11 def __init__(self):
12 logging.getLogger('transitions').setLevel(logging.ERROR)
13

14 # Initialize the state machine
15 self.machine = Machine(model=self, states=UOSPServerStateMachine.states,

initial='initial_state')↪→

16

17 # Transitions
18

19 # s0 ->s1
20 self.machine.add_transition('receive_request', source='initial_state',

dest='client_req_received')↪→

21

22 # s1 -> s2
23 self.machine.add_transition('send_legacy_response',

source='client_req_received', dest='legacy_http_resp_sent')↪→

24

25 # s1 -> s3
26 self.machine.add_transition('send_uosp_response',

source='client_req_received', dest='uosp_resp_sent')↪→

27

28 # s1 -> s4
29 self.machine.add_transition('send_data_response',

source='client_req_received', dest='data_resp_sent')↪→

30

31 # s3 -> s5
32 self.machine.add_transition('receive_uosp_ack', source='uosp_resp_sent',

dest='uosp_ack_received')↪→

33

34 # s5 -> ERR
35 self.machine.add_transition('pub_key_malformed', source='uosp_ack_received',

dest='ERROR')↪→

36

37 # s5 -> s6
38 self.machine.add_transition('send_server_fin', source='uosp_ack_received',

dest='server_fin_sent')↪→

A.4 Server Module

1 from stem.control import EventType, Controller
2 from utils.connect import establish_connection, create_ephemeral_hidden_service
3 from http.server import BaseHTTPRequestHandler, HTTPServer
4 from socketserver import ForkingMixIn
5 import time
6 import hashlib
7 import uosp_state_machine_server
8 import logging
9 import signal

10 import sys
11 from datetime import datetime, timezone, timedelta
12 from utils.db_util import UospDataAddresses, MyZODB
13 import transaction
14 import threading
15 import ssl
16

17 # password for control port authentication

Appendix 83

18 PASSWORD = 'tor'
19 # uosp version
20 UOSP_VERSION = '0.1'
21 VALIDITY_MINUTES = 1440
22 VALIDITY_REVISION_MINUTES = 10
23

24 DB_PATH = 'data_addresses.fs'
25

26 # connect and authenticate
27 intro_addresses = {}
28 controller = None
29

30

31 class ForkedHTTPServer(ForkingMixIn, HTTPServer):
32 """Handle requests in a separate process"""
33

34

35 class RequestHandler(BaseHTTPRequestHandler):
36 uosp_address = None
37 uosp_validity = None
38 close_connection = False
39 controller = None
40

41 # server state machine
42 ssm = uosp_state_machine_server.UOSPServerStateMachine()
43

44 def do_GET(self):
45 # trigger for uosp data protocol header
46 uosp_data = False
47

48 # state changed from initial to request received
49 state = self.ssm.state
50 self.ssm.receive_request()
51 logging.info('State changed from %s to %s' % (state, self.ssm.state))
52

53 # don't close connection after first response
54 self.close_connection = False
55

56 # check if UOSP header is set and version is supported
57 url = self.headers.get('Host').split('.')[0]
58 state = self.ssm.state
59 if self.headers.get('UOSP') and self.headers.get('UOSP_VERSION') == '0.1':
60 if url in intro_addresses:
61 # UOSP
62 if self.controller is None:
63 controller = establish_connection(password=PASSWORD)
64

65 message = create_ephemeral_hidden_service(controller, 80, 80, 3)
66 self.uosp_validity = datetime.now(timezone.utc) +

timedelta(minutes=VALIDITY_MINUTES)↪→

67 self.uosp_address = message
68

69 db = MyZODB(DB_PATH)
70 # no db entry yet
71 if len(db.dbroot) == 0:
72 db.dbroot['addresses'] = UospDataAddresses()
73 db.dbroot['addresses'].add_data_address(self.uosp_address,

self.uosp_validity)↪→

74 transaction.commit()
75 db.close()

Appendix 84

76

77 self.ssm.send_uosp_response()
78 else:
79 # UOSP, but no into URL -> deliver web page
80 self.ssm.send_data_response()
81 message = "<HTML><HEAD><TITLE>Pretty Web

Page</TITLE></HEAD><BODY><h3>Web Page</h3>This is the web " \↪→

82 "page the client intended to reach</BODY></HTML>"
83 uosp_data = True
84

85 else:
86 # No UOSP, deliver legacy page
87 self.ssm.send_legacy_response()
88 message = "<HTML><HEAD><TITLE>UOSP

Response</TITLE></HEAD><BODY><h3>UOSP</h3>This page supports the " \↪→

89 "Unlinkable Onion Service Protocl (UOSP). When you receive this
message, your client/browser " \↪→

90 "doesn't support this protocol. </BODY></HTML>"
91 uosp_data = True
92

93 logging.info('State changed from %s to %s' % (state, self.ssm.state))
94

95 self.protocol_version = "HTTP/1.1"
96 self.send_response(200)
97 self.send_header("Content-Length", str(len(message)))
98 self.send_header("UOSP_DATA", str(uosp_data))
99 self.send_header("UOSP", 'True')

100 self.send_header("UOSP_VERSION", UOSP_VERSION)
101

102 # add validity if intro url used
103 if self.uosp_validity is not None:
104 self.send_header("UOSP_VALIDITY", self.uosp_validity.strftime("%Y-%m-%d

%H:%M:%S"))↪→

105 self.end_headers()
106 self.wfile.write(bytes(message, "utf8"))
107 return
108

109 def do_POST(self):
110 self.close_connection = True
111 content_len = int(self.headers.get('Content-Length'))
112 post_body = self.rfile.read(content_len).decode()
113

114 state = self.ssm.state
115 self.ssm.receive_uosp_ack()
116 logging.info('State changed from %s to %s' % (state, self.ssm.state))
117

118 # calculate hash value
119 hash_pub = hashlib.sha256()
120 hash_pub.update(self.uosp_address.encode())
121 hash_pub = hash_pub.hexdigest()
122

123 state = self.ssm.state
124 if str(hash_pub) == post_body:
125 message = "FIN"
126 self.ssm.send_server_fin()
127 else:
128 self.ssm.pub_key_malformed()
129 message = "ERROR"
130

131 logging.info('State changed from %s to %s' % (state, self.ssm.state))

Appendix 85

132

133 self.protocol_version = "HTTP/1.1"
134 self.send_response(200)
135 self.send_header("Content-Length", str(len(message)))
136 self.send_header("UOSP", 'True')
137 self.send_header("UOSP_DATA", 'FALSE')
138 self.send_header("UOSP_VERSION", UOSP_VERSION)
139 self.end_headers()
140 self.wfile.write(bytes(message, "utf8"))
141 return
142

143

144 """
145 Called when the service shuts down to delete all created ephemeral onion services
146 """
147

148

149 def exit_gracefully(signum, frame):
150 service_list = controller.list_ephemeral_hidden_services(default=None,

detached=True)↪→

151 for service in service_list:
152 controller.remove_ephemeral_hidden_service(service)
153 logging.info(f"Service with uri {str(service)} deleted")
154 logging.info("Shutting down server")
155 sys.exit(0)
156

157

158 def revise_uoasp_data_addesses(ctrl):
159 while True:
160 time.sleep(VALIDITY_REVISION_MINUTES * 60)
161 db = MyZODB(DB_PATH)
162 if 'addresses' in db.dbroot:
163 db.dbroot['addresses'].revise_validity(ctrl)
164 logging.info("Revised UOSP data addresses")
165 transaction.commit()
166 db.close()
167

