
Author
Angela Laguia Jimenez

Submission
Institute of
Networks and Security

Thesis Supervisor
Univ.-Prof. DI.
Dr. Rene Mayrhofer

December 2021

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Austria
www.jku.at
DVR 0093696

Secure Chat Export
for Signal-Android

Bachelor’s degree thesis

to obtain the academic degree of

Bachelor of Science (BSc)

Statutory Declaration i

I hereby declare that the thesis submitted is my own unaided work, that I have not used other than
the sources indicated, and that all direct and indirect sources are acknowledged as references.
The submitted document here present is identical to the electronically submitted text document.

Place, Date Signature

Abstract ii

Abstract

This bachelor thesis looks at the development of securely exporting single conversa-
tions in IM for Android apps, specifically for the Private Messenger Signal-Android, a
cross-platform centralized encrypted messaging service that is free and AOSP. Initially,
this paper looks at the existing Messenger apps and their chat export tools that allow
users to obtain similar results as the designed feature. This document evaluates the
user’s risks when trusting these other services but does not reflect much about its com-
ponents or technological aspects. The present paper ignores OSs and platforms other
than Android, considering that the main point of the work lies in the security of the IM
app and not on the device reliability.

The writing re-examines the characteristics of different Messenger apps and presents a
simple solution for exporting single chats in Signal. In this context, some other options
as apps that present alternatives to the designed choice were researched. The proposal of
the chat export feature for Signal-Android begins in the next section, explaining mostly
primary functionalities for exporting chats, including the functionality analysis, the so-
lution design, and the implementation. The following chapter focuses on developing this
new function added to the Signal-Android APP and compares the obtained outcomes
with other results of a similar solution. The final part summarizes the project, explains
the problems and reviews possible improvements and subsequent development steps.

Zusammenfassung iii

Zusammenfassung

Diese Bachelorarbeit beschäftigt sich mit der Entwicklung des sicheren Exports von
Einzelgesprächen im Bereich des IM für mobile Android-Apps, konkret für den Private
Messenger Signal, ein zentralisierter verschlüsselter Cross-Plattform Messaging Dienst,
der kostenlos und Open-Source ist.

Zunächst zeigt diese Arbeit einen Überlick über die bestehenden Messenger Apps und
ihre Chat-Export-Tools, die Benutzern erlauben, ähnliche Ergebnisse wie das entworfene
Feature zu erhalten. Sie bewertet die Risiken des Nutzers, wenn sie diesen Diensten
vertrauen, aber geht nicht tief auf deren Bestandteile oder deren technologische Aspekte
ein. Andere Betriebssysteme und Plattformen außer Android werden ignoriert, wenn
man bedenkt, dass der Fokus der Arbeit auf der Sicherheit der IM-App liegt und nicht
auf der Zuverlässigkeit des Geräts.

Das Schreiben überprüft erneut die Eigenschaften von verschiedenen Messenger Apps
und stellt eine einfache Lösung für den Export einzelner Chats aus Signal vor. In diesem
Zusammenhang wurden einige Apps untersucht, die Alternativen zu der entworfenen
Option bieten. Der Vorschlag der Chat-Export-Funktion für den Signal Messenger für
Android beginnt im nächsten Abschnitt, erklärt hauptsächlich primäre Funktionalitäten
für den Export von Chats einschliesslich der Funktionsanalyse, des Lösungsdesigns und
der Implementierung. Das dritte Kapitel beschäftigt sich mit der Entwicklung dieser
neuen Funktion in Signal-Android und vergleicht das Resultat mit einer ähnlichen Lö-
sung. Eine Zusammenfassung, einige Problemdarstellungen sowie eine Diskussion über
Verbesserungen und weitere Entwicklungsschritte werden im finalen Abschnitt behan-
delt.

Index iv

Index

Abstract ii

1 Introduction 1

1.1 Motivation . 1

1.2 Aim of the work . 2

1.3 Related Works . 2

1.3.1 Facebook Messenger . 3

1.3.2 WhatsApp . 3

1.3.3 Telegram . 5

1.3.4 Wire . 6

1.3.5 Signal . 7

1.3.6 Exporter For Facebook/WhatsApp . 8

1.4 Comparison summary . 9

2 Methodology 10

2.1 Specification . 10

2.1.1 Time schedule . 10

2.1.2 Installation and Deployment . 10

2.2 Approach . 11

2.3 Implementation plan . 11

2.4 Testing plan . 12

2.5 System Architecture . 13

2.5.1 Use-Case diagram . 13

Index v

3 Results 14

3.1 Requirements . 14

3.2 Android Project Structure . 14

3.3 XML File . 28

3.3.1 XML File Use-Case Diagram View . 28

3.3.2 XML File Structure . 28

3.3.3 Comparison of the XML output files for Signal and for Wire 30

3.4 ZIP directory structure . 33

3.5 HTML-Viewer Structure . 33

3.6 Layout Design and Functionality . 35

3.7 Maintenance . 40

4 Conclusion 41

4.1 Summary . 41

4.2 Problems . 41

4.3 Future Work . 41

Bibliography 47

Abbreviations vi

Abbreviations

AES Advanced Encryption Standard

AOSP Android Open Source Project

API Application Programming Interface

APK Android Application Package

APP Mobile Application

AVD Android Virtual Device

CBC Cipher Block Chaining Algorithm

DH Diffie–Hellman key exchange

E2EE End-to-End Encryption

GDPR General Data Protection Regulation

GIF Graphics Interchange Format

GUI Graphical User Interface

HTML HyperText Markup Language

HMAC Keyed-Hash Message Authentication Code

IDE Integrated Development Environment

IM Instant Messaging

iOS iPhone Operating System

IP Internet Protocol

Abbreviations vii

IP address Unique address that identifies a device or local network by using IP for commu-
nication

IV Initialization Vector

JSON JavaScript Object Notation

KB Kilobyte

MAC Message Authentication Code

MiTM Man-in-the-Middle

MTProto Mobile Transport Protocol

OS Operating System

QR Code Quick Response Code

SDK Software Development Kit

SRTP Secure Real Time Transport Protocol

RSA Rivest − Shamir − Adleman Asymmetric cryptography algorithm

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

XML Extensible Markup Language

XSD XML Schema Definition

ZIP Archive File Format that supports lossless data compression

List of figures viii

List of Figures

2.1 Use-Case-Diagram user’s interactions for exporting a conversation 13
3.1 Chat Export Activity Navigation Design . 16
3.2 Use-Case-Diagramm for the XML Document . 28
3.3 HTML Viewer . 34
3.4 Conversation Settings . 35
3.5 Chat Export Setting Main Layout . 35
3.6 Chat Export Period Settings . 35
3.7 Chat Export with Media Files option selected . 36
3.8 Choose location . 36
3.9 Select a folder to save the ZIP-file . 36
3.10 Allow the access to the selected location . 37
3.11 Chat Export results successful . 37
3.12 ZIP file appears in the storage . 37
3.13 ZIP content - just conversation . 38
3.14 ZIP content - chat and media . 38
3.15 ZIP content - chat and viewer, no media . 38
3.16 HTML Viewer . 38
3.17 Example of an exported conversation extract on the HTML Viewer 39

List of tables ix

List of Tables

1.1 Comparison of conversation export tools for different applications in terms of features,
security and privacy [28] . 9

Secure Chat Export for Signal-Android 0

Secure Chat Export for Signal-Android 1

1 Introduction

1.1 Motivation

IM programs allow smartphone owners to communicate in one-to-one conversations, a chat room for
just two people, or group chats. The group’s creator generates the channel of communication and
usually has the right to add more people. Here every member can read and answer the messages.
With Messenger apps, users can text themselves, share links, graphics, multimedia files and make
video or voice calls. There is an extended list of chat clients; not all are part of chat-oriented
programs but as an additional service to the main app.

The OS of the user’s device is essential. It provides the set of programs that manage the hardware
and the tools to handle it. Moreover, it determines which other programs can run on the device.
That is why applying a single solution is not an option for the IM Signal-Android itself, but designing
different solutions is expected for each platform on Android, iOS and each Desktop OS. Nevertheless,
all these Signal apps share the same Signal Server. To participate, users need to download Moreover,
install a chat client on their device to connect with the chat server, managing all conversations.

The most relevant chat clients have been updating their services over the years. They improved
their appearance and usability to conform to their community taste, make the product engaging,
compatible with different users’ devices and can handle multiple protocols so that clients can talk
with several users simultaneously. Other deciding properties for choosing one messaging program
over others are cloud synchronization, conversation options, identity and data security, privacy, cost,
analytic or ads. Among them, data privacy has become one of the biggest worries for many IM
users. There is not much interest in legislating against the private use of user data[1].

Over the last few years, more and more people are migrating to other messaging services like Signal
that provide data protection using E2EE protocols for all chats and calls. To identify the user, it
saves the telephone number, using unique safety numbers to ensure users the protection of their
messages, chat rooms and calls from external intrusions. After May 2018, the GDPR guarantees
the right to data portability from any digital environment, which helps to transfer and recover the
interchanged personal data within a system. However, this legal basis simultaneously exposes many
questions: no law controls the services that manage the transferred data, besides users need to
understand and interpret this data; furthermore, the misuse of data after their transfer may occur.
However, what happens next? How would an ideal model carry out this portability?[2][3].

On the other hand, Signal does not store the interchanged data on their servers but the user’s
devices. One question arises concerning the stored data if someone accidentally deletes it from the
device or if the user loses the device. Consequently, users cannot recover their messages, files, audio
files or pictures. This fact will inevitably concern the way a user manages its stored data because,
at the moment, a whole backup for recovering old messages is required. Most of the chatting apps

Secure Chat Export for Signal-Android 2

support a backup, creating a copy of the current status of the environment. That generates a
complete snapshot of the stored data from all services, including irrelevant data to the userś needs.

