
Submitted by
Patrick Nolte
k01618097

Submitted at
Institute of Networks
and Security (INS)

Supervisor and First
Examiner
Univ.-Prof. Dr. René
Mayrhofer

April 14, 2021

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

SECURE EXPORT OF CHAT
HISTORY FROM WIRE

Bachelor Thesis
to obtain the academic degree of

Bachelor of Science
in the Bachelor’s Program

Computer Science

Sworn Declaration

I hereby declare under oath that the submitted Diploma Thesis has been written solely by me
without any third-party assistance, information other than provided sources or aids have not been
used and those used have been fully documented. Sources for literal, paraphrased and cited quotes
have been accurately credited.

The submitted document here present is identical to the electronically submitted text document.

Linz, April 14, 2021

April 14, 2021 Patrick Nolte i/43

Abstract

This Bachelor Thesis is about the development of the secure export of chat history from the messen-
ger app Wire. Wire is an end-to-end encrypting audio/video/chat service for various platforms.
The aim of this Thesis is to expand the open source Android client in such a way that a secure
export of an entire (group-) conversation, including the media it contains, is possible. Additional
reference is given for restrictions such as time-limited messages. The export is done as a Zip file,
which contains the messages in an XML document as well as the media files. Additionally, an
HTML-Viewer can be included to view the exported data.

The complete code can be found at GitHub[8].

Zusammenfassung

Diese Bachelorarbeit handelt von der Entwicklung eines sicheren Exports der Chat-Historie der
Messanger-App Wire. Wire ist ein Ende-zu-Ende verschlüsselter Audio/Video/Chat-Dienst für
verschiedenste Platformen. Das Ziel dieser Arbeit ist es, den Android-Client so zu erweitern, dass
es möglich ist, vollständige (Gruppen-) Konversationen, Mediendateien eingeschlossen, sicher zu
exportieren. Außerdem wird Bezug genommen auf Einschränkungen wie Zeitlimitierte Nachrich-
ten. Der Export wird als Zip-Datei vorgenommen, welche die Nachrichten in einem XML-Dokument,
sowie die Mediendateien enthält. Desweiteren kann ein HTML-Viewer hinzugefügt werden, wel-
che es ermöglicht, die exportierten Daten anzusehen.

Der vollständige Code kann auf GitHub[8] gefunden werden.

April 14, 2021 Patrick Nolte ii/43

https://github.com/kanashius/wire-android/commit/b55e9b18de4d88cc5c2a0d4d33bdf294ca14b8c6
https://github.com/kanashius/wire-android/commit/b55e9b18de4d88cc5c2a0d4d33bdf294ca14b8c6

Contents

1 Motivation 1

2 Comparison with other systems 2
2.1 Current state of the export feature . 2

2.1.1 Elements . 2
2.1.2 Facebook Messenger . 2
2.1.3 Line . 3
2.1.4 Signal . 3
2.1.5 Skype . 3
2.1.6 Telegram . 3
2.1.7 WhatsApp . 4
2.1.8 Wire . 4

2.2 Advantages . 4
2.3 (Security-) problems . 5
2.4 Comparison of exports and (cloud) backups . 5

3 Concept 8
3.1 Export-feature integration into the existing application 8

3.1.1 Different options . 8
3.1.2 Description of the used option . 8
3.1.3 Export functionality . 9

3.2 Structure of the export . 11
3.3 Module relationships . 12
3.4 HTML-Viewer . 13

4 Implementation details 16
4.1 Android-client changes . 16
4.2 Android-client additions . 19

4.2.1 Layout and graphic interface . 19
4.2.2 Export functionality . 23
4.2.3 Export format definition . 26
4.2.4 Comparison of the export format and other existing solutions 27
4.2.5 Common base between Matrix and Wire . 30

4.3 HTML-Viewer . 37

5 Conclusion and future work 41

April 14, 2021 Patrick Nolte iii/43

List of Figures

3.1 Conversation menu additions . 9
3.2 Export screens . 10

a Export configuration . 10
b Running export . 10

3.3 ZIP file structure . 11
3.4 XML document selection . 13
3.5 Website conversation . 14
3.6 User information . 15
3.7 Website conversation information . 15

4.1 ConversationFragment - line 112 to 112 . 16
4.2 ConversationFragment - line 226 to 228 . 16
4.3 ConversationFragment - line 363 to 378 . 17
4.4 ConversationManagerFragment - line 142 to 145 . 17
4.5 ConversationManagerFragment - line 78 to 78 . 17
4.6 WireApplication - line 316 to 316 . 17
4.7 Strings - line 899 to 899 . 17
4.8 Strings - line 1257 to 1267 . 18
4.9 Conversation header menu for export - line 6 to 10 . 19
4.10 Export configuration fragment layout - line 104 to 117 19
4.11 ExportFragment - line 21 to 39 . 20
4.12 ExportConfigurationFragment - line 42 to 54 . 21
4.13 ExportConfigurationFragment - line 128 to 145 . 22
4.14 ExportConfigurationFragment - line 100 to 112 . 22
4.15 ExportController - line 23 to 27 . 22
4.16 ExportConverter - line 77 to 102 . 24
4.17 ExportConverter - line 138 to 145 . 24
4.18 ExportConverter - line 520 to 550 . 25
4.19 Export chat XML schema (XSD) - line 14 to 34 . 26

a Exported message of type image - XML . 31
b Matrix message of type image - JSON [6] . 31

4.21 Legend for field tables . 31
4.22 ChatExportAccess - line 22 to 45 . 38
4.23 ExportObjects - line 1 to 53 . 39
4.24 HTML-Viewer - line 39 to 45 . 40
4.25 ChatExportConverter - line 17 to 31 . 40

April 14, 2021 Patrick Nolte iv/43

List of Tables

4.1 Fields of conversations/rooms . 31
4.2 Fields of users . 32
4.3 Fields of avatars . 32
4.4 Fields of messages . 33
4.5 Fields of unsigned data . 33
4.6 Fields of content for all types . 33
4.7 Fields of richmedia . 34
4.8 Fields of opengraph . 34
4.9 Fields of content by type (part 1) . 34
4.10 Fields of content by type (part 2) . 35
4.11 Fields of content by type (part 3) . 35
4.12 Fields of content by type (part 4) . 35
4.13 Fields of info/metadata . 36
4.14 Fields of thumbnail info . 36
4.15 Fields of link previews . 36

April 14, 2021 Patrick Nolte v/43

1 Motivation

The majority of the population today is using messenger services everyday. This leads to a lot of
conversations being handled by these services. Sometimes even messages that would normally be
sent by email or letter are sent with these services. This raises the need to secure these messages
to access them later. In addition, these messages should remain available even if the device is
changed or breaks. Most messenger services provide continued access by providing the possibil-
ity to create backups. But these backups can only exchange messages between the same service on
different devices and sometimes do not even support different operating systems. Additionally,
they are limited to the messenger service that created the backup and are not designed to be used
by other services.
Because of this limitation an export service is a very good feature to have. It provides the possibil-
ity to view conversations independently of the service used to send them. Additionally, the format
of the export is openly accessible and can be implemented by other messenger services to enable
the import of messages sent by other messengers.

In this Bachelor Thesis, I have implemented the feature to export conversations made with Wire.
The data is exported in a way that is easily accessible outside of the service itself. Additionally, the
media data included in the conversation is also exported.

April 14, 2021 Patrick Nolte 1/43

2 Comparison with other systems

To get an overview of the current status I would like to take a look at the current export features of
some messenger services. I chose Elements, Facebook Messenger, Line, Signal, Skype, Telegram,
WhatsApp and Wire.

2.1 Current state of the export feature

2.1.1 Elements

Elements currently does not have an export feature.
Instead, the encryption keys can be saved (encrypted) on the device and imported on other de-
vices. This enables the user to restore messages from the server with these keys. The server (that
could be self hosted) is storing the "backup" of the messages. The compatibility with other services
is provided by using the Matrix open standard for interoperable, decentralised, real-time commu-
nication over ip. Unfortunately this means, that it is currently not possible to export old messages
without writing a custom tool for this.
I only found one third-party tool, named Matrix Recorder [10], that provides something similar. It
registers as a regular client at the server, receives all messages and stores them with the possibility
to export them to HTML. Unfortunately it is not easy to set up and is currently not able to save
messages sent before the setup of the tool, because they were encrypted with the keys for other
devices and, until now, it is not possible to import them at the moment. Additionally, this tool is
no longer actively developed (last update 3 years ago).

2.1.2 Facebook Messenger

Facebook supports the download of all messages (and other data they have on you) in the settings
on their website. The chat history can be requested as JSON or HTML data. When the request was
processed the data can be downloaded at the website. The download is a ZIP file containing the
messages in the specified format and all files sent. [3] The European Union has a law, the General
Data Protection Regulation, that requires companies to enable every person to request the data
the company has about the person. To avoid a lot of support requests, bigger companies often

April 14, 2021 Patrick Nolte 2/43

provide the possibility for the user to download the data directly. Facebook makes the export of
the messages accessible in the same menu as a lot of other download possibilities about data the
company has, so it looks like the export of the messages was implemented to follow this require-
ment, especially because it is not really easily available. On the other side the possibility to not
only download the data in JSON but also as HTML is provided, so it is easier for most people to
access the conversations and read them and the export contains the messages of the other people
in the conversation, which would not be required by the law.

