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Abstract

This work proposes a modular automation toolchain to analyze the current
state and measure over-time improvements of reproducibility of the Android
Open Source Project (AOSP). While perfect bit-by-bit equality of binary ar-
tifacts would be a desirable goal to permit independent verification if binary
build artifacts really are the result of building a specific state of source code,
this form of reproducibility is often not (yet) achievable in practice. In fact, bi-
nary artifacts may require to be designed in a way that makes it impossible to
simply detach all sources of non-determinism and all non-reproducible build
inputs (such as private signing keys). We introduce “accountable builds” as a
form of reproducibility that allows such legitimate deviations from 100 per-
cent bit-by-bit equality. Based on our framework that builds AOSP with its na-
tive build system, automatically compares artifacts, and computes difference
scores, we perform a detailed analysis of discovered differences, identify typ-
ical accountable changes, and analyze current major issues that lead to non-
reproducibility. While we find that AOSP currently builds neither fully repro-
ducible nor fully accountable, we derive a trivial weighted change metric to
continuously monitor changes in reproducibility over time.

1. Introduction

Android is the single most widely adopted mobile operating system in use to-
day (with a market share of more than 70 percent as of 2021 and continuously
held for the past years [32]). Its core is based on open source software, the
Android Open Source Project (AOSP). AOSP contains all the core components
of a fully-functioning mobile operating system distribution on which mobile
handset manufacturers and providers of after-market firmware (e.g. the Lin-
eageOs distribution) base their own customizations and additions.

Open source software in general is increasingly influential in numerous ap-
plication domains. Originating in the Linux community [24] and, for a long
time, a very common form of software development by mainly hobbyists and
academia, it has found widespread adoption in enterprise environments of all
sizes, including large multinational enterprises [27]. Open source software is
seen as both a potential benefit and also a potential threat to software qual-
ity and security [27]: While enterprise open source software is perceived as a
chance to increase quality and security, and to benefit from latest innovations
and code-reuse, particularly community-driven open source software is of-
ten considered a risk in terms of security and quality. On the one hand, a key
motivation behind open source software is the establishment of trust. Any in-
terested party may freely inspect the source code and may assure itself that a
program is free of malicious components. On the other hand, vulnerabilities
in open source libraries and particularly the issues associated with managing
them are seen as problematic, cf. [10, 21, 26]. Recent attacks on software de-
pendencies and the software supply chain in general (e.g. Dependency Confu-
sion[5] and SUNSPOT/SUPERNOVA/SUNBURST [9]) suggest that not only open
source libraries but the whole software supply chain management poses a sig-
nificant security risk. This risk introduced by the software supply chain is not
new, cf. [11, 19, 23, 31]. Already in 1974, Karger and Schell [17] mentioned the
threat of code injection by malicious compilers. Practically demonstrating this
issue 10 years later, Thompson [34] concluded that we rely on putting ultimate
trust into all the intermediate steps (and involved parties) on the path between
the source code and the resulting executable binary files. As a result, even if
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open source software permits self-assurance about non-maliciousness of the
source code, this trust does not automatically propagate to binary artifacts.

One approach to reducing the attack surface imposed by maliciously acting
software providers and other third parties involved in the build process is the
concept of reproducible builds. Reproducible builds aim to make the software
build process deterministic. Any interested party can inspect the source code,
configurations and build toolchain, can create their own binary artifacts, and
can use these artifacts to verify that they match the officially provided arti-
facts bit-by-bit (cf. the concept of diverse double-compiling attributed to Henry
Spencer by Wheeler [36]). While the vast majority of users do not compile their
software themselves, they can still profit from independent verification of the
correspondence between source code and resulting binary artifacts. Even when
this correspondance is verified by only a small number of independent parties,
this provides additional trust to the overall user base. Therefore, reproducible
builds are a logical next step for open source projects to extend the trust from
their source code to the final binary artifacts.

Debian! is probably among the most prominant projects that aim for repro-
ducibility. With the Reproducible Builds project?, a whole initiative to drive
reproducible builds has been founded. Besides supply chain security, repro-
ducible builds have also proven as an important measure to achieve repro-
ducibility of scientific results (e.g. in high-performance computing with GNU
Guix [8]).

In the segment of mobile software and operating systems, there are a few
security-focused projects based on AOSP that claim reproducibility (e.g.
GrapheneOS3, CopperheadOS%, and Guardian Project>). Moreover, there is
F-Droid as a dedicated app catalogue for Free and Open Source Software
(FOSS) targeting the Android platform that supports reproducible builds for
Android apps [33]. While AOSP itself does not aim for reproducibility with their
current build system®, there are already a few projects trying to make AOSP
reproducible with improved build systems (e.g. AOSP Build? and robotnix?).
However, using such a customized build environment only allows to com-
pare results based on these alternative environments. Consequently, this does
not help towards the goal of verifying the correspondance between the AOSP
source code and the actual binaries shipped by mobile handset manufactur-
ers and (after-market) firmware providers. Even with Google’s announced
migration to the Bazel build system [15], AOSP has a long way ahead of be-
coming fully reproducible. It is, therefore, interesting to quantitatively and
qualitatively assess to what extent AOSP already provides reproducibility, and
to identify the root causes of differences. The Android operating system poses
additional challenges to this: The Android ecosystem is heterogenous. There
is a huge amount of different build targets resulting into various generic and
device-specific firmware images and image formats. Moreover, AOSP only
provides the core components, while OEMs (including Google) enrich the
resulting firmware images with closed-source functionality (like the Google
Apps) creating expected discrepancies between the overall binary artifacts
(even if the core components must remain untainted). Finally, firmware im-

thttps://wiki.debian.org/ReproducibleBuilds

2https://reproducible-builds.org/

3https://grapheneos.org/build#reproducible-builds

4https://copperhead.co/android/docs/building/

Shttps://guardianproject.info/services/

6Note that during the course of our work, a new announcement by Google [15] in late 2020 de-
clared a significant change: AOSP will migrate to the Bazel build system, also making “correct
and reproducible (hermetic) AOSP builds” an explicit goal.