Given this, exporting single conversations is a pretty exciting choice. It allows easy access to past
messages after a time, forgetting the complexity of recovering from a backup. Furthermore, it can
be an attractive option that allows users to transfer chats onto different platforms to migrate their
activity to alternative online places.

1.2 Aim of the work

This thesis aims to analyse and review the development of a secure chat export tool for single
one-to-one or group conversations in Signal-Android.

Exporting chats allows storing interchanged messages and files, including media in general, and
interpreting them through an external visualisation tool. Here transferring the result to other online
services is not considered, but there is no doubt that this feature would complete the intention of
the whole project. The integration of this solution takes place in Signal-Android. The security
assurance in the developed service arises by taking the chat data over the same app functionality
used to print them in the conversation content view. There are no deviations of data to somewhere
else. After choosing the export chat option, the system copies the content of this conversation in
a file, includes other media directly taken from the user device, and packs everything in a ZIP file.
The user device saves this package without the intervention of other services.

One of the significant advantages of this proposal over the full backup is the prospect of keeping the
messages users wish to preserve. Additionally, it can limit the chat content for a specified period
or include shared files, an HTML Viewer, or both. That allows users to reread the conversation
comfortably.

While full backups take longer to perform and retrieve, they are redundant and have many recovery
restrictions. The secure chat exportation takes less time than full backups. Opening the resulting
file does not depend on the chat platform and can be viewed independently.

1.3 Related Works

This section introduces the following: an overview of some popular Messenger services, as well
as a comparison and contrast with existing approaches (e.g., built into other secure or non-secure
messengers or export tools), how they handle the export of peer-to-peer communication and group
conversations, the level of protection they offer while communicating, and, in this context, the
differences between each other.

Secure Chat Export for Signal-Android 3

• IM solutions

1.3.1 Facebook Messenger

The recently announced company brand Meta, parent of the most popular social networks,
integrated IM with the fusion of Messenger into its Facebook framework for ten years. It added
a bunch of new functionalities like video calls, group messages or payment, among others.
Facebook collects a large amount of personal data such as biometric facial data, habits, contact
details, personal contacts, logs IPs, timestamps and much more. The company categorizes
this information and uses it to select and filter their target public, and offers it strategically
to advertisers for their profit, commercing with them.[4][5]. Messenger currently encrypts
messages and attachments just in transit as well as the stored message log. Nevertheless,
Facebook holds the key so that third parties like authorities, hackers, or the company itself
could access the users private content. Just the organisation policy protects users data. No
robust encryption techniques are applied.[6]. An integration plan of E2EE in Messenger by
default is unknown, but this option can be enabled manually.[7][8].

Downloading Facebook posts, notes, or Messenger chats from both a desktop and a mobile
device is an option that Facebook presents. The social network member can find it under
Settings & Privacy → Account Settings → Your Facebook Information → Download Your
Information. After selecting this option, the user shall see a long list of different kinds of
data that Facebook stores (including IM chats)[9][10]. Users can select the content they are
interested in, choose a date range, pick which format (HTML or JSON) they wish and the
quality of the media files too. Later, the system works on the creation of a package that
contains all these pieces of information. This data export does not work immediately, but
Facebook sends a notification to the user when it is available to be retrieved. Before considering
downloading, users must introduce their password. This copy of the user data collection will be
available to be downloaded for just a few days under Download Your Information → Available
Copies.

Nevertheless, the only way a user can extract a single chat history is to download all Messenger
data.

1.3.2 WhatsApp

WhatsApp is considered one of the world’s fastest-growing technology companies, was sold
to Facebook in 2014 and now is part of the platform Meta. This IM company always had
a clearly defined business model that offers a free, fast messaging service worldwide over the
phones. Today more than two billion users have created a WhatsApp account, making the

Secure Chat Export for Signal-Android 4

company the largest messaging app. Over the years, this company has been developing the
product to send media content, build E2EE, create business accounts over other features[11].
Although, at the beginning of 2021, Whatsapp introduced a new privacy policy that allows
them to collect and share user data with other businesses: phone numbers, device ID, location,
transaction data, product interaction or user identifiers[12][13].

End-to-End Encryption The E2EE system and the algorithm they use correspond to the one
presented in the Signal Protocol library, an Open-Source library.

For further understanding of the security which applies this E2EE protocol, a synopsis fol-
lows:[14]

– Trust establishment

∗ Client and Server interchange public keys to build an encrypted session creating a
master_secret by using asymmetric encryption.

∗ Additionally, it establishes a Root-Key and Change-Keys; those will remain until the
app’s internal status changes on the device.

– Conversation security protocol

∗ Users can send messages, as well if the recipient is connectionless. In this case, the
recipient will build the session when the device is available. The sent message will
include session setup information in its header.

∗ The master_secret is calculated using this header information and gets the derived
Root Key and Chain Keys once the recipient receives the message. Every message
sent is protected with a unique Message Key (80 bytes) in CBC mode with HMAC
for authentication.

∗ For the response, a new Chain Key and Root Key are calculated based on other
calculations between ephemeral public keys of sender and recipient.

– Large files are equally encrypted. A blob store stores the attachment. Afterwards,
the recipient receives a standard encrypted message pointing to the encrypted blob and
decrypts the data.

– Group messages are dispatched by building pairwise encrypted sessions and applying
server-side fan-out where the server spreads a single message for each other member of
the group instead of the recipient itself (client-side fan-out).

∗ For delivering messages to all group members, the protocol gives encrypted Sender

Secure Chat Export for Signal-Android 5

Keys to each group participant for the first time.

∗ Subsequent messages are sent by using Message Keys as described above. The sender
transmits the ciphertext to the server, which distributes it to all members of the
group.

∗ When the number of group participants changes, all members remove the Sender
Key and renew them as mentioned.

– Calls apply E2EE likewise: An encrypted session must be created in the first place
if needed. Then the caller creates an encrypted message announcing an incoming call
and attaches a random 32 bytes SRTP master secret. By accepting this call, an SRTP
encrypted call is held.

The chat export feature developed by WhatsApp contemplates two alternatives.

– The first one is to create a backup either manually or automatically. The encryption of
the messages in the backups stored in the cloud allows everyone with access to read the
data[13].

– The second one is to send a copy of a single chat history as a TXT file via email.

Precisely, this last option can be found by touching the options menu and then, users select
if they want to attach media files. The full report provided by the company[15] informs that
around 40000 messages can be included when the chat to export does not include multime-
dia content. Contrarily with multimedia content, the file contains around 10000 messages.
Considering the last option, while trying to export an extensive chat, some media files were
included, but a lot were missing.

This type of export solution they offer shows limitations due to the maximum email size and
large files that can be missing.

1.3.3 Telegram

Telegram is a strong growing community that counts with more than half a billion users. It is
a free and fast cloud service. It allows synchronisation on many devices and uses an encryption
system for chats, groups or multimedia. Regarding data collection: Telegram stores name,
phone number, contacts, user identification and profile pictures. There are two different types
of chat rooms on Telegram: cloud or secret chats. They store the cloud messages on their
servers and do not keep any information about other secret chats, except for media content
in secret chats[16].

Secure Chat Export for Signal-Android 6

The network’s security is based on the MTProto 2.0 Mobile Protocol, a combination of AES
symmetric encryption, RSA encryption, and DH[17][18]. For a better perception of this secu-
rity, a revision follows:

– The client creates an authorization key at the beginning, shares it with the server, and
obtains its server salt for all future communications.

– The encryption of sessions begins with a 64-bit number created with the authorization
key.

– For ordinary chats, it seems that Telegram does not use end-to-end encryption by default,
but for secret chats where servers are not involved, although client-server communication
is encrypted.

– The encryption of messages is defined as follows. An external header at the beginning of
the message contains an identifier and a message key. Together with the user key, this is
applied to cypher these messages.

– Voice calls are E2EE using the 3-DH handshake instead of the original two messages
between the parties, to avoid MiTM attacks on DH.

Regarding the export chats feature, Telegram covers this option under two different points of
view:

1. Although the company does not offer an automatic backup option, it can be done man-
ually via Telegram Desktop

2. Chat Export tool on Telegram Desktop.

This option allows the user to export all types of user information, the contact list, private
chats, bot chats, private and public groups, own messages, private and public channels, ex-
changed multimedia content and exchanged files, the sessions data and other miscellaneous
data. This choice is on the desktop APP, under Settings → Advanced → Export Telegram
data. Then a new window facilitates the selection of the information that should be exported
on clicking Export.

1.3.4 Wire

Wire is another popular IM AOSP app that provides private and secure communication with
others, supporting all essential characteristics of IM apps. The server collects metadata during
the client registration, such as device type, model, timestamp, IP location or authentification
cookie. However, the device stores necessary local data. This service encrypts the messages,

Secure Chat Export for Signal-Android 7

all types of files and calls by using E2EE, as well as it stores the data on their servers[19][20].
For a better understanding of this security, a revision follows:

– API authentication uses tokens and cookies, persistent or session-based.

– To send messages, users need a cryptographic session with each participant. Text mes-
sages are E2EE.

– Assets shared are uploaded in plain text and encrypted before sending. The server stores
these assets and allows the user to recover them at any time.

– The encryption of messages is defined as follows. An external header at the beginning of
the message contains an identifier and a message key. Together with the user key, this is
applied to cypher these messages.