2.1.3 Line

Line has multiple possibilities to export the chat history. One is to simply export the messages as
text on the device. Additionally, they developed a tool called "UltData" to provide the possibility
to export data. When using "UltData" it is possible to export not only the messages but also photos,
videos, audio, documents, contacts and the call history. This tool needs the device to be plugged
to a pc with USB debugging enabled. [14]

2.1.4 Signal

The messenger service Signal does not support the export of conversations directly.
However, it is possible to create an encrypted backup within the app and this backup can be de-
crypted with third-party tools like "signal-back" [13]. The backup is secured by a 30 character
passphrase/key. The data must then be further processed to be easily human readable.
The desktop app uses an encrypted SQLite database that would need a similar processing. [1,
11]

2.1.5 Skype

Skype does support the export of the chat history. They have a website, where a TAR file can be
requested containing all messages and/or files, with files being available for 30 days after they
were sent. The requested TAR file can then be downloaded from the website and contains the
requested files and a JSON file with all messages. [12]

2.1.6 Telegram

Telegram does not support the export of conversations in their app, but the desktop application
has this feature.
The export may include photos, videos, voice messages, video messages, stickers, GIFs and other
files.

April 14, 2021 Patrick Nolte 3/43

The export is done in form of a folder containing an HTML document with the conversation data
and some subfolders with additional files to display the HTML site and the (media-) files in other
folders.

2.1.7 WhatsApp

In WhatsApp the export is supported. The exported data is sent by email and thus limited to the
40000 newest messages. If media data is included only the newest 10000 messages are exported
next to the media files. [4, 5]
However, it is also possible to use the backup data, similar to Signal. The backup is readable with
third party software and the decryption needs the Android account email and the corresponding
key file. There are a lot of commercial tools to do this like "Wondershare MobileTrans - WhatsApp
Transfer" [15] and some free tools like this "WhatsApp Viewer" [7].

2.1.8 Wire

Wire currently does not support the export of conversations.
It is possible to decrypt the backup with third-party tools and the passphrase used at the backup
creation, but the backup does not contain any media files.
My Bachelor Thesis changes this and adds the export feature to the Android app. The export I
implemented supports all current message types that may be sent, including text messages as well
as audio files, video files, images and documents. [2]

2.2 Advantages

The advantages of an implemented export are prominent. First it allows exchange of messages be-
tween different messenger services as soon as all agree on one format or implement the import/-
export of the other messenger services. Another advantage is the possibility to access exported
data independently of the service used to send the messages. This enables the possibility to switch
the messenger service more easily.
The export of messages and import into other messengers could be a first step towards the cur-
rently by the European Union targeted possibility of message exchange between different messen-
ger services. It enables users to have more freedom in the choice of the messenger they would like
to use, because the conversations held with another messenger are no longer lost when switching
the service.

April 14, 2021 Patrick Nolte 4/43

2.3 (Security-) problems

There are some major problems with the export of conversations. One big issue is the agreement
between all messenger services to use the same format to enable the import into other messengers.
Currently there is no uniform system available. Most services providing an export use different
formats or a format that is not able to reconstruct the conversation completely. An example is the
handling of exports by different services. Telegram provides the conversation as a web page and
is focused to be an easily human readable system. WhatsApp on the other side exports a sim-
ple text file, where only minimal information is provided. My implementation in Wire exports
the conversation as an XML document with all data needed to fully reconstruct the conversation.
Additionally, it is possible to include a web page to display the data, similar to the approach of
Telegram.
Another problem is the missing encryption of exported data. As soon as the data is exported, ev-
eryone with access to the files can read them. This is particularly true for the WhatsApp export,
which is sent unencrypted by email.
The missing encryption cannot be avoided, if the goal is to make the conversation easily readable
in a web browser, but the ZIP file could be encrypted so that it could savely be stored on the mobile
device and transferred. Only at the target device, it would need to be decrypted directly before it
should be viewed.
Another point is the handling of messages with an expire time. At the moment all messages that
are already expired are encrypted and cannot be exported. All messages that will expire are ex-
ported normally and the HTML-Viewer encrypts them when they should be displayed. This means,
that they are still inside the chats.xml and can be extracted there. It is debatable if it would be bet-
ter to encrypt them directly when exporting, even if it means that they are no longer readable in
the export even before the time has expired.

2.4 Comparison of exports and (cloud) backups

The main difference between a local export and a backup is that the backup is not intended to be
read by the user. Additionally, it is not a goal of a backup to enable the user to exchange the data
between different services. It is designed to be used to make sure that the data is not lost and can
be recovered. The export on the other hand is mainly used to either create the possibility to import
the data within another device and/or service and may not only be used by the service itself, or it
is used to enable the user to read the data independently of any service, just to have the possibility
to access the data in a readable format. If the export is designed to be imported it could be used as a
backup because it would enable the user to restore the data. If it is exported to be an independent,
readable version for the user to read, it could be exported to be used as a backup, but it could also

April 14, 2021 Patrick Nolte 5/43

mean, that only a text file is exported, like some services described in section 2.1 provide and these
are mostly used to enable the user to read the conversation, but not to import the data.
The selection of the included data also differs. The backup normally does not provide the possi-
bility to save only some conversations, instead all messages are saved, maybe with the option to
exclude additional files. An export is mostly used to export specific conversations and thus the
possibility to select the exported conversations is provided.
Another difference between an export and a backup is the location, where it is saved. A lot of
services provide, or even enforce, the possibility to save the backup on their own servers or at
other cloud storage providers, whereas an export is normally only saved at the device itself and is
managed by the user.
I would like to discuss some advantages and disadvantages I found in Obrutsky’s document [9,
p. 3]. Lets have a look at the advantages first. One argument is that only the used storage must be
paid and this is a good point, because sometimes it does not even cost anything to create a backup
for example at Google Drive. Another point is the accessibility of the data. This is valid as well
and can be seen when someone switches the device and installs, for example WhatsApp. Because
the user is already logged into the Google account, WhatsApp can see that there is a backup in the
Google Drive folder of that account and automatically provides the option to import the old data
from the backup. Another valid point is the better protection in case of a disaster. If the backup is
only saved on a mobile device, the chance of a disaster is fairly high and if the backup is saved at
the local computer as well, the risk is a lot lower, but because the computer and the mobile device
are often located at the same place, it is not really safe as well. When the backup is saved in the
cloud it is normally fairly safe, because the cloud storage provider normally ensures that there are
backups that are located at different locations and ensures the safety of the data. This also includes
the problem of hardware failures mentioned in the paper. Another point is the storage limit. Many
mobile devices do not have a lot of storage (also this is changing and most devices today have
enough storage), but it is easier and often cheaper to enhance the storage at the cloud provider if
needed.
But there are also disadvantages to the usage of cloud storage. At first there are additional costs
that sometimes come with the cloud backup. Another point are bandwidth limitations. If the ser-
vice makes backups often, it creates traffic, if it must be transmitted to the server as a backup. De-
pending on the type of backup (full/incremental) this may become more and more severe as time
flows and the amount of data grows. This is very relevant for mobile devices where the bandwidth
is normally limited, especially if media data with large files like images and videos is included. The
most important disadvantage in my opinion is the security. If the data is saved inside of a cloud
storage, the data is no longer in the hands of the user. It can be viewed by unauthorized people.
The risk can be lowered, if the backup is encrypted, but encryption alone is not enough. Some mes-
senger services like WhatsApp do create the backup, encrypt it and save it to some cloud storage.
This could lead to the assumption, that the data is save, but because the user does not provide the
password for the encryption, the encryption is done completely and automatically by the service.
This enables the service to decrypt the data, because they have all the information to do that. This

April 14, 2021 Patrick Nolte 6/43

is also a point of discussion, because the law enforcement in the USA can get everything needed to
decrypt the backup from the service and can access the encrypted backup of the cloud provider, if
both are located in the USA, and thus they can encrypt the backup. This is a big problem, because
some of the biggest messenger services and cloud storage providers do operate from the USA and
must provide the requested data. This does also include non US-citizens.
This is why it is important to give the user the opportunity to choose the preferred location of the
save. Backups often do not let the user choose the location of the save. When the data is exported,
this is normally done locally and the user has the full control, where it should be saved. It can
remain on the device, could be moved to a computer, NAS or it could be saved in the cloud. The
user also has the possibility to encrypt the data additionally to the existing encryption that may be
provided by the service.
Like often in the area of security there is a choice between security and usability. It is easier, if the
service handles the complete backup process and the user does not need to do anything. Addi-
tionally, the user sometimes does not even need to remember a password to recover the data. On
the other hand there is the secure solution that requires the user to remember the password, or the
data may be lost and the user may need to manage the backup or the exported data.
An export is normally not done automatically, but started by the user to get the data from the ser-
vice. In this process it is no problem to add a request to the user, if he wants to set a password
or not and to add the encryption. A backup is normally something that should be done often and
thus automatically without user interaction, when possible in the background.
In general, the user should have the possibility to add an additional passphrase and to select the
location, where the data should be saved. In my opinion it is a bad trend in the industry to remove
more and more options from the user just to make the interface less loaded. I find it important that
the user keeps the option to decide, even if it is in a hidden part of the settings that may be harder
to find. People who are interested in their data security will look for those options. Regardless
of the possible settings, the more secure solution should be enabled by default, if it is possible
without bigger usability losses.

