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Mobile device authentication has been a highly active research topic for over 10 years, with a vast range of
methods proposed and analyzed. In related areas, such as secure channel protocols, remote authentication, or
desktop user authentication, strong, systematic, and increasingly formal threat models have been established
and are used to qualitatively compare different methods. However, the analysis of mobile device authentica-
tion is often based on weak adversary models, suggesting overly optimistic results on their respective security.
In this article, we introduce a new classification of adversaries to better analyze and compare mobile device
authentication methods. We apply this classification to a systematic literature survey. The survey shows that
security is still an afterthought and that most proposed protocols lack a comprehensive security analysis. The
proposed classification of adversaries provides a strong and practical adversary model that offers a compara-
ble and transparent classification of security properties in mobile device authentication.
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1 INTRODUCTION

Mobile devices carry an increasing variety of personal data. For instance, recent proposals to in-
clude electronic identities into smartphones to replace classical photo identification such as dri-
ver’s licenses or passports [124] as well as applications and sensors to more accurately capture the
wearer’s health status [119], audible interaction,1, 2, 3 and even emotional state [110, 168] highlight
the breath of sensitive data.

1https://www.apple.com/ios/siri/.
2https://developer.amazon.com/alexa.
3https://assistant.google.com/.
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Mobile devices are therefore becoming a critical component in terms of security and privacy
not only in the digital domain but also for interactions in the physical world, with users unlocking
their smartphones for short (10–250 s) interactions about 50 times per day on average [80, 121].

In this article, we address user-to-device (U2D) authentication, i.e., users authenticating them-
selves before being able to use certain functionality of a device [211, 267], as well as two other forms
of authentication, device-to-device (D2D) [50, 94, 183], and device-to-user (D2U) [89, 181]. For
an excellent discussion and history of adversary models also in other domains, please refer to
Reference [78].

U2D authentication can be performed by one or a combination of four factors4 [84, 175]:

(1) something a user knows (passwords, PIN codes, graphical patterns, etc.)
(2) something a user possesses (hardware tokens, keys, etc.)
(3) something a user is (static biometric, e.g., fingerprint, face, iris, hand geometry, vein patterns)
(4) something a user does (dynamic biometric, e.g., gait, handwriting, speech)

Many authentication methods have been proposed for mobile devices, however, a canonical U2D
authentication did not yet converge. Instead, approaches have their respective advantages and dis-
advantages [66, 120]. Second factor authentication with something a user possesses often demands
D2D authentication through wireless communication. Secure D2D authentication is thus a condi-
tion to using wireless devices as hardware token for U2D authentication. In this article, we do the
following:

• Survey security analyses in the state of the art and derive their assumptions (which are often
not explicitly stated) about attackers of such authentication methods. These so-called adver-
sary models are a sub-set of threat models commonly applied to cryptographic protocols.
• Show that existing security evaluations of these methods often lack, with many proposals

using an insufficient number of volunteers or missing independent analysis by others.
• Propose a qualitative classification of adversaries to mobile device authentication that en-

ables a more systematic adversary modeling, and use this scheme in our review.

We design our classification scheme by studying the requirements for useful adversary models
at a meta level, with the aim of applying specific instances of these model classes to individual au-
thentication methods. Our intention is for this scheme to be used for future research, giving authen-
tication methods a concrete security level to aim for and to test against. Finally, this article is also
a call for action to improve the state of the art in security testing of mobile device authentication.

2 AUTHENTICATION ON MOBILE DEVICES

General threats for user authentication, which include brute-force, password guessing, installing
malware, and hardware-level exploits to bypass authentication, typically also apply to mobile de-
vices. Mobile device security, however, is inferior to security on desktop computers [51, 214]. In
mobile device scenarios, additional security threats exist [23] because of usability issues or limita-
tions due to smaller size (e.g., watches), and in some cases even due to computational and storage
capabilities, for instance, on implanted, medical or wearable devices (e.g., pacemakers, earables,
hearing aids) [35, 125, 220].

2.1 Adversary Models for User Authentication

In a recent meta survey by Ferrag et al. [12], impactful surveys on mobile device authentication
are analysed [7, 82, 105, 116, 147, 159, 188, 211, 214, 252, 267]. In total, these articles describe 26

4For D2D and D2U authentication, various factors and physical channels have been proposed, but no systematic classifica-

tion has so far been accepted as common knowledge.
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attacks, 5 threat models, and 4 authentication categories. By complementing this work on attacks
and countermeasures, we target adversary models.

To describe the security properties of a particular protocol, formal models are employed in the lit-
erature. The most famous of these adversary models for communication channels is the Dolev–Yao
model.5 It assumes that communication partners trust their encrypted messages to an adversary
for delivery [79]. The adversary may use any information obtained from previous messages in at-
tempts to decrypt the information and is, in particular, not constrained by other assumptions. The
Dolev–Yao model is indistinguishable under chosen plaintext attacks, respectively chosen cipher-
text attacks (IND-CPA/IND-CCA) for formal cryptographic protocol verification [24].

The existence of such accepted standards is crucial for the field, since it (1) helps to build trust in
security mechanisms, (2) generates a common ground on which approaches are comparable, and
(3) creates incentives to build stronger security schemes. It is also a necessary requirement for (4)
the generation of business models grounded on secure technology.

In mobile device authentication, however, the literature has yet to converge on a common ad-
versary model. While the Dolev–Yao model has been applied also for mobile device authentica-
tion [247, 275], this approach has shortcomings as it does not reflect the specific nature of mobile
device authentication. For instance, authentication on mobile devices is performed in public spaces,
potentially under video surveillance. Furthermore, the user interface is limited, and thus prevents
some strong authentication mechanisms.

The landscape of mobile device authentication methods is fragmented and methods are
hardly comparable to each other. This creates uncertainty on the security properties and on the
appropriateness of any mobile device authentication method. Challenges to selecting appropriate
security margins and cryptographic parameters are that (1) real-world applications require
different security levels [153] and that (2) the resources (e.g., attention, constrained or absent
interfaces) in mobile settings place limitations on the authentication method [44]. Adversaries
differ, for instance, in their capability (ability, training, knowledge), e.g., typical user, developers, or
manufacturers, and in the effort (storage, computational, monetary) they invest, e.g., individuals,
organizations, or nation states.

Table 1 summarizes recently proposed security models sorted by their year of publication. In par-
ticular, the discussion on the best suited modality to condition and build the threat model on, has
not yet converged. For instance, Ong et al. and Boyd et al. define security levels based on key size,
block size, and type of data [38, 207], while Hager et al. and Burmester et al. consider performance,
energy and resource consumption to be most relevant [44, 113]. This relates to Damgard et al. who
analyse the tradeoff between complexity and security [58]. Likewise, also Ng et al. and Paise et al.
see computational complexity as the relevant measure to distinguish adversarial classes [202, 209].
Instead, Sun et al. suggest the quality of protection to measure the level of security [259], while
Ksiezopolski et al. distinguish between types of applications to define the adversary model [153].
An adversary model for mobile settings that is based on a Dolev and Yao–type adversary model has
been proposed in Reference [76]. A different approach is taken by Ahmed et al. [4], who identify
a least-strong attacker by iteratively testing against decreasing security strength.

A number of further adversary models have been proposed for specialized cases within the
larger frame of mobile device settings. Specifically, this regards the adversary model by Gligor,
which is specifically targeted toward mobile ad hoc networks [106] as well as a collection of ad-
versary models toward forensic investigations on mobile phones, which were proposed by Azfar
et al. [18] and Do et al. [77]. Notably, Do et al. defined their adversary via her goals, assumptions
and limitations. This framework was later applied by them also to an app-based adversary model,
where the classes were slightly modified to replace limitations with capabilities [78].

5Other types of formal definitions for authentication can be found, for instance, in static analysis or type theory [1, 34].

ACM Computing Surveys, Vol. 54, No. 9, Article 198. Publication date: October 2021.
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Table 1. Previously Proposed Adversary Models

Paper Brief summary of the proposed contribution Year

Ong et al. [207] Security levels based on key size, block size, and type of data 2003

Hager [113] Security levels conditioned on performance, energy and resource consumption 2004

Ksiezopolski et al. [153] Different applications require different security levels 2007

Gligor [106] Adversary model specifically focused on mobile ad hoc networks 2007

Sun et al. [259] Evaluation model based on quality of protection 2008

Damgård et al. [58] Tradeoff between complexity and security in symmetric cryptography 2008

Ng et al. and Paise et al. [202, 209] Security model with adversarial classes based on computational complexity 2008

Burmester et al. [44] Mobile device security suffers from limited resources 2009

Ahmed et al. [4] Model conditioned on iterative testing of security strength 2011

Boyd et al. [38] Defines security levels conditioned on key size, block size and type of data 2013

Do et al. [77] For forensic investigation, using adversary goals, assumptions and limitations 2015

Song et al. [251] Metric to measure the strength of pattern lock systems 2015

Do et al. [76] Dolev and Yao type of adversary model for mobile covert data exfiltration 2015

Azfar et al. [18] Adapt an adversary model for forensic investigations on mobile phones 2016

Miettinen et al. [191] Security levels conditioned on the entropy of the context source 2018

Do et al. [78] Adversary classified by assumptions, goals and capabilities 2019

Ferrag et al. [84] Survey on threat models for mobile devices 2020

Hosseinzadeh et al. [126] Adversary model for RFID; grounded on Gong-Needham-Yahalom logic 2020

Specifically, for pattern lock systems on smartphones, Song at al. conditioned their model on
characteristics of the pattern-lock design [251], while Hosseinzadeh et al. focus on strictly resource
limited RFID devices and base their scheme on Gong-Needham-Yahalom logic [126]. In particular,
similar to Reference [4], their model also includes attackers of various strength [202, 209].

