
JOHANNESKEPLER
UNIVERSITY LINZ
Altenberger Straße 69
4040 Linz, Austria
jku.at

Philipp Hofer
Institute of
Networks and Security

philipp.hofer@ins.jku.at
https://www.digidow.eu/

August 2021

Face recognition:
Combining embeddings

Technical Report

Christian Doppler Laboratory for
Private Digital Authentication in the Physical World

This work has been carried out within the scope of Digidow, the Christian Doppler Laboratory for Private
Digital Authentication in the Physical World, funded by the Christian Doppler Forschungsgesellschaft,
3 Banken IT GmbH, Kepler Universitätsklinikum GmbH, NXP Semiconductors Austria GmbH, and Öster-
reichische Staatsdruckerei GmbH.

https://jku.at/
mailto:philipp.hofer@ins.jku.at
https://www.digidow.eu/


Face recognition: Combining embeddings 2

Contents

1. Motivation 3

2. Dataset 3

3. Average 4
3.1 Baseline - Face image . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Baseline - mask image . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Combination of mask + face image . . . . . . . . . . . . . . . . . . . . 7
3.4 Different arithethic methods of combining embeddings . . . . . . . 7
3.5 Multiple angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.5.1 5 images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5.2 25 images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.6 Amount of images limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4. Voting 15

5. KMeans 25
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



Face recognition: Combining embeddings 3

1. Motivation

In order to increase the accuracy of SOTA face recognition pipelines, intuitively
it would make sense to not only use a single image as reference embedding
(template), but combine multipĺe embeddings from different images (differ-
ent pose, angle, setting) to create a more accurate and robust template. In or-
der toobjectively evaluateourdifferentproposedcombinationsof embeddings,
we would benefit from having a single metric to tell how well the template is
performing on our dataset. For certain applications (e.g. opening doors) a low
false-positive rate is required, while in other situations (e.g. sensor contacting
PIA’s) a low false-negative rate is required. Therefore, in this document we try
to balance these different approaches by using the harmonicmeanof recall and
precision. There are multiple ways of combining different embeddings:

1. Average (as proposed by e.g. ArcFace)

2. Voting (performcomparisononndifferent images, everyone voteswhether
there is a match; ifm <= n votes saymatch, it is actually counted as match)

2. Dataset

For evaluation, we created a dataset bymounting a camera in our printer room
and collecting images whenever a person is detected in front of the camera.

There are 13 different people in the dataset.

There are between 5 and210 images of every person,with an average of 79.3
images/person.

From this dataset, we pick a person and copy the images to a new location:

1 person = "hofer"
2 person_path = os.path.join(base_path, person)
3 new_location = os.path.expanduser("~/datasets")
4 new_location = os.path.join(new_location, person)
5 !rm −rf $new_location
6 !cp −r $person_path $new_location

As discussed in Simple heuristics to reduce false-positives in face recognition, we
remove all images where the head rotation is bad:

1 for file in os.listdir(new_location):
2 img_path = os.path.join(new_location, file)
3 if os.path.isfile(img_path):
4 if rec.get_eye_distance(img_path) < eye_distance:
5 ! rm $img_path
6 elif rec.get_eyes_mouth_distance(img_path) < eye_mouth_distance:
7 ! rm $img_path

We have 166 images of this person.

https://pad.ins.jku.at/digidow-documentation-terminology#PIA
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3. Average

In this setting, we simply calculate the embedding of multiple images, take
their average and use this average as template.

3.1 Baseline - Face image

In order to be able to compare the performance of different ways of combining
embeddings, we first calculate the baseline where we use a single, full-frontal
image as template.

1 template_single_path = os.path.join(base_path, "atemplates_variations/hofer/2_face
−5/2021−05−25−144227_30.jpg")

2 template_single = rec.get_emb(template_single_path)

After processing the image, the face looks like this:

1 from PIL import Image
2 # Image.fromarray(rec.vis._get_img(template_single_path, 1, "", True), 'RGB')

Next, we need to calculate the harmonicmean of a given template with respect
to the whole dataset.