April 14, 2021 Patrick Nolte 7/43

3 Concept

3.1 Export-feature integration into the existing application

3.1.1 Different options

The goal of the Bachelor Thesis is the integration of the export feature into the existing Android
application. There would be a lot of possible options on how to enable the user to do the export.
Some of the better options would use the existing menus. There are two menus that would make
sense to use for an export feature. One of them is the menu at the top of the conversation where
currently the audio and video call menu items are located. This menu is easily accessible for ev-
ery conversation. The other option would be to add the menu to the existing settings. These are
accessible when clicking at the conversation title. Then at the bottom there is a menu where it is
already possible to mute, archive,. . . the conversation. The problem with this menu is that it is only
available for group conversations and would need to be added to the 1-on-1 conversations. This is
why I chose to add the export menu item to the menu at the top of the conversation.
Another possibility that may make sense to use in the future would be to make the export ac-
cessible via the user settings. In this case, a full settings page would be added, where not only
the current conversation would be exportable, but a selection of multiple conversations could be
added. The export structure and the complete code are already designed to enable multiple con-
versations to be exported at once. So it would make sense to move the export to the global settings
and to not locate it in a single conversation.

3.1.2 Description of the used option

As already mentioned, I decided to add a menu item to the conversation that enables the user to
export the currently selected conversation. The result of the menu additions for navigation to the
export fragment can be seen in figure 3.1.

April 14, 2021 Patrick Nolte 8/43

Figure 3.1: Conversation menu additions

3.1.3 Export functionality

After clicking the Export chat menu item the app navigates to the export configuration fragment.
The export configuration fragment enables the user to configure the export. Next to the selec-
tion of the location the export should be saved to, it is possible to toggle the addition of the me-
dia files. Another configuration option is the possibility to select a time frame that should be
exported. Additionally, the HTML-Viewer can be added to the export file to create the possibil-
ity to view the exported chat with a nice- looking representation without other tools. The ex-
port configuration screen can be seen in figure 3.2 together with the screen for a running export.

April 14, 2021 Patrick Nolte 9/43

a) Export configuration b) Running export

Figure 3.2: Export screens

April 14, 2021 Patrick Nolte 10/43

3.2 Structure of the export

The export is done by creation of a ZIP file containing all data selected in the export configuration
screen, because it is easier to move one file instead of complete folders with a lot of files inside.
Additionally, it is possible to add the option for encryption of the ZIP file later to secure the export.
ZIP is the first format that comes to mind when looking for the ability to compress multiple files
into one and to make it accessible on most platforms.
The ZIP file always contains a data folder with an XML document named chats.xml and optionally
may contain a media and profileData folder. The chats.xml file contains all selected conversations
with the corresponding information and their messages converted into XML elements. Addition-
ally, all users that are included in the conversation and their information are converted to XML
elements and inserted as well. XML was choosen because it provides the possibility to save the
data in a structured way that is also easily human readable and has the possibility to describe the
structure clearly in other formats like XSD. JSON is more compressed, but it is also harder to read
for humans and in XML it is easy to define new types that are used a lot for the export. This makes
the XML structure better defined and thus more secure to use.

ZIP-file root

HTML-Viewer.html

data

chats.xml

media
. . .

profileData
. . .

websiteData

ChatExportAccess.js

ChatExportConverter.js

ExportObjects.js

style.css

Figure 3.3: ZIP file structure

If media files are exported, they will be saved inside the me-
dia folder. This includes not only audio, video and images,
but also all other documents or files in general that may have
been sent in a message. The profile pictures of all exported
users are saved inside the profileData folder.
If the HTML-Viewer was selected for export, the HTML file
HTML-Viewer.html is copied into the root directory of the
ZIP file. It is the entry point when the display of the chat
in a more beautiful representation inside a browser is de-
sired. The HTML-Viewer needs some additional files that are
saved inside the websiteData directory. This includes the
CSS styles as well as some JavaScript files used for process-
ing the XML document. Overall the structure of the ZIP file
looks like described in figure 3.3.

April 14, 2021 Patrick Nolte 11/43

3.3 Module relationships

There is a number of files I needed to modify to implement the export feature. They needed just
small changes to be able to show the button that opens my own fragments. These files were the
ConversationManagerFragment.scala, ConversationFragment.scala, WireApplication.scala and
the strings.xml. In the ConversationFragment the export button got added to the menu. The Conver-
sationManagerFragment is responsible to open the export configuration, if the corresponding event
was triggered in the export controller. The WireApplication had to be modified to enable the injec-
tion of the export controller. Lastly the strings.xml was edited to include all new texts needed by
the changes.
Then we have some files I needed to create. At first there are some resources. One of the added files
is the conversation_header_menu_export.xml that contains only the button displayed in the Con-
versationFragment. Then there are the fragment_export.xml and the fragment_export_configuratio-
n.xml containing the layout that is used by the ExportFragment.scala and the ExportConfigura-
tionFragment.scala. They contain the configuration screen seen in figure 3.2a. To connect the
design with the functionality there is the ExportController.scala that is used by the ExportConfig-
urationFragment to trigger the export. The ExportController then uses the ExportConverter.scala
to initialize the export. The ExportConverter then starts to read all information about the selected
conversations and the involved users together with all media files. To gather the information, it
uses the ExportController to access the other injectable objects and their data. Everything the Ex-
portConverter finds is then added to the defined ZIP file with the help of the ExportZip.scala file.
The ExportConverter is also responsible to add the files included in the export_html_viewer.zip re-
source to the ZIP file.
The export_chat_xml_schema.xsd is only used during development to make sure, that the Export-
Converter and the HTML-Viewer have the same understanding of the exported chats.xml document
and to enable others to know the structure of the XML to process the document by themself.

With the ExportConverter using the objects provided by the ExportController the complete server
interaction is handled by accessing the objects made accessible by the controller and request fur-
ther objects there. This means that it was not necessary to write an own server communication, as
the existing structures could be used. This also includes the files exchanged in the conversation
where the same rules that are true for the conversation do also apply for the export. If the file is not
already saved at the device, it will be downloaded from the server. If this is not done, it cannot be
exported. To make sure to export all files, they should already be loaded on the device the export
is done from.

April 14, 2021 Patrick Nolte 12/43

3.4 HTML-Viewer

I created the HTML-Viewer to provide a tool to view the exported data. I decided for a web technol-
ogy based solution to be platform independent. Nearly everyone has a browser already installed.
Additionally, everything needed for the website is relatively small with roughly 100KB or rather
25KB when compressed in the ZIP.
The design of the website is inspired by "Wire for web", the web client of Wire, and thus looks
nearly the same. I added some buttons I needed like the light-/darkmode switch and removed
others that were no longer needed like the settings button.
The code used to create the design is completely new because the "Wire for web" website is devel-
oped to be used with their backend and is designed to receive messages and much more. This is
not needed for the export feature. This is why I could not simply reuse their website. Addition-
ally, I created the website without additional libraries to keep it small and created my own small
backend that is only used to parse and process the chats.xml.

When the HTML-Viewer was included in the export, it can be looked at by opening the HTML-
Viewer.html file. The first action that must be done is to click at the button that can be seen in
figure 3.4 to select the chats.xml.

Figure 3.4: XML document selection

Then the XML document is loaded and the content is parsed. Now on the left side is a navigation,
visible in figure 3.5, to select the conversation and to read the messages at the right side. Addition-
ally, there is a button at the bottom left to switch to the user list to get a list of all contained users.
The users can be selected to get more information about them as seen in 3.6. If a conversation is
opened then there is an information icon visible at the top right. When clicking, more detailed
information of the conversation is shown, including the members of the conversation and their
roles visible in figure 3.7.

April 14, 2021 Patrick Nolte 13/43

Figure 3.5: Website conversation

April 14, 2021 Patrick Nolte 14/43

Figure 3.6: User information

Figure 3.7: Website conversation information

April 14, 2021 Patrick Nolte 15/43

4 Implementation details

4.1 Android-client changes

The first additions needed to be added into the ConversationFragment to add the menu item for
navigation to the export configuration. To achieve this it needs the ExportController available by
requesting it by injection in line 112. Then the export menu item is added to the existing menu

112 private lazy val exportController = inject[ExportController]

Figure 4.1: ConversationFragment - line 112 to 112

containing the video- and voice call items as can be seen in line 226 to 228. When the button is

226 toolbar.getMenu.clear()
227 id.foreach(toolbar.inflateMenu)
228 toolbar.inflateMenu(R.menu.conversation_header_menu_export)

Figure 4.2: ConversationFragment - line 226 to 228

there, the click event is needed. This is done as we can see in line 363 to 378. The signal onShow-
Export is called at the ExportController in line 372 and if the user is currently typing a message, the
typing is interrupted and the keyboard hidden (line 373/374). When the onShowExport is trig-
gered, the ConversationManagerFragment that is already listening at the Signal receives the event
and opens the ExportFragment as seen in line 142 to 145. To access the ExportController it is also
requested by injection (line 78). To enable the ConversationFragment and the ConversationManager-
Fragment to request the injected ExportController, the WireApplication needs to initialize and bind
the ExportController as seen in line 316. The ExportFragment is a container for the ExportConfig-
urationFragment. That is why the ExportConfigurationFragment tag is provided as a parameter for
the new ExportFragment instance. Of course the Android way to define strings in the strings.xml
is followed and that is why there are some strings added, that will be needed at various places as
seen in figure 4.7 and 4.8.