7https://github.com/hashbang/aosp-build

8https://github.com/danielfullmer/robotnix
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ages are signed with keys that must be kept secret. While this itself does not
pose a significant issue and is well-studied, firmware images themselves
contain signed binaries leading to multiple layers of signatures.

In this paper, we measure the state of reproducibility of AOSP against refer-
ence images such as the generic system images and specific device images. We
create an automated toolchain for running AOSP builds in their native build
system and to automate artifact comparison and analysis of remaining differ-
ences. This permits an independent verification of reproducibility and also a
quantitative assessment of changes in reproducibility over time. As we found
that there are certain complexities in the Android ecosystem that make perfect
reproducibility unpractical, we introduce ‘“accountable builds” as a form of re-
producibility that allows for legitimate deviations from 100 percent bit-by-bit
equality. Finally, we analyze the current major non-reproducibility issues of
AOSP.

2. Reproducible Builds

The gap between programs in their source code form and their compiled bi-
nary form leaves room for manipulation. There is no intrinsic guarantee that
artifacts distributed by someone, claiming these stem from some unmodified
source code, really are the result of building that specific source code with-
out any (potentially malicious) modifications. An obvious solution to establish
your own trust in the mapping between source code and binary form, at least
for open source software and under the assumption that the build toolchain it-
self is benign, would be to compile all software yourself. However, that is not a
practical solution for most users. Reproducible builds are a way towards bridg-
ing this gap, as they allow verification of that mapping for existing binary ar-
tifacts.

The typical textbook definition of reproducibility mandates exact bit-by-bit
equality between all the artifacts produced from the same source code in the
same build environment using the same build instructions [18, 28, 29]. Based
on this requirement, verifying if two artifacts stem from the same reproducibly
building source code is straight forward: They can simply be compared bit-by-
bit. This makes automation of the comparison trivial and also eases indepen-
dent validation: A party that wants to contribute results of their own compila-
tion does not need to publish the full binary artifacts, but can simply publish
a cryptographic checksum over the generated untainted artifacts to provide a
trust anchor for independent verification by others. Similarly, users can build
and use their own binary artifacts from source and can then verify them against
a simple hash value provided by the publisher of the source code without the
need to obtain the whole pre-built artifacts.

2.1 Deterministic Build System

The troublesome aspect is the build environment. This includes not only all the
different tools used as part of the build process, but also the state and config-
uration that these tools are used in. Particularly for huge projects like Android,
there is a diverse set of tools involved in the build process of monolithic bi-
nary artifacts (i.e. the final firmware images). These include several compiler
toolchains for compiling and linking source code in different languages, tools
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to assemble application and firmware package files, and build automation tool-
ing (e.g. Soong and Make) that combines all the other tools into one huge build
system.

An important property that all the involved build systems need to contribute
is determinism. A deterministic build system ensures that stable inputs (source
code, configuration) lead to stable outputs (identical artifacts), while minimiz-
ing the effects of the environment a build is performed in [7, 25]. However, even
in a deterministic build system, non-stable inputs from configuration and en-
vironmental differences will cause variations in the outputs. Particularly, un-
controllable parameters in the build environment make determinism difficult.

For instance, artifacts may include timestamps and other metadata that de-
scribe the build environment itself (e.g. begin/end of compilation, file metadata
in file-system images and other containers, absolute paths, hostnames, user-
names). Best-practice for a deterministic build system would be to completely
get rid of all such information [6]. While often only used for convenience, ex-
isting specifications of data formats (and tools based on them) may mandate
presence of such metadata though. A deterministic build system needs to ap-
ply an appropriate normalization strategy to such metadata. Data that is not
essential for the functionality of an artifact may simply be stripped in post-
processing or not be added at all. If omission is not desirable, values must be
derived in a deterministic fashion, e.g. by solely relying on data from source
code management (version control system). Again, such values may then be
used by the build tools directly or patched through a post-processing step.

2.2 Accountable Builds

In practice, it is not always possible to achieve full bit-by-bit equality. Even
then, it is important to distinguish between accountable differences, which
have their origin in a specific, explainable deficiency that can be held account-
able for, and unexplainable differences. If two builds of the same build target
differ only by fully explainable differences, we refer to this as an accountable
build. While an accountable build is weaker than a reproducible one, it is nev-
ertheless a good step towards a fully reproducible build system.

One reason for such differences can be that (parts of) the build system are not
yet deterministic. This is usually fixable by patching and updating the build
tooling. Nevertheless, it is important to measure the degree of reproducibil-
ity, and to classify issues into explainable and unexplainable differences, even
when a build system does not yet provide full determinism.

Another reason for failing full reproducibility is parts of the build environment
that are expected to differ between the official source of binary artifacts and
someone who tries to reproduce building them. Such unavoidable differences
may come, for instance, from code signing. Obviously, someone trying to re-
produce a build must not have access to the official signing keys. Hence, result-
ing signatures generated for artifacts must be different.

As long as one considers the signature (and potentially associated certificate
chains) as auxiliary metadata and not part of the binary artifact itself, this does
not threaten reproducibility. However, while it would be simple to strip a sin-
gle signature before comparison for a single executable, this task is a lot more
complex when it comes to whole operating system distributions bundled into
firmware images.

Looking specifically into Android, it is not as simple as a single detachable
signature and a firmware image. Instead, each application package (Android
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Package, APK) and, lately, also each upgradable system module package (An-
droid Pony EXpress, APEX) is signed individually. Signing such package files
means that certificate files are added and that manifest files listing packaged
files with their signature values change. Such changes are, again, accountable
differences and should, in most cases, be automatically excluded from a build
comparison. However, since code signing is an integral part of the Android per-
mission system [20], changes of signing keys (and their associated certificates
and signatures) also propagate to other areas.

