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1. Introduction

A group signature is a special class of signatures schemes. It allowsmultiple as-
sociated signers to form a group and to sign a message on behalf of the group.
There is—as in common signature schemes—only one public key for signa-
ture verification. Ideally, from the verifier point of view, there is no procedural
difference in message verification compared to a common signature scheme.

The feature of having multiple secret keys signing against a single public key
introduces however a number of additional requirements to the underlying
cryptosystem. Accordingly, verifying and proving functional correctness be-
comes more complex as well as implementing the algorithms. This fact may
reason why there are only few group signature schemes available and not yet
widespread in use—unlike common signature schemes which is an essential
part to build trust in digital communication.

Direct Anonymous Attestation (DAA) is an application of group signatures. Al-
though there exist some implementations of DAA, e.g. in Trusted PlatformMod-
ules version 1.2 (TPM 1.2), there exists no standardized DAA scheme for general
purpose use yet.

This report will explain the basic concept of group signatures along with its
cryptographic requirements. With this foundation, the report will provide a
description of two different variants of Direct Anonymous Attestation (DAA) as
implementation of a group signature scheme. Finally, the report discusses the
impact to real world issues and why we are still lacking an affordable group
signature scheme.

2. Definition of Group Signatures

A common signature scheme consists of an asymmetric encryption algorithm
and a hashing algorithm. There are furthermore two parties involved, a signer
and a verifier. Three algorithmic parts fulfill the task of signing and trusting a
certainmessage. The first part is called Setup and includes all preparation steps
for creating a signature. That is selecting an asymmetric encryption scheme—
like RSA or Elliptic Curve Cryptography (ECC)—and generating the signer’s key
pair sk and pk. The public part pk is then published to all verifiers.

In the Sign step, the signer is given a message which will be hashed to have a
representation of the it with a fixed length. This hash—together with optional
metadata—will be encrypted with the signer’s secret key sk and appended to
the message itself. Finally, the message will be sent to the verifier.

The verifier has to check whether the message was not tampered with and the
creator is indeed the signer. It uses the hash of the cleartext part of the mes-
sage to hash it again. The signer’s public key pk is used to decrypt the appended
signature. If the decrypted hash in the signature is equal to the hash computed
by the verifier itself, the message is not modified and the signer is indeed the
owner of sk. Trust is created between signer and verifier.

Unlike the common signature scheme, group signatures consist of more than
one signer. This requires a Group Manager as additional party to organize the
membership in the corresponding group. Bellare et al. [2] introduced as one of
the first a formal definition and a list of requirements for the general concept
of group signatures. First, the paper gives a definition of the cryptographic al-
gorithms, every scheme should consist of:



Group Signature Applications: Direct Anonymous Attestation 4

Group Key Generation (GKg): The algorithm should randomly, based on the
security number k, generate the group public key gpk, the groupmanager’s
secret key gsk and n groupmember secret keysmski.

GroupSigning (GSig):Givenonemskandamessagem, a randomlygenerated
signature σwill be returned.

Group Signature Verification (GVf): This deterministic algorithm takes a
message m and a signature σ and the public key gpk and checks whether
the signature is valid or not.

Opening (Open): This algorithm returns the signer’s identity, given the
manager private key gmsk and a signature σ.

Given a message with a signature from a group member, a verifier can only
check with the group public key gpk that the signature is created by one of the
members. Although this anonymity is a reasonable feature for parties not in-
volved in the group, itmight benecessary for themanager to unveil the identity
of a signer in case of a dispute or a fraudulent use is detected. Consequently, the
Opening algorithm is only used for handling corner cases of the scheme.

Furthermore, Bellare et al. [2] introduce three classes of group management.
The easiest of them is of course a static subscription scheme. In this case only a
predefined set ofmembers can sign amessage andmodifying this set requires a
completenewcryptographicgroup.Apartial dynamic group is definedasagroup
where members can be added during lifetime without changing existing keys
and signatures. Finally, a full dynamic group includes also revocation of mem-
bers during lifetime.

Besides thementioned building blocks, Bellare et al. [2] discuss relevant secu-
rity notions for a sound implementation. Similar to the extension of the algo-
rithms, the security properties need to be extendedwith a subscription feature.
Common signature schemes include:

Correctness: The schememust create valid signatures under all possible and
valid public/secret key pairs and for all possible messages.