Finally, in recent years, context-based device pairing schemes have been proposed that rely on
shared access to common contextual stimuli for device-to-device authentication. For this setting,
Miettinen et al. [191] have proposed an adversary model that is conditioned on the entropy of the
context source.

A survey on threat models for mobile devices has also been presented by Ferrag et al. [84]. In
summary, although recent publications on device authentication bring forward a discussion on
potential security threats or attacker studies [47, 136, 151], a single universally accepted model is
lacking.

Due to the diversity of mobile devices and applications, a single common adversary model might
not be feasible. To be useful in general practical application, a meta model, exploiting a set of mod-
els that account for different usability requirements is needed to qualitatively assess the security
level. Therefore, in Section 4 we introduce a classification scheme for adversary models to support
such qualitative comparison.

2.2 Limitations of Traditional Authentication Schemes

Electronic devices are traditionally protected via alphanumerical passwords or PIN codes [99].
Due to restrictions in the user interfaces of mobile devices, passwords generate a tradeoff between
usability and security. A frequently employed alternative for authentication are graphical patterns.
However, such patterns are vulnerable to shoulder surfing or smudge attacks [15, 28]. In shoulder
surfing, the adversary either directly or through video [300] observes the authentication sequence
and reproduces it. In smudge attacks, the adversary visualizes smears on the touch interface
left behind as a consequence of user authentication. The frequent changing of authentication
challenges to counter these attacks again compromises usability [73].

ACM Computing Surveys, Vol. 54, No. 9, Article 198. Publication date: October 2021.
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Fig. 1. Visualisation of generic attack vectors in biometric systems (based on Reference [219]). The right side
depicts the components of a bU2D authentication system and their interplay while on the left side, various
attack vectors on the respective components are exemplified.

Alternatively, biometrics, recognising individuals from behavior and biological characteristics,6

gained attention for authentication. This is attributed to biometric sensors included in smart-
phones, such as fingerprint [139] (pore and ridge structure [256]), voice [48] (mel frequency
cepstral coding, today deep neural networks [144]), gait (heel-strike ratio [237] or cycle match-
ing [200]), face (features learned in deep neural networks [134]), keystroke dynamics (key-press
latencies [195]), or iris [290] (image intensity maps from Hough-transformed Daugman rubber
sheet models [281]).

Since biometrics inherit noise, fuzzy pairing is used to account for dissimilarities in the key se-
quences [140]. Sequences are mapped onto the key-space of an error correcting code (for instance,
BCH or Reed Salomon codes), where t bits can be corrected. This process also boosts the success
probability of an adversary. Assuming |c | bit long sequences of which t bits are corrected to result
in |c | − t bit long keys, the success probability of a single randomly drawn sequence is then only

t∑
i=0

(
|c |
i

)
/2 |c | =

∑
t

i=0

( |c |!
( |c |−i )!·i !

)
2 |c |

. (1)

However, biometrics cannot be kept secret and they cannot be revoked [85, 235, 236]. Conse-
quently, they cannot withstand strong attackers under the assumption of targeted spoofing.

Figure 1 shows attack vectors for biometric systems [219]: (1) biometric spoofing [158, 193, 200,
244, 254, 298], (2) replay attacks [112, 230, 268], tampering with (3) feature extraction [167], (4)
biometric feature representation, (5) stored templates [102, 255], (6) modifying template data [112,
230], (7) corrupting the matcher, and (8) overriding the final decision. Suggested countermeasures
include liveliness detection, supervised enrollment, and securing all stored biometric data [255].

2.3 Adversary Models for Device-to-device Authentication

Device-to-device authentication is used to pair devices under mutual trust. The information rele-
vant for the pairing can be present at the devices, provided by human ineraction, or acquired from
the device’s software or hardware sensors. Also, for D2D authentication, capabilities and effort of
the adversary are of key relevance for adversary models.

Figure 2 summarizes attack vectors for D2D authentication. In particular, devices acquire data
(stored, human interaction, or sensed), quantize it to bit strings after pre-processing, apply error

6International Organization for Standardization. ISO/IEC 2382-37:2012, Information technology – Vocabulary – Part 37:

Biometrics, 2012.

ACM Computing Surveys, Vol. 54, No. 9, Article 198. Publication date: October 2021.
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Fig. 2. Visualisation of generic attack vectors in D2D authentication systems (based on Reference [40]). The
right side depicts the components of a D2D authentication system and their interplay while on the left side,
various attack vectors on the respective components are exemplified.

correction, and agree on a key. Attack vectors are (1) sensors (forcing the device owner to behave
in certain ways), (2) bypassing acquisition through replay, and (3) biased feature processing. Some
protocols employ communication before the actual key agreement [109, 237, 298] that might
(4) potentially leak information; after error correction, which might be (5) corrupted, the key
agreement is executed between both devices, thus enabling potential (6) Man-in-the-Middle

(MitM) (also referred to as Person-in-the-Middle or on-path attacks), (7) exploitation of weak or
false assumption-based key agreement, as well as (8) impersonation attacks.

To prevent exhausting the key space, adversaries should be forced into a one-shot model [280].
For instance, Password Authenticated Key Exchange (PAKE), implemented, e.g., by Blue-
tooth 4.2 Secure Simple Pairing (SSP),7 IPSec, and ZRTP [143, 262, 303], ensures that the chances
of a successful attack depend solely on interactions in the protocol and not on offline computing
power [183, 233]. They thus provide sufficient security margin even with short keysK . Most PAKEs
allow for multiple parallel protocol runs [280] and threat models that allow implicit error correc-
tion choose a relatively high K = 24 to still have a negligible attacker success probability even if
only 16 out of 24 bits are compared correctly [81]. Similar margins have been chosen in Bluetooth
for PIN comparison with K = 20 and ZRTP for word comparison with K = 20. Modern PAKEs also
provide resilience to dictionary, replay, unknown key-share, and Denning-Sacco attacks [274], as
well as toward mutual authentication, key control, known-key security, and forward secrecy.

Implicit pairing derives secure secrets from similar patterns, e.g., acceleration [90, 109, 118, 185,
253], audio [238], magnetometer [138], or RF features [179], from devices co-present in the same
context.

2.4 Device-to-user Authentication

An adversary able to deceive a user into wrongly trusting the identity of a (malicious) device, can
harvest user credentials (biometric or knowledge-based) on a subsequent attempt to log in to the
device.8 Device-to-user authentication attempts to address this issue by establishing a means of
authenticating the device to the user. One approach is to visually reveal secret information to estab-
lish trust, e.g., by displaying variations of secret images to assure authenticity [225, 226]. However,

7Because each Bluetooth pairing uses a new ephemeral passkey, SSP does not provide passkey secrecy [212, 232, 262].
8This is similar to the well-known credential phishing problem for websites with users mistaking malicious login forms

for genuine ones.

ACM Computing Surveys, Vol. 54, No. 9, Article 198. Publication date: October 2021.
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such systems are prone to shoulder surfing. Device-to-User authentication is intended to be used
frequently and must therefore mitigate usability drawbacks. Although mutual authentication is
well established in D2D authentication (e.g., IPsec [60]), it is rarely used for authentication involv-
ing humans. A reason for this is that device-to-user authentication is bandwidth limited due to the
limited attention span and cognitive resources for the recognition of patterns by the user [181].
Initial approaches with vibration patterns have been analyzed [89] but seem impractical.

3 ATTACKS AND MODALITIES

For all authentication settings (U2D, D2D, D2U) we distinguish various attack types. An authenti-
cation system shall at least prevent accidental login from non-authorized users: evaluation against
blind guesses (knowledge-based authentication) or samples (biometric) [64, 83, 96, 108].

Any targeted attack will be more powerful [240], for instance, biometric spoofing to exploit
weaknesses of specific biometric modalities [21, 276], such as using a picture of a target person in
an attempt to spoof face recognition.

An informed adversary may also attempt to attack the software implementation [217], or to
exploit security breaches in the operating system to leak confidential information about the au-
thentication challenge [164], for instance, obtaining extraordinary privileges to install a keylogger.

In some cases, historical or other publicly available data can be used to elevate chances of a
successful attack. For instance, Reference [20] exploits population statistics to launch an attack
on a handwriting biometrics system, while Reference [239] leverages a typing-database to attack
keystroke authentication.

Adversaries can also steal authentication samples to, e.g., replay them [217], to train adversaries
to forge patterns [200, 268], or to distort the victim’s template and expose it to further attacks [288].

The victim sometimes enables attacks through careless actions that lower the effective security
(disabling authentication [96], inadvertently providing access to credentials [19]). Mobile systems
can counter this by, e.g., careful choice of images [11] or geometric transformations [234].

Another threat is automated attacks against mobile authentication by robotic systems [240].
Finally, side channels are a common threat to mobile systems, such as smudge [15] and shoulder

surfing attacks [95, 115]. Others are the use of on-device accelerometers to recover a PIN [16] or in-
fering credentials from channel state information (CSI)9 [165]. Countermeasures include input
methods that integrate haptic and audio feedback [28], or applying geometric image transforma-
tion [234]. Another countermeasure is to lower the number of authentication challenges presented
by introducing a limited access safe-mode to access non-critical functions without authentication,
while falling back to authentication for other functions [45].