– 1-to-1 calls are SRTP-encrypted using the DTLS handshake and the authenticity of the
participants is checked during the handshake.

For conversation backups, the multi-device platform allows a copy of the usersćonversations
history, protecting it with an encryption password chosen by the user. It just can be restored
on the same platform [21]. As an AOSP, Wire can be extended and indeed there exists
a fork implementing a single chat secure export feature on this platform[22]. This export
functionality has been an inspiration for this project.

1.3.5 Signal

Signal arrived as a solid alternative for the famous IM services. Since Signal is an AOSP, it
has its code available for everyone and is open for testing, user changes and experiments. It
is easy to analyse and adapt. Protecting user data has been considered one of the relevant
aspects of the platform. Until now, most IM apps collect other unnecessary metadata, linking
the phone to the user identity. With this in mind, the only user data Signal retains is the
telephone number to identify the end-user, date of account creation and date of last use[23].

In addition, Signal has developed a cryptographic system based on the idea of fingerprints, a
unique identifier for each person. They developed a numeric encoding system which is called
Safety Numbers. Having this option, users can ensure that the communication channel is
private. This encoding does not just depend on their devices but the different chat rooms,
and can be done by scanning a QR code or number comparisons.

However, the fundamental security aspect of the IM service is the E2EE protocol designed
by Signal, which protects the conversations and calls, making them secure and private. It
is hard to say how secure it is because there is no definition of security characteristics that

Secure Chat Export for Signal-Android 8

must be accomplished[24].Indeed, last year a bug was detected. Some users sent random
images to random contacts. This fact has partially compromised the privacy of user data[25].
Additionally, a list of detected vulnerabilities[26] and many other issues are described[27] to
be fixed.

As an open-source project, Signal has many contributors who build, maintain, test, etc. the
software application daily. A backup service for the whole chat history is already offered by
Signal. However, the export of single chats is an extra feature that the Android app does not
include at the moment.

• Third-party solutions

1.3.6 Exporter For Facebook/WhatsApp

The Exporter app for conversations on external platforms such as Facebook or WhatsApp by
GilApps (totally independent of the mentioned enterprises) are available in the Google Play
Store for Android devices with at least Android 4.1., offer a trial version for free and activate
all features with an In-App purchase.
Usability:

– The services offer users conversation transformation to plain text, PDF including multi-
media content and text, CSV as a datasheet, JPG or HTML files.

– Besides, users can customize the resulting output by using different themes, including a
preview.

– Finally, users can select conversations and send them by email or print them with an
additional app that provides a printer service with the desired format in the File Man-
agement System.

This application offers the users an extensive list of choices for designing the output of the
conversations, users can export the results to different formats and receive them in many
different ways. There are some security problems detected in this type of application. When
downloading an external app for exporting chats, granting that app permissions to access
chats and media is unsafe. Trusting an external service without any guarantees may fail
or not cover exceptional cases, and providers do not take responsibility for mistakes. Giving
access to private data to an unknown third party that does not provide detailed documentation
about what service they provide apart from the description on the Google Play Store is not
trustworthy.

Secure Chat Export for Signal-Android 9

1.4 Comparison summary

Table 1.1: Comparison of conversation export tools for different applications in terms of features, security
and privacy [28]

Messenger WhatsApp Telegram Wire Signal

Android

Exporter

Tool

Open Source no no partially yes yes no

Single Chat Export no yes yes yes[22] no yes

Backup yes yes yes yes yes yes

Amount of user data collection +++ +++ ++ + + ?

E2EE Encryption for messages no yes yes yes yes no

Metadata Encryption no yes yes yes yes no

Log of IPs and timestamps yes yes yes no no ?

Third Data Protection no yes yes yes yes no

Secure Chat Export for Signal-Android 10

2 Methodology

2.1 Specification

2.1.1 Time schedule

The itinerary is the following:

1. Observation phase: ideas come from other related works

2. Settle the project and development environment

3. Study different approaches and create a project plan

4. List the requirements

5. Architecture

6. Detailed Design

7. Implementation and testing

8. Beta testing, review

9. Submit a pull request

Additionally, there was no deadline for completing this work.

2.1.2 Installation and Deployment

The feature was developed and built on the current Google-backed Android IDE, i.e. Android
Studio powered by the IntelliJ IDEA platform. The implemented feature was tested on an x86
android emulator with APIs 26, 29 and 30.

As Signal Android is an open-source project [29], it is necessary to build it from the sources. These
are the steps that have been taken [30]:

• Install Android Studio

• Install the SDKs and Add-Ons

• Import the root project

• Set up the AVD

Secure Chat Export for Signal-Android 11

• Build Gradle and avoid some shown errors

• Build the project

2.2 Approach

First, using Signal-Android to get familiar with it is a fundamental part. Considering relevant
aspects in order to adapt the new functionality to the whole project meaningfully is expected.

As stated above, our primary purpose is to develop a tool for exporting single conversations for the
Signal app on the Android platform. The different implementation approaches are the following:

• Choosing the format of the exported data:
Regarding this aspect, it was clear to export the data in a way that could be interpreted again
by other platforms or by using other tools. This resulted in the idea of exporting the data in
an XML formatted file. XML uses a human-readable language, supports Unicode, data can
be read and displayed with the HTML viewer. Furthermore, it allows using XSD schema to
ensure the document does not contain errors. Additionally, there are implemented solutions in
other IM services that use the XML language to extract information. A future project could
consider the transfer of single conversations between services using a standard XSD schema.
That is the reason why other similar options like JSON were discarded directly in favour of
XML.

• Design of the interface:
The Export Chat option had to be included in the proper chat the user wants to export,
either under the Conversation Settings or under the three-dots Menu in the top-right
corner. As Conversations Settings is, by the way, present in the three-dots menu as an
option and adding an extra option to this menu could result in loss of simplicity on the APP’s
design. Placing the Export Chat option under the conversation settings was essential. Here,
the settings show separation between elements options ordered by priority and separated from
the different choices.

• Location to save the chat:
Since our aim is, as mentioned in the Introduction, to keep the export safe, no third parties
need to be involved. Therefore the elected solution was to save a ZIP file containing the
conversation data on the personal Android device.

2.3 Implementation plan

Here the implementation plan responsible for chat exporting is shown. Therefore, it is necessary to:

Secure Chat Export for Signal-Android 12

• Create a Signal Master Fork and a new branch to implement our solution.

• Create an activity in the Signal Android project for the implementation of this functionality.

• Accessing the chat and its content.

• Create a XML document for storing the conversation details and content.

• Additionally, create an HTML viewer, where users can recall their conversations by selecting
the created XML file.

• Attach files to the ZIP File.

• Allow the user to choose a download folder.

• Continuously update the system to the latest master version and apply changes if needed.

2.4 Testing plan

In the next phase of the project, the testing will be focused just on technical and programming
aspects, considering the following tasks:

1. Test the feature mechanism for different types of conversation (groups, individuals, self) to
check that all mentioned possibilities work well.

2. Test the feature selecting different periods and control that the data written to the XML
formatted file is also delimited. Test for invalid periods as well.

3. Test each particular form of the chat export, including media/excluding media, HTML viewer,
and check for correctness.

4. Test the mechanism to request storage permission for downloading.

5. Test the facility response for different storage locations.

6. Test the HTML-viewer with the different options with or without including media to examine
if the information is displayed correctly.

7. Test the specific conversation components detached from each other in order to find defects.

8. Test the facility on different real and virtual devices with varying Android versions as well as
various screen sizes, densities, features and check for defects.

As the implementation advances, the testing plan needs extensions in order to cover unpredictable
defects. In order to have a bug-free feature, all feature requests shall follow the idea of workflow

Secure Chat Export for Signal-Android 13

testing, although this project does not cover the automation of the tests. Here, the debugger assists
as a tool for inspecting the bug in the code.

2.5 System Architecture

2.5.1 Use-Case diagram

The following diagram shows that "n" participants can hold a conversation. The Signal-Android
app contains each unarchived conversation on the main screen in the app. In every conversation
the user can select the option "chat export", which will ask the user for a location. The ZIP file is
created, and if the user desires, they can open it afterwards.

Figure 2.1: Use-Case-Diagram user’s interactions for exporting a conversation

Secure Chat Export for Signal-Android 14

3 Results

3.1 Requirements

• Reliability: the designed feature should not fail and be available for all android devices that
support the latest Signal version.

• Usability: easy to use, intuitive, adapted to the current version of the IM, reuse concepts
of other options in Signal, counts with a step back option, an XML file to reuse when im-
porting the chat content to this or other platforms, the viewer to display the content of the
conversation.

• Performance: users should think that the interaction is uninterrupted, delays should be
avoided, files should be attached to the ZIP file, the system should always respond about
the state of this interaction.

• Maintainability: updating the source code to have the feature in the latest version of the
Signal-Android app, testing functionality, and repairing failures.

• Security: exported data must be protected from third parties; data cannot be used for other
purposes than exporting the chat content. The user selects where the resulting export file is
downloaded on the user device.

• Signal requirements: for submitting a pull request, the contributor must sign the Contributor
License Agreement (CLA) and preserve the Code Style Guidelines[31]

3.2 Android Project Structure

• manifests

The "AndroidManifest.xml" contains the permissions and declarations of each activity. For
the single chat export activity, it was declared as follows:

418 <activity

419 android:name=".export.ChatExportActivity"

420 android:configChanges="touchscreen|keyboard|keyboardHidden|

orientation|screenLayout|screenSize"

421 android:windowSoftInputMode="stateAlwaysHidden">

422 </activity>

• res/layout

contains the app layouts, the user interfaces in the app.