168

169 if __name__ == '__main__':
170 controller = establish_connection(password=PASSWORD)
171 service = create_ephemeral_hidden_service(controller, 80, 80, 3)
172 intro_addresses[str(service)] = datetime.now(timezone.utc)
173 logging.info(f"Service with uri {str(service)} created")
174 # start thread that periodically revises the validity of provisioned custom onion

services↪→

175 threading.Thread(target=revise_uoasp_data_addesses, args=(controller,),
daemon=True).start()↪→

176 ForkedHTTPServer.allow_reuse_address = True
177 signal.signal(signal.SIGINT, exit_gracefully)
178 server = ForkedHTTPServer(('localhost', 80), RequestHandler)
179 server.socket = ssl.wrap_socket(
180 server.socket,
181 keyfile="key.pem",
182 certfile='cert.pem',
183 server_side=True)
184 server.serve_forever()

Appendix 86

A.5 Server Tor Configuration

1 ## Logging
2 Log notice file /var/log/tor/notices.log
3 Log info file /var/log/tor/info.log
4 Log debug file /var/log/tor/debug.log
5

6 ## Control port
7 ControlPort 9051
8 HashedControlPassword 16:0717EF71CDF228DE60E93242A4AFE681FB525080DC1A330A103FAD9782
9

10 ## Run as daemon in background
11 RunAsDaemon 1

A.6 Proxy State Machine

1 from transitions import Machine
2 import logging
3

4 class UOSPClientStateMachine(object):
5 states = ['initial_state', 'cache_addr_used', 'client_req_sent',

'server_pub_key_received', 'client_pub_ack_sent',↪→

6 'server_fin_received', 'data_resp_received', 'ERROR']
7

8 # Functions
9 def __init__(self):

10 logging.getLogger('transitions').setLevel(logging.ERROR)
11

12 # Initialize the state machine
13 self.machine = Machine(model=self, states=UOSPClientStateMachine.states,

initial='initial_state')↪→

14

15 # Transitions
16

17 # s0 ->s1
18 self.machine.add_transition('send_request', source='initial_state',

dest='client_req_sent')↪→

19

20 # s0 -> s6
21 self.machine.add_transition('use_cache_addr', source='initial_state',

dest='cache_addr_used')↪→

22

23 # s1 -> s2
24 self.machine.add_transition('receive_pub_key', source='client_req_sent',

dest='server_pub_key_received')↪→

25

26 # s2 -> s3
27 self.machine.add_transition('send_uosp_ack',

source='server_pub_key_received', dest='client_pub_ack_sent')↪→

28

29 # s2 -> ERR
30 self.machine.add_transition('pub_key_malformed',

source='server_pub_key_received', dest='ERROR')↪→

31

32 # s3 -> ERR
33 self.machine.add_transition('server_hash_invalid',

source='client_pub_ack_sent', dest='ERROR')↪→

34

Appendix 87

35 # s3 -> s4
36 self.machine.add_transition('receive_server_fin',

source='client_pub_ack_sent', dest='server_fin_received')↪→

37

38 # s1 -> s5
39 self.machine.add_transition('receive_data', source='client_req_sent',

dest='data_resp_received')↪→

A.7 Proxy Module

1 import logging
2 import select
3 import socket
4 from socketserver import ForkingMixIn, TCPServer, StreamRequestHandler
5 import tldextract
6 import socks
7 import validators
8 from utils.db_util import UospIntroAddress, MyZODB
9 import transaction

10

11 import uosp_state_machine_client
12 import hashlib
13

14 import ssl
15

16 # try to import C parser then fallback in pure python parser.
17 try:
18 from http_parser.parser import HttpParser
19 except ImportError:
20 from http_parser.pyparser import HttpParser
21

22 logging.basicConfig(level=logging.INFO)
23

24 # running tor instance
25 UPSTREAM_HOST = '127.0.0.1'
26 UPSTREAM_PORT = 9050
27

28 # proxy configuration
29 PROXY_HOST = '0.0.0.0'
30 PROXY_PORT = 9011
31

32 UOSP_VERSION = '0.1'
33

34 DB_PATH = 'intro_addresses.fs'
35

36

37 # base class for threaded TCP server
38 class ForkingTCPServer(ForkingMixIn, TCPServer):
39 pass
40

41

42 """
43 For every new client connection, a new thread is started , which instantiates the

SocksProxy class as handler for its requests↪→

44 """
45

46

47 class SocksProxy(StreamRequestHandler):

Appendix 88

48 # client state machine
49 csm = uosp_state_machine_client.UOSPClientStateMachine()
50

51 # placeholder variables which are used to store the received intro host and
temporary uosp address received from the server↪→

52 intro_host = None
53 uosp_address = None
54 uosp_validity = None
55 legacy_request = False
56 cache_request = False
57

58 """
59 Handle state changes
60

61 :param data Data received on a socket connection (can be request/response)
62 :param recv_socket Handle for the socket used to send a response to the remote

server (avoid separate socket connections for each message pair)↪→

63 """
64

65 def handle_state_change(self, data, recv_socket=None):
66 # print(self.uosp_data_addresses)
67 # get current state
68 state = self.csm.state
69

70 # transition from initial state when the client request is received
71 if state == 'initial_state':
72 if not self.cache_request:
73 self.csm.send_request()
74 else:
75 self.csm.use_cache_addr()
76

77 logging.info('State changed from %s to %s' % (state, self.csm.state))
78

79 # transition from client_req sent to server_pub_key_received
80 if state == 'client_req_sent':
81 if data[0]:
82 # this is a uosp data response
83 self.csm.receive_data()
84 else:
85 self.csm.receive_pub_key()
86 logging.info('State changed from %s to %s' % (state, self.csm.state))
87

88 # store received onion address for later use
89 self.uosp_address = data[2]
90

91 # the pub key was received, send its hash value back to the server to
ensure error-free transmission↪→

92 if self.intro_host is not None:
93 # calculate hash value
94 hash_pub = hashlib.sha256()
95 hash_pub.update(self.uosp_address.encode())
96 hash_pub = hash_pub.hexdigest()
97

98 request_string = 'POST /session HTTP/1.1\r\nHost:' +
self.intro_host + '\r\nContent-Type:
text/plain\r\nContent-Length: ' + str(

↪→

↪→

99 len(hash_pub)) + '\r\nUOSP: True\r\nUOSP_VERSION:' +
UOSP_VERSION + '\r\n\r\n' + hash_pub↪→

100

Appendix 89

101 # use the socket handle passed within the parameters to send the
response (avoid new socket connection for every message pair)↪→

102 recv_socket.sendall(request_string.encode())
103 self.csm.send_uosp_ack()
104 logging.info('State changed from %s to %s' % (state,

self.csm.state))↪→

105

106 # transition from client_pub_ack_sent to server_fin_received or ERROR
107 if state == 'client_pub_ack_sent':
108 if data[2] == 'FIN':
109 self.csm.receive_server_fin()
110 logging.info('State changed from %s to %s' % (state, self.csm.state))
111 else:
112 self.csm.server_hash_invalid()
113 logging.info('State changed from %s to %s' % (state, self.csm.state))
114

115 """
116 Receive HTTP request and parse its header
117

118 :return Dictionary containing the decoded relevant header fields
119 """
120

121 def parse_http_header(self):
122 p = HttpParser()
123 header = {}
124

125 # read data from socket
126 data = self.connection.recv(1024)
127

128 recved = len(data)
129 nparsed = p.execute(data, recved)
130 assert nparsed == recved
131