1 from prettytable import PrettyTable
2 def get_confusion(threshold, same_person, different_person):
3 tp, tn, fp, fn = 0, 0, 0, 0
4
5 for p in same_person:
6 if p > threshold:
7 fn += 1
8 else:
9 tp += 1
10 for p in different_person:
11 if p <= threshold:
12 fp += 1
13 else:
14 tn += 1
15 return fp/len(different_person), fn/len(same_person), tp/len(same_person), tn/

len(different_person)
16 def print_confusion(fp, fn, tp, tn):
17 x = PrettyTable()
18 x.title = 'Predicted␣condition'
19 x.field_names = ["␣", "", "Positive", "Negative"]
20 x.add_row(["Actual","Positive", "{:.2f}".format(tp), "{:.2f}".format(fn)])
21 x.add_row(["Condition", "Negative", "{:.2f}".format(fp), "{:.2f}".format(tn)])
22 print(x)
23
24 def get_harmonic_mean(threshold, same, different):
25 fp, fn, tp, tn = get_confusion(threshold, same, different)
26 if tp+fp == 0:
27 return 0
28 if tp + fn == 0:
29 return 0
30 prec = tp / (tp + fp)
31 recall = tp / (tp + fn)
32 harmonic_mean = 2∗(prec∗recall/(prec+recall))
33 return harmonic_mean
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34 def optimize_harmonic_mean(same, different):
35 highest_h_mean = 0
36 threshold_highest_h_mean = −1
37 upper_limit = int(max(max(same), max(different)))∗1000
38 for i in range(0,upper_limit):
39 i = i/1000
40 harmonic_mean = get_harmonic_mean(i, same, different)
41 if harmonic_mean > highest_h_mean:
42 highest_h_mean = harmonic_mean
43 threshold_highest_h_mean = i
44 return threshold_highest_h_mean, highest_h_mean
45 def harmonic_mean(template):
46 same = []
47 for file in os.listdir(new_location):
48 img_path = os.path.join(new_location, file)
49 if os.path.isfile(img_path):
50 emb = rec.get_emb(img_path)[0]
51 same.append(rec.get_score(template, emb))
52 different = []
53 for file in os.listdir(base_path):
54 person_path = os.path.join(base_path, file)
55 if os.path.isdir(person_path) and file != person and not file in

exclude_dirs:
56 for img in os.listdir(person_path):
57 img_path = os.path.join(person_path, img)
58 if rec.get_eye_distance(img_path) < eye_distance:
59 continue
60 if rec.get_eyes_mouth_distance(img_path) < eye_mouth_distance:
61 continue
62 emb = rec.get_emb(img_path)[0]
63 different.append(rec.get_score(template, emb))
64 threshold_highest_h_mean, highest_h_mean = optimize_harmonic_mean(same,

different)
65 return highest_h_mean, same, different, threshold_highest_h_mean
66 def print_harmonic_mean(h_mean, threshold):
67 print("Harmonic␣mean:␣{:.3f}␣(with␣a␣threshold␣of␣{})".format(h_mean,

threshold))

1 h_mean, same, different, threshold = harmonic_mean(template_single)
2 print_harmonic_mean(h_mean, threshold)

1 Harmonic mean: 0.852 (with a threshold of 1.54)

We can also plot our confusionmatrix:

1 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
2 | Predicted condition |
3 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
4 | | | Positive | Negative |
5 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
6 | Actual | Positive | 0.89 | 0.11 |
7 | Condition | Negative | 0.20 | 0.80 |
8 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+

In our current setup, we want to minimize FP, thus we lowered the threshold
to 1.2. This would result in the following confusionmatrix:

1 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
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2 | Predicted condition |
3 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
4 | | | Positive | Negative |
5 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
6 | Actual | Positive | 0.30 | 0.70 |
7 | Condition | Negative | 0.00 | 1.00 |
8 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+

3.2 Baseline - mask image

Due to the current pandemic,most of the images in the dataset depicts a person
wearing a facemask. Thus, it might be interesting, if using an imagewhere the
personwears a facemask increasesourperformance. Even though the template
image more closely resembles the test images, we expect the performance to
decrease, as themask hidesmore than half of the face, and thus information is
lost.