Collision resistance: It is not feasible to compute two equal hashes with dif-
ferent content in messages.

Unforgeability: Valid pairs ofmessages and signatures can only be produced
with a valid secret key.

The above list of security parameters has to be extended for the generic group
signature scheme:

Anonymity: It is computationally hard to recover the identity of a signer
without the groupmanager’s secret key (gmsk).

Unlinkability: Given two different signatures, an adversary cannot deter-
mine whether those relate to the same signer identity or not.

Exculpability: Nomember of the group and no groupmanager is able to sign
messages on behalf of other members.

Traceability: The group manager is able to unveil the identity of a signer,
given the signature of a message, the secret key gmsk and the opening al-
gorithm. Therefore, it should not be possible that group members collude
to create a signature that cannot be traced (coalition resistance). Further-
more, the scheme should prevent to create a signature in a way that the
opening algorithm returns the identity of another groupmember.
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With these algorithmic functions and security parameters a basic group sig-
nature scheme is defined. The group manager possesses some identifying in-
formation about the members (usually the member’s public key) and knows
with the groupmanager’s secret key gskwhich signature corresponds to which
member. On the other hand, the verifier has no information at all about the
signer’s identity. The only known property is a valid subscription to the group
with the corresponding public key gpk.

Thenext sectionwill introduce an application ofGroup Signatures calledDirect
Anonymous Attestation which extends above described security parameters to
fit the needs for attestation.

3. Direct Anonymous Attestation (DAA)

DAA is an application of the above defined group signature scheme. An early
implementation of DAA was standardized with version 1.2 of the Trusted Plat-
form Module (TPM 1.2) in 2004. Although this implementation was secure at
thatpoint in time,meaning thatnoweaknessesorbugswereknownat thepoint
of standardization, some serious concept and protocol flaws were found in the
years after that.

TPMs are small crypto coprocesseorswith very limited computation power and
functionality. The goal of the Trusted Computing Group (TCG), an international
consortium maintaining the TPM standard, is to provide well defined crypto
functions mainly for the PC platform that work independently from the host-
ing system. Therefore, a TPM is a dedicated chipwhich communicates with the
main processor via a slow bus interface.

Unfortunately,when theTPM1.2DAAprotocolwasprovenbroken, the required
changes to fix all problems were too complex. Consequently, using this proto-
col became discouraged and TCG focused on a secure implementation in the
newer standard TPM 2.0. The new version was released in 2014. However, at
that point, no DAA protocol fulfilled the security requirements to be imple-
mented. So the TCG decided to provide only the required functions as building
blocks. Several scientific groups developed then different DAA protocols based
on the generic TPM 2.0 functions.

This paper discusses mainly one approach of Camenisch et al. [6] which was
also implemented and published by Xaptum1. The following section will de-
scribe themathematical foundations aswell as the resulting protocol in further
detail.

3.1 Mathematical Foundations

The following definitions form the mathematical building blocks for DAA. It
is noteworthy that these definitions work with RSA encryption as well as with
Elliptic Curve Cryptography (ECC).

3.1.1 Discrete Logarithm Problem

Given a cyclic group G = ⟨g⟩ of order n, the discrete logarithm of y ∈ G to the
base g is the smallest positive integer α satisfying gα = y if this x exists. For

1https://github.com/xaptum/ecdaa

https://github.com/xaptum/ecdaa
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sufficiently large n and properly chosen G and g, it is infeasible to compute the
reverse α = logg y. This problem is known as Discrete Logarithm Problem and is
the basis for the following cryptographic algorithms.

3.1.2 Signature Proof of Knowledge (SPK)

ASPK is a signature of amessagewhichproves that the creator of this signature
is in possession of a certain secret. The secret itself is never revealed to any
other party. Thus, this algorithm is a Zero Knowledge Proof of Knowledge (ZPK).

Camenisch and Stadler [8] introduced the algorithm based on the Schnorr Sig-
nature Scheme. It only assumes a collision resistant hash functionH : {0, 1}∗ →
{0, 1}k for signature creation. For instance,

SPK{(α) : y = gα}(m)

denotes a proof of knowledge of the secret α, which is embedded in the signa-
ture of messagem. The one-way protocol consists of three procedures:

1. Setup. Letm be a message to be signed, α be a secret and y := gα be the cor-
responding public representation.

2. Sign. Choose a random number r and create the signature tuple (c, s) as

c := H(m || y ||g ||gr) and s := r– cα (mod n).