Secure Chat Export for Signal-Android 15

These three layouts manage the activity:

1. chat_export_activity.xml
2. chat_export_fragment.xml
3. fragment_chat_export_time_picker.xml

The main fragment chat_export_fragment.xml describes the different options for the settings
included in a card-based layout, such as the option to include all interchanged media files
that have been sent in the chat or the choice to include an HTML viewer which lets the
user see its chats in a browser. Choosing a specific period to restrict the chat content ex-
port appears as a clickable text in this XML layout. Furthermore, there is a button at the
bottom named Export, which the user touches to start the export. The other fragment frag-
ment_chat_export_time_picker.xml supports selecting the specific times for the chat output,
allowing the user to insert a period manually or selecting between many standard options.

• res/navigation

contains different navigation graphs that describe the possible destinations and actions be-
tween layouts. Here the navigation component chat_export_settings.xml was created. It is
used in the chat export activity to link the feature’s settings with the time picker.

When the user touches the button, the Chat Export Activity starts. The activity chat_export_activity.xml
includes two fragments. The navigation resources include the navigation component chat_export_settings.xml,
representing the destinations and actions in this activity.

Secure Chat Export for Signal-Android 16

Figure 3.1: Chat Export Activity Navigation Design

• org/thoughtcrime/securesms/components

As a result of the observation phase, the conclusion was that the best way to introduce the so-
lution is by adding an Export Chat button in the settings because it will just be an infrequently
used action. It was implemented by attaching an option to the group and the individual lay-
outs with the name of Chat Export, this selectable text has the same design as any other
choice of the layout, like the same font, font size, font colour, alignment, background colours,
even a "download icon" was reused for the functionality from the \main\res\drawable\

folder. Apart from that, it is in an individual group which allows the user to easily distinguish
it from other actions in this settings menu.

Therefore, the following Android Kotlin class was modified:

.../settings/conversation/ConversationSettingsFragment.kt

In this case, this class works dynamically and takes the behaviour of the activity and the UI
by using the following function:

82 fun clickPref(

83 title: DSLSettingsText,

84 summary: DSLSettingsText? = null,

Secure Chat Export for Signal-Android 17

85 icon: DSLSettingsIcon? = null,

86 isEnabled: Boolean = true,

87 onClick: () -> Unit

88) {

89 val preference = ClickPreference(title, summary, icon, isEnabled,

onClick)

90 children.add(preference)

91 }

Listing 1: Attach option to conversation settings

declared in the class dsl.kt.

Additionally, a new package called export was created in org/thoughtcrime/securesms/,
containing all the JAVA-classes developed in this project:

ChatExportActivity First, the ChatExportActivity.java class was created in the org/thoughtcrime/
securesms/export source set directory in the project explorer. For managing different
views in the same activity, the use of "Fragments" has been considered.

ChatExportFragment The main fragment contains all options the user can select. Once the
settings are selected, the chat export interaction can start. The following methods were
implemented:

– This method gives functionality to all elements declared on this fragment layout, as well
as fragment transactions through the ChatExportViewModel are covered here.

94 public void onViewCreated(@NonNull View view, @Nullable

BundlesavedInstanceState)

Listing 2: Set up the initial state of the view for the chat export settings fragment

– The following method triggers an AlertDialog object, i.e. shows a pop-up screen asking
the user to choose a location for storing the data to export. On selecting "choose location",
the permission will be checked, and the gallery opened.

152 private void chooseSaveFileLocation()

Listing 3: Show dialog to select a location folder

– This other method checks for storage permissions.

174 public boolean isUserSelectionRequired (@NonNull Context context)

Listing 4: Check for storage permission

Secure Chat Export for Signal-Android 18

– To ask for accepting permissions if they are denied or still not accepted:

179 private void allowPermissionForFile()

Listing 5: Allow to accept permissions if they are not already accepted

– This method call creates an intent that opens the gallery and allows to choose a location
in the storage. The result is the selected path, provided after touching the "allow access"
button.

190 private void openGallery()

Listing 6: open the gallery for choosing a location in the storage

– To obtain the path for the chosen location.

209 public void onActivityResult (int requestCode, int resultCode, Intent

data)

Listing 7: Return the selected storage path

– After that, the following method is called to start the export process. It instantiates the
ChatFormatter and passes it to getMediaIfNecessary(...).

227 private void getFormattedChat (ChatExportViewModel viewModel)

Listing 8: Obtain the chat data in a ChatFormatter object

– Check if there are messages/media to export, then call handleSaveMedia(...).

254 void getMediaIfNecessary (@NonNull ChatFormatter exp,

ChatExportViewModel viewModel, Uri uri)

Listing 9: Proccess media file if they were requested

– This method checks if storage permissions are ok and then calls performSaveToDisk(...).

270 private void handleSaveMedia (

271 Uri path, @NonNull Collection<ChatFormatter.MediaRecord>

mediaRecords, HashMap<String, Uri> moreFiles,

272 boolean currentSelectionViewer,

273 String result)

Listing 10: Check storage permissions before attaching any file to the selected path

– This method creates an AsyncTask, where the ChatExportZipUtil includes media files
declared as Attachments. Afterwards, a ChatExportZipUtil is instantiated and calls the
method startToExport(...) to include the formatted data in the ZIP file.

Secure Chat Export for Signal-Android 19

293 private static void performSaveToDisk (@NonNull Context context,

294 Uri path,

295 @NonNull Collection<ChatFormatter.MediaRecord> mediaRecords,

296 HashMap<String, Uri> moreFiles,

297 boolean hasViewer,

298 String resultXML)

Listing 11: starts to attach the files to the zip file

ChatExportTimePickerFragment This second fragment appears to determine a period in which
the conversation occurred to delimit the messages between these two dates.

– This method declares all elements included in this fragment layout.
54 public View onCreateView(LayoutInflater inflater,

55 ViewGroup container,

56 Bundle savedInstanceState)

Listing 12: Instantiate the elements of the chat export time picker fragment

– The following method describes the functionality of the layout elements. Besides, the
ChatExportViewModel acts as the intermediary between the selected data here and in
the main fragment.

85 public void onViewCreated(@NonNull View view, @Nullable Bundle

savedInstanceState)

Listing 13: Set up the initial state of the view for the chat export time picker fragment

– To check for a valid period selection.
189 private boolean isValidPeriod ()

Listing 14: Check if the time period is valid

– To change the view elements which display the start export date and the end export
date:

193 private void setPeriodTime (Date untilDate, Date fromDate)

Listing 15: Change the time values on the text fields

– This method changes the period on the view model:
198 private void changePeriodTime (Date untilDate, Date fromDate)

Listing 16: Update time period on the view model

Secure Chat Export for Signal-Android 20

ChatExportViewModel The view model acts as a mediator between these two fragments so
that each fragment’s time variables can be accessible. Besides, it preserves the settings in the
last state. These are the variables that allow modifying the settings states:
private static final Boolean INITIAL_HTML_VIEWER_STATE,

INITIAL_MEDIA_STATE = false;

private static final String INITIAL_TIME_PERIOD = "Default (whole chat)";

private final MutableLiveData<Optional<Date>> startDateControls,

endDateControls = new MutableLiveData<>();

private final MutableLiveData<String> selectedTimePeriod = new

MutableLiveData<>(INITIAL_TIME_PERIOD);

private final MutableLiveData<Boolean> enableIncludeMediaControls = new

MutableLiveData<>(INITIAL_MEDIA_STATE);

private final MutableLiveData<Boolean> enableHTMLViewerControls = new

MutableLiveData<>(INITIAL_HTML_VIEWER_STATE);

Listing 17: Variables of the view-model

The methods in this class are getters and setters for the above mentioned MutableLiveData
variables.

ChatFormatter

– Constructor
110 ChatFormatter (@NonNull Context context, long threadId, Date fromDate

, Date untilDate)

Listing 18: ChatFormatter constructor

In this class, the required conversation is extracted from the MmsSmsDatabase in the
form of a cursor called conversation. Accordingly, the following method gets the cursor:

198 public Cursor getConversation(long threadId, long offset, long limit)

Listing 19: Cursor of the conversation

The following method calculates the offset:
154 public int getMessagePositionOnOrAfterTimestamp(long threadId, long

timestamp)

Listing 20: Message position for a timestamp or after it

Here, the limit is an integer number extracted from the difference between the number
of messages in the conversation at the selected end date and the number of messages at
the selected start date. The method that counts the messages at a specific time is:

Secure Chat Export for Signal-Android 21

330 public int getConversationCount(long threadId, long beforeTime)

Listing 21: Number of messages before a date

– Output

In order to create a document that contains an XML formatted file, the following im-
ported objects are needed to obtain the desired result:

156 TransformerFactory transformerFactory = TransformerFactory.newInstance

();

157 Transformer transformer = transformerFactory.newTransformer ();

158 transformer.setOutputProperty (OutputKeys.INDENT, "yes");

159 transformer.setOutputProperty (OutputKeys.METHOD, "xml");

160 transformer.setOutputProperty (OutputKeys.ENCODING, "UTF-8");

161 transformer.setOutputProperty ("{http://xml.apache.org/xslt}indent-

amount", "4");

162 DOMSource source = new DOMSource (dom);

163

164 StringWriter outWriter = new StringWriter ();

165 StreamResult result = new StreamResult (outWriter);

166 transformer.transform (source, result);

Listing 22: Create the xml formatted document

In the first instance, the threadId variable determines the conversation that was selected.
Therefore, the implicated participants’ data are easily obtained with this threadId con-
stant variable by accessing the thread and recipient databases and choosing the recipient
for the thread id. Equally, other data are provided for the selected conversation, such as
group details and a member list.