132 # header completely received
133 if p.is_headers_complete():
134 http_header = p.get_headers()
135

136 # extract host address
137 header['host'] = http_header['Host'].split(':')[0]
138

139 # extract suffix from host (must be a public ICANN TLD)
140 no_fetch_extract = tldextract.TLDExtract(suffix_list_urls=None)
141 header['suffix'] = no_fetch_extract(http_header['host']).suffix
142

143 # extract host port
144 if len(http_header['Host'].split(':')) > 1:
145 header['port'] = http_header['Host'].split(':')[1]
146 else:
147 header['port'] = 80
148

149 if len(header) > 0:
150 return header
151 else:
152 return None
153

154 """
155 Parse the body of a HTTP response
156

157 :param data The data is read from the socket, alternatively the already read
HTTP↪→

Appendix 90

158 message can be passed
159 :return List containing information whether its an uosp data response and the

parsed decoded http body↪→

160 """
161

162 def parse_http_body(self, sock_conn):
163 p = HttpParser()
164 body = b""
165 uosp_data = False
166 uosp = False
167

168 while True:
169 data = sock_conn.recv(1024)
170 if not data:
171 break
172

173 recved = len(data)
174 nparsed = p.execute(data, recved)
175 assert nparsed == recved
176

177 if p.is_headers_complete():
178 headers = p.get_headers()
179 # check if uosp data response
180 if 'UOSP' in headers:
181 uosp = True
182

183 if 'UOSP_DATA' in headers:
184 if headers['UOSP_DATA'] == 'True':
185 uosp_data = True
186 if 'UOSP_VALIDITY' in headers:
187 self.uosp_validity = headers['UOSP_VALIDITY']
188

189 if p.is_partial_body():
190 body += (p.recv_body())
191

192 if p.is_message_complete():
193 break
194

195 return [uosp_data, uosp, body.decode().rstrip()]
196

197 """
198 Function called when a new request is received
199 """
200

201 def handle(self):
202 logging.info('Accepting connection from %s:%s' % self.client_address)
203

204 # parse http header of the received request to extract host and port
205 http_header = self.parse_http_header()
206

207 if http_header is not None:
208 # only onion traffic triggers the uosp, normal http traffic is proxied

normally↪→

209 if http_header['port'] == 80 and http_header['suffix'] == 'onion':
210 # store the initial host and port for later use (UOSP ACK)
211 self.intro_host = str(http_header['host']) + ':' +

str(http_header['port'])↪→

212

213 # check if uosp data adress is already in the cache db
214 db = MyZODB(DB_PATH)

Appendix 91

215

216 if self.intro_host.split('.')[0] in db.dbroot:
217 print(db.dbroot[self.intro_host.split('.')[0]])
218 db.dbroot[self.intro_host.split('.')[0]].revise_validity()
219

220 if self.intro_host.split('.')[0] not in db.dbroot or
db.dbroot[self.intro_host.split('.')[0]].get_data_address_count()
< 1:

↪→

↪→

221 logging.info("No cached uosp data address for intro address " +
self.intro_host.split('.')[0])↪→

222 # create socket connection to requested resource using the
upstream socks proxy↪→

223 remote = socks.socksocket()
224 remote.set_proxy(socks.SOCKS5, UPSTREAM_HOST, UPSTREAM_PORT) #

SOCKS4 and SOCKS5 use port 1080 by default↪→

225 else:
226 cache_address = db.dbroot[self.intro_host.split('.')[0]].

get_latest_valid_data_address()↪→

227 self.cache_request = True
228 self.handle_state_change(None)
229 message = "<HTML><HEAD><TITLE>UOSP

Response</TITLE></HEAD><BODY><h3>UOSP</h3>This page supports
the " \

↪→

↪→

230 "Unlinkable Onion Service Protocl (UOSP). Please use
the following link <a href='http://" +
cache_address[0] + ".onion'> USOP
Link</BODY></HTML>"

↪→

↪→

↪→

231

232 data = 'HTTP/1.1 200 OK\r\nServer: BaseHTTP/0.6
Python/3.6.9\r\nContent-Length: ' + str(↪→

233 len(
234 message)) + '\r\nUOSP: True\r\nUOSP_VERSION:

0.1\r\nUOSP_VALIDITY:' + cache_address[1] +
'\r\n\r\n' + message

↪→

↪→

235

236 self.connection.send(data.encode())
237 transaction.commit()
238 db.close()
239 if not self.cache_request:
240 # Can be treated identical to a regular socket object
241 if validators.url('http://' + http_header['host']):
242

243 remote.connect((http_header['host'], http_header['port']))
244 ssl_remote = ssl.wrap_socket(remote, ca_certs=None,

cert_reqs=ssl.CERT_NONE)↪→

245

246 # send request to the requested resource with UOSP header
added↪→

247 request_string = 'GET / HTTP/1.1\r\nHost: ' +
http_header['host'] + ':' + str(↪→

248 http_header['port']) + '\r\nUOSP: True\r\nUOSP_VERSION:'
+ UOSP_VERSION + '\r\n\r\n'↪→

249 ssl_remote.sendall(request_string.encode())
250

251 # trigger and handle state change
252 self.handle_state_change(request_string)
253 self.exchange_loop(self.connection, ssl_remote)
254 else:
255 logging.error("The URL specified wasn't valid")
256 else:

Appendix 92

257 # relay request to remote http server
258 try:
259 logging.info('Non-onion traffic, relay HTTP traffic as a normal

proxy would do')↪→

260 remote = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
261 remote.connect((http_header['host'], http_header['port']))
262 logging.info('Connected to %s %s' % (http_header['host'],

http_header['port']))↪→

263 request_string = 'GET / HTTP/1.1\r\nHost: ' + http_header['host']
+ ':' + str(↪→

264 http_header['port']) + '\r\n\r\n'
265 remote.sendall(request_string.encode())
266 self.legacy_request = True
267 self.exchange_loop(self.connection, remote)
268 except Exception as e:
269 print(e)
270 else:
271 logging.error("Couldn't parse request header")
272

273 """
274 Loop for exchanging data between client and remote server
275

276 :param client Handle for client socket
277 :param remote Handle for server socket
278 """
279

280 def exchange_loop(self, client, remote):
281 while True:
282 # wait until client or remote is available for read
283 r, w, e = select.select([client, remote], [], [])
284

285 # there is data to be read from the client socket
286 if client in r:
287 # receive data and parse its body
288 parsed_data = self.parse_http_body(client)
289 if parsed_data is not None:
290 # trigger protocol state change2
291 self.handle_state_change(parsed_data)
292

293 # there is data to be read from the server socket
294 if remote in r:
295 # check if legacy request
296 if not self.legacy_request:
297 # receive data and parse its body
298 parsed_data = self.parse_http_body(remote)
299 if parsed_data is not None:
300 # check if UOSP response
301 if not parsed_data[1]:
302 # no UOSP response, just send back the data received
303 data = 'HTTP/1.1 200 OK\r\nServer: BaseHTTP/0.6

Python/3.6.9\r\nContent-Length: ' + str(↪→

304 len(parsed_data[2])) + '\r\n\r\n' + parsed_data[2]
305 client.send(data.encode())
306 break
307 else:
308 # UOSP response, trigger protocol state change
309 self.handle_state_change(parsed_data, remote)
310 # don't send anything back to the client, till the UOSP has

finished, then reply with the temporary onion address↪→

311 if self.csm.state == 'server_fin_received':