4 CLASSIFYING ADVERSARY MODELS IN MOBILE DEVICE AUTHENTICATION

Our classification of adversary models in mobile device authentication is related to the ISO/IEC
62443 security levels that have been specified in ISA99 [131]10:

SL0 “No special requirement or protection required”
SL1 “Protection against unintentional or accidental misuse”

9Changes in electromagnetic signals at a radio receiver caused by movement of a user or object reflecting the signals are

visible in the CSI.
10Only a summary document of this standard is available online at the time of this writing, in the form of public slides by

Pierre Cobes; Available online at http://isa99.isa.org/Public/Meetings/Committee/201205-Gaithersburg/ISA-99-Security_

Levels_Proposal.pdf. In this article, we use the slightly more detailed wording from https://en.wikipedia.org/wiki/IEC_

62443.

ACM Computing Surveys, Vol. 54, No. 9, Article 198. Publication date: October 2021.

http://isa99.isa.org/Public/Meetings/Committee/201205-Gaithersburg/ISA-99-Security_Levels_Proposal.pdf
https://en.wikipedia.org/wiki/IEC_62443


198:8 R. Mayrhofer and S. Sigg

Fig. 3. Adversaries differ with respect to their capabilities and the effort they are prepared to invest.

SL2 “Protection against intentional misuse by simple means with few resources, general skills
and low motivation”

SL3 “Protection against intentional misuse by sophisticated means with moderate resources,
(IACS-specific) knowledge and moderate motivation”

SL4 “Protection against intentional misuse using sophisticated means with extensive re-
sources, (IACS-specific) knowledge and high motivation”

We formally classify adversaries in mobile device authentication along the dimensions “capabil-
ities” and “effort” (cf. Figure 3).

In particular, capabilities in terms of sophistication of specific attacks on mobile device authenti-
cation defines an upper bound on the capability of an adversary and which information and secrets
she has access to. This is roughly comparable to the definition of oracles in cryptographic protocol
verification.

The effort in terms of time, computation, (volatile or non-volatile) memory, and other resources
is the upper bound on the amount of energy an adversary is prepared or capable to spend. This
limits the number of trials to attack an authentication method (e.g., the number of guesses in a
brute-force attack).

Note that effort and capabilities define qualitative (ordinal) aspects in mobile device authen-
tication that are not absolute but vary in their severity with the context in which mobile device
authentication is performed. Classifying attacks along these dimensions allows systematic
comparison of authentication methods with respect to adversary models. Capabilities and effort
are the essential characteristics for adversary classification, which are found prominently in many
adversary models in the literature, such as References [25, 78, 208]. They also relate loosely to the
terms “skills” and “resources” from the IEC 62443 standard. These two categories are essential
and sufficient to describe an adversary model in mobile device authentication. Separating
those two dimensions indeed supports a formal classification of adversary models. Practical
experience shows an increasing number of attacks with low sophistication (capabilities), but high
computational resources (effort), such as cloud-support or networks of compromised machines. A
preliminary version of our distinction between adversary classes has appeared in Reference [200].

Using the attack modeling abstractions of “collusion” and “oracles” that is also used to argue
on the security of cryptographic protocols, we can compare these two categories to the security
levels defined in IEC 62443:

11Within the scope of this article, we do not distinguish between an original manufacturer of a system, the current owner,

and a technical operator, but assume the superset of all their capabilities. In terms of cryptographic protocol analysis, this

class is most similar to a collusion between all parties besides the actual target system of an attack.
12We explicitly do not distinguish between original developers and outsiders, as the internal structure can typically be

reversed engineered.

ACM Computing Surveys, Vol. 54, No. 9, Article 198. Publication date: October 2021.
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Fig. 4. Summary of adversary classes; The table may be used during the classification and to help for easy
identification of adversary classes. Some combinations of capability and effort leave leave freedom to the
practitioner with respect to the choice of the most appropriate class and should be decided based on the
severity of the attack.

• ≤ C1 (no oracle access) =⇒ ≤ SL2 (“general skills”)
• ≤ C2 (access to an oracle with source code and all other implementation details, but not to

private keys of devices protected with the relevant authentication method) =⇒ ≤ SL3
(“specific knowledge”)
• ≤ C3 (access to an oracle with all long-term keys (explicitly including private keys of indi-

vidual devices), just not the session keys of past authentication interactions) =⇒ ≤ SL4
(“sophisticated means and specific knowledge”)
• ≤ E1 (a single adversary, no collusion with other parties allowed) =⇒ ≤ SL2 (“few re-

sources”)
• ≤ E2 (a group of colluding adversaries, e.g., multiple angles to observe an authentication event

at the same time or multiple tokens correlated for learning something about the internal
state) =⇒ ≤ SL3 (“moderate resources”)
• ≤ E3 (a collusion of all parties besides the actual, legitimate user) =⇒ ≤ SL4 (“extensive

resources”)

These are upper bounds for security levels that can be reached under the assumption of the
respective capability and effort classes. Our scheme assumes that all authentication methods can
be broken by an adversary with sufficient capabilities and effort. However, the required level of
capability and effort to do so differs between authentication methods. We define four classes of
adversaries to provide an ordinal scale to compare the security efforts different authentication
methods have been tested against (cf. Figure 4).

In particular, we distinguish between zero effort, minimal effort, advanced effort, and guaranteed
success attack cases. As can be seen from the figure, in mobile device authentication, the distinction
between these attack classes inherits a limited degree of fuzzyness, which stems from the context
in which the attack is performed. The same attacker with identical effort and capabilities may
conduct attacks of different severity, depending on the context in which the authentication method
is situated. For instance, contexts that demand a higher mental load (e.g., due to distraction; higher
loudness; impaired vision (e.g., water, smoke, light)) or higher degree of exposedness to public
may render attacks of adversaries with same resources and capabilities more significant. Since
the context space is infinite, including context means to abandon generality. Therefore, our model
tolerates limited degree of fuzzyness in the definition of the attack type.

4.1 Zero Effort Attacks

It is common procedure to measure false-positive and false-negative rates for biometric au-
thentication, and this is also adopted to evaluate authentication schemes such as graphical

ACM Computing Surveys, Vol. 54, No. 9, Article 198. Publication date: October 2021.
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passwords [8, 223, 263]. Most quantitative evaluations use n subjects with ground truth and
compute the confusion matrix of authentication attempts against stored templates. Common
measures such as accuracy, precision, recall, true-/false-positive/negative rates, or F-measure
are all based on this same principle [31, 42]. We refer to this a zero effort attack, because no
malicious adversary other than benign subjects exists (adversaries with basic capabilities (C1),
and small effort (E1)). Zero effort attacks represent the risk of random success and include
naïve (non-targeted) brute force attacks. Examples are honest-but-curious office colleagues, or a
stranger who chances upon a misplaced device.

In terms of IEC 62443, zero effort attacks can happen in both SL0 and SL1 (random or uninten-
tional misclassification).

4.2 Minimal Effort Attacks

A minimal effort attack is targeted, for instance, mimicking gait, but not with particular sophis-
tication. The adversary has no specific system knowledge (C1), but moderate effort (E1–E2).
Minimal-effort adversaries have the explicit intention of attacking an authentication method
and a specific target. Many published approaches used minimal effort attacks in their analysis,
typically with students or colleagues from the same research group, with low effort and low to
average sophistication.

Minimal effort attacks are possible up to SL2 with a growing spectrum of computational re-
sources available to otherwise unskilled attackers.

4.3 Advanced Effort Attacks

Advanced effort attacks show higher sophistication (C1 and C2), such as, e.g., professional actors
trained in imitating body motions, and significant effort (E1–E3), loosely mapping to SL3. We ex-
plicitly exclude the combination of (insider) advanced developer-level sophistication with nation-
state effort (E3, C2), which would map to SL4. However, it does not seem helpful for evaluating
mobile device authentication methods.

4.4 Guaranteed Success Attacks

A guaranteed success attack succeeds in breaking the security of an authentication method. It
allows for any system to describe which capabilities or effort are required for a successful attack.
Authors of device authentication methods are advised to include this adversary class to define
the minimum adversary expected to break the system. An adversary in this class may possess
all capability (C2–C3) and effort (E1–E3). Note that low-effort guaranteed success attacks are
possible, for instance through access to cryptographic credentials (E1, C3).

Our notion of guaranteed success does not have a correspondence in IEC 62443 security levels;
it is one area where we argue that existing standards are lacking in explicitly defining which
adversary assumptions are outside the scope of security designs.

5 LITERATURE SURVEY: ADVERSARY MODELS FOR MOBILE AUTHENTICATION

We discuss proposals for mobile authentication and adversary models used, and group the litera-
ture according to the adversary class utilized to allow a domain-specific discussion of adversary
models. A summary of the publications covered is given in Tables 6 to 9. We recommend to use the
survey as a reference and refer the informed reader to the overview in Figure 5 to quickly navigate
to the section of her interest. In addition, attack schemes are collected in Tables 2, 3, and 4.
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Fig. 5. Overview and structure of the literature survey.

5.1 Biometric User-to-device Authentication (bU2D)

A large body of work has exploited biometric stimuli for mobile authentication [189]. Measures
cover, for instance, spoken audio, keystroke dynamics, face biometrics, gaze, application usage,
iris, gait, or fingerprints [132].