April 14, 2021 Patrick Nolte 16/43

363 toolbar.setOnMenuItemClickListener(new Toolbar.OnMenuItemClickListener() {
364 override def onMenuItemClick(item: MenuItem): Boolean =
365 item.getItemId match {
366 case R.id.action_audio_call | R.id.action_video_call =>
367 callStartController.startCallInCurrentConv(withVideo = item.getItemId

↪→ == R.id.action_video_call, forceOption = true)
368 cursorView.foreach(_.closeEditMessage(false))
369 true
370 case R.id.action_export_chat =>
371 //TODO implement
372 exportController.onShowExport ! None
373 cursorView.foreach(_.closeEditMessage(false))
374 keyboardController.hideKeyboardIfVisible()
375 true
376 case _ => false
377 }
378 })

Figure 4.3: ConversationFragment - line 363 to 378

142 subs += exportController.onShowExport.onUi { p =>
143 showFragment(ExportFragment.newInstance(Some(ExportConfigurationFragment.

↪→ Tag)), ExportFragment.TAG)
144 }

Figure 4.4: ConversationManagerFragment - line 142 to 145

78 private lazy val exportController = inject[ExportController]

Figure 4.5: ConversationManagerFragment - line 78 to 78

316 bind [ExportController] to new ExportController()

Figure 4.6: WireApplication - line 316 to 316

899 <string name="conversation_toolbar__export_chat">Export chat</string>

Figure 4.7: Strings - line 899 to 899

April 14, 2021 Patrick Nolte 17/43

1257 <string name="start_export">Start export</string>
1258 <string name="export_file_not_set">The export file is not defined</string>
1259 <string name="export_done">Export done</string>
1260 <string name="include_media_files">Include media files</string>
1261 <string name="include_html_files">Include HTML-Viewer files</string>
1262 <string name="enable_export_date_from">Enable export date from</string>
1263 <string name="date_from">Date from</string>
1264 <string name="enable_export_date_to">Enable export date to</string>
1265 <string name="date_to">Date to</string>
1266 <string name="dots">...</string>
1267 <string name="filename">Filename</string>

Figure 4.8: Strings - line 1257 to 1267

April 14, 2021 Patrick Nolte 18/43

4.2 Android-client additions

4.2.1 Layout and graphic interface

At first some layouts were needed to contain the basic structure of the fragments. One of them was
the menu item added to the ConversationFragment. It is a simple text item visible in figure 4.9. Then

6 <item
7 android:id="@+id/action_export_chat"
8 android:orderInCategory="300"
9 android:title="@string/conversation_toolbar__export_chat"

10 app:showAsAction="never" />

Figure 4.9: Conversation header menu for export - line 6 to 10

we have the fragment export layout being a simple container for the fragment export configuration lay-
out containing a FrameLayout within a LinearLayout, similar to the fragment participant layout. At the
moment it would not be needed, but maybe the export will be expanded and may contain more
fragments then only the configuration. The fragment export configuration layout is designed to look
like shown in figure 3.2a. It contains a RelativeLayout with a Scrollview containing the configuration
options and the export button at the bottom. Additionally, there is a hidden LinearLayout inside the
RelativeLayout containing the indicator for the running export that is made visible if the export is
running. The configuration options consist of a vertically orientated LinearLayout with some basic
controls like buttons and switches as well as the TextField and Button for selecting the export file
inside a horizontal LinearLayout. The start export button is placed at the bottom of the Scrollview
by wrapping it inside another LinearLayout with the android:gravity set to center|bottom. This
can be seen in figure 4.10.

104 <LinearLayout
105 android:layout_width="match_parent"
106 android:layout_height="0dp"
107 android:layout_weight="1"
108 android:gravity="center|bottom"
109 android:orientation="vertical">
110 <Button
111 android:id="@+id/b__export_start"
112 android:layout_width="match_parent"
113 android:layout_height="wrap_content"
114 android:gravity="center"
115 android:text="@string/start_export"
116 android:textSize="@dimen/wire__text_size__medium" />
117 </LinearLayout>

Figure 4.10: Export configuration fragment layout - line 104 to 117

April 14, 2021 Patrick Nolte 19/43

The described layouts are then loaded in the corresponding ExportFragment and ExportConfigura-
tionFragment. The ExportFragment loads the fragment export layout and replaces the export container
with the child fragment that should be loaded. At the moment there is only the ExportConfigura-
tionFragment that can be loaded into the container. This implementation was created with the
example of the ParticipantFragment in mind, where multiple fragments could be displayed, to keep
the option to add other fragments later with just some small changes. The resulting code can be
seen in figure 4.11.

21 override def onViewCreated(view: View, @Nullable savedInstanceState: Bundle)
↪→ : Unit = {

22 verbose(l"onViewCreated.")
23 withChildFragmentOpt(R.id.fl__export__container) {
24 case Some(_) => //no action to take, view was already set
25 case _ =>
26 (getStringArg(PageToOpenArg) match {
27 case Some(ExportConfigurationFragment.Tag) =>
28 Future.successful((new ExportConfigurationFragment,

↪→ ExportConfigurationFragment.Tag))
29 case _ =>
30 Future.successful((new ExportConfigurationFragment,

↪→ ExportConfigurationFragment.Tag))
31 }).map {
32 case (f, tag) =>
33 getChildFragmentManager.beginTransaction
34 .replace(R.id.fl__export__container, f, tag)
35 .addToBackStack(tag)
36 .commit
37 }
38 }
39 }

Figure 4.11: ExportFragment - line 21 to 39

The ExportConfigurationFragment initializes the controls with the values currently set in the Export-
Controller and adds the listeners for all controls. One example can be seen at line 42 to 54 where
the start export button gets the listener for the onClick event added. When the button is clicked,
the indicator showing a currently running export is activated. Then the export is started. At the
end of the export, the provided callback is called, that runs on the current UI thread and hides the
indicator again.
Another functionality is the file selection if the ... button is clicked. To create the file, in Android
11, it is required to use the ACTION_CREATE_DOCUMENT Intent provided by Android to en-
able the user to select the file. This ensures that the application only gets access to the files, the
user wants to grant access to. If the result of the intent is received, the exportFile field in the
ExportController is updated accordingly and the start export button can be clicked now. Another
interesting feature is the call of the DatePickerDialog and in case of a successful selection the call of
the TimePickerDialog to select the dates of the export date range that can be enabled. In the default

April 14, 2021 Patrick Nolte 20/43

42 exportButton.setOnClickListener(new View.OnClickListener {
43 override def onClick(v: View): Unit = {
44 exportLoadingIndicator.setVisibility(View.VISIBLE)
45 exportController.‘export‘(()=>{
46 getContext.asInstanceOf[Activity].runOnUiThread(new Runnable {
47 override def run(): Unit = {
48 exportLoadingIndicator.setVisibility(View.GONE)
49 Toast.makeText(getContext,WireApplication.APP_INSTANCE.

↪→ getApplicationContext.getString(R.string.export_done),Toast.
↪→ LENGTH_LONG)

50 }
51 })
52 })
53 }
54 })

Figure 4.12: ExportConfigurationFragment - line 42 to 54

case, the start and end of the date range are disabled so that the entire conversation is exported.
The start and end date can be enabled separately to limit the start and/or end of the export. When
one of the date buttons is clicked, the showDateTimePicker method seen in figure 4.13 is called
with the corresponding date value currently selected. At the end of a successful selection, the
callback is called and the selected date is delivered. The callback in figure 4.14 is responsible to
update the correct date at the ExportController and the date shown at the button. The ExportConfig-
urationFragment holds own fields for the selected date so that the fields of the ExportController are
only updated, if the corresponding start/end date switch is enabled.
Finally there is the ExportController as an interface between the graphical interface and the back
end. It provides the fields that are set by the graphical interface and read by the ExportConverter
that can be seen in figure 4.15. Additionally, it provides the objects needed by the ExportConverter
to access the data of the app. This includes the messages and the objects they are defined with,
as well as the media files that are called assets. Lastly it has an export function that requests
the current conversation, creates the ExportConverter and starts the export of that conversation.

April 14, 2021 Patrick Nolte 21/43

128 def showDateTimePicker(time: Option[RemoteInstant], callback: RemoteInstant
↪→ => Unit): Unit = {

129 val currentDate = Calendar.getInstance
130 val date = Calendar.getInstance
131 if(time.nonEmpty)
132 date.setTimeInMillis(time.get.toEpochMilli)
133 new DatePickerDialog(getContext, new DatePickerDialog.OnDateSetListener() {
134 override def onDateSet(view: DatePicker, year: Int, monthOfYear: Int,

↪→ dayOfMonth: Int): Unit = {
135 date.set(year, monthOfYear, dayOfMonth)
136 new TimePickerDialog(getContext, new TimePickerDialog.OnTimeSetListener

↪→ () {
137 def onTimeSet(view: TimePicker, hourOfDay: Int, minute: Int): Unit = {
138 date.set(Calendar.HOUR_OF_DAY, hourOfDay)
139 date.set(Calendar.MINUTE, minute)
140 callback(RemoteInstant.ofEpochMilli(date.getTimeInMillis))
141 }
142 }, currentDate.get(Calendar.HOUR_OF_DAY), currentDate.get(Calendar.