Appendix 93

312 # data = 'HTTP/1.1 301 Moved Permanently\r\nLocation: ' +
'http://' + str(self.uosp_address) + '.onion\r\n\r\n'↪→

313 message = "<HTML><HEAD><TITLE>UOSP
Response</TITLE></HEAD><BODY><h3>UOSP</h3>This page
supports the " \

↪→

↪→

314 "Unlinkable Onion Service Protocol (UOSP). Please
use the following link <a href='http://" + str(↪→

315 self.uosp_address) + ".onion'> USOP
Link</BODY></HTML>"↪→

316

317 data = 'HTTP/1.1 200 OK\r\nServer: BaseHTTP/0.6
Python/3.6.9\r\nContent-Length: ' + str(↪→

318 len(
319 message)) + '\r\nUOSP: True\r\nUOSP_VERSION:

0.1\r\nUOSP_VALIDITY:' + self.uosp_validity +
'\r\n\r\n' + message

↪→

↪→

320

321 client.send(data.encode())
322 # add uosp data address to db for the given intro address
323 db = MyZODB(DB_PATH)
324 if self.intro_host.split('.')[0] not in db.dbroot:
325 db.dbroot[self.intro_host.split('.')[0]] =

UospIntroAddress(↪→

326 self.intro_host.split('.')[0])
327 db.dbroot[self.intro_host.split('.')[0]].

add_data_address(self.uosp_address, self.uosp_validity)↪→

328 transaction.commit()
329 db.close()
330 break
331 # handle uosp data response
332 if self.csm.state == 'data_resp_received':
333 data = 'HTTP/1.1 200 OK\r\nServer: BaseHTTP/0.6

Python/3.6.9\r\nContent-Length: ' + str(↪→

334 len(parsed_data[2])) +
'\r\nUOSP:True\r\nUOSP_VERSION:0.1\r\n\r\n' +
parsed_data[2]

↪→

↪→

335 client.send(data.encode())
336 else:
337 # legacy request send back the response to the client
338 data = remote.recv(4096)
339 if client.send(data) <= 0:
340 break
341

342

343 if __name__ == '__main__':
344 ForkingTCPServer.allow_reuse_address = True
345 with ForkingTCPServer((PROXY_HOST, PROXY_PORT), SocksProxy) as server:
346 server.serve_forever()

A.8 Proxy Tor Configuration

1 ## Logging
2 Log notice file /var/log/tor/notices.log
3 Log info file /var/log/tor/info.log
4 Log debug file /var/log/tor/debug.log
5 ## Run as daemon in background
6 RunAsDaemon 1

Appendix 94

Appendix B: Performance Analysis

B.1 Analysis Module

1 import time
2 import csv
3 import re
4 import datetime
5

6 # default timeout after 3 minutes (180s)
7 TIMEOUT = 180
8

9 # default number of intro points is currently 3
10 NUM_OF_INTRO_POINTS = 3
11

12 from connection.utils import establish_connection
13 from stem.control import EventType
14 from circuitAnalyzer import circCallback
15 from logAnalyzer import logCallback_v3
16 from logAnalyzer import logCallback_v2
17 from descriptorAnalyzer import descCallback
18 from logAnalyzer import thread_intro_circuit_q
19 from circuitAnalyzer import thread_circuit_list_q
20 from circuitAnalyzer import thread_upload_circuit_q
21 from descriptorAnalyzer import thread_descriptors_q
22 from circuitAnalyzer import circMinorCallback
23 from connection.utils import create_ephemeral_hidden_service
24 from connection.utils import create_hidden_service
25

26 # password for control port authentication
27 PASSWORD = 'tor'
28

29 # regex for ipv4 address in desc event
30 UPLOAD_REGEX = '([0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}) ([0-9]{3,4})'
31

32 # V3
33 NUM_OF_CREATE_EVENT_V3 = 2
34 NUM_OF_UPLOAD_EVENTS_V3 = 16
35 NUM_OF_UPLOADED_EVENTS_V3 = 16
36

37 # V2
38 NUM_OF_CREATE_EVENT_V2 = 2
39 NUM_OF_UPLOAD_EVENTS_V2 = 6
40 NUM_OF_UPLOADED_EVENTS_V2 = 6
41

42 controller = None
43

44 # filepath of output csv file
45 CSV_PATH = "/tmp/provisioning_time_" + time.strftime("%Y_%m_%d_%H_%M",

time.localtime()) + ".csv"↪→

46

47

48 def checkDictEntries(dictionary, csv_field_name):
49 for entry in csv_field_name:
50 if entry not in dictionary:
51 dictionary[entry] = "FAIL"
52

53

54 def start(version, ephemeral, timeout, num_intro_points):

Appendix 95

55 global controller, TIMEOUT, NUM_OF_INTRO_POINTS
56 csv_dict = {}
57 startTime = time.time()
58

59 # placeholder for the lists
60 intro_point_list = []
61 descriptor_create_list = []
62 descriptor_upload_list = []
63 descriptor_uploaded_list = []
64 hsdir_upload_circuit_list = []
65

66 # if timeout is provided by parameters use this one, otherwise the default
timeout (360s) is used↪→

67 if timeout is not None and isinstance(timeout, int):
68 TIMEOUT = timeout
69

70 # if a custom number of intro points is provided, use it, otherwise use the
default (3)↪→

71 if num_intro_points is not None and isinstance(timeout, int):
72 NUM_OF_INTRO_POINTS = num_intro_points
73

74 # csv header names
75 CSV_FIELD_NAME_V3 = ['service_initiated']
76

77 for i in range(1, NUM_OF_INTRO_POINTS + 1):
78 CSV_FIELD_NAME_V3.append('intro_' + str(i) + '_build_start')
79 CSV_FIELD_NAME_V3.append('intro_' + str(i) + '_build_end')
80

81 for i in range(1, NUM_OF_INTRO_POINTS + 1):
82 CSV_FIELD_NAME_V3.append('intro_' + str(i) + '_established')
83

84 CSV_FIELD_NAME_V3.extend(['desc_1_created', 'desc_2_created', 'upload_hs_1',
85 'uploaded_hs_1',
86 'upload_hs_2', 'uploaded_hs_2', 'upload_hs_3',

'uploaded_hs_3', 'upload_hs_4',↪→

87 'uploaded_hs_4',
88 'upload_hs_5', 'uploaded_hs_5', 'upload_hs_6',

'uploaded_hs_6', 'upload_hs_7',↪→

89 'uploaded_hs_7',
90 'upload_hs_8', 'uploaded_hs_8', 'upload_hs_9',

'uploaded_hs_9', 'upload_hs_10',↪→

91 'uploaded_hs_10', 'upload_hs_11', 'uploaded_hs_11',
'upload_hs_12', 'uploaded_hs_12',↪→

92 'upload_hs_13',
93 'uploaded_hs_13', 'upload_hs_14', 'uploaded_hs_14',

'upload_hs_15', 'uploaded_hs_15',↪→

94 'upload_hs_16',
95 'uploaded_hs_16', 'upload_hs_1_hsdir_addr',

'upload_hs_2_hsdir_addr',↪→

96 'upload_hs_3_hsdir_addr',
97 'upload_hs_4_hsdir_addr', 'upload_hs_5_hsdir_addr',

'upload_hs_6_hsdir_addr',↪→

98 'upload_hs_7_hsdir_addr', 'upload_hs_8_hsdir_addr',
'upload_hs_9_hsdir_addr',↪→