3. Verify. The verifier knows the values of y and g, as they are usually public.
The messagem comes with the signature values c and s. She computes the
value

c′ := H(m || y ||g ||gsyc) and verifies, that c′ = c .

The verification holds since

gsyc = grg–cαgcα = gr.

This scheme is extensible to prove knowledge of an arbitrary number of secrets
as well as more complex relations between secret and public values.

3.1.3 Bilinear Maps

Bilinear Maps define a special property for mathematical groups which form
the basis for verifying the signatures in DAA. Consider three mathematical
groups G1, G2, with their corresponding base points g1, g2, and GT. Let e :
G1 × G2 → GT that satisfies three properties [7, 6]:

Bilinearity. For all P ∈ G1,Q ∈ G2, for all a,b ∈ Z : e(Pa,Qb) = e(P,Q)ab.

Non-degeneracy. For all generators g1 ∈ G1,g2 ∈ G2 : e(g1,g2) generates GT.

Efficiency.Thereexists anefficientalgorithmthatoutputs thebilineargroup
(q,G1,G2,GT, e,g1,g2) and an efficient algorithm for computing e.
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3.1.4 Camenisch-Lysyanskaya Signature Scheme

The Camenisch-Lysyanskaya (CL) Signature Scheme [7] is based on the LRSW
assumption and allows efficient proofs for signature posession and is the
basis for the DAA scheme discussed below. It is based on a bilinear group
(q,G1,G2,GT, e,g1,g2) that is available to all steps in the protocol.

Setup. Choose x ← Zq and y ← Zq at random. Set the secret key sk ← (x, y)
and the public key pk← (gx2,g

y
2) = (X,Y).

Sign.Given amessagem, and the secret key sk, choose a at randomand out-
put the signature σ← (a,ay,ax+xym) = (a,b, c).

Verify. Given messagem, signature σ and public key pk, verify, that a ̸= 1G1,
e(a,Y) = e(b,g2) and e(a,X) · e(b,X)m = e(c,g2).

Camenisch et al. stated in section 4.2 of their paper [6] that one has to verify
the equation against e(g1,b) and e(g1, c) which is not correct.

3.2 DAA Protocol on LRSWAssumption

DAA is a group signature protocol, which aimswith a supporting TPM to reveal
no additional information about the signing host besides content and validity
of the signed message m. According to Camenisch et al.[6], the DAA protocol
consists of three parties:

Issuer I. The issuer maintains a group and has evidence of hosts that are
members in this group. This role equals the group manager of Bellare’s
generic definition.

Host H. The Host creates a platformwith the corresponding TPMM. Mem-
bership of groups aremaintained by theTPM. Compared to Bellare et al. [2],
the role of a member is split into two cooperating parties, the key owner
(TPM, passive) and the message author (Host, active).

Verifier V. A verifier can check whether a Host with its TPM is in a group or
not. Besides the groupmembership, no additional information is provided.

A certificate authority Fca is providing a certificate for the issuer itself. The
basename bsn is some clear text string, whereas nym represent the encrypted
basename bsngsk.L is the list of registered groupmemberswhich ismaintained
by I. ThepaperofCamenischet al. [6] introduces further variables that arenec-
essary for their proof of correctness. These extensions were omitted in the fol-
lowing to understand the protocol more easily.

Setup. During Setup I is generating the issuer secret key isk and the corre-
sponding issuer public key ipk. The public key is published and assumed to
be known to everyone.

1. On input SETUP Iu generates x, y ← Zq and sets isk = (x.y) and ipk ← (gx2,g
y
2) = (X,Y).

Initialize L← ∅,u generates a proof π $← SPK{(x, y) : X = gx2 ∧ Y = gy2} that the key pair
is well formed,u registers the public key (X,Y,π) at Fca and stores the secret key,u outputs SETUPDONE.
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Join.When a platform, consisting of host Hj and TPM Mi, wants to become
a member of the issuer’s group, it joins the group by authenticating to the
issuer I.