1 template_singlemask_path = os.path.join(base_path, "atemplates_variations/hofer/1
_different−setting−50/2021−05−25−145821_26.jpg")

2 template_singlemask = rec.get_emb(template_singlemask_path)

After processing the image, the face looks like this:

1 from PIL import Image
2 Image.fromarray(rec.vis._get_img(template_singlemask_path, 1, "", True), 'RGB')

1 h_mean_mask, same_mask, different_mask, threshold_mask = harmonic_mean(
template_singlemask)

2 print_harmonic_mean(h_mean_mask, threshold_mask)

1 Harmonic mean: 0.850 (with a threshold of 1.637)

1 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
2 | Predicted condition |
3 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
4 | | | Positive | Negative |
5 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
6 | Actual | Positive | 0.88 | 0.12 |
7 | Condition | Negative | 0.19 | 0.81 |
8 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
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The harmonic mean decreased by 0.2 percent points, which supports our ex-
pectation of reduced accuracy due to lower amount of information.

3.3 Combination of mask + face image

1 emb_combined = np.mean( np.array([ template_single, template_singlemask ]), axis=0
)

1 h_mean_comb, same_comb, different_comb, threshold_comb = harmonic_mean(
emb_combined)

2 print_harmonic_mean(h_mean_comb, threshold_comb)

1 Harmonic mean: 0.870 (with a threshold of 1.267)

Face: 0.85 Mask: 0.85 Face+Mask: 0.87

3.4 Different arithethic methods of combining embeddings

RoyChowdhury et al. proposed in One-to-many face recognition with bilinear
CNNs instead of the classical usage of the average for each dimension of an em-
bedding the use of the maximum. They argue, that this will reduce the overfit
on thedominant angle and thus create amore robust embedding. Basedon this,
we evaluated four different arithmetic methods of combining embeddings.

1 embs = []
2 for file in os.listdir("/home/philipp/Nextcloud/printerroom−dataset/

atemplates_variations/hofer/1_different−setting−50"):
3 abs_path = os.path.join("/home/philipp/Nextcloud/printerroom−dataset/

atemplates_variations/hofer/1_different−setting−50", file)
4 if len(rec.get_emb(abs_path)) == 1:
5 embs.append(rec.get_emb(abs_path)[0])

1 print("Mean")
2 emb_combined = np.mean( np.array(embs), axis=0 )
3 h_mean_comb, same_comb, different_comb, threshold_comb = harmonic_mean(

emb_combined)
4 print_harmonic_mean(h_mean_comb, threshold_comb)

1 Mean
2 Harmonic mean: 0.914 (with a threshold of 0.996)

1 print("Max")
2 emb_combined = np.max( np.array(embs), axis=0 )
3 h_mean_comb, same_comb, different_comb, threshold_comb = harmonic_mean(

emb_combined)
4 print_harmonic_mean(h_mean_comb, threshold_comb)

1 Max
2 Harmonic mean: 0.868 (with a threshold of 4.178)
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1 print("Median")
2 emb_combined = np.median( np.array(embs), axis=0 )
3 h_mean_comb, same_comb, different_comb, threshold_comb = harmonic_mean(

emb_combined)
4 print_harmonic_mean(h_mean_comb, threshold_comb)

1 Median
2 Harmonic mean: 0.899 (with a threshold of 0.955)

1 print("Min")
2 emb_combined = np.min( np.array(embs), axis=0 )
3 h_mean_comb, same_comb, different_comb, threshold_comb = harmonic_mean(

emb_combined)
4 print_harmonic_mean(h_mean_comb, threshold_comb)

1 Min
2 Harmonic mean: 0.764 (with a threshold of 3.999)

3.5 Multiple angles

3.5.1 5 images

Let’s see if the accuracy improves if we use 5 images with various angles.

1 comb_images(os.path.join(base_path, "atemplates_variations/hofer/2_face−5"))

1 folder_2 = os.path.join(base_path, "atemplates_variations/hofer/2_face−5")
2 emb_2 = rec.get_combined_embedding(folder_2)
3 h_mean_2, same_2, different_2, threshold_2 = harmonic_mean(emb_2)
4 print_harmonic_mean(h_mean_2, threshold_2)

1 Harmonic mean: 0.892 (with a threshold of 1.166)

Getting a higher accuracy with multiple pictures seems promising. What hap-
pens if we increase the amount of images?

3.5.2 25 images

1 folder_3 = os.path.join(base_path, "atemplates_variations/hofer/3_face−25")
2 emb_3 = rec.get_combined_embedding(folder_3)
3 h_mean_3, same_3, different_3, threshold_3 = harmonic_mean(emb_3)
4 print_harmonic_mean(h_mean_3, threshold_3)

1 Harmonic mean: 0.919 (with a threshold of 0.947)
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1 print_harmonic_mean(h_mean_3, threshold_3)

1 Harmonic mean: 0.919 (with a threshold of 0.947)

Accuracy is increased again (by 2.63 percentage points).