99 'upload_hs_10_hsdir_addr', 'upload_hs_11_hsdir_addr',
'upload_hs_12_hsdir_addr',↪→

100 'upload_hs_13_hsdir_addr', 'upload_hs_14_hsdir_addr',
'upload_hs_15_hsdir_addr',↪→

101 'upload_hs_16_hsdir_addr'])
102

Appendix 96

103 for i in range(1, 17):
104 CSV_FIELD_NAME_V3.append(f"upload_hs_{i}_path")
105 CSV_FIELD_NAME_V3.append(f"upload_hs_{i}_circuit_built")
106

107 CSV_FIELD_NAME_V2 = ['service_initiated']
108

109 for i in range(1, NUM_OF_INTRO_POINTS + 1):
110 CSV_FIELD_NAME_V2.append('intro_' + str(i) + '_build_start')
111 CSV_FIELD_NAME_V2.append('intro_' + str(i) + '_build_end')
112

113 for i in range(1, NUM_OF_INTRO_POINTS + 1):
114 CSV_FIELD_NAME_V2.append('intro_' + str(i) + '_established')
115

116 CSV_FIELD_NAME_V2.extend(['desc_1_created', 'desc_2_created', 'upload_hs_1',
'uploaded_hs_1',↪→

117 'upload_hs_2', 'uploaded_hs_2', 'upload_hs_3',
'uploaded_hs_3', 'upload_hs_4',↪→

118 'uploaded_hs_4',
119 'upload_hs_5', 'uploaded_hs_5', 'upload_hs_6',

'uploaded_hs_6', 'upload_hs_1_hsdir_addr',↪→

120 'upload_hs_2_hsdir_addr', 'upload_hs_3_hsdir_addr',
121 'upload_hs_4_hsdir_addr', 'upload_hs_5_hsdir_addr',

'upload_hs_6_hsdir_addr'])↪→

122

123 for i in range(1, 7):
124 CSV_FIELD_NAME_V2.append(f"upload_hs_{i}_path")
125 CSV_FIELD_NAME_V3.append(f"upload_hs_{i}_circuit_built")
126

127 # connect and authenticate
128 controller = establish_connection(password=PASSWORD)
129 csv_dict['service_initiated'] = datetime.datetime.now()
130

131 # add event listeners
132 controller.add_event_listener(circCallback, EventType.CIRC)
133 controller.add_event_listener(descCallback, EventType.HS_DESC)
134 controller.add_event_listener(circMinorCallback, EventType.CIRC_MINOR)
135 if version == 3:
136 controller.add_event_listener(logCallback_v3, EventType.DEBUG)
137 else:
138 controller.add_event_listener(logCallback_v2, EventType.DEBUG)
139

140 # create hidden service
141 if ephemeral == False and version == 3:
142 create_hidden_service(controller, '/var/lib/tor', 80)
143 else:
144 create_ephemeral_hidden_service(controller, 80, 80, version)
145

146 print(" * Onion Service created")
147

148 # number of required events for V2/V3
149 if version == 3:
150 createEvent = NUM_OF_CREATE_EVENT_V3
151 uploadEvents = NUM_OF_UPLOAD_EVENTS_V3
152 uploadedEvents = NUM_OF_UPLOADED_EVENTS_V3
153 else:
154 createEvent = NUM_OF_CREATE_EVENT_V2
155 uploadEvents = NUM_OF_UPLOAD_EVENTS_V2
156 uploadedEvents = NUM_OF_UPLOADED_EVENTS_V2
157

158 # loop while the required data is received

Appendix 97

159 while True:
160 if time.time() - startTime > TIMEOUT:
161 print(" * One of many of the uploads timed out")
162 break
163

164 if thread_circuit_list_q.qsize() > 1:
165 circuit_list = thread_circuit_list_q.get()
166 thread_circuit_list_q.queue.clear()
167

168 if thread_intro_circuit_q.qsize() > 1:
169 intro_point_list = thread_intro_circuit_q.get()
170 thread_intro_circuit_q.queue.clear()
171

172 if thread_descriptors_q.qsize() > 3:
173 descriptor_create_list = thread_descriptors_q.get()
174 descriptor_upload_list = thread_descriptors_q.get()
175 descriptor_uploaded_list = thread_descriptors_q.get()
176 thread_descriptors_q.queue.clear()
177

178 if not thread_upload_circuit_q.empty():
179 hsdir_upload_circuit_list.append(thread_upload_circuit_q.get())
180

181 if len(intro_point_list) >= 3 and len(descriptor_create_list) == 2 and len(
182 descriptor_upload_list) == uploadEvents and

len(descriptor_uploaded_list) == uploadedEvents:↪→

183 print(" * All required data available, starting correlation")
184 break
185

186 # clean up, remove event listeners (commented, because it was blocking some
times, don't know why)↪→

187 controller.remove_event_listener(circCallback)
188 controller.remove_event_listener(descCallback)
189 controller.remove_event_listener(circMinorCallback)
190 if version == 3:
191 controller.remove_event_listener(logCallback_v3)
192 else:
193 controller.remove_event_listener(logCallback_v2)
194

195 """
196 correlates an element form the uploaded list with a provided fingerprint and

returns the matched element↪→

197

198 :param uploaded_list: List of uploaded descriptors
199 :param fingerprint: Fingerprint from the upload list to correlate
200 :return: Element from the uploaded list that has the same fingerprint as the

element from the upload list↪→

201 """
202

203 def correlateFingerprint(uploaded_list, fingerprint):
204 for elem in uploaded_list:
205 if elem.fingerprint == fingerprint:
206 return elem
207 return None
208

209 # read data from the various lists and put the into a dict uniformly that their
values can be written to a CSV file↪→

210 for i in range(0, createEvent):
211 csv_dict["desc_" + str(i + 1) + "_created"] =

(descriptor_create_list[i]).getTime()↪→

212 i += 1

Appendix 98

213

214 for i in range(0, uploadEvents):
215 if i <= len(descriptor_upload_list) - 1:
216 csv_dict["upload_hs_" + str(i + 1)] = descriptor_upload_list[i]
217 try:
218 hsdir_addr = re.search(UPLOAD_REGEX, str(
219 controller.get_network_status

(relay=descriptor_upload_list[i].getFingerprint())))↪→

220 if hsdir_addr:
221 csv_dict["upload_hs_" + str(i + 1) + "_hsdir_addr"] =

str(hsdir_addr.group(1)) + ":" + str(↪→

222 hsdir_addr.group(2))
223 else:
224 csv_dict["upload_hs_" + str(i + 1) + "_hsdir_addr"] = "FAIL"
225 except:
226 csv_dict["upload_hs_" + str(i + 1) + "_hsdir_addr"] = "FAIL"
227 else:
228 csv_dict["upload_hs_" + str(i + 1)] = 'FAIL'
229 csv_dict["upload_hs_" + str(i + 1) + "_hsdir_addr"] = 'FAIL'
230

231 for i in range(0, len(hsdir_upload_circuit_paths)):
232 # to upload circuit path is contained in the fingerprint attribute, while the

upload circuit built timestamp is contained in the objects time stamp↪→

233 csv_dict[f"upload_hs_{i + 1}_circuit_built"] =
hsdir_upload_circuit_list[i].getTime()↪→

234 csv_dict[f"upload_hs_{i + 1}_path"] =
str(hsdir_upload_circuit_list[i].getFingerprint())↪→