Since critical permissions are tied to signatures, public keys and certificates can
be part of permission policy definitions (e.g. embedded in SELinux policy files).
In such cases, simply stripping all public keys and certificates from the policy
before comparison may result in undiscovered security issues like an additional
key injected by a malicious party to gain permissions based on their own sign-
ing key.

Also, update mechanisms for application packages and the firmware image
itself are tied to signatures. For APK and APEX files, this has an interesting
side-effect seemingly introduced by Project Mainline [30]: Certain applications
available as part of AOSP are included into firmware images with a different
package name. Specifically the AOSP package name prefix “com.android” is
changed to the Google prefix “com.google.android” while keeping the source
code (supposedly) identical. This seems to have the practical reason that Google
can ship those packages with their own signature updatable through Play Store
while keeping versions directly built from AOSP unaffected and conflict-free.
Here, conflict-free means that updates published by Google through Play Store
would not be identified as updates for AOSP versions (due to the different
package name) and would, consequently, not result in signature-mismatches.
Therefore, as long as the rest of the binary artifact (except for the signa-
ture/certificate and the package name) match, such a deviation may still be
considered an accountable difference.

Besides Google’s Mainline effort, firmware images for Android devices are usu-
ally assembled from AOSP and other components. Such additional components
are expected in the Android ecosystem since device manufacturers often want
to (or even have to) rely on closed-source components and also want to en-
hance beyond the core functionality of AOSP. A number of these components
is provided by chipset vendors and original design manufacturers to provide
platform-specific low-level device drivers and software to install and update
peripheral firmware. Since these components are often not offered as FOSS,
device OEMs can, at best, provide them as standalone pre-built binary blobs
for reproducing their device firmware. Another share is made up by compo-
nents shipped by the OEM to enrich user-experience and branding over plain
AOSP. Such additions are expected since manufacturers want to offer a value-
gain over other AOSP-based devices. Even though functionality embedded in
such binaries cannot be verified based on public source code, we consider such
additions acceptable in an accountable build as long as they are clearly distinct
from AOSP and do not modify the AOSP codebase itself. Nevertheless, we would
prefer these components to be reproducible FOSS as well.

3. Related Work

There has been extensive work in defining the requirements for reproducible
builds. Specifically, the Reproducible Builds project [7, 25] put a significant ef-
fort towards defining reproducibility and how to create a deterministic build
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environment. While their focus lies on Debian, there are similar efforts for
other FOSS projects.

For AOSP, there are two actively developed projects (AOSP Build and robotnix)
that create new or enhanced build enviroments focused on improving repro-
ducibly building AOSP. Our automation framework differs from their approach
in that we explicitly aim to measure reproducibility of the unmodified build
system. In fact, we have also put effort in embedding the robotnix build flow
into our framework (though we consider that off-scope for this paper).

With their 2020 announcement to migrate to the Bazel build system [15],
Google made “correct and reproducible (hermetic) AOSP builds” an explicit goal
for AOSP for the first time. Our framework can help with continuously monitor-
ing that effort by comparing reproducibility metrics before, during, and after
that transition.

Another contribution by the Reproducible Builds project is diffoscope?. This
tool performs recursive, context-aware comparison (“diff-ing”) of archive
files and generates comparison reports in the form of line-by-line differences
and summarized change statistics. We heavily rely on this tool to generate
change reports as the basis for our metrics.

With regard to measuring reproducibility, Ren, Jiang, Xuan, and Yang [28]
created RepLoc, a framework to automatically localize reproducibility issues.
Their work focuses on (but is not exclusively limited to) building packages in
the Debian distribution. RepLoc leverages diffoscope to identify differences
between two build instances of the same source code. Based on these differ-
ence reports and on domain-specific knowledge about common reproducibil -
ity issues in Debian, they estimate the source files most likely responsible for
breaking reproducibility. In contrast, the goal of our analysis framework is to
give a quantitative estimate of improvements in reproducibility over time while
specifically focusing on the special aspects of the Android ecosystem.

With regard to software supply chain security, there is various ortogonal work.
For instance, Torres-Arias, Afzali, Kuppusamy, Curtmola, and Cappos [35] de-
veloped a framework to cryptographically guarantee continuous integrity of
the whole software supply chain from source code to the artifacts at their end
user. Jamthagen, Lantz, and Hell [16] present a novel approach to create hidden
functionality at the source code level. They specifically target false trust in de-
terministic builds, as any malicious functionality that makes it into the source
code repository while not being identified as such, would (obviously) not be
discoverable through independent deterministic builds.

4. Automating the Analysis

In order to assess the current state of reproducibility when matching the offi-
cial build instructions as closely as possible, to allow easy reproduction of such
an analysis, and to perform a long-term analysis of changes in reproducibil-
ity of AOSP over time, we create a system to automate the build and analysis
process.

Building AOSP involves several steps, starting with the preparation of a build
environment, checkout of the source code, and finally the actual build pro-
cess [1]. We created a wrapper around the Android build system that auto-
mates the entire process of setting up the build environment, fetching and
building AOSP, and comparing artifacts with published reference builds. We

9https://diffoscope.org/
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make the whole environment, which we call “Simple Opinionated AOSP builds by
an external Party” (SOAP), publicly available at https://github.com/mobilesec/
reproducible-builds-aosp.

In this section we give a brief introduction and frame the motivation for its de-
sign.

4.1 Tooling and Architecture

A majority of the steps of the official AOSP build instructions [1] are shell com-
mands meant for execution in a Bash compatible shell on a Linux host system
(specifically Ubuntu LTS). Since our environment should be as close as possi-
ble to the official instructions, we opted to use shell scripts for implementing
our automation environment. Moreover, additional steps, like download and
extraction of driver binaries, can be automated with shell scripting too.