↪→ MINUTE), false).show()
143 }
144 }, currentDate.get(Calendar.YEAR), currentDate.get(Calendar.MONTH),

↪→ currentDate.get(Calendar.DATE)).show()
145 }

Figure 4.13: ExportConfigurationFragment - line 128 to 145

100 dateToInput.setOnClickListener(new OnClickListener {
101 override def onClick(v: View): Unit = {
102 showDateTimePicker(dateTo,r=>{
103 dateTo=Some(r)
104 val date = new Date()
105 date.setTime(r.toEpochMilli)
106 val format=DateFormat.getDateTimeInstance(DateFormat.SHORT,DateFormat.

↪→ SHORT)
107 dateToInput.setText(format.format(date))
108 if(exportLimitToSwitch.isChecked)
109 exportController.timeTo=dateTo
110 })
111 }
112 })

Figure 4.14: ExportConfigurationFragment - line 100 to 112

23 var exportFile: Option[Uri] = None
24 var timeFrom: Option[RemoteInstant] = None
25 var timeTo: Option[RemoteInstant] = None
26 var exportFiles = true
27 var includeHtml = true

Figure 4.15: ExportController - line 23 to 27

April 14, 2021 Patrick Nolte 22/43

4.2.2 Export functionality

When the export is started by the ExportController the ExportConverter starts to convert the infor-
mation into the XML document. At first the ExportConverter creates the ExportZip where all files
are added as well as the Document where all XML information is saved. Then all conversation ids
(currently just one, because there is no conversation selection) provided as a parameter are iterated
and the corresponding XML elements are created and added to the document. When iterating the
conversation, all conversation members are added to a list. This list is written to the XML docu-
ment when the conversations are processed. At the end the XML document is saved to the ZIP file
as well as the HTML-Viewer files if they were selected for export. The media files are saved to the
ZIP file while processing the conversations and the profile pictures are added when the users are
processed. The conversion of the users can be seen in figure 4.16 as an example to get an overview
how the elements are created and added to the XML.
Something similar is done with the conversations as well. At first all available information of the
conversation, including the member list of users with their roles (line 138 to 145), are added to the
XML document.
Then all messages in the provided time period are retrieved from the MessagesStorage accessible
with the ZMessaging object that is saved as a field in the ExportController and then sorted by date
and processed to create message elements that are then added to the XML document. The mes-
sage elements contain basic information, like the user sending the message and the message type.
The message type is needed to distinguish different messages and display them correctly later.
Depending of the message type, different other elements are added to the message element. This
includes simple text content as well as assets like images. If an asset is to be saved, first the Asset-
ServiceImpl, that is accessible by the ZMessaging object, is used to check if the asset is available and
saved to the ZIP if possible (line 520 to 550). On success the filename is saved into the correspond-
ing XML element, otherwise the asset id is saved. Because sometimes the file extension is missing,
it is retrieved by the AssetServiceImpl as well.
The ExportZip is a helper class to manage the ZIP file and add all files to the export ZIP. It is
synchronized to add the possibility to make the export multithreaded at a later point in time. Cur-
rently the export is done in succession to avoid conflicts especially when elements are added to the
XML Document object.

April 14, 2021 Patrick Nolte 23/43

77 userList.toList.distinct.map(u=>exportController.usersController.user(u).
↪→ future).map(f=>Await.ready(f,Duration.Inf)).map(f=>{

78 f.map(ud=>{
79 val user=addElement(users, "user")
80 if(selfId.nonEmpty && selfId.get.equals(ud.id)) user.setAttribute("

↪→ isSelf","true")
81 addElement(user,"userid",ud.id.str)
82 ud.handle.foreach(h=>addElement(user,"username",h.string))
83 ud.teamId.foreach(tid=>addElement(user,"teamid",tid.str))
84 addElement(user,"name",ud.name.str)
85 ud.email.foreach(em=>addElement(user,"email",em.str))
86 ud.phone.foreach(p=>addElement(user,"phone",p.str))
87 ud.trackingId.foreach(tid=>addElement(user,"trackingid",tid.str))
88 ud.picture.foreach(p=>{
89 (p match {
90 case p: PictureUploaded => saveAssetIdAndGetFilename(p.id,

↪→ profilePath).orElse(Some(p.id.str))
91 case p: PictureNotUploaded => saveAssetIdAndGetFilename(AssetId.

↪→ apply(p.id.str), profilePath).orElse(Some(p.id.str))
92 case _ => None
93 }).foreach(path=>{
94 val pic=addElement(user,"picture", path)
95 addAttribute(pic,"uploaded",p.isInstanceOf[PictureUploaded].

↪→ toString)
96 })
97 })
98 addElement(user,"accent_color",ud.accent.toString)
99 if(ud.fields.nonEmpty) addElement(user,"userfields",ud.fields.toString

↪→)
100 if(ud.permissions._1!=0 || ud.permissions._2!=0) addElement(user,"

↪→ permission",ud.permissions._1+" "+ud.permissions._2)
101 })
102 }).foreach(f=>Await.ready(f,Duration.Inf))

Figure 4.16: ExportConverter - line 77 to 102

138 val userroles=addElement(conversation,"userroles")
139 val userAddFut=exportController.convController.convMembers(convId).future.

↪→ map(m=>m.foreach({case (uid,cr)=>
140 val userrole=addElement(userroles, "userrole")
141 addAttribute(userrole,"userid",uid.str)
142 addAttribute(userrole,"role",cr.label)
143 userList+=uid
144 }))
145 Await.ready(userAddFut, Duration.Inf)

Figure 4.17: ExportConverter - line 138 to 145

April 14, 2021 Patrick Nolte 24/43

520 private def saveAssetIdAndGetFilename(assetId: AssetId, folder: String,
↪→ filename: Option[String] = None, convId: Option[ConvId] = None):
↪→ Option[String] = {

521 var path: Option[String]=None
522 val lockObject = new AtomicBoolean(false)
523 lockObject.synchronized {
524 val acc=(ai: AssetInput)=>{
525 try{
526 ai.toInputStream.foreach(is => {
527 path=Some(folder + filename.getOrElse(assetId.str+

↪→ assetIdGetFileExtension(assetId).map(a=>"."+a).getOrElse("")))
528 zip.writeFile(path.get,is)
529 verbose(l"SUCCESS LOADING FILE : ${showString(path.get)}")
530 })
531 }catch{
532 case e: Throwable => verbose(l"EXPORT - ERROR: ${showString(e.toString

↪→)}")
533 }finally{
534 lockObject.synchronized {
535 lockObject.notifyAll()
536 }
537 }
538 }
539 zmsg.assetService.loadContentById(assetId, None).map(acc).onFailure({case

↪→ e=>
540 zmsg.assetService.loadPublicContentById(assetId,convId).map(acc).

↪→ onFailure({case e2=>
541 verbose(l"FAILURE LOADING FILE : ${showString(e.toString)} AND ${

↪→ showString(e2.toString)}")
542 lockObject.synchronized {
543 lockObject.notifyAll()
544 }
545 })
546 })
547 lockObject.wait()
548 }
549 path
550 }

Figure 4.18: ExportConverter - line 520 to 550

April 14, 2021 Patrick Nolte 25/43

4.2.3 Export format definition

To ensure that the ExportConverter uses the same format for the XML document as the HTML-Viewer
uses for parsing, an export_chat_xml_schema.xsd was created. In this file the correct structure of
the chats.xml document is defined. This structure is strongly based on the objects used in the Wire
app and contains basically any information that may be relevant for reconstructing and displaying
the conversation. An example for such a definition is the conversation element that can be seen
in figure 4.19. It is based on the ConversationData object and contains some information that is
always available like the id of the message, the remoteid, the id of the creator named creator, the
conversation type (group/1-on-1/. . .) convType and the verified field. Additionally, there may
be optional data like the name, teamid, access, accessrole and the link. When all values available
at the object are included, some additional data may be needed. In this case this includes a list
of users participating in the conversation that is saved in the userroles list. The list contains all
user ids with their role (member/admin/. . .) in the conversation. Lastly a conversation without
messages is rather meaningless thus the messages of the conversation are received and added, too.

14 <xs:complexType name="conversationType">
15 <xs:all>
16 <!-- required values -->
17 <xs:element name="id" type="uuid"/>
18 <xs:element name="remoteid" type="uuid"/>
19 <xs:element name="creator" type="uuid"/>
20 <xs:element name="convType" type="xs:string"/> <!-- maybe type

↪→ conversation_type_type -->
21 <xs:element name="verified" type="xs:string"/> <!-- maybe type

↪→ verified_type -->
22

23 <!-- Sequences -->
24 <xs:element name="userroles" type="userrolesListType"/>
25 <xs:element name="messages" type="messageListType"/>
26

27 <!-- optional values -->
28 <xs:element name="name" type="xs:string" minOccurs="0"/>
29 <xs:element name="teamid" type="uuid" minOccurs="0"/>
30 <xs:element name="access" type="accessListType" minOccurs="0"/>
31 <xs:element name="accessrole" type="xs:string" minOccurs="0"/> <!--

↪→ maybe type accessrole_type -->
32 <xs:element name="link" type="xs:anyURI" minOccurs="0"/>
33 </xs:all>
34 </xs:complexType>

Figure 4.19: Export chat XML schema (XSD) - line 14 to 34

April 14, 2021 Patrick Nolte 26/43

4.2.4 Comparison of the export format and other existing solutions

I already mentioned some types of export that are used in section 2.1. They do not have an official
documentation easily available, so I could not check it without exporting the data myself. Some
of them only export the text messages. This is mostly done with simple text documents contain-
ing all messages line by line with a date, the sender and the text message, similar to the example
“<19.03.2021 22:14:00> Patrick Nolte: This is an example message.” without any other structure. In
WhatsApp for example were all media file paths just a path inside of the text data. This is no defi-
nite way to export messages because any path typed inside a text message may be parsed as a file.
Another type of export was the approach of Telegram and the Facebook HTML export. There the
data is converted into HTML and this HTML file can be opened in a browser to view the exported
conversation. This is one approach I also thought of, but decided against, because it may be good
for viewing the exported data, but it makes further processing much more difficult. Importing into
other applications is much easier when using a defined structure.