235

236 for i in range(0, uploadedEvents):
237 if i <= len(descriptor_uploaded_list) - 1:
238 if csv_dict["upload_hs_" + str(i + 1)] != 'FAIL' and

correlateFingerprint(descriptor_uploaded_list, str(↪→

239 csv_dict["upload_hs_" + str(i + 1)].getFingerprint())):
240 csv_dict["uploaded_hs_" + str(i + 1)] =

correlateFingerprint(descriptor_uploaded_list, str(↪→

241 csv_dict["upload_hs_" + str(i + 1)].getFingerprint())).getTime()
242 csv_dict["upload_hs_" + str(i + 1)] = csv_dict["upload_hs_" + str(i +

1)].getTime()↪→

243 else:
244 csv_dict["upload_hs_" + str(i + 1)] = "FAIL"
245 else:
246 if csv_dict["upload_hs_" + str(i + 1)] != 'FAIL':
247 csv_dict["upload_hs_" + str(i + 1)] = csv_dict["upload_hs_" + str(i +

1)].getTime()↪→

248 csv_dict["uploaded_hs_" + str(i + 1)] = 'FAIL'
249

250 for i in range(0, NUM_OF_INTRO_POINTS):
251 if i <= len(intro_point_list) - 1:
252 csv_dict["intro_" + str(i + 1) + "_established"] = intro_point_list[i][0]
253 csv_dict["intro_" + str(i + 1) + "_build_start"] =

circuit_list[str(intro_point_list[i][1])][0].getTime()↪→

254 csv_dict["intro_" + str(i + 1) + "_build_end"] =
circuit_list[str(intro_point_list[i][1])][-1].getTime()↪→

255 else:
256 csv_dict["intro_" + str(i + 1) + "_established"] = "FAIL"
257 csv_dict["intro_" + str(i + 1) + "_build_start"] = "FAIL"
258 csv_dict["intro_" + str(i + 1) + "_build_end"] = "FAIL"
259

260 # write output to csv file
261 print(" * Correlation performed, writing results to CSV file")

Appendix 99

262

263 # check if all mandatory fields are set, if not set them to FAIL
264 if version == 3:
265 checkDictEntries(csv_dict, CSV_FIELD_NAME_V3)
266 else:
267 checkDictEntries(csv_dict, CSV_FIELD_NAME_V2)
268

269 if version == 3:
270 with open(CSV_PATH, 'w', newline='') as csvfile:
271 logwriter = csv.DictWriter(csvfile, delimiter=',', quotechar='"',

quoting=csv.QUOTE_MINIMAL,↪→

272 fieldnames=CSV_FIELD_NAME_V3)
273 logwriter.writeheader()
274 logwriter.writerow(csv_dict)
275 else:
276 with open(CSV_PATH, 'w', newline='') as csvfile:
277 logwriter = csv.DictWriter(csvfile, delimiter=',', quotechar='"',

quoting=csv.QUOTE_MINIMAL,↪→

278 fieldnames=CSV_FIELD_NAME_V2)
279 logwriter.writeheader()
280 logwriter.writerow(csv_dict)

B.2 Circuit Analyzer

1 import datetime
2 import re
3 import queue
4

5 # global dictionary for circuits
6 circuits = {}
7

8 # regex for fingerprint
9 FINGERPRINT_REGEX = '[A-z0-9]{40}'

10

11 # synchronized queue for inter thread communication
12 thread_circuit_list_q = queue.Queue()
13

14 # synchronized queue for tor upload circuits
15 thread_upload_circuit_q = queue.Queue()
16

17 """
18 class for circuit elements
19 """
20

21 class circuitElement:
22 def __init__(self, time_added, fingerprint):
23 self.__time_added = time_added
24 self.__fingerprint = fingerprint
25

26 def getTime(self):
27 return self.__time_added
28

29 def getFingerprint(self):
30 return self.__fingerprint
31

32

33 """
34 callback handler when a CIRC event takes place

Appendix 100

35 """
36

37

38 def circCallback(event):
39 global circuits
40 # save timestamp of the event
41 timestamp = datetime.datetime.now()
42

43 # write to queue such that the main thread has access to the circuit list
44 if len(circuits) > 0:
45 # put new version into queue
46 thread_circuit_list_q.put(circuits)
47

48 # circuits for finding introduction points
49 if event.purpose == "HS_SERVICE_INTRO":
50 # Circuit is new, add new entry to global circuit dictionary
51 if event.status == "LAUNCHED":
52 circuits[event.id] = []
53 # circuit is extended
54 elif event.status == "EXTENDED":
55 circuits[event.id].append(circuitElement(timestamp,

extractFingerprint(event.path)))↪→

56 # circuit failed or closed, delete entry from dictionary
57 elif event.status == "FAILED" or event.status == "CLOSED":
58 circuits.pop(event.id)
59

60 if event.purpose == "HS_SERVICE_HSDIR":
61 if event.status == "LAUNCHED":
62 print(f"[{datetime.datetime.now()}] CircuitEvent: {event.id} | status:

{event.status} | purpose: {event.purpose} | path: {event.path}")↪→

63 if event.status == "BUILT":
64 # in this case the fingeprint attribute is misued for the upload circuit

path↪→

65 thread_upload_circuit_q.put(circuitElement(timestamp, event.path))
66 print(f"[{datetime.datetime.now()}] CircuitEvent: {event.id} | status:

{event.status} | purpose: {event.purpose} | path: {event.path}")↪→

67 elif event.status == "FAILED":
68 # One Upload failed, so a new attempt will be made.
69 # thread_upload_circuit_q.put("FAIL")
70 print(f"[{datetime.datetime.now()}] CircuitEvent: {event.id} | status:

{event.status} | purpose: {event.purpose} | path: {event.path}")↪→

71

72

73 """
74 callback handler when a CIRC MINOR event takes place
75 """
76

77

78 def circMinorCallback(event):
79 global circuits
80 if not event.id in circuits:
81 if event.event == 'CANNIBALIZED':
82 path_list = extractFingerprint(event.path, cannibalized=True)
83 circuits[event.id] = []
84 for elem in path_list:
85 circuits[event.id].append(circuitElement(str(datetime.datetime.now())

+ " (CAN)", elem))↪→

86

87

88 """

Appendix 101

89 extracts the fingerprint from a path string that is not yet in the specific circuits
lists↪→

90

91 :param path: Path string of the CIRC event
92 :return: Fingerprint
93 """
94

95

96 def extractFingerprint(path, cannibalized=False):
97 fingerprint_re = re.compile(FINGERPRINT_REGEX)
98 path_list = re.findall(fingerprint_re, str(path))
99

100 if len(path_list) > 0 and not cannibalized:
101 return path_list[-1]
102 elif len(path_list) > 0 and cannibalized:
103 return path_list
104

105

106 """
107 print all the circuits and their paths
108 """
109

110

111 def printCircuitList():
112 for circuit in circuits:
113 print(f"# {circuit}")
114 for relay in circuits[circuit]:
115 print(f" {relay.getTime()}: [{relay.getFingerprint()}]")
116 print("\n")

B.3 Log Analyzer

1 """
2 callback handler when a LOG event takes place
3 """
4

5 import datetime
6 import queue
7 import re
8

9 # regex for intro points
10 INTRO_ESTABLISHED_REGEX_V3 = 'service_handle_intro_established\(\): Successfully

received an INTRO_ESTABLISHED cell on circuit ([0-9]{1,}) \(id: ([0-9]{1,})\)'↪→

11 INTRO_ESTABLISHED_REGEX_V2 = 'rend_service_intro_established\(\): Received
INTRO_ESTABLISHED cell on circuit ([0-9]{1,}) \(id: ([0-9]{1,})\)'↪→