Most work in this domain show the general feasibility of a working principle (E1, C1; zero effort),
by using a small number of subjects distinguished by the modality, but no threat model, attack
scenario, or analysis of password space. Table 2 summarizes attacks on biometric authentication.

5.1.1 Speech and Audio. A number of zero effort attacks has been considered for biometric
systems based on speech and audio. For instance, in speakersense [173], during a voice phone call
a person is identified. The system was tested with 17 subjects, achieving over 95% of accuracy.

However, an adversary actively trying to break the system has not been considered (E1, C1;
zero effort). For instance, already a minimal effort attack using voice impersonation (replay) might
trick the system [48]. A protection against such attack is proposed by exploring the magnetic field
emitted from loudspeakers to distinguish between playback and live voice. Note that, an informed
advanced adversary, not using magnetics based loudspeakers with access to respecive resources
(advanced microphones) could easily circumvent this protection.

Another example for a system tested only with respect to minimal effort attacks is Refer-
ence [302]. The authors utilize the audio system of the phone as a doppler radar to obtain further
evidence on speaker identity. The authors launched mimicry attacks (adversary with access to
video recording and practice) but did not consider advanced (e.g., developer) sophistication.

An example of a comprehensive security discussion in this domain is the usable two-factor
authentication based on proximity measured from ambient sound is Reference [142]. Starting from
false acceptance and false rejection rates (zero effort), advanced effort attacks are considered (similar
environment, same media) and the analysis further distinguishes remote from co-located attacks,
which then includes definite success attacks (E3, C3; guaranteed success).

5.1.2 Keystroke and Touch Dynamics. Keystroke and touch dynamics, specifically the usage
patterns of keyboard or a touch screen interaction inherits features of a biometric and has thus been
considered for means of bU2D authentication. An overview on the use of keystroke-dynamics for
mobile devices is provided in Reference [267]. A number of studies consider zero effort attacks only,
such as Reference [52], to authenticate phone users via keystroke analysis of their PIN input [52].
Authors report equal error rates (E1, C1; zero effort) but ignore active adversaries with access to
advanced resources, such as key-press latencies that can be spoofed with a generative keystroke
dynamics model [195] via trained replay attacks [217] or utilizing audio [268] or video [300].
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Table 2. Attacks on Mobile Biometric Authentication Systems

Paper Modality Attack scheme Year

Gafurov [103] Gait Impersonation 2006

Stang [254] Gait Continuous visual feedback impostors 2007

Gafurov [102] Gait Spoof/various attacks 2007

Ruiz et al. [230] Iris Fake images 2008

Derawi et al. [72] Gait Active impostor 2010

Mjaland et al. [193] Gait Active long-term trained impostors 2010

Rahman et al. [217] Keystrokes Snoop-forge-replay attack 2013

Tey et al. [268] Keystrokes Imitation through Mimesis technique 2013

Karapanos et al. [142] Audio Advanced co-located attackers 2015

Kumar et al. [158] Gait Treadmill attack 2015

Liu et al. [170] Keystrokes Snooping Keystrokes with mm-Audio 2015

Monaco et al. [195] Keystrokes Spoof keypress latencies 2015

Gupta et al. [112] Iris Attacks: Masquerade, Replay, Database 2016

Xu et al. [298] Gait Passive/active impostor (imitation), MitM 2016

Zhant et al. [302] Speech Mimicry 2017

Abdelrahman et al. [2] Keystrokes Thermal attacks on mobile user authentication 2017

Muaaz et al. [200] Gait Active impostor (imitation) 2017

Trippel et al. [161] Gait Poisoning acoustic injection attack 2017

Khan et al. [146] Keystroke Real-time mimicry attack guidance system 2018

Tolosana et al. [273] Signature Analysis of different spoofing (presentation) attacks 2019

Marcel et al. [176] Biometrics Handbook of biometric anti-spoofing 2019

Vyas et al. [285] bio-sensors Attack types on body area networks using bio sensors 2020

Tiefenau et al. [270] Biometrics Attacks bypassing authentication on mobile devices 2020

Neal et al. [201] Behaviour Spoofing (presentation) attacks on various biometrics 2020

Jia et al. [135] Face Evaluation of 30 face spoofing attacks 2020

Hagestedt et al. [114] Eye Attacks on Classifiers for Eye-based User Modelling 2020

Examples for studies considering minimal effort adversaries targeting specific subjects are
References [33, 129] or Reference [64] to authenticate from dynamics of using pattern-unlock (E1,
C1; minimal effort). However, all these approaches omit investigation on protocol weaknesses or
potential bias in the keystroke dynamics patterns due to statistical distributions over a larger set
of users [239].

5.1.3 Face. Face features may be used for authentication and are adapted also in commercial
hardware13 [74, 231]. An example for a zero effort study is Reference [149] who test their approach
using face, teeth (stereo cameras), and voice on a database with 50 subjects to report EER, FAR, and
FRR (E1, C1; zero effort), but ignoring targeted attacks using advanced resources such as replay or
database attacks.

Examples for minimal effort studies are References [57, 74, 88], who consider to break face-based
continuous authentication of 24 subjects by an impostor with no specific system insight (E1, C1;
minimal effort). These studies were not tested against advanced attacks, such as impersonation or
dodging via image manipulation [244] or using images from online social networks [167].

5.1.4 Iris. Features from the iris are considered as one of the strongest biometrics, and are,
consequently, also employed in bU2D authentication. Iris recognition on mobile phones has, at
that time, been constrained by the limited resources of the phone and have been respected in the
zero effort study in Reference [148]. Without an adversary study, only successful instrumentation
has been verified (E1, C1; zero effort). A number of advanced effort attacks against iris verification

13e.g., Apple FaceID: https://support.apple.com/en-us/HT208108 (an exact adversary model is not publicly documented).
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comprise fake images [230], masquerading (dilation and contact lenses), database and template
hacking attacks [112].

5.1.5 Application Usage Patterns. Application usage patterns constitute another biometric for
mobile device authentication. This has been tested, for instance, in a zero effort study in Refer-
ence [284] with 50 subjects. However, an attack study is missing (E1, C1, zero effort), as well as
monitoring application usage via other apps on the phone [249].

5.1.6 Gait. Gait characterizes the way a person is walking and is believed to be difficult to
mimic by adversaries. Despite studies suggesting gait as biometric feature [71, 100, 132, 228], in-
vestigations on security features and entropy of gait are lacking, for instance, with respect to
impact of natural gait changes over time by clothing, footwear, walking surface, walking speed
and emotion [36, 205, 250].

Early studies on gait-based mobile authentication (shoe-mounted [22, 127, 196]; waist-
mounted [5, 46, 72, 122, 123, 197, 227]; hand, breast pocket, hip pocket [282]) used zero effort
adversaries, mainly investigating feasibility (E1, C1; zero effort) and did not consider attacks.

Examples for minimal effort studies on gait-authentication are References [101, 103], which
consider from pairs of 22 subjects the robustness of gait-authentication against impersonation
attacks (E1, C1; minimal effort). In an advanced effort study in Reference [200], professional actors
were instead employed to mimic the gait of 15 subjects with close physical properties (E2, C2;
advanced effort). Other advanced effort study comprise control of the speed, step-length, thigh lift,
hip movement and width of steps [158] (E2, C2; advanced effort), intensively training individuals
over multiple days [193] (E2, C2; advanced effort) or exploiting a 100+ subject database of gait
sequences [101, 102] (E1, C2; advanced effort). In addition, the high accuracy of video-based gait
recognition systems also empowers an adversary to generate a database of gait information on
multiple subjects unnoticed [236].

5.1.7 Fingerprint. Biometric authentication using fingerprints is frequently installed in mobile
systems [276]. Typical attack vectors are (1) and (2) in Figure 4, since fingerprint impressions
are easily left on surfaces touched [235]. Attacks on fingerprint-based systems are discussed
in Reference [139]. An advanced effort study providing countermeasures against such attacks
presents a system combining biometrics, possession, and continuity features for progressive
authentication (switching between different security levels conditioned on the confidence in the
authentication) [224]. The study comprises 26 attack attempts using 3 attack scenarios in which
the attacker had system knowledge and tried to avoid detection via video and audio sensors (E1,
C2; advanced effort).

5.1.8 Body Impedance. Rasmussen et al. propose a pulse-based biometric for two-factor or
continuous authentication. In their approach, a metal keyboard sends small electric current
through the user’s body of which the frequency response is used for authentication [178]. The
study investigates usability and disucsses the theoretical password space (E1, C1; minimal
effort). However, it lacks a targeted attack study and an investigation on the uniqueness of body
impedance in a larger population.