182 ThreadDatabase threadDatabase = SignalDatabase.threads();

183 RecipientDatabase recipientDatabase = SignalDatabase.recipients();

184 Recipient recipient = threadDatabase.getRecipientForThreadId (threadId

);

185 assert recipient != null;

186 RecipientDatabase.RecipientSettings settings = recipientDatabase.

getRecipientSettings(recipient.getId ());

Listing 23: Obtain the recipient

Once the cursor is defined, a reader for this cursor is opened. The reader works as
a pointer for each contained message, an object of the class "MessageRecord". In this
object, the instantiated variables are the recipient id, the body, the recipient author,

Secure Chat Export for Signal-Android 22

dates, thread id, type, reactions, timestamps, and other variables not taken into account
for the project.

– The MediaRecord object was created to include all necessary information of a media file
that could later be saved in a map selectedMedia with its unique attachment key.

918 private MediaRecord (@Nullable DatabaseAttachment attachment,

919 @NonNull RecipientId recipientId,

920 long threadId,

921 long date,

922 boolean outgoing)

Listing 24: MediaRecord object joins the necessary attachment information

Created mediaRecord objects are retrieved easily by calling the following method:

874 public Map<String, MediaRecord> getAllMedia ()

Listing 25: set of all media in the selected conversation

– Methods which give structure to the XML document:

A simple conversation export allows structuring messages creating nested tags in the
XML document for these elements and attributes.

845 private Element addElement (Element parent, String tagname, String

content)

Listing 26: Add XML Element to its parent

851 private void addAttribute (Element parent, String tagname, String

content)

Listing 27: Add XML Attribute to an element

874 private Element addElement (Element parent, String tagname)

Listing 28: Add XML Element to its parent without content

The highlighted elements below summarize the categories of data that can be found in
a single conversation message and describe the data location. However, these different
elements are not yet easily located or entirely usable, as explained below, like, for example,
the path of an attachment. If media content and HTML viewer are included in the
ZIP, these attachments are tracked so that the content can be retrieved, given that the
attachment path changes to point to a path in the created zip file structure.

Mentions are found by means of using the MentionUtil class, specifically the method:

Secure Chat Export for Signal-Android 23

60 public static @NonNull UpdatedBodyAndMentions

updateBodyAndMentionsWithDisplayNames(@NonNull Context context,

@NonNull CharSequence body, @NonNull List<Mention> mentions)

Listing 29: Obtain the right mention

and

167 public @NonNull List<Mention> getMentions()

Listing 30: Obtain list of mentions from a message

For each Mention object, the following data to be preserved are selected: mentioned
person’s id, name, and some integers that indicate the position of the message where
this mention starts and how many characters it has (start value and length).

Shared contacts are stored in the MmsMessageRecord object as a list of Contact objects.
From this Contact item, the following data are obtained: contact name and other
optional data objects such as email addresses (Email), phone numbers (Phone) or
postal addresses (PostalAddress).

87 public @NonNull List<Contact> getSharedContacts()

Listing 31: Obtain a shared contact from a message

Link previews likewise are found as a list of LinkPreview objects in the MmsMessageRecord
object. Accordingly, a link preview in a message keeps the following variables: title,
URL, text description, date and optional attachments.

91 public @NonNull List<LinkPreview> getLinkPreviews()

Listing 32: Obtain the link preview from a message

Quotes appear as a list of Quote objects for the message record. Usually, a message
record contains just one quote. Under this presumption, users can attach a single
pre-selected message when they are writing a new reply to this previous message.
Consequently, the necessary data are quote id, author name, quote text, quote at-
tachment and timestamp.

83 public @Nullable Quote getQuote()

Listing 33: Obtain the quote from a message

Any media content shared but stickers are considered as Attachments and included in the at-
tachments database. Attachments store the following data about the file: attach-
ment id, key, filename, size, content type, width, height and upload timestamp.

Secure Chat Export for Signal-Android 24

Additionally, some boolean variables which indicate its file type, such as voice note,
borderless, video GIF, quote (for quote attachments), are equally included.

535 @NonNull private List<DatabaseAttachment> getDatabaseAttachments(

@NonNull MessageRecord record)

Listing 34: Obtain the list of attachments of a message

Stickers are also attachments, but have null as attachment key, so they must be considered
independently from other Attachment objects. To identify them the object Sticker
was chosen by selecting the pack key string attached to the sticker id.

Reactions are part of the message record. A reaction object is defined by the following
variables: author id, author name, timestamp and emoji.

585 public @NonNull List<ReactionRecord> getReactions()

Listing 35: Obtain the reactions to a message

ChatExportZipUtil

– Constructor

90 public ChatExportZipUtil (Context context, Uri storagePath, int count

, long threadId) throws IOException, NoExternalStorageException

Listing 36: ZIP constructor

- To proceed to create the ZIP file, the next method must be called:

130 protected void startToExport(Context context, boolean hasViewer,

String data) throws IOException

Listing 37: Method which calls other methods for creating the ZIP file

- The given storage path represents the selected directory tree. In this path, a Docu-
mentFile with the conversation name is created:

111 private DocumentFile instantiateZipFile()

Listing 38: Method which creates the ZIP file

- A ZipOutputStream is instantiated after creating the ZIP file by using its URI path in
the following method:

102 public ZipOutputStream getZipOutputStream() throws IOException

Listing 39: Create the ZipOutputStream object

Secure Chat Export for Signal-Android 25

- Next, the XML files and desired complements are attached to the ZIP file.

198 public void addFile (String name, InputStream data)

Listing 40: Files can be attached to the ZIP-file

– Attachments:

411 public Attachment(Uri uri, String contentType, long date, long size)

Listing 41: Attachment object for media included in the ZIP file

– ProgressDialogAsyncTask<ChatExportZipUtil.Attachment, Void, Pair<Integer, String>:

The ChatExportZipUtil implements this extension of an AsyncTask<Input, Progress,
Output>, in which the inputs are the ZIP attachments, the progress is calculated in the
background, and the output is a Pair<Integer, String> in which the integer is assigned
to an exit status of the task. This functionality works by using the following method:

265 @Override

266 protected Pair<Integer, String> doInBackground(ChatExportZipUtil.

Attachment... attachments)

Listing 42: Background task for ZIP file generation

After performing the media attaching process, the following method is called to evaluate
the result of the previous method, in this case, if all the uploading was successful:

301 @Override

302 protected void onPostExecute(final Pair<Integer, String> result)

onPostExecute()

Listing 43: Task for attaching files to the ZIP file

When all child files are attached to the ZIP file, the AsyncTask proceeds to close the
ZipOutputStream by calling the inherited method close() here:

246 public void closeZip () throws IOException

Listing 44: Close ZIP file

– Methods:

* Create the name of the ZIP file:

119 private String createFileName ()

Listing 45: Creates filename for the ZIP file

Secure Chat Export for Signal-Android 26

* Attach the viewer to the ZIP file

137 private void includeHTMLViewerToZip (Context context)

Listing 46: Include HTML viewer to the ZIP file

* Retrieve the path where a media file should be saved:

148 public @NonNull

149 static String getMediaStoreContentPathForType (@NonNull String

contentType)

Listing 47: Get a path in the ZIP for a media file

* Name the attachments and create their paths:

166 private String createOutputPath(@NonNull String outputUri, @NonNull

String fileName)

167 throws IOException

Listing 48: Create output path for attachments

* Create a name for the file, which must be included in the XML document to link the
extracted file to the media element:

188 public static String generateOutputFileName (@NonNull String

contentType, long timestamp, @NonNull String uriPathSegment)

Listing 49: Create output file name for attachments

* This method adds the given Attachment to the ZIP file:

221 @NonNull

222 private String saveAttachment (Context context, Attachment attachment)

throws IOException

Listing 50: Add attachment to the ZIP file

Depending on the attached file, the InputStream can be created either directly from the
String data, by opening the InputStream calling the AssetManager in order to append
the HTML-Viewer files or by calling the following method when the file to attach is an
Attachment:

67 public static InputStream getAttachmentStream(@NonNull Context context

, @NonNull Uri uri)

68 throws IOException

Listing 51: InputStream for attachments

Secure Chat Export for Signal-Android 27

* Retrieve the content type of an attachment

237 private String getContentType (@NonNull Attachment attachment)

Listing 52: Content type of an attachment

* Add the given content of the XML document to the ZIP file

241 private void addXMLFile (@NonNull String data)

Listing 53: Add XML file to the ZIP package

* Communicate if the ZIP File was created successfully:

331 private void createFinishDialog (Context context)

Listing 54: Show chat export finish dialog

* Create a new intent to show the selected storage directory:

355 private void openDirectory (Uri storageDirectoryUri)

Listing 55: Open the directory where the ZIP-file was saved

• assets provide extra files that the package .apk includes when it is generated.

Here the HTML-viewer tool has been added, specifically these three files:

1. chatexport.htmlviewer/jquery-3.6.0.min.js

2. chatexport.htmlviewer/signal-app.png

3. chatexport.htmlviewer/viewer.html

Another file was created there in order to provide the XSD schema for the chat.xml

– chatexport.xsdschema/export_chat_xml_schema.xsd

Secure Chat Export for Signal-Android 28

3.3 XML File

3.3.1 XML File Use-Case Diagram View

Figure 3.2: Use-Case-Diagramm for the XML Document

3.3.2 XML File Structure

Here are some examples of the XSD-schema elements for the different blocks in which the resulting
XML document is divided.