Comparison to the Matrix protocol

To see if others may implement an export in a similar way, I would like to compare my export
structure to the Matrix protocol, that was already mentioned when the messenger Elements was
discussed in section 2.1.1. Taking a closer look at the specification of the Matrix Client-Server API
[6] it can be compared to my approach. One difference is that Matrix has a lot of events that can be
sent whereas my export only contains messages. The Matrix protocol has one event that is used to
sent a message.
The first difference when looking at the event is the use of JSON. In my solution the size is not
as critical as in an application that sends the data over the internet, especially if mobile data is
involved, and thus I gave preference to the better structure of the XML files instead of the smaller
size.
The structure of the message data is relatively similar. If we take the example of a message con-
taining an image with my exported XML in figure 4.20a and the Matrix JSON data in figure 4.20b
this can be clearly seen. Firstly, we see that both have a creator/sender of the message, a unique
id for the message (id/event_id) and a time when the message was sent (time/origin_server_ts).
My export has the state as additional field as well as the local_time and the asset_id. The state is
used to show if the message was delivered. This is not included into the Matrix message because
they have another event that is sent to achieve this. The local_time is used in Wire to be able to see,
when the user sent the message locally, but Matrix uses only the time of the server. The asset_id
is only added for completeness into my structure, because this way it can be identified at the Wire
servers for downloading and that could be used for importing to other devices. The msg_type
in my export structure is equal to the msgtype in the JSON data. In the JSON it is located at the
content, because the type is already used to differentiate other events in the Matrix protocol.

April 14, 2021 Patrick Nolte 27/43

Thus type is one of the additional fields of the JSON data, next to the room_id, that is used to
identify the room (that is similar to a Wire conversation) the message comes from as well as the
unsigned used to save additional data of the event.
The last element both structures share is the protos/content element. It contains the content of
the message(s). Because Wire supports sending multiple images at the same time, this is a list in
my structure, whereas Matrix splits them into multiple messages. Both have a filename saved in
the name/body elements, as well as a height/h, width/w, mime_type/mimetype and size/size.
The location of the image itself is saved as filepath in my export, because it describes the path
inside the ZIP file, whereas it is an URL in the Matrix protocol because it is made available at the
given URL at the server.
The same is true for the other message types. They are all very similar because they just hold the

data for the messages that is needed.

April 14, 2021 Patrick Nolte 28/43

1 <message>
2 <id>ab685d47-a112-4271-bf5c-9172

↪→ eaf452e3</id>
3 <msg_type>IMAGE_ASSET</msg_type>
4 <userid>4bfb16b5-72a2-4f0c-a9e3-

↪→ b544045d2880</userid>
5 <state>DELIVERED</state>
6 <time>2021-02-23T20:10:07.420Z</

↪→ time>
7 <local_time>2021-02-23T20

↪→ :10:08.223Z</local_time>
8 <asset_id>3-5-5497d43a-5a58-40af

↪→ -8036-b56d6845a883</
↪→ asset_id>

9 <protos>
10 <proto>
11 <asset>
12 <mime_type>image/gif</

↪→ mime_type>
13 <name>5ym8IM6F90wd0mIeyd.gif<

↪→ /name>
14 <size>769376</size>
15 <metadata type="IMAGE">
16 
21 </metadata>
22 <filepath>data/media/5

↪→ ym8IM6F90wd0mIeyd.gif</
↪→ filepath>

23 </asset>
24 </proto>
25 </protos>
26 </message>

a) Exported message of type image - XML

1 {
2 "content": {
3 "body": "filename.jpg",
4 "info": {
5 "h": 398,
6 "mimetype": "image/jpeg",
7 "size": 31037,
8 "w": 394
9 },

10 "msgtype": "m.image",
11 "url": "mxc://example.org/

↪→ JWEIFJgwEIhweiWJE"
12 },
13 "event_id": "$143273582443PhrSn:

↪→ example.org",
14 "origin_server_ts":

↪→ 1432735824653,
15 "room_id": "!jEsUZKDJdhlrceRyVU:

↪→ example.org",
16 "sender": "@example:example.org",
17 "type": "m.room.message",
18 "unsigned": {
19 "age": 1234
20 }
21 }

b) Matrix message of type image - JSON [6]

April 14, 2021 Patrick Nolte 29/43

4.2.5 Common base between Matrix and Wire

Most of the fields that would be good to have in an export are available with Matrix as well as Wire.
If we look at the rooms (Matrix) or conversations (Wire), then they both have most of the fields.
Matrix has some special fields like the topic, pinned messages and tags for the rooms, whereas
Wire supports teams in the commercial area and thus has the teamid, the accessrole (first role after
joining) and an invite link, if available.
The next part would be the user information. There, both support a member_id, an avatar, a
display name, the current state/role (membership) in the conversation and the possibility to rec-
ognize the user creating the export (isSelf). Matrix has an additional field showing the user that
provided the invite to the conversation, whereas Wire has other additional fields. Some of them
like the more general ones, like the username, the email and the phonenumber, but some are more
specific for Wire like the teamid, the trackingid, the userfields and the permissions for the user.
The most important fields for messages are supported by Matrix and Wire. These are the type of
the message, an unique id, the sender and the send_time of the message as well as the content.
The state is better defined in Matrix, because it shows for each user, if the message was read and
when. Wire only has a general field for the complete message to show if the message was sent,
delivered, read, Wire also provides additional fields to support quotes, mentions, expiring
messages and more. Edited messages are supported by both again, but Wire writes the informa-
tion to the message itself, whereas Matrix has a change event, that must be processed to add the
information to the export.
When it comes to the content of the messages, both are pretty similar again, with just some small
changes to the structure. Wire for example, has some additional fields regarding mentions, rich_media
data and open_graph data. There are some content types both support like text, images and loca-
tions. Video, audio and files are also supported by both, but Matrix has an own content type for
them, whereas Wire combines them into the asset type. This also applies to the emote type, that
is supported by Wire in the text type. Matrix has two types that Wire does not have, the first one
is the notice type, that can be used by room administrators to sent server messages, the other one
is the sticker type. Wire on the other hand supports calling, knocking, clearing the conversation,
clientactions, message deletion, editing, and some other Wire specific content types.
To sum it up: The export of Matrix and Wire could be put together into one schema, because they
do not have any conflicts in their information. But to support both it would make sense to remove
some fields of each messenger, that are not really important to create an export and have a lot of the
fields as optional fields that may add information, but are not required. Because the current XML
schema I created to support Wire already has most of the fields included, it would be relatively
easy to add the few fields it is missing to support the Matrix protocol. Some of the fields currently
exported could also be removed, because they are not really necessary to provide a complete ex-
port, but would only be useful to import them back into Wire.

April 14, 2021 Patrick Nolte 30/43

=> : Subfield of the previous parent field
Uppercase type : The type is specified in another table
x : The field is required
(x) : The field is optional
[x] : Used for some file and URL fields if only one of them is required
//comment// : Defines a comment with additional information
(asset) : Parentheses in the type specify it further
M : Short for Matrix
W : Short for Wire

Figure 4.21: Legend for field tables

Name Type Matrix Wire
room_id id x x
remote id id x
name string (x) (x)
creator id USER/id x x
topic string (x)
is_direct/conv_type string (x) x
verified boolean x
avatar AVATAR (x) //maybe user picture//
pinned_events list of ids (x)
tags list of tags ordered (x)
=> tag string x
=> order double (0 to 1) (x)
members list of USERS/their ids (x) (x)
messages list of MESSAGES/their ids (x) (x)
teamid id (x)
access string (x) (x)
accessrole string (x)
link string (x)

Table 4.1: Fields of conversations/rooms

April 14, 2021 Patrick Nolte 31/43

Name Type Matrix Wire
member_id id x x
avatar AVATAR (x) (x)
display_name string (x) x
accent_color int x
membership one of invite/join/knock/leave/ban (x) x //user role//
invited_by string //display_name// (x)
username string (x)
teamid id (x)
email string (x)
phone string (x)
trackingid id (x)
userfields string (x)
permission int int (x)
isSelf boolean (x) (x)