5.2 Usably Secure User-to-Device Authentication

Similarly to biometrics, usably secure user-to-device authentication (uU2D) schemes are con-
ditioned on specific patterns have been presented for authentication. Attacks on these authentica-
tion schemes, as summarized in Table 3, are either related to traditional attacks on authentication
systems or tailored to the respective modality, such as shoulder-surfing or imitation attacks.
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Table 3. Attacks and Security Analysis of User-to-Device Authentication Systems

Paper Modality Attack scheme Year

Dhamila et al. [73] Image Brute force, observer, intersection attacks 2000
Thorpe et al. [269] Image Dictionary attack 2004
Davis et al. [61] Image Password distribution 2004
Ku et al. [155] Image Dictionary, replay, compromise password file, DoS, predictable n, insider 2005
Dirik et al. [75] Image Dictionary attack 2007
Hayashi et al. [117] Image Brute force, educated guess, observer, intersection 2008
Brostoff et al. [39] Image Human bias in password choice 2010
Sun et al. [258] Multi-touch Shoulder-surfing (video observation and disclosure of exact password) 2014
Yue et al. [300] Touch Technical challenges of blind recognition of touched keys from video 2014
Huhta et al. [128] Acceleration Attack on the ZEBRA system [177], discuss improvements 2015
Li et al. [166] Acceleration Imitation of head movement 2016
Nguyen et al. [203] Image recall Shoulder surfing 2016
Cha et al. [47] Pattern Optimal conditions for smudge attacks, protection, mitigation strategies 2017
Zhang et al. [301] Voice Dolphin attack: inaudible voice commands 2017
Kraus et al. [151] Emoji recall Shoulder surfing 2017
Chen et al. [48] Audio/Magnetom. Machine-based voice impersonation 2017
Miettinen et al. [191] Audio Impersonation, Man-in-the-Middle 2018
Prange et al. [216] various Threats and design flaws of smart home environments 2019
Prange et al. [215] various Model of security incidents with personal items in public; survey and stories 2019
Shin et al. [245] pattern Attacks on Android pattern lock systems 2020
Alqahtani et al. [9] image Attacks on machine learning for image-based captcha 2020
Bhana et al. [27] Various Usability and security comparison of authentication schemes 2020
Vyas et al. [285] Various Attack prevention schemes for body area networks 2020

5.2.1 Image. In image-based uU2D authentication, the user is presented one or more challenges
based on images, such as image content or sorting of images. Image-based authentication has an
advantage [261, 292] over password or PIN-based authentication due to improved usability [293],
and since it is easier to recognize or recall an image than a text [62, 73]. However, memorability and
security strength of image-based recognition in comparison to PIN and password based solutions
when multiple (10–20) of such passwords need to be remembered, has not been considered in the
literature. Davis et al. [61] further found that (1) user password selection is biased by race and
gender [39], thus lowering password entropy, (2) the need for several rounds to provide a reason-
ably large password space impairs usability, and (3) recognition-based systems are vulnerable to
replay attacks [15, 266]. It is a research challenge to exploit memorability to improve freshness of
authentication challenges [203].

Recognition-based. Recognition-based systems condition authentication on the selection of a
specific image or groups of images in a partiular order. A commercial example is Passfaces,14 which
uses images of faces for authentication. Zero-effort studies proposing implementations of this ap-
proach with no security investigation, are, for instance, References [6, 62, 263] (E1, C1; zero effort).

A minimal effort study was presented in Reference [73], in which the authors show that failed
logins raised to 30–35% for PIN and password based authentication, while it dropped only to
10% and 5% for artwork and photo images. Several attacks are discussed (brute-force, observer,
intersection), while other attacks, e.g., on the image database or on the system are disregarded
(E1, C1; minimal effort). Another example for a minimal effort study is Reference [151] (replace
numerical PIN-pads with emojis), which studied memorability and robustness against shoulder
surfing (E1, C1; minimal effort) but did not consider any strong adversaries.

Recall-based. These graphical password schemes require that a pattern is recalled, e.g., drawing
a shape [133]. Since the precision required to establish a sufficiently large password space is high,

14www.realuser.com.
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cued recall schemes provide cues that help to achieve sufficient precision [30, 32], such as images
to guide the input or distorted and blurred images [117].

Example zero effort studies are Reference [69] (pure recall) or References [8, 213] (cued recall),
which focus on usability and the risk of observation attacks (E1, C1; zero effort), but lack an attack
study or security analysis.

A minimal effort study is Reference [150], which calculates the size of the password space and
remarks that chosen passwords are clustered [150] (only 10−8 of the space is used 25% of the time)
(E1, C2; minimal effort). Other attack vectors, such as shoulder surfing or smudge attacks are not
exploited.

In their advanced effort study, Ku et al. [155] study a variation of this scheme for its repara-
bility [130], resistance against dictionary attacks, replay attacks, compromising the password file,
denial-of-service, predictable n attack and the insider attack [26, 154, 192, 269] (E2, C2; advanced
effort). Another example is Reference [75], who analyze the PassPoints scheme (regions in an
image constitute an authentication challenge), originally presented in a zero effort study in Refer-
ence [293]. The authors present an evaluation approach for graphical password schemes, in which
a password consists of a sequence of click points in an image. For the attack study, the probability
of click points was considered as well as attention-related saliency features (luminosity contrast,
color contrast, foreground) in a study with more than 100 subjects. For the images used, the ob-
served entropy was derived from the observed FoA map (clicking probability to every grid square)
(E2, C2; advanced effort). Definite success cases and nation state adversaries with strong capabili-
ties are not considered.

5.2.2 Multi-touch. The concept of multi-touch has been proposed to increase the password
space, to reduce time to input a password and to address security risks through shoulder-surfing
and smudge attacks.

In References [206, 223], usability issues are in the focus of their discussion while security threats
appear as after-thoughts (E1, C1; zero effort). For instance, References [17, 264, 265] propose finger-
tapping for multi-touch pin authentication and investigate only usability in their 30-user case study
(E1, C1; zero effort).

In an advanced effort study on multi-touch input in Reference [258], the authors recruited 30 vol-
unteers to test rotation-invariant multi-touch free-form passwords. Ten adversaries with access to
video recorded password inputs and exact password shapes attacked the system (E2, C1; advanced
effort).

5.2.3 Gaze-based. Eye-gaze may be tracked and thus may serve as an input modality for
uU2D authentication. Gaze-based password entry exploits the movement of the eye for password
input [68].

In zero-effort usability studies in References [68, 157, 291], the subjects had to focus on some loca-
tion on the screen or perform eye gestures (E1, C1; zero effort), without any attacker consideration.

A similar approach was investigated in a minimal effort study in Reference [95], where a subject
stares for a certain period (the dwell time) at an area on the display to perform an action [289].
The authors evaluated their approach in a study with 18 subjects and achieved an error rate for
the password input of 96% (E1, C1; minimal effort). However, an attack study was not conducted.

An advanced effort study has been prestented in Reference [41] and authors investigated the
security of gaze-based graphical passwords using saliency masks by theoretical estimation of pass-
word space and discussion of threat models (E2, C2; advanced effort).

An example of a medium effort and capability guaranteed success study is Reference [63]. Pass-
word input by 24 subjects was video-recorded so that attackers could break the system in a single
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Table 4. Attacks and Security Analysis of Device-to-Device Authentication Systems

Paper Modality Attack scheme Year

Mayrhofer [180] Arbitrary Man-in-the-Middle, DoS 2007
Schurmann et al. [238] Audio Statistical properties (keys); brute force, DoS, MitM, audio amplification attacks 2013
Truong et al. [275] Various Performance of sensor modalities wrt. Dolev–Yao adversary (relay attacks) 2014
Anand et al. [13] Audio Extract vibration sequence from audio noise 2016
Kwong et al. [161] Acceleration Active adversary emitting acoustic interference at MEMS resonant frequency 2017
Findling et al. [91] Shaking Protocol-specific attacks: observatory, cooperative, handshaking 2017
Gong et at. [107] Audio Spoofing, replay and zero effort attacks 2017
Schurmann et al. [236] Gait Brute-force, gait mimicry, video, adding a malicious device 2018
Bruesch et al. [40] Gait Gait-pairing: brute-force, mimicry, video, malicious device, protocol weakness 2019
Focardi et al. [93] QR Performance, size and security of cryptographic schemes with respect to usability 2019
Shafi et al. [242] Spoofing Attack on the downlink (half-duplex) in cellular communication 2020

try in 96% of the cases while the method was robust against simple shoulder surfing (E2, C2; guar-
anteed success).

5.2.4 Audio based. It is possible to use auditory stimuli for uU2D authentication. A targeted
but unsophisticated attack study (advanced effort) over audio-based PIN input has been presented
in Reference [28]. Subjects have been instructed and conducted targeted attacks after observing
the login process of the target. However, attackers were artificially limited in their access to the
recorded material (e.g., no audio, reduced quality) and time (E2, C2; advanced effort). In particular,
it was derived in Reference [191] that time is critical in impersonation and Man-in-the-Middle
attacks and that otherwise the secure establishing of a shared secret is possible.

A guaranteed success study is presented in Reference [142], who propose to use similarity in
ambient audio as a second factor to authentication. Weak and strong adversaries are considered
up to guaranteed success attacks where the adversary is physically located in the same audio
context (E3, C3; guaranteed success).

5.2.5 Acceleration-based. Acceleration sensors are nowadays integrated in a multitude of de-
vices. Consequently, the stimuli that can be utilized for acceleration-based authentication are avail-
ble across a broad range of devices. An example for a zero effort attack is Reference [171], in which
gesture-based authentication from acceleration sequences was investigated for its usability with
five subjects (E1, C1; zero effort). An attack study has not been conducted though.

A targeted but unsophisticated attack study (minimal effort) is, for instance, Reference [166]
(authentication utilising head-movement patterns while listening to an audio pattern). The authors
provided videos of successful authentication attempts to the non-trained amateur attackers to
imitate the authentication movements (E2, C1; advanced effort).

An example of an attack study also covering guaranteed success is Reference [14]. An in-air hand
gesture authentication system was evaluated through experiments including video-based attacks
and allowing to watch the video multiple times, rewind, or to play in slow motion (E2, C2).