<xs:complexType name=" contactType ">
<xs : annota t i on>

<xs:documentat ion>
Persona l data o f the i n d i v i d u a l

</ xs:documentat ion>
</ xs : annota t i on>
<x s : a l l>

<xs : e l ement name=" prof i le_name " type=" x s : s t r i n g " minOccurs=" 0 " />
<xs : e l ement name=" r e l a t i o n " type=" x s : s t r i n g " minOccurs=" 0 " />
<xs : e l ement name=" t r a c k i n g i d " type=" x s : s t r i n g " minOccurs=" 0 " />
<xs : e l ement name=" teamid " type=" x s : s t r i n g " minOccurs=" 0 " />
<xs : e l ement name=" about " type=" x s : s t r i n g " minOccurs=" 0 " />
<xs : e l ement name=" phone " type=" x s : s t r i n g " minOccurs=" 0 " />
<xs : e l ement name=" emai l " type=" x s : s t r i n g " minOccurs=" 0 " />

</ x s : a l l>
<x s : a t t r i b u t e name=" id " type=" x s : s t r i n g " />
<x s : a t t r i b u t e name="name" type=" x s : s t r i n g " />

Secure Chat Export for Signal-Android 29

</ xs:complexType>

Listing 56: Contact type definition in the XSD-Schema

<xs:complexType name=" logListType ">
<xs : annota t i on>

<xs:documentat ion>
L i s t o f e n t r i e s f o r the found messages

</ xs:documentat ion>
</ xs : annota t i on>

<xs : s equence>
<xs : e l ement name=" turn " type=" turnListType " minOccurs=" 0 " maxOccurs="

unbounded " />
</ xs : s equence>

<x s : a t t r i b u t e name=" date " type=" x s : s t r i n g " />
</ xs:complexType>

<xs:complexType name=" turnListType ">
<xs : annota t i on>

<xs:documentat ion>
S p e c i f i e s the author and i n c l u d e s the output

</ xs:documentat ion>
</ xs : annota t i on>
<x s : a l l>

<xs : e l ement name=" message " type=" messageType " />
</ x s : a l l>
<x s : a t t r i b u t e name=" author " type=" x s : s t r i n g " />

</ xs:complexType>

<xs:complexType name=" messageType ">
<xs : annota t i on>

<xs:documentat ion>
S p e c i f i e s the output d e t a i l s

</ xs:documentat ion>
</ xs : annota t i on>
<x s : a l l>

<xs : e l ement name=" body " type=" bodyType " />
</ x s : a l l>
<x s : a t t r i b u t e name=" id " type=" x s : s t r i n g " />
<x s : a t t r i b u t e name=" time " type=" x s : s t r i n g " />
<x s : a t t r i b u t e name=" i s_de l e t ed " type=" xs :boo l ean " />
<x s : a t t r i b u t e name=" s t a t u s " type=" x s : s t r i n g " />
<x s : a t t r i b u t e name=" mismatched_ident i t i e s " type=" x s : s t r i n g " />
<x s : a t t r i b u t e name=" exp i re s_in " type=" x s : s t r i n g " />

</ xs:complexType>

<xs:complexType name=" bodyType ">
<xs : annota t i on>

Secure Chat Export for Signal-Android 30

<xs:documentat ion>
S p e c i f i e s the output type o f content

</ xs:documentat ion>
</ xs : annota t i on>
<x s : a l l>

<xs : e l ement name=" text " type=" x s : s t r i n g " minOccurs=" 0 " />
<xs : e l ement name=" shared_contact " type=" sharedContactType " minOccurs=" 0 " />
<xs : e l ement name=" mention " type=" mentionType " minOccurs=" 0 " />
<xs : e l ement name=" quote " type=" quoteType " minOccurs=" 0 " />
<xs : e l ement name=" l i n k " type=" l inkPreviewType " minOccurs=" 0 " />
<xs : e l ement name=" media_content " type=" mediaContentType " minOccurs=" 0 " />
<xs : e l ement name=" r e a c t i o n s " type=" react ionsType " minOccurs=" 0 " />

</ x s : a l l>
</ xs:complexType>

<xs:complexType name=" react ionsType ">
<xs : annota t i on>

<xs:documentat ion>
R e g i s t e r s r e a c t i o n s

</ xs:documentat ion>
</ xs : annota t i on>
<x s : a l l>

<xs : e l ement name=" author " type=" x s : s t r i n g " />
<xs : e l ement name=" time " type=" x s : s t r i n g " />
<xs : e l ement name=" emogi " type=" x s : s t r i n g " />

</ x s : a l l>
<x s : a t t r i b u t e name=" author_id " type=" x s : s t r i n g " />

</ xs:complexType>

Listing 57: Example of different types for a conversation in the XSD-Schema

3.3.3 Comparison of the XML output files for Signal and for Wire

The first view in the XSD-schema published on the Wire GitHub[22] shows that its chat export
data structure was detailed. The goal of this structure was to make further processing easier like
for importing chats to other apps in the future by using this same schema.
The Wire XSD schema, which describes the structure of the XML document of the Wire solution
for single chat export was a reference to start with. At the beginning of the project, it was puzzling
to identify which parts both solutions have in common and how to integrate the conversation export
data of Signal in this other schema. Accordingly, an XML file with a similar structure was created
step by step containing the element tags observed in the analysed objects’ functions — besides,
the data found in the Signal Databases attaches additional tags to the XML file. The resulting
solution contains general elements, which are also contained in the Wire solution, but many of these
elements were structured differently.

Secure Chat Export for Signal-Android 31

The following element types comparisons inspect the essential differences between the two solutions:

Comparison of conversation element types In Wire the following elements define conversations: id, re-
moteid, creator, convType, verified, userroles, messages, name, teamid, access, accessrole and link.
In the XML file in Signal, the elements that describe conversations are not defined as in Wire:
threadid, selected_time_period, a list of logs (list of messages sorted by date as an attribute).
All other elements are not included, because they were not available on the database, private (as
userrole) or nonexistent.

Comparison of message element types

• In the case of the messages element types, in Wire each message element can be defined
with the following data: id, msg_type, userid, state, time, contents, protos, local_time,
first_message, error, members, recipient, edit_time, ephemeral, expiry_time, duration, as-
set_id, quote.

While in Signal, a message type can be defined with the following elements: author, author_id,
id, is_deleted, expires_in, time, local_time, status, msg_type(which differs with the declared
on Wire), body, mismatched_identities, reactions.

• The defined object protoType in the Wire XSD-schema includes a mix of data that includes
the following references: to assets, calling, cleared, clientaction, deleted, edited, external,
hidden, image, knock, lastread, reaction, text, location, confirmation, availability, composite,
buttonaction, buttonactionconfirmation, datatransfer and debug_data.

Although many of these elements are found in the Signal database, the resulting solution
does not use this protoType element, but they are included as media_content elements. The
elements which describe the protoType are defined by other names in Signal, are private
or not existent (as availability, clientaction, verified, access_type, accessrole_type, conversa-
tion_type_type, conversation_role_type, message_part_type).

• The description of the XSD schema published on the Wire GitHub describes the message
element types with many redundant data that are not included in the MessageRecord ob-
ject like first_message, members, asset_id or quote. On the other hand, there is another
class (MessageRecordUtil) that was used to define the content of messages (body), which
includes: mms, sharedcontact(not existent in the Wire XSD-Schema as an element), linkpre-
view, quote, mentions, media_content, sticker, location, audio, captionlessmms, borderless,
document, viewoncemsg, extratext, text. These other elements are not defined together, in

Secure Chat Export for Signal-Android 32

the same element type, in the Wire XSD schema, but included as message_text_type, mes-
sage_composite_type or the protoType mentioned above.

Comparison of media content element types On Signal media content refers to an object with id, file-
name, fast_preflight_id, key, size and the following attachment data types:

• audio (content_type, name, voice_note, caption, duration_sec)

• video (content_type, name, width, height, caption, video_edited, video_trim, duration_sec)

• location (description)

• image (content_type, name, width, height, caption)

• document (content_type, name)

• sticker (content_type, id, is_borderless, emoji, describe_contents, name)

• unknow (content_type, name)

On Wire, the assetType is described with mime_type, name, size, filepath and the following asset
info:

• audio (duration_in_millis, normalized_loudness)

• image (width, height, tag)

• video (width, height, duration_in_millis)

Comparison of Quotes element types In the presented solution, quotes are defined by their id, author,
quote_text, is_missing, attachment and timestamp, while on Wire’s solution, they are described
by using a unique boolean.

Comparison of LinkPreview element types Looking at Wire’s XSD schema, the linkpreviewType is de-
fined by permanentUrl, url, title, summary, urloffset, image and tweet (author, username). In Signal
link preview elements are pretty similar: title, url, description, date, link_preview(id, filename, con-
tent_path, content_type).

Comparison of Mentions element types For Wire, mentions are described with start, length, userid. In
this project, mentions are defined with id, name, start, length.

Secure Chat Export for Signal-Android 33

3.4 ZIP directory structure

The ZIP file will consist of the following data:

• chat.xml (always included)

• Media (attached directory if media content was selected and any media content is present)

– Signal Audios

– Signal Documents

– Signal GIFs

– Signal Images

– Signal Stickers

– Signal Videos

• viewer.html + jquery-3.6.0.min.js + signal-app.png

(attached when the option HTML viewer is selected)

3.5 HTML-Viewer Structure

The HTML file adds some properties for the HTML-Elements, specified between tags. Defined with
the HTML style attribute, the image of the site and the different elements in there are declared.
Furthermore, it includes the jQuery library in the HTML "script" attribute, which is relatively light,
for extracting the content of the XML file—and putting it on the web page. These last attachments
are compressed in the resulting ZIP file and when extracted, have a file size of 116KB.