We created an automation environment consisting of several small, compos-
able shell scripts, each responsible for performing a step in the aforemen-
tioned process. Each script automates a specific smaller task creating a modu-
larized framework that allows for simple exchange of individual components.
A top-level script can be used to execute all steps in proper sequence. This top-
level script also allows for continued, automated long-term analysis of repro-
ducibility through, e.g., a Jenkins build server.

After a successful build, our framework performs an automated analysis to
compare the build artifacts to official reference builds, and derives quantitative
metrics and detailed difference reports. At its core, this process relies on diff-
oscope to perform recursive diff-ing of the firmware packages. This includes
unpacking of various archive formats and transformation of binary formats
into human-readable representations for visualizing differences. In addition,
our framework performs a set of pre-processing steps to eliminate certain ex-
pected, accountable differences and to handle Android-specific container for-
mats that diffoscope does not support yet. Moreover, a set of post-processing
steps on the output of diffoscope derives quantitative metrics from difference
reports that form the basis for analysis of over-time improvement of overall
reproducibility.

The overall architecture is depicted in Fig. 1. The left side of this figure shows
the modules of our framework. The right side shows the corresponding au-
tomation steps for setup/preparation, fetching of source code and binary arti-
facts, build and comparison stages (including their pre- and post-processing),
and the final comparison outputs.

Our environment currently performs automated comparison of reference
builds sourced from

® the generic system images (GSI, cf. [2]) as provided by the Android Contin-
uous Integration (CI) dashboard [12] and

m the official factory images for Nexus and Pixel devices [13] provided by
Google.

These sources have been chosen under the following assumptions:

® GSIbuilds are, by definition [2], “[...] considered a pure Android implementa-
tion with unmodified Android Open Source Project (AOSP) code [...]” Therefore,
they are pure builds of AOSP and best-suited as compare-targets for inde-
pendent verification of AOSP reproducibility.
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m Pixel (and formerly Nexus) devices are considered Google’s flagship de-
vices. They have a timely update schedule and typically cover the latest in-
novations in AOSP. Moreover, AOSP contains the necessary build config-
uration (i.e. build targets) for these devices. Google also provides ready-
made binary blobs of proprietary, closed-source components that are in-
cluded into their firmware and not part of AOSP due to various legal rea-
sons. Therefore, we assume that this would be the OEM firmware that is
closest to AOSP while still revealing potential reproducibility gaps (in terms
of accountable and unaccountable differences) in the transformation phase
from AOSP to an actual OEM firmware image.

While out-of-scope for this paper, our modular environment could easily be
adapted to analyse other build targets from other sources as long as they rely
on the AOSP build system. For other build systems or changes to the current
AOSP build system, the additional effort for integrating the necessary steps in
the form of new automation modules would be required.

4.2 Deviations from AOSP Build Instructions

Although our goal was to abide by the official build instructions [1], our tests on
Ubuntu 18.04 and on Debian 10 revealed additional dependencies for the AOSP
build environment. The tool repo (used to fetch the AOSP source code reposi-
tory) has a dependency on Python 2. Even though the tool itself is written for
Python 3, the shebang (#! /usr/bin/env python) of repo exclusively resolves
to Python 2 on Ubuntu. Once started in Python 2, repo would then restart it-
self in the Python 3 interpreter. As Python 2 is no longer installed by default on
Ubuntu 18.04, we install the APT package python in addition to the official list
of dependencies.

While readily installed on Ubuntu 18.04, we also install the packages rsync and
libncurses5. This allows our toolchain to also run on Debian 10 while not hav-
ing any impact on systems where these packages already ship pre-installed.

The AOSP build system also uses several undocumented environment variables
(e.g. BUILD_DATETIME) that allow to make the build output more deterministic.
We rely on these variables and fill them with corresponding values from the
official firmware images.

4.3 Challenges and Potential Solutions

During the implementation of our automation tooling, we encountered chal-
lenges inherent to the AOSP build process and related to the use of diffoscope
for analysis that required unique solutions. The following are the main issues
that needed to be addressed.

4.3.1 Sparse Images

File system images can become quite large, especially due to zero-padding to
fulfill alignment requirements or to match partition sizes, or due to duplicate
data blocks because files contain identical code or data structures. In order to
mitigate problems when transferring or flashing such large image files, An-
droid has its own sparse image format [3] used for Google’s factory images [13].

As of today, diffoscope (version 168) is not capable of handling such Android
sparse images directly. Therefore, we opted to convert these images to regular
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file system images before passing them on to diffoscope for further process-
ing. For this we rely on the tool simg2img provided by AOSP. This tool itself is
included in AOSP as source code and is built during the AOSP build process.

4.3.2 Project Mainline APEX Files

Starting with Android 10 as part of their Project Mainline effort, Google ships
certain components of AOSP in the form of easily and independently upgrad-
able packages (cf. section 2.2). While the source code of these APEX pack-
age files is (or should be) part of AOSP, a side effect of ensuring seemless
and conflict-free upgradability is that the package prefix of these APEX files
changes from “com.android” (in AOSP) to “com.google.android” (in actual
factory images). Since this also changes their file names, diffoscope no longer
considers these to be the same (or comparable) files across the compared arti-
facts.

We consider the pure change of package name as an accountable difference as
long as this is the only modification and both packages are built from the same
source code. Therefore, we want to get a similarity score despite the different
package names. To solve this issue, we opted to exclude APEX files from the
analysis of the overall firmware image and perform an additional comparison
step where we extract these files from the outer image, unify their names to
the prefix “com.android”, and then pass them on to diffoscope for separate
analysis.

4.3.3 Dynamic Partitions

With Android 10, Google introduced super images containing dynamic parti-
tions. Such a partition may bundle any of the read-only mounted partitions
used from within the Android/Linux system. This allows for seamless changes
in the device partition layout through over-the-air updates [4]. A super.img
encapsulates the images and partitioning information for several other parti-
tions, most notably the system partition (containing the Android framework;
otherwise in a file system. img), the vendor partition (containing components
not publishable with AOSP; otherwise in vendor. img), and the product parti-
tion (containing OEM-specific components to make the vendor partition con-
sist of only SoC-specific components; otherwise in product. img).