5.3 Device-to-device Authentication

Device-to-device authentication, or simply pairing, typically exploits similarity in context or prox-
imity to achieve seamless authentication [180]. Alternatively, device-to-device authentication can
also be realized following the principles of zero-interaction authentication [55], in which proximity
is exploited to verify identity without explicit input, but relying on contextual cues derived from
sensor measurements. In Reference [275], security properties of these schemes is evaluated with
respect to different sensor modalities and with respect to a Dolev–Yao adversary. Table 4 depicts
several attacks on device-to-device authentication.
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Table 5. Selection of Publicly Available Datasets in Mobile Authentication

Paper Modality Description Year

Gafurov et al. [102] Gait 760 gait sequences from 100 subjects 2007
Liu et al. [171] Acceleration >4,000 gesture samples, 8 subjects; over multiple weeks; 8 gesture patterns 2009
Fierrez et at. [86] Biometrics Speech, iris, face, signature, text, fingerprint, hand, keystroke from 400 subjects 2010
Findling et al. [74] Face 600 high quality, colored 2D stereo vision face images 2013
Wang et al. [286] Face Web faces database 2013
Galbally et al. [104] Passwords KoreLogic dataset of 75,000,000 unique passwords 2014
Truong et al. [275] co-presence 2,303 samples (co-/non-co-present: 1140/1163); Audio, Bluetooth, GPS, WiFi 2014
Shrestha et al. [247] co-presence Phone data (temp., gas, humidity, altitude, orient.); 207 samples; 21 locations 2014
Samangouei et al. [231] Face Database of 152 facial images 2015
Kim et al. [148] Iris 500 iris image sequences from 100 subjects 2016
Costa-Pazo et al. [56] Face 1,190 video sequences of attack attempts to 40 clients 2016
Patel et al. [210] Face 9,000 (1000 live/8000 spoof) face images 2016
Ramachandra et al. [218] Face Databases to benchmark presentation attack resilience 2017
Tolosana et al. [272] Handwriting e-BioSign signature and handwriting from 65 subjects 2017
Boulkenafet et al. [37] Face 4,950 real access and presentation attack videos of 55 subjects 2017
Shrestha et al. [248] co-presence 100 audio samples from synchronized audio streams for non-co-present devices 2018
Tolosana et al. [271] handwriting e-BioDigit database (on-line handwritten digits) & benchmark results 2020

5.3.1 Acceleration-based. For D2D authentication with acceleration, simultaneous movement
during physical co-presence are exploited. Examples for zero effort studies exploiting vibration are
References [162, 186, 187]. They exploit shared vibration sequences between physically connected
smartphones or physical tapping of devices onto each other. The prototypes have been validated
for their basic functionality but no attack or user study has been conducted (E1, C1; zero effort).

For this kind of key distribution that utilizes vibration as an out-of-band channel, Anand et
al. [13] attack vibration-based pairing schemes by overhearing the audio signature of the vibration
pattern (E2, C1; minimal effort).

In an advanced effort study, Reference [277] authenticate mobile devices toward a remote
server, where the challenges are given by the duration of vibration and responses. A number of
security issues is discussed, follwed by a publicly available taxonomy and entropy analysis (E2,
C2; advanced effort).

Alternatively, gait acceleration has been exploited for authentication between devices that are
carried by the same (walking) subject. Instantaneous and characteristic variations in the accelera-
tion and gait sequences, that can be extracted at different body positions constitute the features to
a pairing key [54, 163]. This problem has been considered in the zero effort studies [198, 199, 260],
which discuss general fasibility, usability such as averse affects of orientation differences as well as
cross pocket gait-based authentication (left-to-right) but no adversary study (E1, C1; zero effort).

Advanced effort studies on gait-based D2D authentication are, for instance, References [221, 297,
298], who consider impersonation and man-in-the-middle attacks, passive eavesdropping, imper-
sonation, entropy, randomness, key distribution analysis from a study conducted with 14 subjects
analyze the randomness of the resulting key (E1, C2; advanced effort). Examples for guaranteed suc-
cess studies on gait-based D2D authentication are References [40, 236], which concisely compare
and evaluate several gait-based D2D authentication protocols, and consider brute-force attacks,
gait mimicry, informed attackers that exploit protocol weaknesses, as well as powerful adversaries
with access to video or possibility to attach malicious devices unnoticed on the persons body (E3,
C2; guaranteed success).

A further attack on acceleration-based D2D authentication is to actively emit modulated acous-
tic interference at the resonant frequency of materials in MEMS sensors to control or modify mea-
sured acceleration, and thus inject changes to acceleration sequences [161].

Finally, minimal effort studies have been conducted on shaking-based acceleration-pairing [109,
172, 184, 185], where attacker–victim pairs have been built with the purpose of demonstrating the
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Table 6. Summary Classification of Adversary Models—Zero Effort

Modality Refer. Performance # Type Remark Year

Gait [141] — E1 C1 44/25/71 bU2D Feasibility on 3 gait databases, No attack study 2003
Iris [148] Detection rate: 99.4% E1 C1 100 bU2D Feasibility and success case. No security analysis 2016
Speech [222] Rejection rate: <94.1% E1 C1 16+44 bU2D Feasibility study, playback attack resilience, no adversary 2019
Gait [123] Accuracy: 94.93% E1 C1 38 bU2D Android-based gait authentication. No attack study. 2013
Gait [122] FAR: 0%, FRR: 16.18% E1 C1 38 bU2D Naive brute-force success probability; no attack study. 2015
Gait [5] EER=FAR:6.4%, FRR:5.4% E1 C1 36 bU2D Feasibility of gait for authentication. No attack study. 2005
Gait [228] EER: 6.7% E1 C1 35 bU2D Feasibility study, no security discussion 2007
Gait [282] EER: 17.2/14.1/14.8% E1 C1 31 bU2D Gait-authentication from hand/hip-pocket/breast-pocket. 2006
Gait [227] EER: 5.6%&21.1% E1 C1 21 bU2D Feasibility of gait for authentication. 2007
Audio [173] Accuracy: >80% E1 C1 15+17 bU2D Focus on success cases (speaker-distinction) 2011
Gait [22, 196] Accuracy: <97% E1 C1 15 bU2D Feasibility of gait (shoe-mounted) for authentication. 2008
Gait [46] Accuracy: <98% E1 C1 10 bU2D Demonstrate the feasibility of gait for authentication. 2012
Iris [174] FAR/FRR: <6%/18% E1 C1 10 uU2D Feasibility study, general security discussion, no targeted

attack
2019

Gait [127] Accuracy: 96.133% E1 C1 9 bU2D Feasibility of gait (shoe-mounted) for authentication. 2007
Touch [70] accuracy: 100% E1 C1 — bU2D Evaluation details unclear, no adversary study 2019
Gait [100] — E1 C1 — bU2D Discuss security challenges, no attack study 2007
Keystroke [27] — E1 C1 112 uU2D Entropy and failures for login, no attack study 2020
Pattern [69] — E1 C1 86 uU2D shapes of strokes on touch sceen. Questionnaire: Usability 2007
Pattern [257] — E1 C1 81 uU2D Analytic metric proposed to classify password strength 2014
Image [62] Errors: 2%–10% E1 C1 66 uU2D Errors, usability, password completion time; no attack

study.
2002

Image [151] Accuracy: 97% E1 C1 53 uU2D Human bias in password choice; shoulder surfing
robustness.

2017

Image [39] Accuracy: 97% E1 C1 53 uU2D Human bias in password choice; no security analysis. 2010
Gaze [95] Success rate: 96% E1 C1 45 uU2D Zero-effort random success study. No security analysis 2010
Keystroke [52] EER: 12.8% E1 C1 32 uU2D 4-bit and 11-bit pin input; no attack study. 2007
Touch [204] Accuracy: 12% E1 C1 12 uU2D Low energy tokens for interacition with capacitive devices 2016
Mult.touch [223] — E1 C1 30 uU2D Multi-touch image authentication. No attack study. 2013
Image [223] — E1 C1 30 uU2D Focus on usability and password space 2013
Gaze [68] — E1 C1 21 uU2D Usability of 3 eye-gaze methods; General security

discussion.
2007

Image [293] — E1 C1 20 uU2D Improved usability of the PassPoints cued recall scheme. 2005
QR [59] Accuracy: 88% E1 C1 20 uU2D Validation and Usability study, no adversaries 2019
Gaze [157] Error rate: 4% E1 C1 18 uU2D Limited capability threat model (eyes not captured). 2007
Icons [294] Accuracy: 90.35 E1 C1 15 uU2D Shoulder-surfing robust; focus on usability; 2006
M.touch [17] Entropy: 15.6bits E1 C1 13 uU2D Multi-touch free-form passwords; theoretical password

space
2012

M.touch [206] — E1 C1 10 uU2D Success cases and feasibility; no security analysis 2012
Shaking [172] — E1 C1 8 uU2D Attack shaking with random acceleration; no video; no

entropy
2014

M.touch [264, 265] – E1 C1 6 uU2D Success cases, usability (memorability & time); password
space