The chosen layout for the chat display is divided into three parts as follows:

• Header
It is placed at the top of the page. It includes the icon of Signal, the title of the site and a
form for selecting the XML file included in the ZIP, and by clicking the button, the content
will be displayed in the content part of the page.

• Content
The content is placed between the header and footer and split up into two columns. The
first column shows the list of members who participate in the conversation and some personal
information about them. The second column would include the selected conversation and its
media if selected by the user. Here single messages are displayed as indented paragraphs. The

Secure Chat Export for Signal-Android 34

date of the records is shown just once as a new message is recorded for this date. Same day
messages are highlighted with the author’s name, the time the message was sent, the content
of the message and reactions if they exist.

• Footer
Here some hyperlinks which refer to the company are attached:

Figure 3.3: HTML Viewer

Secure Chat Export for Signal-Android 35

3.6 Layout Design and Functionality

1. Open the conversation the user wants to export and head over to the chat settings by clicking
on the name of the chat3.4.

2. Choose “Export conversation” and enter the preferences for the chat export. Optionally
include all media, an HTML viewer or select a period to delimit the chat extract3.5.

3. Change the dates to select an extract of the chat3.6.

Figure 3.4: Conversation Set-
tings

Figure 3.5: Chat Export Set-
ting Main Layout

Figure 3.6: Chat Export Pe-
riod Settings

4. Press the EXPORT NOW button to export the chat content3.7 and select the download
location.

5. Before the export starts, a pop-up message asks for the selection of a location3.8.

6. The file manager allows the user to select any storage location on the device to store the
resulting ZIP file3.9.

Secure Chat Export for Signal-Android 36

Figure 3.7: Chat Export with
Media Files option
selected

Figure 3.8: Choose location Figure 3.9: Select a folder to
save the ZIP-file

7. Press the Allow button to grant the app access3.10.

8. After completing the export, a message appears, allowing the user to open the download
directory or come back to the previous setting screen3.11.

9. The selected directory with the ZIP file is opened3.12.

Secure Chat Export for Signal-Android 37

Figure 3.10: Allow the access
to the selected lo-
cation

Figure 3.11: Chat Export re-
sults successful

Figure 3.12: ZIP file appears
in the storage

10. Look at the chat content offline in the browser or personal device.

• Open the ZIP file to see the chat export generated file. If the HTML viewer was included,
click on it to open the conversation in a browser3.13, 3.14, 3.15.

Secure Chat Export for Signal-Android 38

Figure 3.13: ZIP content - just
conversation

Figure 3.14: ZIP content - chat
and media

Figure 3.15: ZIP content - chat
and viewer, no
media

• In the HTML viewer: Select the chat.xml file of the ZIP file to see the exported chat3.16.
Users can see all the interchanged messages in XML format. Additionally, if media were
included in the export preferences, they are also included in the ZIP file.

Figure 3.16: HTML Viewer

Secure Chat Export for Signal-Android 39

11. Watch the exported chat extract3.17:

a) On the left side of the page, the Members column is found. For groups, it shows its
group name. Next, the participants who are part of the conversation appear including
some other personal data they have authorized to be public.

b) On the right side, the Conversation column is found. The chat messages are displayed
in ascending order sorted by date and time. Each message includes the author, content,
sent time and possible reactions of the other participants.

Figure 3.17: Example of an exported conversation extract on the HTML Viewer

Secure Chat Export for Signal-Android 40

3.7 Maintenance

The maintenance consists of periodical updates with the upstream of the official Signal-Android
GitHub source code. During the project development, some fundamental changes took place:

• After some other project contributors changed/deleted basic classes and introduced new ones
where the code language changed to Kotlin, updates in the project code were necessary to
adapt the feature to the new changes.

• Perform changes in the app’s design line, adapting the functionality to its new design line.

• Improving and refining the quality of the output

• Testing is done regularly after each change in order to avoid failures.

• Cleaning code

Secure Chat Export for Signal-Android 41

4 Conclusion

4.1 Summary

This approach has given a solution for exporting single conversations from the Android Signal app
and saving a package with its content directly into the android device storage. This work has
involved several phases of a project, from planning through implementing to maintenance. On bal-
ance, the project creator has obtained a real insight into the world of application development and
data security. The last step considers presenting the results that could totally or partially fit into
the current Signal Android app.
This writing involved the author as a contributor in a professional android application, and it has
shown how a service development works in real life.
In conclusion, this dissertation gives essential lessons concerning software development in a profes-
sional environment.

4.2 Problems

Firstly, numerous complications arose when unexpected results appeared either when building the
app or in general because of the project size and its complexity. Besides, external app code changes
resulted in wasted efforts that involved re-examining and re-adapting some fundamental parts of
the code.
Additionally, due to the project volume, the compilation time delayed the whole work.

4.3 Future Work

To conclude, some questions have come up that can be considered an expansion of this project.

• Shall it be considered to pass the Java code to Kotlin as it is happening already in the Signal
app for Android?

• Who will maintain the feature working when the application updates? How often should it
be reviewed?

• Shall the transferred chat be imported in this or other apps? A common XSD-Schema for
different IM apps would make this step possible.

• Could it be interesting/possible to filter messages under established preferences, i.e., date,
person, or words?

• Is there any privacy dilemma to export the chat without all participants consent? A possible

Snippet list 42

solution would be to add an extra option that allows a user to deny exporting certain chats
in which the user participates.

• Shall it be considered to insert a shadow password to the downloaded file for protection or an
invisible watermark that allows traceability?

Snippet list 43

Listings

1 Attach option to conversation settings . 16
2 Set up the initial state of the view for the chat export settings fragment 17
3 Show dialog to select a location folder . 17
4 Check for storage permission . 17
5 Allow to accept permissions if they are not already accepted 18
6 open the gallery for choosing a location in the storage 18
7 Return the selected storage path . 18
8 Obtain the chat data in a ChatFormatter object . 18
9 Proccess media file if they were requested . 18
10 Check storage permissions before attaching any file to the selected path 18
11 starts to attach the files to the zip file . 19
12 Instantiate the elements of the chat export time picker fragment 19
13 Set up the initial state of the view for the chat export time picker fragment 19
14 Check if the time period is valid . 19
15 Change the time values on the text fields . 19
16 Update time period on the view model . 19
17 Variables of the view-model . 20
18 ChatFormatter constructor . 20
19 Cursor of the conversation . 20
20 Message position for a timestamp or after it . 20
21 Number of messages before a date . 21
22 Create the xml formatted document . 21
23 Obtain the recipient . 21
24 MediaRecord object joins the necessary attachment information 22
25 set of all media in the selected conversation . 22
26 Add XML Element to its parent . 22
27 Add XML Attribute to an element . 22
28 Add XML Element to its parent without content . 22
29 Obtain the right mention . 23
30 Obtain list of mentions from a message . 23
31 Obtain a shared contact from a message . 23
32 Obtain the link preview from a message . 23
33 Obtain the quote from a message . 23
34 Obtain the list of attachments of a message . 24
35 Obtain the reactions to a message . 24
36 ZIP constructor . 24
37 Method which calls other methods for creating the ZIP file 24

Snippet list 44

38 Method which creates the ZIP file . 24
39 Create the ZipOutputStream object . 24
40 Files can be attached to the ZIP-file . 25
41 Attachment object for media included in the ZIP file 25
42 Background task for ZIP file generation . 25
43 Task for attaching files to the ZIP file . 25
44 Close ZIP file . 25
45 Creates filename for the ZIP file . 25
46 Include HTML viewer to the ZIP file . 26
47 Get a path in the ZIP for a media file . 26
48 Create output path for attachments . 26
49 Create output file name for attachments . 26
50 Add attachment to the ZIP file . 26
51 InputStream for attachments . 26
52 Content type of an attachment . 27
53 Add XML file to the ZIP package . 27
54 Show chat export finish dialog . 27
55 Open the directory where the ZIP-file was saved . 27
56 Contact type definition in the XSD-Schema . 28
57 Example of different types for a conversation in the XSD-Schema 29

Bibliography 45

References

[1] Clegg, N.: Europa darf sich nicht gegen die kreative Nutzung von Daten wenden. (accessed:
30.10.2021). https://www.welt.de/politik/ausland/article225387677/Nick-
Clegg-Europa-darf-sich-nicht-gegen-die-kreative-Nutzung-von-Daten-

wenden.html.

[2] Urquhart, L. ; Sailaja, N., and McAuley, D.: „Realising the right to data portability
for the domestic Internet of things“. In: Personal and Ubiquitous Computing 22.2 (2018),
pp. 317–332.

[3] Charting a Way Forward on Privacy and Data Portability. (accessed: 30.10.2021). https:
//about.fb.com/wp-content/uploads/2020/02/data-portability-privacy-

white-paper.pdf.

[4] Facebook Data Policy. (accessed: 24.11.2021). https://www.facebook.com/privacy/
explanation/.

[5] Does Facebook sell my information? (accessed: 24.11.2021). www.facebook.com/help/
152637448140583/?helpref=uf_share.

[6] What Is End-to-End Encryption, and Why Does It Matter? https://www.howtogeek.

com/711656/what-is-end-to-end-encryption-and-why-does-it-matter/.
(accessed: 18.10.2021).

[7] Facebook Says Encrypting Messenger by Default Will Take Years. https://www.wired.
com/story/facebook-messenger-end-to-end-encryption-default/. (accessed:
28.09.2021).