The GSI build targets output such a super image. Therefore, the Android CI
Dashboard offers only the super.img build artifact while omitting the clas-
sical system.img and vendor.img files. Device builds currently use the sep-
arate partitions approach. As we want to maintain easily comparable results
between our evaluation of GSI builds and device builds, decomposing the su-
per image into the individual partition images is necessary. AOSP provides the
tool 1punpack for this task. This tool is not automatically built from the stan-
dard build targets and needs to be explicitly built using the command “mm -j
$(nproc) lpunpack”.

4.4 Trade-Offs
4.4.1 Embedded Signatures and Certificates

A core concept of the Android platform security model [20] is that not only
whole partitions, but each individual application component is digitally signed.
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Consequenty, each APK file and each APEX file also has its own signature (cf.
section 2.2) that is applied at the end of the build process. Obviously, the secret
signing keys must not be shared. Therefore, the certificates and signatures em-
bedded into published firmware images must differ from those embedded into
our own builds.

As a result of this accountable difference, it is necessary to exclude the rele-
vant certificate and signature files from comparison. For APK and APEX files,
the signature is located in META-INF/CERT.RSA. APEX files additionally con-
tain a separate file (apex_pubkey) with the signer public key. These are simply
excluded from our difference reports. The same applies to certificates for the
platform signing key and for over-the-air updating that are directly embedded
into the file system of the system partition. These are releasekey . x509. pem (or
testkey.x509.pem for our builds) for platform signing and update-payload-
key.pub.pem for OTA updates.

Besides the signature itself, the signing scheme of APK/APEX files also em-
beds a digest of the signer certificate into the signed Java archive manifest
files (META-INF/CERT.SF and META-INF/MANIFEST.MF). Since we consider the
remaining portions of these files (digests over all signed files within the AP-
K/APEX files) important for reproducibility, we tolerate these changes to prop-
agate into difference reports but eliminate them from quantitative change
metrics. The same applies to the comparison of ZIP archive metadata for these
files performed by diffoscope through the help of zipinfo.

Another difference due to signing is related to SELinux. The policies contain
permissions based on platform signatures. As a consequence, the file system/
etc/selinux/plat_mac_permissions.xml is accountably different. Due to the
sensitivity of this file and the possibility to miss additional certificates injected
into it, we opted to tolerate this as a false positive to also propagate into our
reports while eliminating the expected number of changes from quantitative
metrics.

4.4.2 Noise Reduction in ELF Binary Comparison

diffoscope performs a rich comparison of ELF (Executable and Linkable For-
mat) files, showing differences both in headers and individual sections through
the help of the tools readelf and objdump. Resulting diff-reports can become
unproportionally large even for only minor changes as even a small offset shift
causes the entire compared hexdumps to show as different. Through manual
analysis, we found that, in all cases, differences in ELF files also show up as dif-
ferences in the ELF headers (mainly as changes in offset and size fields). Based
on this observation, we have opted to exclude detailed comparison of ELF files
(symbol table, relocation table, disassembly, and raw section hexdumps) and
solely rely on header comparison. While there is, admittedly, a small possibility
that tiny changes could slip through, we consider this an acceptable trade-off
to significantly reduce noise in analysis reports.

4.5 Output Format

An Android installation consists of several partitions that are written to flash
storage. Each of these partitions contains file systems or data for a specific pur-
pose, such as the main system partition, partitions for SoC, OEM and product
specific files, a boot image containing the Linux kernel together with an initial
ramdisk, etc. Therefore, file system (or raw) images of these partitions are the
binary artifacts of the AOSP build process.
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After the AOSP build process finishes, our analysis framework performs an
analysis (comparison and pre-/post-processing) and stores the resulting dif-
ference reports as results. Specifically, we create a list of artifacts for both our
own builds and the pre-built images that we use as our compare-targets. We
consider only those artifacts that exist in the pre-built images for further in-
spection. For each of these files we perform a recursive difference analysis
through diffoscope and generate several reports:

m Adetailed HTML report showing difference listings for all artifacts that ex-
hibit variations.

m Measurement of differences is provided as CSV reports summarizing the
number of change lines for each artifact (“diff score”).

® Inapost-processing step, these CSV reports are cleaned from expected ac-
countable changes that we deliberately let slip through into the difference
reports (cf. section 4.4).

®m Theindividual CSVreports of each artifact are further aggregated into a sin-
gle change summary report. Besides accumulated change lines, the individ -
ual CSV reports are also used as the basis to calculate a “weight score” that
describes the relative amount of changes with regard to the overall artifact
size (see section 6 for details).

® In addition, a summary report of only major differences (for the diff score
and the weight score) is derived from the summary CSV report by eliminat-
ing unproportionally high (and partially accountable) noise that was iden-
tified through a qualitative analysis of individual results (see next sections
for the rational behind these simplifications).

® The final quantitative metrics are also visualized in a hierarchical treemap
for improved navigation through detailed difference reports (not further
used in this paper though).

5. Qualitative Analysis

In order to verify the quantitative metrics and the overall output of our anal-
ysis framework, and to identify the main causes for differences between offi-
cial build artifacts and our builds, we manually inspect the results of our com-
parison. We further discuss implications of these differences and classify them
as accountable differences that potentially justify exclusion from quantitative
analysis or as unaccountable differences that prevent (full) reproducibility.

All examples illustrated in the qualitative evaluation are based on difference
reports for the following states of AOSP:

B Source repository tag android-11.0.0_r31° (equivalent to security patch
level 2021-02-05) for the device build flow for the device codenamed
“crosshatch”,

® buildID 7101486 (built on 2021-01-26) for the “eng” build type for the GSI
build flow, and

® buildID 71791792 (built on 2021-03-02) for the “userdebug” build type for
the GSI build flow.