2013

Radio [53] TP/FP/FN: <95%/6%/51 E1 C1 3 uU2D De-authentication method; usability and positive cases 2017
Image [263] — E1 C1 — uU2D Self-captured images (conceptual study); no security

analysis
2003

Image [8] – E1 C1 — uU2D Implicit authentication by clicking on objects in images. 2013
Image [6] – E1 C1 — uU2D Images for authentication. Concept; no security analysis 2004
Image [213] — E1 C1 — uU2D Image-supported password entry; no security analysis 2003
Image [292] Accuracy: >90% E1 C1 — uU2D Acceptance rate up to 5 months after training. 2004
Image [30] — E1 C1 — uU2D Image-based cued recall; password space and human bias. 2006
Gesture [111] — E1 C1 — uU2D Secure smartwatch authentication; No security

study/analysis
2019

Gaze [291] Success rate: 83% E1 C1 — uU2D Eye gaze input by clustering gaze points. Only usability 2011
Acceler. [90] TPR/TNR: 79%/86% E1 C1 29 D2D Non-targeted attacks (random success) 2014
Gait [237] — E1 C1 15 D2D Quantization for gait-based pairing. Statistical analysis

keys
2017

Gesture [171] Accuracy: 98.6% E1 C1 5+5 D2D Authentication from acceleration (DTW matched);
usability

2009

Acceler. [54] Accuracy: 85% E1 C1 7 D2D Feasibility study (correlation); no adversaries 2011
Gait [260] Agreement rate: <89% E1 C1 5 D2D Propose quantization method based on

inter-pulse-interval
2017

Vibration [162] Success rate: <60% E1 C1 — D2D Common secret via vibration signatures; No security
analysis

2018

Acceler. [253] — E1 C1 — D2D Collocation detection; User study unclear; no adversary 2015
Vibration [89] Success rate: 97.5% E1 C1 12 D2U D2U authentication via vibration patterns; Usability study 2015
Image/text [225, 226] — E1 C1 — D2U D2U authentication via visual cues. 2010

robustness against active attacks (E1, C2; zero to minimal effort). Attacks on shaking-based pairing
protocols are, for instance, investigated in Reference [91] (observatory, cooperative, handshaking).

5.3.2 Audio. Correlation in audio-readings from co-located devices may also be utlized
for D2D authentication. An advanced effort audio-based D2D authentication was proposed in
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Table 7. Summary Classification of Adversary Models—Minimal Effort

Modality Refer. Performance # Type Remark Year

Behavior [145] — E2 C1 40-158 bU2D Non-sophisticated attacks on multiple biometric systems 2014
Keystroke [287] EER: 12% E2 C1 104 bU2D Exploit adversarial noise; Non-targeted attacks 2019
Keystroke [10] EER: 9.9% E2 C1 100 bU2D Non-targeted comparison of collected keystroke entries 2019
Voice [302] EER: 1%; Accuracy: 99% E2 C1 21 bU2D Liveness detection system to protect against replay

attacks.
2017

behavior [194] — E2 C1 20 bU2D Interactive biometric authentication; non-targeted attack 2019
Gait [254] EER: 26% E1 C2 13 bU2D Targeted attacks; video-recordings; physical

characteristics
2007

Face [231] Accuracy: >0.72 E1 C1 152 bU2D Feasibility; database of 152 images; No security analysis 2015
Gait [72] EER: 20.1% E1 C1 51 bU2D Focus on success cases 2010
Gait [197] EER: 22.49% E1 C1 51 bU2D No attack cases considered 2013
Face [149] Error rates: <9% E1 C1 50 bU2D FAR & FRR; no dedicated security study 2010
Handwriting [271] Mean EER: 14% E1 C1 50 bU2D Non-targeted attack from database of samples 2020
Keystroke [64] Accuracy: <57% E1 C1 48 bU2D Intensive but untargeted (non-sophisticated) attacks 2012
Gait [123] Accuracy: 94.93% E1 C1 38 bU2D No dedicated attack cases; FAR & FRR 2013
Gait [198] EER: 18.965 E1 C1 35 bU2D EER for orientation-independent gait authentication. 2014
Gait/Face [87] EER: 11.4 & 5.4 E2 C1 35 bU2D Non-targeted blind matching of patterns between

subjects.
2018

Gait [122] FAR: 0; FRR: 16.18% E1 C1 34 bU2D No dedicated attack cases; FAR & FRR 2015
Face [74] TP: 0.9781; TN: 0.9998 E1 C1 30 bU2D Focus on positive case 2013
Keystroke [129] EER: 13% E1 C1 25 bU2D Limited capability attackers: Password provided; pattern

not
2009

Face [57] TP: 65%; FP: 35% E1 C1 24 bU2D Victims first interacted with device before handing to
impostor

2015

Gait [103] EER: 16% E1 C1 22 bU2D Active impostor; no matching person height, no actors 2006
PPG [243] acc: 96.31% E1 C1 12 bU2D Limited capability adversary; brute-force, shoulder surfing 2019
Face [88] TP: 93.89; TN: 99.95 E1 C1 9 bU2D Positive cases 2013
Accelerat. [177] Accuracy: 85% E1 C2 20 uU2D Bracelet: verify typing of legitimate user; weak attacks. 2014
Environm. [248] FNR: <14.5% E1 C2 2 uU2D Relay attacks; system knowledge assumed 2018
Audio [48] FAR/EER/FRR: 0/0/<41% E1 C2 — uU2D Magnetic field from loudspeakers; No tailored attacks. 2017
Magnet. [137, 138] Accuracy: 92% E1 C2 — uU2D Comparison: password space PIN-based login 2016
Image [133] — E1 C2 — uU2D ’Draw a Secret’ scheme; theoretical password space;

human bias
1999

Image [269] — E1 C2 — uU2D Dictionary attacks against graphical password schemes 2004
Image [117] — E1 C1 99 uU2D Usability; Brute force, educated guess, observer,

intersection A.
2008

App-use [284] — E1 C1 50 uU2D Study positive case with professionals 2016
Headmove [166] EER: <7%, FAR: <5% E2 C1 37 uU2D Reduced capability video analysis (no audio) 2016
Image [73] Success rate: 90% E1 C1 20 uU2D Discuss possible attacks and countermeasures 2000
object [98] — E2 C1 15 uU2D HMD auth.; limited capab. attacks, brute force, shoulder

surfing
2019

Impedance [178] Accuracy: >87% E1 C1 10 uU2D User study and theoretical consideration of the password
space.

2017

Drawing [241] — E1 C1 6 uU2D Threat model; no attacks; no Entropy; no statistical
analysis

2014

Keystroke [33] Accuracy: 99% E1 C1 5 uU2D Random correlation attacks; no sophisticated or active
attacker

2013

Shaking [109] Success rate: <95% E1 C1 — uU2D Entropy & security analysis; no trained, informed
adversary

2012

Shaking [29] Success rate: 80% E1 C1 — uU2D Entropy analysis of the generated keys 2007
Pattern [266] — E1 C1 20 uU2D Shoulder-surfing robust; low capability, non-trained

attack.
2006

Pin [229] — E1 C1 8 uU2D Shoulder-surfing robust; complexity analysis; weak
attack.

2004

Audio [13] — E2 C1 — D2D Vibration of devices in contact; extract key from vibration
noise.

2016

Shaking [184] FN: 10.24%; FP: 0 E1 C2 8/30/51 D2D Competition among limited capability attackers 2007
Gait [199] FMR/FNMR: <0.09/0.47 E1 C1 25 D2D No attack cases; false non match rate / false match rate

(FMR)
2015

Vibration [186, 187] FN=FP=EER: 9.99% E1 C1 23 D2D Synchronized vibration through device-tapping. No
attacks.

2014

Context [191] — E2 C1 — D2D Impersonation, MitM, no guaranteed success (same
context)

2018

Reference [107] in which devices in proximity (round-trip audio signals) are automatically paired.
Non-sophisticated replay and spoofing attacks were identified but no attack study conducted (E2,
C2; advanced effort).

A guaranteed success study is Reference [238], in which authentication is conditioned on ambient
audio. Statistical properties of the keys are discussed, as well as limitations of the approach and
a number of cases in various environments with different noise conditions is considered, also
covering definite success attack scenarios where the attacker establishes the same audio context
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Table 8. Summary Classification of Adversary Models – Advanced Effort

Modality Refer. Performance # Type Remark Year

Gait [193] EER: 6.2% E2 C2 50 bU2D Targeted attacks; trained non-professionals; EER: 6.2% 2010
Gait [158] FAR: 70% (attack) E2 C2 18 bU2D Developer insight (features) & exploiting treadmill; FAR:

46.66%
2015

Behavior [156] EER/FAR: <5.9%/3.3% E2 C1 30 bU2D Public lock pattern, strong attacker with video 2019
Face [135] Classification Error rate E2 C1 55/40/40 bU2D Presentation attacks, targeted from database 2020
Gait [102] EER: 13% E1 C2 100 bU2D Mimicry, non-trained amateurs; non-matching

characteristics
2007

Behavior [43] TAR: 99.35% E2 C1 85+6 bU2D Targeted attack; attacker strength unclear 2019
Fingerprint [295] Acc/FAR/FRR: <99/2/3 E2 C1 90 bU2D Puppet attack resilience, limited capability (targeted)

adversary
2020

Biometric [224] Precision = Recall < 93% E1 C2 20 bU2D System knowledge, audio/video support; 26 attempts; #
unclear

2012

Image [75] TPR: >0.79, TNR: >0.68 E2 C2 100 uU2D Automated attack; 70-80% password points correctly
predicted