Table 4.2: Fields of users

Name Type Matrix Wire
info (see INFO for image) x
url string x
filepath string x

Table 4.3: Fields of avatars

April 14, 2021 Patrick Nolte 32/43

Name Type Matrix Wire
type string x x
id string x x
sender id x x
send_time timestamp x x
unsigned UNSIGNED_DATA (x)
state sent/delivered/... (x) //list// x //single entry//
=> userid id (x)
=> timestamp ts (x)
local_time timestamp (x)
error (x)
=> userid id x
=> errorcode int x
is_first_message boolean (x)
members id list //mentions// (x)
recipient id (x)
edit_time timestamp (x)
ephemeral (x)
=> length long x
=> timeunit time_unit x
expiry_time date (x)
duration (x)
=> length long x
=> timeunit time_unit x
asset_id id (x)
quote id (x)
=> validity boolean (x)
content list of CONTENT x (x)

Table 4.4: Fields of messages

Name Type Matrix Wire
age int x
redacted_because event (x)
transaction_id string (x)

Table 4.5: Fields of unsigned data

Name Type Matrix Wire
msgtype string x x
body/content string x x
mentions list of ids (x)
asset_id id (x)
width int (x)
height int (x)
rich_media RICHMEDIA (x)
open_graph OPENGRAPH (x)

Table 4.6: Fields of content for all types

April 14, 2021 Patrick Nolte 33/43

Name Type Matrix Wire
kind string x
provider string x
title string x
linkurl string x
artist (x)
=> name string x
=> avatar filename/id (x)
duration long (x)
artwork string (filename/id) (x)
expires timestamp (x)
tracks list of rich_media (x)
streamable boolean (x)
streamurl uri (x)
previewurl uri (x)

Table 4.7: Fields of richmedia

Name Type Matrix Wire
title string x
description string x
tpe string x
permanenturl uri (x)
image uri (x)

Table 4.8: Fields of opengraph

Name Type text emote notice image file audio location
M W M W M W M W M W M W M W

format string (x) (x) (x)
formatted_body string (x) x (x) (x)

info/metadata
INFO/
METADATA

(x) x (x) (x) (x)

url string [x] [x] [x]

file
file (encrypted)/
path

[x] [x] [x]

filename string (x)
expiremillis long (x) (x) (x)
geo_uri string x
quote id (x)

mentions
list (start,
length, id)

(x)

linkpreviews
list of
LINKPREVIEW

(x)

latitude float x
longitude float x
zoom int x
name string x

Table 4.9: Fields of content by type (part 1)

April 14, 2021 Patrick Nolte 34/43

Name Type calling cleared clientaction deleted edited external hidden
M W M W M W M W M W M W M W

data string/id x x x
timestamp long x
clientActionType string x
replacingMessageId id x

text/composite
CONTENT
(text/composite)

[x]

encryption int x
otrKey string x
sha256 string x

Table 4.10: Fields of content by type (part 2)

Name Type video sticker asset knock lastread
M W M W M W M W M W

info/metadata
INFO/
METADATA

(x) x x

url string [x] x

file
file (encrypted)/
path

[x] (x)

filename string x
expiremillis long (x)
timestamp long x
hotknock boolean x
expiremillis timestamp x

Table 4.11: Fields of content by type (part 3)

Name Type reaction confirmation availability composite buttonaction datatransfer
M W M W M W M W M W M W

emoji string x
messageid id x
type string x x
messageids list of ids x

text
CONTENT
(text)

(x)

button (id and text) (x)
buttonid string x
refmessageid string x
data string x

Table 4.12: Fields of content by type (part 4)

April 14, 2021 Patrick Nolte 35/43

Name Type image file audio location video sticker asset
M W M W M W M W M W M W M W

h int (x) x (x) (x) (x)
w int (x) x (x) (x) (x)
mimetype string (x) x (x) (x) (x) (x) x
size int (x) x (x) (x) (x) (x) x
duration int (x) (x) (x)
thumbnail_url string [x] [x] [x] [x] [x]
thumbnail_file file (encrypted) [x] [x] [x] [x] [x]
thumbnail_info THUMBNAIL_INFO (x) (x) (x) (x) (x)
tag string x (x)
normalized_loudness int list (x)
type string x
original_width int x
original_height int x
mac string x
macKey string x
otrKey string x
sha256 string x

Table 4.13: Fields of info/metadata

Name Type Matrix Wire
w int (x)
h int (x)
mimetype string (x)
size int (x)

Table 4.14: Fields of thumbnail info

Name Type Matrix Wire
permanenturl string x
url string x
title string x
summary string x
urloffset int x
image CONTENT (asset) (x)
tweet (x)
=> author string x
=> username string x

Table 4.15: Fields of link previews

April 14, 2021 Patrick Nolte 36/43

4.3 HTML-Viewer

The HTML-Viewer consists of one HTML document. This documents loads the needed styles.css
from the websiteData folder as well as the javascript files ChatExportAccess.js, ChatExportCon-
verter.js and ExportObjects.js used for processing the chats.xml document.
The HTML-Viewer.html file provides the basic structure of the webpage. We have one container
at the left where the user list and the conversation list are located. Then we have the container at
the right, where the selected user information, conversation information or the conversation itself
can be shown. Except for the structure and some smaller constant elements like the dark/light
mode button at the top left and the buttons in the left container at the bottom, everything is loaded
with JavaScript later. Because of security reasons, JavaScript is not allowed to read data from any
local files at the current location, but only data from URLs. Thats why the chats.xml document
must be opened by the user. The media files on the other hand can be included with HTML src
attributes with local paths, because the browser loads files specified in there. This is because there
is no way to access the loaded data with JavaScript and the website provider is thus not able to
process or sent the files anywhere and this vulnerability is avoided.
When the chats.xml was selected, the ChatExportAccess starts processing the file. The XML is read
accordingly to the export chat XML schema and the correct corresponding object defined in the
ExportObjects file is created. This process can be seen at the example of the user object (figure 4.23)
in figure 4.22. I chose to create the classes to represent the XML data to keep a structured and fast
way to access the exported data and to use these classes at other places like in the ChatExportCon-
verter. When the objects are created, they can be accessed at the ChatExportAccess. For example
in the HTML-Viewer.html the users are iterated, converted to HTML and then added to the user
list as shown in figure 4.24. The conversion of the user object to HTML is done by the ChatEx-
portConverter. This class is responsible for converting objects to HTML depending on the position
they should be placed at. For example, there is the createUserItem function, visible in figure 4.25,
used to create the user item in the user list on the left side. This is also the reason, why I parsed the
XML elements into objects. The data is used at multiple places and this way a structured and clear
access is possible.

April 14, 2021 Patrick Nolte 37/43

22 loadUsers(){
23 let userselem=ChatExportAccess.getByXPath("/chatexport/users").iterateNext();
24 if(userselem!==null){
25 for (let userelem of userselem.childNodes) {
26 if(userelem.nodeType===1){
27 /** @type {User} */
28 let user=new User(
29 this.getTextContent(userelem,"userid"),
30 this.getTextContent(userelem,"name"),
31 parseInt(this.getTextContent(userelem,"accent_color")));
32 this.doWithTextContentIfExists(userelem,"username",(s)=>user.username=s)

↪→ ;
33 this.doWithTextContentIfExists(userelem,"teamid",(s)=>user.teamId=s);
34 this.doWithTextContentIfExists(userelem,"email",(s)=>user.email=s);
35 this.doWithTextContentIfExists(userelem,"phone",(s)=>user.phone=s);
36 this.doWithTextContentIfExists(userelem,"trackingid",(s)=>user.

↪→ trackingId=s);
37 this.doWithTextContentIfExists(userelem,"userfields",(s)=>user.

↪→ userFields=s);
38 this.doWithTextContentIfExists(userelem,"permission",(s)=>user.

↪→ permission=s);
39 this.doWithElemIfExists(userelem,"picture",(p)=>user.picture=this.

↪→ parseProfilePicture(p));
40 this.doWithAttributeIfExists(userelem,"isSelf", (a)=>{if(a==="true"){

↪→ user.isSelf=true}});
41 this.users.set(user.userId,user);
42 }
43 }
44 }
45 }

Figure 4.22: ChatExportAccess - line 22 to 45

April 14, 2021 Patrick Nolte 38/43

1 class User {
2 /** @type {String} */ _userId;
3 /** @type {String} */ _name;
4 /** @type {Number} */ _accent_color;
5 /** @type {Boolean} */ _isSelf;
6 /** @type {String} */ _username;
7 /** @type {String} */ _teamId;
8 /** @type {String} */ _email;
9 /** @type {String} */ _phone;

10 /** @type {String} */ _trackingId;
11 /** @type {ProfilePicture} */ _picture;
12 /** @type {String} */ _userFields;
13 /** @type {String} */ _permission;
14 /**
15 * @param {String} userId
16 * @param {String} name
17 * @param {Number} accent_color
18 */
19 constructor(userId, name, accent_color) {
20 this._userId = userId;
21 this._name = name;
22 this._accent_color = accent_color;
23 this._isSelf=false;
24 this._username=null;
25 this._teamId=null;
26 this._email=null;
27 this._phone=null;
28 this._trackingId=null;
29 this._picture=null;
30 this._userFields=null;
31 this._permission=null;
32 }
33 /** @param {String} value */ set username(value) { this._username = "@"+value; }
34 /** @param {String} value */ set teamId(value) { this._teamId = value; }
35 /** @param {String} value */ set email(value) { this._email = value; }
36 /** @param {String} value */ set phone(value) { this._phone = value; }
37 /** @param {String} value */ set trackingId(value) { this._trackingId = value; }
38 /** @param {ProfilePicture} value */ set picture(value) { this._picture = value; }
39 /** @param {String} value */ set userFields(value) { this._userFields = value; }
40 /** @param {String} value */ set permission(value) { this._permission = value; }
41 /** @param {Boolean} value */ set isSelf(value) { this._isSelf = value; }
42 /** @returns {Boolean} */ get isSelf() { return this._isSelf;}
43 /** @returns {String} */ get userId() { return this._userId; }
44 /** @returns {String} */ get name() { return this._name; }
45 /** @returns {Number} */ get accent_color() { return this._accent_color; }
46 /** @returns {String} */ get username() { return this._username; }
47 /** @returns {String} */ get teamId() { return this._teamId; }
48 /** @returns {String} */ get email() { return this._email; }
49 /** @returns {String} */ get phone() { return this._phone; }
50 /** @returns {String} */ get trackingId() { return this._trackingId; }
51 /** @returns {ProfilePicture} */ get picture() { return this._picture; }
52 /** @returns {String} */ get userFields() { return this._userFields; }
53 /** @returns {String} */ get permission() { return this._permission; }

Figure 4.23: ExportObjects - line 1 to 53

April 14, 2021 Patrick Nolte 39/43

39 for(let user of ChatExportAccess.cea.getUsers()){
40 if(user.isSelf){
41 document.getElementById("left_header_username").innerText=user.