1. On input JOIN, host Hj sends the message JOIN to I.

2. I upon receiving JOIN from Hj, chooses a fresh nonce n ← {0, 1}τ and
sends it back to Hj.

3. Hj upon receiving n from I, forwards n to Mi.

4. Mi generates the secret key:u Check, that no completed key record exists. Otherwise, it is already
a member of that group.u Choose gsk $← Zq and store the key as (gsk,⊥).u Set Q← ggsk1 and compute π1

$← SPK{(gsk) : Q = ggsk1 }(n).u Return (Q,π1) to Hj.

5. Hj forwards JOINPROCEED(Q,π1) to I.

6. I upon input JOINPROCEED(Q,π1) creates the CL-credential:u Verify that π1 is correct.u Add Mi to L.u Choose r $← Zq and compute a← gr1, b← ay, c← ax · Qrxy, d← Qry.u Create the prove π2
$← SPK{(t) : b = gt1 ∧ d = Qt}.u Send APPEND(a,b, c,d,π2) to Hj

7. Hj upon receiving APPEND(a,b, c,d,π2)u verifies, that a ̸= 1, e(a,Y) = e(b,g2) and e(c,g2) = e(a · d,X).u forwards (b,d,π2) to Mi.

8. Mi receives (b,d,π2) and verifies π2. The join is completed after the
record is extended to (gsk, (b,d)). Mi returns JOINED to Hj.

9. Hj stores (a,b, c,d) and outputs JOINED.

Sign. After joining the group, a host Hj and TPM Mi can sign a message m
with respect to basename bsn.
1. Hj upon input SIGN(m,bsn) re-randomizes the CL credential:

u Retrieve the join record (a,b, c,d) and choose r $← Zq. Set
(a′,b′, c′,d′)← (ar,br, cr,dr).u Send (m,bsn, r) to Mi and store (a′,b′, c′,d′).

2. Mi upon receiving (m,bsn, r)u checks, that a complete join record (gsk, (b,d)) exists, andu stores (m,bsn, r).
3. Mi completes the signature after it gets permission to do so.u Retrieve group record (gsk, (b,d)) andmessage record (m,bsn, r).



Group Signature Applications: Direct Anonymous Attestation 9

u Compute b′ ← br,d′ ← dr.u If bsn = ⊥ set nym← ⊥ and compute
π

$← SPK{(gsk) : d′ = b′gsk}(m,bsn).u If bsn ̸= ⊥ set nym← H1(bsn)gsk and compute
π

$← SPK{(gsk) : nym = H1(bsn)gsk ∧ d′ = b′gsk}(m,bsn).u Send (π,nym) to Hj.

4. Hj assembles the signature σ ← (a′,b′, c′,d′,π,nym) and outputs SIGNA-
TURE(σ).

Verify. Given a signed message, everyone can check whether the signature
with respect to bsn is valid and the signer ismember of this group. Further-
more a revocation list RL holds the private keys of corrupted TPMs, whose
signatures are no longer accepted.

1. V upon input VERIFY(m,bsn,σ)u parses σ← (a,b, c,d,π,nym),u verifies πwith respect to (m,bsn) and nym if bsn ̸= ⊥.u checks, that a ̸= 1, b ̸= 1 e(a,Y) = e(b,g2) and e(c,g2) = e(a · d,X),u checks, that for every gski ∈ RL : bgski ̸= d,u sets f← 1 if all test pass, otherwise f← 0, andu outputs VERIFIED(f).

Link. After proving validity of the signature, the verifier can test whether
two different messages with the same basename bsn ̸= ⊥ are generated
from the same TPM.

1. V on input LINK(σ,m,σ′,m′,bsn) verifies the signatures and compares
the pseudonyms contained in σ,σ′:u Check, that bsn ̸= ⊥ and that both signatures σ,σ′ are valid.u Parse the signatures σ← (a,b, c,d,π,nym), σ′ ← (a′,b′, c′,d′,π′,nym′).u If nym = nym′, set f← 1, otherwise f← 0.u Output LINK(f).

Camenisch et al. [6] extend with their concept the general group concept
scheme.The featureof linkingmessages together requires further security fea-
tureswithin theDAA scheme,which the authors also prove in their paper along
with the other properties of the scheme:

Non-frameability: No one can create signatures that the platform never
signed, but that link to messages signed from that platform.