3.6 Amount of images limit

So far, there has been a positive correlation between amount of images used
for the template and its harmonic mean. In this section we test its limit. For
this we need a lot of images of the same person, thus we decided to go with the
LFW dataset. Let’s look at some stats from the dataset.

1 from collections import defaultdict
2 amount_images = defaultdict(lambda: 0)
3 paths_many_images = []
4 path = "/home/philipp/datasets/lfw"
5 for file in os.listdir(path):
6 person_path = os.path.join(path, file)
7 amount_images[len(os.listdir(person_path))] += 1
8 if len(os.listdir(person_path)) > 100:
9 paths_many_images.append(person_path)

1 amount_people_below_50_images = 0
2 for i in sorted(amount_images.keys(), reverse=True):
3 if i < 50:
4 amount_people_below_50_images += amount_images[i]
5 else:
6 print("{}␣{}␣{}␣images".format(amount_images[i], "people␣have" if

amount_images[i] > 1 else "person␣has", i))
7 print("{}␣people␣have␣less␣than␣50␣images".format(amount_people_below_50_images))

1 1 person has 530 images
2 1 person has 236 images
3 1 person has 144 images
4 1 person has 121 images
5 1 person has 109 images
6 1 person has 77 images
7 1 person has 71 images
8 1 person has 60 images
9 1 person has 55 images
10 1 person has 53 images
11 2 people have 52 images
12 5737 people have less than 50 images

We use the 5 people with more than 100 images and plot the amount of differ-
ence in their embeddings.

1 import matplotlib.pyplot as plt
2 plt.style.use('seaborn−whitegrid')
3 import numpy as np
4 def calc_distances(images, print_only_last_change = False, dont_print=False):
5 ret = []
6 embs = []
7 for image in images:
8 emb = rec.get_emb(image)
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9 if len(emb) != 1:
10 if not dont_print:
11 print("skip␣{}␣due␣to␣{}␣people␣detected".format(image, len(emb)))
12 else:
13 embs.append(np.array(emb[0]))
14 combs = [embs[0]]
15 for i in range(1,len(embs)):
16 cur = []
17 for j in range(i+1):
18 cur.append(embs[j])
19 emb_combined = np.mean( np.array(cur), axis=0 )
20 prev_combined = combs[−1]
21 combs.append(emb_combined)
22 dist = np.sum(np.absolute(emb_combined − prev_combined))
23 if not print_only_last_change or i == len(embs)−1:
24 if not dont_print:
25 print("After␣{}␣images:␣Distance␣to␣previous:␣{}".format(i+1, dist

))
26 ret.append(dist)
27 return ret
28 def emb_change(path):
29 imgs = []
30 for img in sorted(os.listdir(path)):
31 img_path = os.path.join(path, img)
32 imgs.append(img_path)
33
34 dist = calc_distances(imgs, dont_print=True)
35 fig = plt.figure()
36 ax = plt.axes()
37 plt.title(os.path.basename(path))
38 plt.xlabel("#␣of␣images")
39 plt.ylabel("Embedding−changes")
40 ax.plot(range(len(dist)), dist)

1 for path in paths_many_images:
2 emb_change(path)
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It is clearly visible, that the amount of change decreases with an increased
amount of images. After roughly 20 images the combined embedding is not
getting better anymore. How is the embedding changing with our templates?

1 emb_change(os.path.join(base_path, "atemplates_variations/hofer2/1_no−mask"))
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1 emb_change(os.path.join(base_path, "atemplates_variations/hofer2/2_mask"))

1 emb_change(os.path.join(base_path, "atemplates_variations/hofer2/8_25"))
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1 emb_change(os.path.join(base_path, "atemplates_variations/hofer2/15_50"))

4. Voting

What happens if we switch from doing 1 comparisonwith the average template
(created using n images) to doing n comparisons with the original images?