Ohttps://android.ins.jku.at/soap/android-11.0.0_r31_ crosshatch-user_ Google_ android-
11.0.0_r31_aosp_ crosshatch-user_Ubuntu18.04/summary.html

Uhttps://android.ins.jku.at/soap/7101486_aosp_x86_ 64-eng_Google  7101486_aosp_x86__
64-eng_Ubuntui8.04/summary.html

2https://android.ins.jku.at/soap/7179179_aosp_ x86_ 64-userdebug_ Google_ 7179179 __
aosp_x86__64-userdebug_Ubuntu18.04/summary.html



https://android.ins.jku.at/soap/android-11.0.0_r31_crosshatch-user_Google__android-11.0.0_r31_aosp_crosshatch-user_Ubuntu18.04/summary.html
https://android.ins.jku.at/soap/android-11.0.0_r31_crosshatch-user_Google__android-11.0.0_r31_aosp_crosshatch-user_Ubuntu18.04/summary.html
https://android.ins.jku.at/soap/7101486_aosp_x86_64-eng_Google__7101486_aosp_x86_64-eng_Ubuntu18.04/summary.html
https://android.ins.jku.at/soap/7101486_aosp_x86_64-eng_Google__7101486_aosp_x86_64-eng_Ubuntu18.04/summary.html
https://android.ins.jku.at/soap/7179179_aosp_x86_64-userdebug_Google__7179179_aosp_x86_64-userdebug_Ubuntu18.04/summary.html
https://android.ins.jku.at/soap/7179179_aosp_x86_64-userdebug_Google__7179179_aosp_x86_64-userdebug_Ubuntu18.04/summary.html
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Findings from these specific builds were also cross-checked against other
builds from runs of our toolchain against earlier versions of the AOSP source
code to reduce the possibility of outliers leading to inaccurate results.

5.1 Accountable Differences

Accountable builds may entail artifact differences that can be explained and are
tolerable due to specific circumstances. Besides differences that must obviously
be excluded from reproducibility analysis, there also exist accountable differ-
ences where it would technically be possible to fix them, but there exist strong
and valid reasons to maintain the differences.

5.1.1 Property Files

Several partitions feature one or more property files that record build and
configuration properties (e.g. /prop.default in the ramdisk (initrd.img),
/system/build.prop in system.img, /build.prop and /odm/etc/build.prop
in vendor. img). Several of these properties are accountable to corporate poli-
cies and reflect valuable information for debugging and backtracking, for in-
stance the brand and manufacturer names (“google” vs. “Android”, reflected
in multiple properties) and the exact build target in case of device builds. How-
ever, we see no technical requirements that would warrant these differences.
Therefore, despite being accountable, these differences are not excluded from
our framework reports. Moreover, we observed several additional properties in
these files, which we classified into unaccountable changes (see section 5.2.5).

5.1.2 Project Mainline APK Files

Similar to the treatment of APEX files (cf. section 4.3.2), as part of Project
Mainline, Google also ships several APK files of AOSP components with their
own package name [30]. Besides the different package name, these application
components also ship with a different file name (usually, but not exclusively,
with the additional prefix or suffix “Google”).

For instance, the files CaptivePortallLoginGoogle. apk and GooglePackageIn-
staller.apk replace their AOSP variants CaptivePortallLogin.apk and Pack-
agelnstaller.apk.

Overall, we were able to discover 3 such cases in /system/app, 5 in /system/
priv-app and 8 in APEX files. While these changes are, as with the APEX files,
accountable, we do not exclude file name differences from our framework re-
ports since there is no clear, well-defined and stable naming convention for
these changes. However, we observed a trend in alignment of the naming of
these files (e.g. GoogleDocumentsUIPrebuilt on Android 10 factory images be-
came DocumentsUIGoogle in Android 11 where the AOSP version is Documents-
UI). This suggests that there is ongoing work towards a unified naming con-
vention.

5.1.3 Image Rendering

The bootloader in the device builds utilizes simple info messages encoded
in PNG image files (found under /res/images in the ramdisk initrd.img).
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Figure 2: Different pixels (marked in red) for the image cancel_wipe_data_
text.png containing a bootloader info message in different lan-
guages.

These files, rendered during the build process, showed significant differences
in terms of differing lines in their hexdump. Visual comparison showed no dif-
ferences of the actual image. A pixel-by-pixel comparison revealed that there
are minimal differences around the borders of font shapes (see Fig. 2). These
differences mostly occur on non-roman scripts and seem to stem from font
rendering. This clearly makes sense given that rendering of text is even a well-
known means for system fingerprinting (cf. [22] for an example of how this
may uniquely identify graphics adapters). While such differences are account-
able to the different hardware used to build the firmware images, we do not
immediately exclude these differences from our framework reports.

The main reasoning behind this decision is that other (more significant) differ-
ences could go unobserved by complete exclusion. Nevertheless, we do consider
these differences “noise” that we exclude from the summary of major differ-
ences.

5.1.4 License Attribution

The fileNOTICE. xml. gz found on various partitionslists all installed files on the
partition with corresponding license information. Therefore, missing or added
files and even changes in file names have a direct impact on this file. This is an
accountable propagation of other changes that are already reflected in the re-
ports. As a consequence, this difference is included in the reports but excluded
from the summary of major differences (analogous to treatment of deviations
in image rendering).

5.2 Unaccountable Differences

Beyond differences found to be accountable to organizational or unavoidable
technical factors, we also discovered reproducibility breaking issues that were
not justifiable with any good reason.