12

13 intro_circuit_list = []
14

15 # synchronized queue for inter thread communication
16 thread_intro_circuit_q = queue.Queue()
17

18 """
19 callback handler when a LOG event takes place
20 """
21

22 def logCallback_v2(event):
23 global intropoints_extracted
24

Appendix 102

25 timestamp = datetime.datetime.now()
26 # extractIntroEstablishedCircuit(event.message)
27 int_tmp = extractCircuitID(event.message, timestamp, 2)
28 if int_tmp is not None:
29 intro_circuit_list.append(int_tmp)
30 # put new version into queue
31 thread_intro_circuit_q.put(intro_circuit_list)
32

33

34 def logCallback_v3(event):
35 global intropoints_extracted
36

37 timestamp = datetime.datetime.now()
38 # extractIntroEstablishedCircuit(event.message)
39 int_tmp = extractCircuitID(event.message, timestamp, 3)
40 if int_tmp is not None:
41 intro_circuit_list.append(int_tmp)
42 # put new version into queue
43 thread_intro_circuit_q.put(intro_circuit_list)
44

45

46 """
47 extract the circuit ID from a intro established log message and return a list with

its timestamp and id↪→

48 :param line: Log string
49 :param timestamp: timestamp when the controller received the log message
50 :return: list of timestanp and ID of intro circuit (global ID)
51 """
52

53 def extractCircuitID(line, timestamp, version):
54 if version == 3:
55 circuit_id = re.search(INTRO_ESTABLISHED_REGEX_V3, str(line))
56 else:
57 circuit_id = re.search(INTRO_ESTABLISHED_REGEX_V2, str(line))
58

59 # if there is a match, extract the circuit ID
60 if circuit_id is not None:
61 return [timestamp, circuit_id.group(2)]
62 else:
63 return None

B.4 Descriptor Analyzer

1 import queue
2 import datetime
3

4 # synchronized queue for inter thread communication
5 thread_descriptors_q = queue.Queue()
6

7 descUploadEvents = []
8 descUploadedEvents = []
9 descCreatedEvents = []

10

11 """
12 class for descriptor elements
13 """
14

15

Appendix 103

16 class descElement:
17 def __init__(self, time_added, fingerprint):
18 self.time_added = time_added
19 self.fingerprint = fingerprint
20

21 def getTime(self):
22 return self.time_added
23

24 def getFingerprint(self):
25 return self.fingerprint
26

27

28 """
29 callback handler when a DESC event takes place
30 """
31

32

33 def descCallback(event):
34 global descEvents
35 # collected all required data, put it in a queue such that the main thread can

read them↪→

36 # put new version into queue
37 thread_descriptors_q.put(descCreatedEvents)
38 thread_descriptors_q.put(descUploadEvents)
39 thread_descriptors_q.put(descUploadedEvents)
40

41 if event.action == "CREATED":
42 descCreatedEvents.append(descElement(datetime.datetime.now(), None))
43 elif event.action == "UPLOAD":
44 descUploadEvents.append(descElement(datetime.datetime.now(),

event.directory_fingerprint))↪→

45 print(f"[{datetime.datetime.now()}] action: {event.action} | descriptor:
{event.descriptor_id} | replica: {event.replica}")↪→

46 elif event.action == "UPLOADED":
47 descUploadedEvents.append(descElement(datetime.datetime.now(),

event.directory_fingerprint))↪→

48 print(f"[{datetime.datetime.now()}] action: {event.action} | descriptor:
{event.descriptor_id} | replica: {event.replica}")↪→

B.5 Start Analysis

1 import re
2 from analysis import start
3 from connection.utils import establish_connection
4 import sys
5

6 NOTICES_LOG_PATH = '/var/log/tor/notices.log'
7 BOOTSTRAP_REGEX = 'Bootstrapped 100\%'
8 PASSWORD = 'tor'
9

10 version = int(sys.argv[1])
11 ephemeral = sys.argv[2] == "true" or sys.argv[2] == "True" or sys.argv[2] == "TRUE"
12 timeout = int(sys.argv[3])
13 num_intro_points = int(sys.argv[4])
14

15 bootstrapped = False
16

17

Appendix 104

18 def parseLog(file_path):
19 global bootstrapped
20 with open(file_path) as infile:
21 for line in infile:
22 if checkIfBoostrapped(line):
23 bootstrapped = True
24

25 def checkIfBoostrapped(line):
26 if re.search(BOOTSTRAP_REGEX, line) is not None:
27 return True
28 return False
29

30 while not bootstrapped:
31 parseLog(NOTICES_LOG_PATH)
32

33 controller = establish_connection(password=PASSWORD)
34 print(f" * Number of circuits after bootstrapping: {len(controller.get_circuits())}")
35 print(" * Tor completely bootstrapped, starting analysis")
36

37 start(version, ephemeral, timeout, num_intro_points)

B.6 Utils

1 import sys
2 import stem.control
3 import stem.connection
4

5 """
6 Establish a connection to the control port of tor and authenticate
7 """
8 CONTROL_PORT = 9051
9 CONTROL_ADDRESS = '127.0.0.1'

10

11

12 def establish_connection(address=CONTROL_ADDRESS, port=CONTROL_PORT, password=None):
13 # Get connection to tor via the control port
14 try:
15 # the explicit declaration of the port isn't necessary since it's the default

port↪→

16 controller = stem.control.Controller.from_port(address, port)
17 except stem.SocketError as exc:
18 print(f" * Unable to connect to port control port 9051 ({exc})")
19 sys.exit(1)
20

21 if controller:
22 # authenticate
23 try:
24 if (password != None):
25 controller.authenticate(password=password)
26 else:
27 controller.authenticate()
28 print(" * Connection established and authenticated")
29 return controller
30 except stem.connection.PasswordAuthFailed:
31 print(" * Unable to authenticate, password is incorrect")
32 sys.exit(1)
33 except stem.connection.AuthenticationFailure as exc:
34 print(f" * Unable to authenticate: {exc}")

Appendix 105

35 sys.exit(1)
36

37

38 """
39 Create new ephemeral Hidden Service and return its onion id
40 """
41

42

43 def create_ephemeral_hidden_service(controller, source_port, target_port, version):
44 try:
45 if version == 2:
46 hs = controller.create_ephemeral_hidden_service({source_port:

target_port}, await_publication=False,↪→

47 key_type="NEW",
key_content="RSA1024",
detached=False)

↪→

↪→

48 else:
49 hs = controller.create_ephemeral_hidden_service({source_port:

target_port}, await_publication=False,↪→

50 detached=False)
51 if (hs.service_id):
52 return hs.service_id
53 else:
54 return -1
55

56 except stem.ControllerError as exc:
57 print(f"Unable to create the hidden service ({exc})")
58 sys.exit(1)
59

60

61 def create_hidden_service(controller, path, port):
62 try:
63 controller.create_hidden_service(path, port, target_address='127.0.0.1')
64 except stem.ControllerError as exc:
65 print(f"Unable to create the hidden service ({exc})")
66 sys.exit(1)

B.7 Docker File

1 # image based on debian
2 FROM debian:latest
3

4 # update package lists
5 RUN apt-get update -y
6

7 # workaround for avoiding debconf failure messages
8 RUN echo 'debconf debconf/frontend select Noninteractive' | debconf-set-selections
9