Correctness of link: Two signatures will link when the honest platform signs
it with the same basename.

Symmetry of Link: It does not matter in which order the linked signatures
will be proven. The link algorithmwill always output the same result.

3.3 DAA Extensions and Variants

As previosly mentioned, the DAA scheme of Camenisch et al. [6] is just one
which is supported by TPMs. It is a dynamic group signature scheme with a
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very basic revocation algorithm. Only by publishing the private key of the sub-
scribed TPM, a revocation can be done, which effectively breaks the TPM.

Consequently, Camenischet al. [4] introduceda concept for signaturebased re-
vocation. This is an additional list of signatureswhich ismanaged by the issuer.
The proposed solution defines that signer must provide a SPK to show that his
signature is not in the list of revocations.

Furthermore, they include a larger discussion about proving security and cor-
rectness of other DAA schemes as well as the protocol interface between the
TPMand the host. The authors found several errors or incompletemathemati-
cal proofswhichmakemanyof theDAA concepts insecure or even easily break-
able.

Additionally, the concept of DAA can build upon another cryptographic prob-
lem, namely the q-strong Diffie Hellman Problem (q-SDH). Camenisch et al. [5]
developed a scheme for this problem aswell andwere able to prove its correct-
ness and security. The authors use the signature scheme from Boneh, Boyen
and Shacham (BBS+) [3] instead of the CL scheme. According to the differ-
ent problem, BBS+ signatures have a different construction for the SPK and a
modified protocol. The application for DAA is similar to that of CL signatures.
The resulting q-SDH DAA scheme is slightly modified to work with BBS+ sig-
natures and directly support signature revocations. Until now there were no
papers published which could proof that one of the two DAA schemes of Ca-
menisch et al. is wrong or incomplete.

3.4 DAA Implementation

AnyTPMwith thenewer specification2.0will support all abovementionedDAA
concepts. The group administrator can choose between RSA and ECCwhen us-
ing DAA. Unfortunately, TPM chips lack of computational power which makes
RSAvery inconvenient to use. Signing andkey generation takes several seconds
on the TPM.

All DAA schemes build upon the concept of Bilinear Maps as described in sec-
tion 3.1.3. The function e defined as a bilinear non-degenerative map is, how-
ever, not provided by common ECC curves. This additional feature is called
cryptographic pairing, which makes the ECC curve pairing-friendly. TCG stan-
dardized several pairing-friendly ECC curves, but only one ismandatory in the
current specification. This is the ECC curve of Barreto and Naehrig [1]. It pro-
vides a key length of up to 256 bits which is sufficiently secure for implement-
ing DAA.

The only currently published implementation of DAA which uses TPM 2.0 is
the ECDAA repository which is maintained by Xaptum ENF. It implements the
LRSW variant of Camenisch’s DAA and makes optionally use of the attached
TPM. They also implemented a variant without TPM usage to show that the
cryptographic algorithmworks.

4. Conclusion

The concept of group signatures is very complex to define, to prove and to im-
plement. Thismay be a reason for the fact that there exist only few applications
and hardly any real-world implementations. TCG was one of the first adopter
and failed unfortunately with their first approach in TPM 1.2 by implementing
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aDAAschemewhich is nowadays declared broken. Consequently, for the recent
TPM 2.0 specification, there exist only the building blocks for DAA and the sci-
entific community developed several concepts against this specification. The
benefit of supporting an eventually secure DAA scheme contrasts the drawback
of a standardized implementation. Yet there is also no widespread application
available.

Within theDigidowproject, TPMs andDAA could be used to attest trustworthi-
ness of participants in the Digidow transaction protocol. When a sensor pro-
vides measurement readings to the personal identity agent, we would also like
to know if the sensor platform contains the expected software state. Only then,
the sensor readings can be trusted. A personal identity agent might even want
to refuse to communicate with sensors that cannot attest a certain software
state based on a complete chain of trust starting at bootup. Similarly other par-
ties in the Digidow transaction protocol might only want to communicate with
personal identity agents that contain a certain software state considered trust-
worthy by them. In that particular case, it is essential that the authentication
of the software state does not reveal any cross-session unique identifiers that
would allow linkingotherwise unlinkable transactions to a specific individual’s
personal identity agent. DAA can contribute to establishing such trust without
deanonymizing the attested party.
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