2007

Force [152] — E2 C1 50+10 uU2D Targeted attacks, video support 2017
Pattern [65] — E2 C2 32 uU2D Targeted attacks, video support, shoulder surfing 2014
Pattern [67] Accuracy: 44% E2 C2 24 uU2D Developer insight & video analysis (incl. playback) 2013
Gaze [97] TPR/FPR: 81%/12% E2 C1 29 uU2D Targeted spoofing attacks on free-form gaze-passwords 2019
Image [49] Success rate: >83% E2 C2 24 uU2D Cued Click Points; shoulder surfing and dictionary attacks 2007
Gaze/gesture [3] — E2 C2 16 uU2D Unlimited video access. schoulder surfing resistant 2019
Gaze [41] Success. attacks: <25% E2 C2 4+12 uU2D Password space; threat models; Attackers with videos 2012
Pattern [47] FAR: 74% E2 C2 12 uU2D Smudge attacks: optimal conditions, protection,

mitigation
2017

Audio [28] — E2 C2 12 uU2D Threat: audio-visual recording; Low detail security
evaluation

2011

Radio [179, 278] FPR: <0.3 E2 C2 — uU2D Access to historical information; MitM; powerful
adversary

2011

Image [155] — E2 C2 — uU2D dictionary, replay, pass compromise, DoS, predictable n,
insider

2005

Accel. [277] TPR/FPR: 0.7444/0.0978% E2 C2 — uU2D Security issues; public taxonomy; entropy 2016
Gaze [92] E2 C1 15+25 uU2D EOG-based, observation-attack resistant, targeted attacks 2019
Pattern [234] success rate: >70% E2 C1 20 uU2D Smudge protection; Limited capability attackers: 3

attempts
2014

Multi-touch [258] TPR: 97.5%, FPR: 2.3% E2 C1 30 uU2D Adversary with video & multi-touch password; FPR: 2.2% 2014
Image [203] — E1 C2 10 uU2D Always-fresh auth., Random & targeted attacks,

non-trained,
2016

Environm. [247] FPR: 16.25%, FNR: 8.57% E1 C2 — uU2D Adversary with technical understanding of the system 2014
Multi-factor [175] — E1 C2 — uU2D Replay and MitM; finite automata as adversaries 2020
Gait [200] — E2 C2 35 D2D Trained, matched actors, 15 victims; EER: 13% 2017
Accelerat. [246] Prec/recall: >0.94, 0.97 E2 C2 20 D2D Tap-based pairing via NFC 2016
Audio [107] FRR: 1–12%; FAR: <0.8% E2 C2 – D2D Co-presence via acoustic signals; spoofing, replay 2017
Gait [298] Agreement rate: <73% E1 C2 20 D2D Impersonation, MitM; analyze randomness of keys 2016
Gait [297] Agreement rate: <73% E1 C2 20 D2D Impersonation, MitM; analyze randomness of keys 2017
Gait [221] — E1 C2 14 D2D Eavesdrop, impersonate, entropy, key

randomness/distribution
2017

Table 9. Summary Classification of Adversary Models – Guaranteed Success

Modality Refer. Performance # Type Remark Year

Audio [142] FAR=FRR=<0.01 E3 C3 32 uU2D Incl. attakcer in same context (guaranteed success). 2015
Generic [296] — E3 C3 — uU2D Theoretical study: protocol security, various attacks 1998
Gaze [63] FAR: 42% (attack) E2 C2 24 uU2D Shapes with gaze. video breaks system, shoulder surfing

not
2009

Pattern [160] — E2 C1 24 uU2D Smudge protection; image analysis to detect smudge
patterns

2014

Magnet. [14] EER: 96.6% E2 C2 10-15 uU2D sophisticated attackers, video analysis, (slow motion,
rewind)

2014

Pattern [15] — E2 C1 — uU2D Smudge protection; Case study needs further detail 2010
Pattern [283] Error rate: 9.5% E1 C2 24 uU2D Smudge protection; Single security expert attacker 2013
Gait [40] — E3 C3 15+482 D2D Brute-force, mimicry, video, malicious device, protocol

flaws
2019

Vibration [169] Accu/FPR: >95%/<3% E3 C3 15 D2D Implicit vibration an surface. Different attacker classes 2017
Audio, light [248] — E3 C3 — D2D Proximity detection; active adversaries; 538 audio samples 2018
Gait [236] — E3 C2 15+482 D2D Brute-force, mimicry, video, malicious device 2018
EMG [299] Bit mismatch rate: <0.4 E3 C2 10 D2D EMG signals for device pairing 2016
Various [275] FPR: <27% E3 C2 — D2D Co-presence: WiFi, GPS, Bluetooth, audio; strong

adversary
2014

Audio, light [190] — E2 C2 — D2D Context-based pairing; replay, same-context definite
success

2014

Shaking [180] — E2 C2 — D2D MitM, DoS, incl. definite success (low noise channel) 2007
Shaking [91] EER: 0.1293 E1 C2 29 D2D Observatory, cooperative, handshaking. No video or

entropy
2017

Audio [238] — E1 C2 2 D2D Statistical key properties; attacks incl. guaranteed success 2013
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at two distinct places as well as silent cases that would cause the protocol to fail (E1, C2; guaranteed
success). An entropy estimation or adversaries with advanced technical support such as directional
antennas have been postponed to later work though.

5.3.3 Token-based. The authors in Reference [204] propose a token-based system to verify user
authentication at the time of touch interaction with the capacitive screen of the mobile device. A
zero effort usability study is conducted with 12 participants (E1, C1; zero effort). An example of a
minimal effort study is References [137, 138] who exploiting magnetic interaction through a touch
screen for token-based implicit two-factor authentication. Technical feasibility and theoretical se-
curity in comparison to PIN based login are discussed (E1, C2; minimal effort). An advanced and
targeted attack study was omitted.

The advanced effort study [91] proposes token-based mobile-device unlocking over a pre-
estaglished secure channel through conjoint shaking. Protocol-specific attacks, assuming accel-
erated knowledge of the adversary were considered (E1, C2; advanced effort).

5.3.4 Electromagnetic Signals (RF). In recent years, the radio interface has been increasingly ex-
ploiting for sensing purposes. Consequently, the entropy of reciprocal characteristics of a wireless
channel between two devices has been exploited to independently compute a key pair for D2D au-
thentication. Exploiting similarity in physical radio channel characteristics, References [179, 278]
consider advanced effort attacks using only few subjects. They consider strong adversaries that
might control the radio channel and induce channel fluctuation to bias correlation for devices in
proximity (E2, C2; advanced effort). The adversary has access to historical channel information.
Other advanced attack types, such as beam-tracing simulations are disregarded.

5.4 Device-to-user Authentication

As described in Reference [181], an adversary might attempt to exploit that a device or app is
mistaken by a user for another, trusted device or app. In this manner, credential information might
be derived by the adversary. This is especially critical when some devices in the usage chain of a
mobile service are not physically exposed to the user such as, for instance, pointed out for 5G small
cell installations in Reference [279]. To protect against such cases, the author of References [225,
226] proposes for a user interface to present a known secret for authentication toward the user.
This document merely sketches the idea. An attack study or even a theoretical analysis of the
attack surfaces has not been conducted (E1, C1; zero effort)

A device-to-user authentication approach exploiting vibration patterns has been proposed in
Reference [89]. The authors propose to define specific vibration patterns specifically for a device
to allow device-to-user authentication. The usability has been tested in a study with 12 subjects
that targeted on the acceptance of the system. Patterns have been recognized with 97% accuracy;
however, an attack scenario or adversaries with access to the device or audio in proximity (to
potentially reveal the pattern) have not been considered (C1, E1; zero effort).

5.5 Discussion on Applied Adversary Classes

The proposed classification of adversary classes has proven useful to distinguish between various
approaches in the literature, as summarized in Tables 6 to 9. It is striking that more than half of
the literature considered falls into low security classes (zero effort or minimal effort). One reason
for this is that authors focus on the usability of their approach solely and disregard security. We
suggest that this lax habit need to be broken, to develop better authentication approaches. An in-
secure authentication might be convenient to use, but its usability is low. Security is also an aspect
of usability and must not be taken lightly. We should refrain from stressing mostly convenience
of usable security approaches.
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This picture calls for a need of re-thinking and strengthening attacker models in mobile au-
thentication schemes, and for further research in this direction. Similarly, benchmark datasets are
needed to comprehensively compare mobile authentication approaches [118]. In Table 5, we pro-
vide a selection of open datasets in mobile authentication.

6 CONCLUSIONS

Too many publications use weak adversary models, which is comparable to the early work on
cryptography, notably symmetric ciphers. In cryptography, nowadays, new cipher proposals are
only considered secure candidates15 after many other, typically more capable, cryptographers have
tried to break it.

We recommend to adopt this attitude for research on authentication methods and, in particular,
in the domain of mobile/ubiquitous/wearable/embedded devices. Studies often mix usability and
security concerns, which is commendable, because security is an important aspect of usability.
However, security is often considered as an after-thought and employing non-security experts as
participants can only provide an estimate for false negatives, but have little validity for the false
positives of an authentication system. To estimate these false positives, a class of significantly
stronger attackers is required.

Authors should use realistic attacker models of adversaries who have a real motivation in break-
ing the system and who are potentially either more skilled than the average user of the system
and/or willing to spend significantly more effort than a legitimate user (i.e., false matches are al-
lowed much more effort than true matches). For a comprehensive discussion of a new model—and
new authentication papers should go this far in their own evaluation—authors should use addi-
tional attacker models that will indeed break that authentication method.

The boundary of what security a system can achieve lies between advanced effort and guaranteed
success categories, i.e., how far it is capable of providing protection against targeted attacks. Good
authentication methods should define this security level as precisely as possible.
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