↪→ name;
42 document.body.setAttribute(’data-accent’, ""+user.accent_color);
43 }
44 contactList.innerHTML+=chatExportConverter.createUserItem(user);
45 }

Figure 4.24: HTML-Viewer - line 39 to 45

17 /**
18 * @param {User} user
19 * @returns {string} the html code
20 */
21 createUserItem(user){
22 return (’\
23 <div class="left_item" data-id="’+user.userId+’" onclick="showUserDetails(\’’+

↪→ user.userId+’\’, this);">’+
24 this.getProfilePicture(user)+
25 ’<div class="user_item_info">\
26 <div class="item_name">’+user.name+’</div>’+
27 (user.username==null?"":
28 ’<div class="user_item_username">’+user.username+’</div>’)
29 +’</div>\
30 </div>’);
31 }

Figure 4.25: ChatExportConverter - line 17 to 31

April 14, 2021 Patrick Nolte 40/43

5 Conclusion and future work

In this Thesis the benefits of an export were discussed and clearly shown with the development of
an implementation for the messenger service Wire. Firstly, we took a look at the current state in
multiple messenger services. Then we took a closer look at their implementation and the general
problems that may come with an export and compared it with backups. Thirdly, I presented the
concept of my implementation and the general structure of the implementation with the reasons
for my design decisions. Lastly I provided a deeper look into the details of the implementation.

The implementation is fully functional, but it has the potential to be further improved and en-
hanced. This includes the possibility to export multiple conversations at once and the possibility
to encrypt the exported ZIP file.

April 14, 2021 Patrick Nolte 41/43

Bibliography

[1] Yoran Brondsema. The guide to extracting statistics from your Signal conversations. Sept. 12, 2020.
URL: https://www.yoranbrondsema.com/post/the-guide-to-extracting-
statistics-from-your-signal-conversations/ (visited on 03/02/2021).

[2] Lukas Forst. Wire backup decryption. Aug. 20, 2020. URL: https://github.com/LukasForst/
wire-backup-export (visited on 03/02/2021).

[3] How to download your Facebook Messenger Chat history. URL: https://www.zapptales.
com/en/download-facebook-messenger-chat-history-how-to/ (visited on
03/16/2021).

[4] How to save your chat history. URL: https://faq.whatsapp.com/android/chats/how-
to-save-your-chat-history/?lang=en (visited on 03/02/2021).

[5] Allen Lee. Decrypt & Read Chats from WhatsApp Backup File on Android. Oct. 1, 2020. URL:
https://www.backuptrans.com/tutorial/decrypt-read-chats-from-whatsapp-

backup-file-on-android.html (visited on 03/02/2021).

[6] Matrix Client-Server API - Instant Messaging. URL: https://matrix.org/docs/spec/
client_server/r0.6.1#id42 (visited on 03/19/2021).

[7] Andreas Mausch. WhatsApp Viewer. URL: https://github.com/andreas-mausch/
whatsapp-viewer/releases/tag/v1.13 (visited on 03/16/2021).

[8] Patrick Nolte. GitHub Fork von wire-android. Feb. 26, 2021. URL: https://github.com/
kanashius/wire-android/commit/b55e9b18de4d88cc5c2a0d4d33bdf294ca14b8c6

(visited on 03/04/2021).

[9] Santiago Obrutsky. “Cloud Storage: Advantages, Disadvantages and Enterprise Solutions
for Business”. In: July 2016, p. 3.

[10] Alexander Rudyk. Matrix Recorder. URL: https://gitlab.com/argit/matrix-recorder/
(visited on 03/16/2021).

[11] Signal Support - Backup and Restore Messages. URL: https://support.signal.org/hc/
en-us/articles/360007059752-Backup-and-Restore-Messages#android_

restore (visited on 03/02/2021).

[12] Skype Help - How do I export my Skype files and chat history? URL: https://support.skype.
com/en/faq/FA34894/how-do-i-export-my-skype-files-and-chat-history

(visited on 03/16/2021).

April 14, 2021 Patrick Nolte 42/43

https://www.yoranbrondsema.com/post/the-guide-to-extracting-statistics-from-your-signal-conversations/
https://www.yoranbrondsema.com/post/the-guide-to-extracting-statistics-from-your-signal-conversations/
https://github.com/LukasForst/wire-backup-export
https://github.com/LukasForst/wire-backup-export
https://www.zapptales.com/en/download-facebook-messenger-chat-history-how-to/
https://www.zapptales.com/en/download-facebook-messenger-chat-history-how-to/
https://faq.whatsapp.com/android/chats/how-to-save-your-chat-history/?lang=en
https://faq.whatsapp.com/android/chats/how-to-save-your-chat-history/?lang=en
https://www.backuptrans.com/tutorial/decrypt-read-chats-from-whatsapp-backup-file-on-android.html
https://www.backuptrans.com/tutorial/decrypt-read-chats-from-whatsapp-backup-file-on-android.html
https://matrix.org/docs/spec/client_server/r0.6.1#id42
https://matrix.org/docs/spec/client_server/r0.6.1#id42
https://github.com/andreas-mausch/whatsapp-viewer/releases/tag/v1.13
https://github.com/andreas-mausch/whatsapp-viewer/releases/tag/v1.13
https://github.com/kanashius/wire-android/commit/b55e9b18de4d88cc5c2a0d4d33bdf294ca14b8c6
https://github.com/kanashius/wire-android/commit/b55e9b18de4d88cc5c2a0d4d33bdf294ca14b8c6
https://gitlab.com/argit/matrix-recorder/
https://support.signal.org/hc/en-us/articles/360007059752-Backup-and-Restore-Messages#android_restore
https://support.signal.org/hc/en-us/articles/360007059752-Backup-and-Restore-Messages#android_restore
https://support.signal.org/hc/en-us/articles/360007059752-Backup-and-Restore-Messages#android_restore
https://support.skype.com/en/faq/FA34894/how-do-i-export-my-skype-files-and-chat-history
https://support.skype.com/en/faq/FA34894/how-do-i-export-my-skype-files-and-chat-history

[13] Alex Smith. signal-back. URL: https://github.com/xeals/signal-back (visited on
03/16/2021).

[14] Tenorshare - 4 Ways to Export Chat History LINE on iPhone and Android. URL: https://www.
tenorshare.com/iphone-tips/export-chat-history-line.html (visited on
03/16/2021).

[15] wondershare. Wondershare MobileTrans - WhatsApp Transfer. URL: https://mobiletrans.
wondershare.com/whatsapp-transfer-backup-restore.html (visited on 03/16/2021).

April 14, 2021 Patrick Nolte 43/43

https://github.com/xeals/signal-back
https://www.tenorshare.com/iphone-tips/export-chat-history-line.html
https://www.tenorshare.com/iphone-tips/export-chat-history-line.html
https://mobiletrans.wondershare.com/whatsapp-transfer-backup-restore.html
https://mobiletrans.wondershare.com/whatsapp-transfer-backup-restore.html

	1 Motivation
	2 Comparison with other systems
	2.1 Current state of the export feature
	2.1.1 Elements
	2.1.2 Facebook Messenger
	2.1.3 Line
	2.1.4 Signal
	2.1.5 Skype
	2.1.6 Telegram
	2.1.7 WhatsApp
	2.1.8 Wire

	2.2 Advantages
	2.3 (Security-) problems
	2.4 Comparison of exports and (cloud) backups

	3 Concept
	3.1 Export-feature integration into the existing application
	3.1.1 Different options
	3.1.2 Description of the used option
	3.1.3 Export functionality

	3.2 Structure of the export
	3.3 Module relationships
	3.4 HTML-Viewer

	4 Implementation details
	4.1 Android-client changes
	4.2 Android-client additions
	4.2.1 Layout and graphic interface
	4.2.2 Export functionality
	4.2.3 Export format definition
	4.2.4 Comparison of the export format and other existing solutions
	4.2.5 Common base between Matrix and Wire

	4.3 HTML-Viewer

	5 Conclusion and future work