5.2.1 Inconsistent Build Type of Vendor Partition

In device builds, the build properties of the vendor. img indicate the “userde-
bug” build type (in the property ro.vendor.build. type) instead of the “user”
build type specified during the invocation of the lunch command (which is the
command that initializes the build target). Further inspection revealed that the
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whole vendor. img file is not actually built on our build environment. Instead it
is simply copied from the pre-compiled blobs of driver binaries provided by
Google for their Pixel and Nexus devices [14]. Besides the two files being iden-
tical, this is further confirmed by other metadata in the build properties file
that clearly indicates a build at Google infrastructure from around the same
time as the full factory image. Notably, this file is different from the vendor.
img packaged into the corresponding full firmware image. We are not aware
of any official location for retrieving the pre-built vendor.img for the “us-
er” build type that matches the official firmware (other than extraction from
the pre-built firmware image itself, which is prohibited by Google’s terms and
conditions [13]). Also, we did not find any mechanism that would initiate a re-
packaging (or similar) of the vendor partition during the AOSP build process.

5.2.2 Version Mismatch for APEX Files

Some of the APEX files in Google’s firmware images have higher version num-
bers than their counterpart in our device builds from AOSP. For the analyzed
build, this concerns 4 of 19 APEX files (specifically conscrypt.apex, media.
apex, media.swcodec.apex, and resolv.apex). Besides the mismatch of the
version number, file contents also differ.

For instance, our analyzed repository tag android-11.0.0_r31 contains the
version code 300000000 for com. android. conscrypt. apex which matches the
value in our build artifact. Its counterpart in the official factory firmware image
has the version code 300900703, which we could not find in the AOSP reposito-
ries at all. The closest neighboring version code that we found was 300900700
in tag android-mainline-11.0.0_r1.

While the main design goal of APEX files is seamless upgradeability indepen-
dent of the overall system partition, this does not justify packaging a different
version directly into a firmware image that is claimed to stem from a specific
tag in the AOSP source code repository. Otherwise, reproducibility cannot be
achieved.

5.2.3 Version Mismatch for Java Libraries

The device builds contain 4 JAR files that exhibit a different Dalvik dexer ver-
sion number (“2.1.7-r1” in the official factory images vs. “2.1.7-r3” in our
builds). As all of these files are embedded inside APEX files, we assume that
this has a similar root cause as the version code mismatch in other APEX files.

5.2.4 SoC Vendor Files in System Partition

Despite Google’s approach to split vendor files into separate partitions, there
are several files that seemingly originate from the SoC vendor (in the analyzed
case from Qualcomm) embedded into the system. img of the factory image pro-
vided by Google. These files are neither part of AOSP nor provided through
the pre-compiled blobs of driver binaries [14]. Consequently, they are miss-
ing in our device builds of AOSP. These files consist of 7 APK files (e.g. qcril-
msgtunnel.apk and CNEService.apk, atfwd.apk, uimremoteserver.apk) and
corresponding permission files, a shell script move_time_data. sh, and 8 pairs
of ODEX/VDEX files (e.g. QtiTelephonyServicelibrary.odex) that we could
clearly attribute to Qualcomm based on license boilerplates, file names, and
other identifiers.
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We were unable to identify any good reason why these files are not part of the
vendor binary blob or why they are embedded directly into the system image.
However, this seems to be a well-known problem in the AOSP user community
since there is even a tool (android-prepare-vendor®3) to assemble such files
from the original factory images (despite being prohibited by Google’s terms
and conditions [13]).

5.2.5 Additional Entries in Property Files

The property filesin system. imgand initrd. img of device builds contain a sig-
nificant number of additional entries in our AOSP builds (101 in our evaluation
target) that have no matching (or even comparable) entry in the Google factory
images. All affected property entries are placed in a secition of the property files
that is prefixed with the comment “ADDITIONAL_BUILD_PROPERTIES”.

5.2.6 Differences in Natives Binaries

The device builds contain several native binaries that differ from our AOSP
builds. This concerns mainly shared libraries (e.g. libcrypto. so) but also a few
executable files (e.g. adbd) in APEX files (18 instances). We observed a wide
spectrum of differences ranging from only changes in debug information to
more complex changes (often including additions to/removals from the relo-
cation and symbols tables). Given the wide variety of differences, we assume
that at least some of them are a result of building a different source code than
what was used for the official build artifacts. This is supported by differences
in strings embedded into the binaries. We assume that this may have a similar
root cause as the version code mismatches.

The GSI builds also show differences in ELF files compared to our builds.
Specifically, we found different shared libraries, optimized ART files (OAT) and
optimized Dalvik executable files in the system image (17 instances, e.g. 1ib-
bluetooth.so, services.odex) and in the art.debug APEX file (20 instances,
e.g. libartd. so, boot.oat) in the GSI builds for the “eng” build type.

Contrary to the findings for device builds, differences in the “eng” GSI builds
appear to be merely alignment issues. Notably, there are no additional/missing
entries in the relocation and symbol tables and only slightly altered locations
for the same entries.

5.2.7 Missing Camera and Image Processing Libraries

Our build of the system.img in the GSI build flow for type “userdebug” is
missing 19 libraries related to the camera hardware abstraction layer (e.g.
android.frameworks.cameraservice.common@2.0.so) and image formats/-
color encoding (e.g. Libyuv. so).

5.2.8 Further Differences

Besides the particularly noteworthy differences above, where we found clear
patterns, there are also numerous further differences. An in-depth analysis is
beyond the scope of this paper.

Bhttps://github.com/AOSPAlliance/android- prepare-vendor
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6. Quantitative Changes Over Time

An assessment of reproducibility over time requires stable metrics that quan-
tify the state of reproducibility. Existing tools primarily target localizing the
source of differences (cf. [28]). For instance, diffoscope provides (indirectly
through unified diffs) a change score in terms of change lines between two ar-
tifacts (in the following called “diff score”, short “DS”). In fact, these change
lines are not necessarily the result of directly comparing two files, as the notion
of a “line” usually only applies to text files and not to other binary artifacts.
Change lines provided by diffoscope may, instead, be the result of compar-
ing high-level reports generated by analysis tools that translate or summarize
binary artifacts to abstract information (e.g. zipinfo, apktool, readelf). As a
result, this metric does not necessarily have a relationship to the file size of in-
dividual components or the amount of change lines reported for other artifact
components. Nevertheless, many accountable changes (such as side-effects of
the signing scheme) have a stable impact on change line reports, and can easily
be observed in and excluded from them.