[8] Steve Satterfield, D. o. P. and Policy, P.: Transfer Your Facebook Posts and Notes
With Our Expanded Data Portability Tool. (accessed: 30.10.2021). https://about.fb.
com/news/2021/04/transfer-your-facebook-posts-and-notes-with-our-

expanded-data-portability-tool/.

[9] Download Facebook Messenger Chat History. https://www.techspotty.com/download-
facebook-messenger-chat-history-how-to/. (accessed: 28.10.2021).

[10] Gail Kent, M. P. D.: Messenger Policy Workshop: Future of Private Messaging. (ac-
cessed: 30.10.2021). https://about.fb.com/news/2021/04/messenger-policy-
workshop-future-of-private-messaging/.

[11] About WhatsApp. https://www.whatsapp.com/about/. (accessed: 08.10.2021).

[12] What Whatsapp collect and share with Facebook. (accessed: 28.11.2021). https://www.
androidauthority.com/whatsapp-privacy-1189873/.

[13] Whatsapp privacy concerns. (accessed: 28.11.2021). https://www.wired.com/story/
how-to-boost-whatsapps-privacy-and-better-protect-your-data/.

https://www.welt.de/politik/ausland/article225387677/Nick-Clegg-Europa-darf-sich-nicht-gegen-die-kreative-Nutzung-von-Daten-wenden.html
https://www.welt.de/politik/ausland/article225387677/Nick-Clegg-Europa-darf-sich-nicht-gegen-die-kreative-Nutzung-von-Daten-wenden.html
https://www.welt.de/politik/ausland/article225387677/Nick-Clegg-Europa-darf-sich-nicht-gegen-die-kreative-Nutzung-von-Daten-wenden.html
https://about.fb.com/wp-content/uploads/2020/02/data-portability-privacy-white-paper.pdf
https://about.fb.com/wp-content/uploads/2020/02/data-portability-privacy-white-paper.pdf
https://about.fb.com/wp-content/uploads/2020/02/data-portability-privacy-white-paper.pdf
https://www.facebook.com/privacy/explanation/
https://www.facebook.com/privacy/explanation/
www.facebook.com/help/152637448140583/?helpref=uf_share
www.facebook.com/help/152637448140583/?helpref=uf_share
https://www.howtogeek.com/711656/what-is-end-to-end-encryption-and-why-does-it-matter/
https://www.howtogeek.com/711656/what-is-end-to-end-encryption-and-why-does-it-matter/
https://www.wired.com/story/facebook-messenger-end-to-end-encryption-default/
https://www.wired.com/story/facebook-messenger-end-to-end-encryption-default/
https://about.fb.com/news/2021/04/transfer-your-facebook-posts-and-notes-with-our-expanded-data-portability-tool/
https://about.fb.com/news/2021/04/transfer-your-facebook-posts-and-notes-with-our-expanded-data-portability-tool/
https://about.fb.com/news/2021/04/transfer-your-facebook-posts-and-notes-with-our-expanded-data-portability-tool/
https://www.techspotty.com/download-facebook-messenger-chat-history-how-to/
https://www.techspotty.com/download-facebook-messenger-chat-history-how-to/
https://about.fb.com/news/2021/04/messenger-policy-workshop-future-of-private-messaging/
https://about.fb.com/news/2021/04/messenger-policy-workshop-future-of-private-messaging/
https://www.whatsapp.com/about/
https://www.androidauthority.com/whatsapp-privacy-1189873/
https://www.androidauthority.com/whatsapp-privacy-1189873/
https://www.wired.com/story/how-to-boost-whatsapps-privacy-and-better-protect-your-data/
https://www.wired.com/story/how-to-boost-whatsapps-privacy-and-better-protect-your-data/

Bibliography 46

[14] WhatsApp Encryption Overview. https://www.whatsapp.com/security/WhatsApp-
Security-Whitepaper.pdf. (accessed: 08.10.2021).

[15] WhatsApp Help Center - How to Save Your Chat History. https://faq.whatsapp.
com/android/chats/how-to-save-your-chat-history/?lang=en. (accessed:
08.10.2021).

[16] Telegram Privacy. (accessed: 25.11.2021). https://telegram.org/privacy.

[17] Telegram Messenger. https://play.google.com/store/apps/details?id=org.
telegram.messenger. (accessed: 08.10.2021).

[18] Telegram MTProto Mobile Protocol. https://core.telegram.org/mtproto. (accessed:
08.09.2021).

[19] Wire Messaging. (accessed: 24.11.2021). https://wire.com/en/product/messaging/.

[20] Wire Conferencing. (accessed: 24.11.2021). https://wire.com/en/blog/upgrades-
to-wire-conferencing/.

[21] Wire - Back up your conversation history. (accessed: 24.11.2021). https://support.
wire.com/hc/en-us/articles/360000824805-Back-up-your-conversation-

history.

[22] Wire - Add the possibility to export conversations as zip. (accessed: 24.11.2021). https://
github.com/kanashius/wire-android/commit/b55e9b18de4d88cc5c2a0d4d33bdf294ca14b8c6.

[23] Looking back at how Signal works, as the world moves forward. (accessed: 24.11.2021). https:
//signal.org/blog/looking-back-as-the-world-moves-forward/.

[24] Cohn-Gordon, K. ; Cremers, C. ; Dowling, B. ; Garratt, L., and Stebila, D.:
„A formal security analysis of the signal messaging protocol“. In: Journal of Cryptology 33.4
(2020), pp. 1914–1983.

[25] Sharma, A.: Signal fixes bug that sent random images to wrong contacts. (accessed: 25.10.2021).
https://www.bleepingcomputer.com/news/security/signal-fixes-bug-

that-sent-random-images-to-wrong-contacts/ (visited on 07/26/2021).

[26] CVE: Security Vulnerabilities of Signal. (accessed: 26.10.2021). https://www.cvedetails.
com/vulnerability-list/vendor_id-17912/Signal.html.

[27] Signal Android Issues. (accessed: 30.10.2021). https://github.com/signalapp/Signal-
Android/issues.

[28] Botha, J. ; Vant, W., and Leenen, L.: „A comparison of chat applications in terms of
security and privacy“. In: (2019), p. 55.

[29] Signal Android. A private messenger for Android. (accessed: 25.10.2021). https://github.
com/signalapp/Signal-Android.

https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://faq.whatsapp.com/android/chats/how-to-save-your-chat-history/?lang=en
https://faq.whatsapp.com/android/chats/how-to-save-your-chat-history/?lang=en
https://telegram.org/privacy
https://play.google.com/store/apps/details?id=org.telegram.messenger
https://play.google.com/store/apps/details?id=org.telegram.messenger
https://core.telegram.org/mtproto
https://wire.com/en/product/messaging/
https://wire.com/en/blog/upgrades-to-wire-conferencing/
https://wire.com/en/blog/upgrades-to-wire-conferencing/
https://support.wire.com/hc/en-us/articles/360000824805-Back-up-your-conversation-history
https://support.wire.com/hc/en-us/articles/360000824805-Back-up-your-conversation-history
https://support.wire.com/hc/en-us/articles/360000824805-Back-up-your-conversation-history
https://github.com/kanashius/wire-android/commit/b55e9b18de4d88cc5c2a0d4d33bdf294ca14b8c6
https://github.com/kanashius/wire-android/commit/b55e9b18de4d88cc5c2a0d4d33bdf294ca14b8c6
https://signal.org/blog/looking-back-as-the-world-moves-forward/
https://signal.org/blog/looking-back-as-the-world-moves-forward/
https://www.bleepingcomputer.com/news/security/signal-fixes-bug-that-sent-random-images-to-wrong-contacts/
https://www.bleepingcomputer.com/news/security/signal-fixes-bug-that-sent-random-images-to-wrong-contacts/
https://www.cvedetails.com/vulnerability-list/vendor_id-17912/Signal.html
https://www.cvedetails.com/vulnerability-list/vendor_id-17912/Signal.html
https://github.com/signalapp/Signal-Android/issues
https://github.com/signalapp/Signal-Android/issues
https://github.com/signalapp/Signal-Android
https://github.com/signalapp/Signal-Android

Bibliography 47

[30] Emil, A.: How to build Signal from the sources. (accessed: 25.10.2021). https://github.
com/signalapp/Signal-Android/wiki/How-to-build-Signal-from-the-

sources (visited on 08/11/2021).

[31] Signal-Android Contributing. (accessed: 24.11.2021). https://github.com/signalapp/
Signal-Android/blob/master/CONTRIBUTING.md.

https://github.com/signalapp/Signal-Android/wiki/How-to-build-Signal-from-the-sources
https://github.com/signalapp/Signal-Android/wiki/How-to-build-Signal-from-the-sources
https://github.com/signalapp/Signal-Android/wiki/How-to-build-Signal-from-the-sources
https://github.com/signalapp/Signal-Android/blob/master/CONTRIBUTING.md
https://github.com/signalapp/Signal-Android/blob/master/CONTRIBUTING.md

	Abstract
	Introduction
	Motivation
	Aim of the work
	Related Works
	Facebook Messenger
	WhatsApp
	Telegram
	Wire
	Signal
	Exporter For Facebook/WhatsApp

	Comparison summary

	Methodology
	Specification
	Time schedule
	Installation and Deployment

	Approach
	Implementation plan
	Testing plan
	System Architecture
	Use-Case diagram

	Results
	Requirements
	Android Project Structure
	XML File
	XML File Use-Case Diagram View
	XML File Structure
	Comparison of the XML output files for Signal and for Wire

	ZIP directory structure
	HTML-Viewer Structure
	Layout Design and Functionality
	Maintenance

	Conclusion
	Summary
	Problems
	Future Work

	Bibliography