10 # install all packages required to compile and run tor within the container
11 RUN apt-get install libssl-dev -y -qq > /dev/null
12 RUN apt-get install zlib1g-dev -y -qq > /dev/null
13 RUN apt-get install python3 -y -qq > /dev/null
14 RUN apt-get install python3-pip -y -qq > /dev/null
15 RUN apt-get install libevent-dev -y -qq > /dev/null
16

17 # create directories
18 RUN mkdir -p /home/script
19 RUN mkdir -p /home/tor

Appendix 106

20 RUN mkdir -p /etc/tor
21 RUN mkdir -p /var/log/tor
22 RUN mkdir -p /var/lib/tor
23 RUN mkdir -p /run/tor
24

25 # init file, tor binaries and torrc file
26

27 # the init handles execution parameters (which analysis should be started, V2, V3,
V3VN, V3NE?)↪→

28 ADD init_tor.sh /home/script/init_tor.sh
29

30 # tor source code, which is compiled within the container (should be kept up-to-date)
31 ADD tor /home/tor
32

33 # tor config file
34 ADD torrc /etc/tor/torrc
35

36 # vanguards config file
37 ADD vanguards.conf /etc/tor/vanguards.conf
38

39 # python requirements (currently only stem)
40 ADD requirements.txt /home/requirements.txt
41

42 # install python package manager
43 RUN pip3 install --upgrade pip
44

45 # install required packages (currently only stem)
46 RUN pip3 install -r /home/requirements.txt
47

48 # install vanguards (could also be done within the requirements file)
49 RUN pip3 install vanguards
50

51 # create log files
52 RUN touch /var/log/tor/debug.log
53 RUN touch /var/log/tor/info.log
54 RUN touch /var/log/tor/notices.log
55

56 # build custom tor binary
57 RUN sh ./home/tor/configure
58 RUN chmod +x /home/tor/install-sh
59 RUN make && make install
60

61 RUN chmod +x /home/script/init_tor.sh
62 RUN chmod 700 /var/lib/tor
63

64 # add timing analysis prototype
65 ADD prototype-timing-analysis/ /home/timing-analysis/
66

67 # run init script
68 ENTRYPOINT ["/bin/bash","/home/script/init_tor.sh"]

B.8 Analysis Server

1 #!/bin/bash
2

3 target="/path/to/results"
4 image="tor-docker:latest"
5 timeout=180

Appendix 107

6 introduction_points=3
7 for i in {1..N}
8 do
9 echo "Iteration $i: V2"

10 docker run -it --rm -v${target}V2:/results -v/etc/localtime:/etc/localtime:ro
"${image}" -v 2 -t ${timeout} -i ${introduction_points}↪→

11 echo "Iteration $i: V3"
12 docker run -it --rm -v${target}V3:/results -v/etc/localtime:/etc/localtime:ro

"${image}" -v 3 -t ${timeout} -i ${introduction_points}↪→

13 echo "Iteration $i: V3NE"
14 docker run -it --rm -v${target}V3NE:/results -v/etc/localtime:/etc/localtime:ro

"${image}" -v 3NE -t ${timeout} -i ${introduction_points}↪→

15 echo "Iteration $i: V3VN"
16 docker run -it --rm -v${target}V3VN:/results -v/etc/localtime:/etc/localtime:ro

"${image}" -v 3VN -t ${timeout} -i ${introduction_points}↪→

17 done

B.9 Tor Configuration

1 ## Logging
2 ## Send all messages of level 'notice' or higher to /var/log/tor/notices.log
3 Log notice file /var/log/tor/notices.log
4 ## Send all messages of level 'info' possible message to /var/log/tor/info.log
5 Log info file /var/log/tor/info.log
6 ## Send every possible message to /var/log/tor/debug.log
7 Log debug file /var/log/tor/debug.log
8

9 ## Control port
10 ControlPort 9051
11 HashedControlPassword 16:CCA169830431CAB5608D58317D89A87D314B84B42FCCF3EDC82FD8B4E4
12

13 ## Run as daemon in background
14 RunAsDaemon 1
15

16 ## The directory for keeping all the keys/etc. By default, we store
17 ## things in $HOME/.tor on Unix, and in Application Data\tor on Windows.
18 DataDirectory /var/lib/tor
19

20

21 SafeLogging 0

B.10 Initialization Script

1 ##!/bin/bash
2

3 # get parameter
4 while getopts ":v:t:i:" opt; do
5 case $opt in
6 v) version="$OPTARG"
7 ;;
8 t) timeout="$OPTARG"
9 ;;

10 i) num_intro="$OPTARG"
11 ;;
12 \?) echo "Invalid option -$OPTARG" >&2
13 ;;
14 esac

Appendix 108

15 done
16

17 if [[-z ${version}] || [-z ${timeout}] || -z ${num_intro};
18 then
19 echo -e "\t\nUsage:\nbash init_tor.sh -v VERSION -t TIMEOUT -i

NUM_INTRO_POINTS\n"↪→

20 echo -e "\t3: Ephemeral Onion Service Version 3\n"
21 echo -e "\t3NE: Non-ephemeral Onion Service Version 3\n"
22 echo -e "\t3VN: Ephemeral Onion Service with Vanguards Version 3\n"
23 echo -e "\t2: Ephermeral Onion Service Version 2\n"
24 exit 1
25 else
26 # start tor
27 tor -f /etc/tor/torrc --quiet &
28

29 export PYTHONPATH="/home/timing-analysis"
30 case "$version" in
31 3) python3 /home/timing-analysis/analysis/startAnalysis.py 3 "True"

${timeout} ${num_intro}↪→

32 ;;
33 3NE) python3 /home/timing-analysis/analysis/startAnalysis.py 3 "False"

${timeout} ${num_intro}↪→

34 ;;
35 3VN) vanguards --config /etc/tor/vanguards.conf &
36 python3 /home/timing-analysis/analysis/startAnalysis.py 3 "True"

${timeout} ${num_intro}↪→

37 ;;
38 2) python3 /home/timing-analysis/analysis/startAnalysis.py 2 "True"

${timeout} ${num_intro}↪→

39 ;;
40 *) echo -e "Version can only be [2]|[3]|[3NE]|[3VN]"
41 exit 1
42 ;;
43 esac
44 # copy result file
45 cp /tmp/provisioning_time* /results
46 fi

	Sworn Declaration
	Introduction
	Problem Statement
	Objectives

	Related Work
	Performance Measurement
	Tor Performance
	Onion Service Performance

	Unlinkability

	Background
	Tor
	Onion Services
	Service Initialization
	Service Access
	Key Types
	Time Periods and Shared Random Values
	Security Enhancements

	Unlinkable Onion Services
	Methodological Approach
	Custom Addressing
	Unlinkable Onion Service Protocol
	Concept
	Architecture
	Identity Assignment
	Protocol Definition

	Proof of Concept
	Technical Building Blocks
	Proxy Module Implementation
	Server Module Implementation

	Performance Analysis
	Methodological Approach
	Architecture
	Implementation
	Analysis Module
	Container Environment
	Analysis Server

	Results
	Discussion

	Conclusion
	Summary
	Future Work

	References
	Appendices
	Unlinkable Onion Service Protocol
	Database Utils
	Connection Utils
	Server State Machine
	Server Module
	Server Tor Configuration
	Proxy State Machine
	Proxy Module
	Proxy Tor Configuration

	Performance Analysis
	Circuit Analyzer
	Log Analyzer
	Descriptor Analyzer
	Start Analysis
	Utils
	Docker File
	Analysis Server
	Tor Configuration
	Initialization Script