Since any tiny difference in the binary artifacts could mean that (potentially
malicious) functionality was added, it does not make much sense to reflect
maliciousness in a quantitative difference metric. Another meaningful quan-
tity that a reproducibility score could reflect is the relative amount of artifact
bytes affected by changes. In a first attempt towards creating a reproducibil -
ity score that not only allows comparison and localization of changes within
a single artifact, but also allows to compare changes in reproducibility of a
source code repository and a specific build target over time, we define a “weight
score” (short “WS”). This weight score is calculated from the accumulated size
of files that include changes (based on their diff score after eliminating ex-
pected changes as discussed in section 4.4) or exist exclusively in the refer-
ence version, divided by the overall accumulated size of files (in the reference
source). We further derive a major diff score (MDS) and a major weight score
(MWS) based on observations about accountable differences with unpropor-
tionally high impact as discussed in section 5.1.

A detailed breakdown of these reproducibility metrics for the three states of
AOSP from the qualitative analysis (cf. section 5) can be found in appendix A.

To assess changes in reproducibility of AOSP over time, we perform builds and
measurements using our analysis framework on a monthly basis for device
builds and bi-monthly for GSI builds. One build per month was chosen based
on the monthly interval of AOSP security patch level releases for device builds.
This specifically means that device builds are based on AOSP source code repos-
itory tags android-11.0.0rX (where X is the last release number for each secu-
rity patch level included in the releases published by Google for the Pixel 3 XL
(“crosshatch”) between September 2020 and March 2021). Resulting differ-
ence scores over time for each partition image in these device builds are shown
in Fig. 3.

For the GSI builds, the state of the AOSP source code repository mapping to
builds available on the 13th and 30th of each month in the same time frame
were chosen. As Google changed the GSIbuild type from “eng” to “userdebug”
by the end of January 2021, we additionally included the last build of the “eng”
build type (build ID 7101486 on 2021-01-26). The resulting difference scores
over time for each partition image in these GSI builds are shown in Fig. 4.

Based on these measurements, we currently cannot infer a clear trend of
changes in reproducibility over time. In fact, the weight score of differences
for device builds seems to stay rather constant. Interestingly, DS slightly in-
creased for system. img within the last few builds (from r17 to r23) causing a
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significant increase in MDS. The change in system. img is mainly due to addi-
tional changes in a single APEX file and, consequently, only has a low impact
on WS.

During the same time, the change metric of initrd.img also increased due
to additional differences in the SELinux policy. At the same time, the WS for
product.img decreased due to the addition of theming files, most of which were
found to be reproducible.

For generic builds, we initially saw a slight improvement in reproducibility of
the system image with the switch of build types. This is due the absence of
alignment differences in native binaries (cf. section 5.2.6) in the “userdebug”
build type. Interestingly, build 7142650 for that type shows an increase of WS
caused by Dalvik executables containing identical byte code but header changes
that suggest differences in intermediate compilation stages between source
and binary code. Future builds may reveal if this is a new issue in “userdebug”.

Further, when comparing DS, MDS and WS, it can be observed that a significant
portion of DS is caused by changes to the file NOTICE. xml. gz, which is filtered
from the MDS and does not have any impact on WS due to its relatively low
file size. Notably, builds between 2020-12-13 and 2021-01-13 do not contain
such differences, indicating that both builds of system. img contained exactly
the same list of files. Indeed, before these builds, the differences were caused
by SELinux policy files missing from our builds. This has since been fixed. Later
builds show other additional files contained in our builds that are missing from
the official builds.

Finally, it can be observed that the scores of vbmeta (which is treated as an
atomic unit, so WS is either 0 or 1) follow those of vendor. As the purpose this
vbmeta image is to exclude system. img from verified boot, vbmeta shows as
identical exactly when vendor is identical, which was the case for the last GSI
“eng” builds.

Overall, it could be observed that the trivial WS gives stable results that allow
comparison of artifact differences across multiple revisions of a source respos-
itory. Moreover, artifacts of similar structure and content lead to similarity
in results for different types of builds (e.g. system. img across device and GSI
builds).

7. Conclusions

We propose a modular automation framework to analyze the current state and
to measure over-time improvements of reproducibility of AOSP with respect
to official pre-built firmware images. The framework builds AOSP from source
with its native build system, automatically compares artifacts to official firm-
ware images, and derives trivial difference metrics that permit comparison of
reproducibility state across different revisions of the source repository.

We found that current AOSP builds are neither fully reproducible nor fully ac-
countable. Device builds revealed that Google even uses a codebase for some
components that deviates from the officially announced repository tags (par-
ticularly for Project Mainline components). Nevertheless, we see that a larger
number of individual components of build artifacts is already fully repro-
ducible, including exactly those Project Mainline components.

We derived a trivial weighted change score based on differences in relation to
artifact file sizes. Opposed to well-established difference metrics, this weight
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Figure 3: Difference scores over time for device builds.
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Figure 4: Difference scores over time for GSI builds.
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score allows meaningful comparison of relative reproducibility between differ-
ent revisions of a source code repository even for complex artifacts as long as
the artifacts have comparable structure and contents. This weight score is used
to continuously measure changes in reproducibility over time.

While the goal of this work was to create a simple, yet comparable metric, future
research will be necessary to further evaluate robustness and reliability of such
change metrics through experiments that deliberately break certain aspects of
reproducibility. For future work, it may also be interesting to design metrics
that are sensitive to, potentially malicious, small code changes.
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