1 def harmonic_mean_from_conf(tp, tn, fp, fn):
2 if tp+fp == 0:
3 return 0
4 if tp + fn == 0:
5 return 0
6 prec = tp / (tp + fp)
7 recall = tp / (tp + fn)
8 harmonic_mean = 2∗(prec∗recall/(prec+recall))
9 return harmonic_mean
10 def optimize_amount_votes(same, different):
11 glob_min = min(min(same), min(different))
12 glob_max = max(max(same), max(different))
13
14 max_h_mean = 0
15 votesneeded_max_h_mean = 0
16
17 for votes_needed in range(glob_min, glob_max+1):
18 tp, tn, fp, fn = 0,0,0,0
19 for s in same:
20 if s >= votes_needed:
21 tp += 1
22 else:
23 fn += 1
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24 for d in different:
25 if d >= votes_needed:
26 fp += 1
27 else:
28 tn += 1
29 h_mean = harmonic_mean_from_conf(tp, tn, fp, fn)
30 if h_mean > max_h_mean:
31 max_h_mean = h_mean
32 votesneeded_max_h_mean = votes_needed
33 return max_h_mean, votesneeded_max_h_mean

As a baseline, let’s calculate the harmonic mean if we always predict
match/non-match:

1 amount_same = 0
2 for file in os.listdir(new_location):
3 img_path = os.path.join(new_location, file)
4 if os.path.isfile(img_path):
5 amount_same += 1
6 amount_different = 0
7 for file in os.listdir(base_path):
8 person_path = os.path.join(base_path, file)
9 if os.path.isdir(person_path) and file != person and not file in exclude_dirs:
10 for img in os.listdir(person_path):
11 img_path = os.path.join(person_path, img)
12
13 if rec.get_eye_distance(img_path) >= eye_distance and rec.

get_eyes_mouth_distance(img_path) >= eye_mouth_distance:
14 amount_different += 1
15 # always predict true
16 tp=amount_same
17 fp=amount_different
18 fn,tn = 0,0
19 print("Always␣predicting␣true␣would␣yield␣a␣harmonic␣mean␣of␣{}".format(

harmonic_mean_from_conf(tp, tn, fp, fn)))
20 # always predict false
21 tn = amount_different
22 fn = amount_same
23 tp, fp = 0, 0
24 print("Always␣predicting␣false␣would␣yield␣a␣harmonic␣mean␣of␣{}".format(

harmonic_mean_from_conf(tp, tn, fp, fn)))

1 Always predicting true would yield a harmonic mean of 0.3528161530286929
2 Always predicting false would yield a harmonic mean of 0

1 local_cache = dict()

1 folder = os.path.join(base_path, "atemplates_variations/hofer/3_face−25")
2 def get_embs_from_path(path):
3 if path in local_cache:
4 return local_cache[path]
5
6 embs = []
7 for file in sorted(os.listdir(path)):
8 img_path = os.path.join(path, file)
9 embs.append(rec.get_emb(img_path)[0])
10
11 local_cache[path] = embs
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12 return embs
13 def get_amount_votes(img, template_path, threshold):
14 amount_votes = 0
15 probe = rec.get_emb(img)[0]
16 count = 0
17 for emb in get_embs_from_path(template_path):
18 score = rec.get_score(probe, emb)
19 if score < threshold:
20 amount_votes += 1
21 count += 1
22 return amount_votes

1 output = []
2 h_means = []
3 for threshold in np.arange(0.5,2,0.1):
4 same = []
5 for file in os.listdir(new_location):
6 img_path = os.path.join(new_location, file)
7 if os.path.isfile(img_path):
8 same.append(get_amount_votes(img_path, folder, threshold))
9 different = []
10 for file in os.listdir(base_path):
11 person_path = os.path.join(base_path, file)
12 if os.path.isdir(person_path) and file != person and not file in

exclude_dirs:
13 for img in os.listdir(person_path):
14 img_path = os.path.join(person_path, img)
15 if rec.get_eye_distance(img_path) < eye_distance:
16 continue
17 if rec.get_eyes_mouth_distance(img_path) < eye_mouth_distance:
18 continue
19 different.append(get_amount_votes(img_path, folder, threshold))
20 h_mean, amount_votes = optimize_amount_votes(same,different)
21 h_means.append(h_mean)
22 output.append("Threshold={:.2f}:␣h_mean:␣{:.4f}␣(with␣{}␣{}␣needed)".format(

threshold, h_mean, amount_votes, "vote" if amount_votes==1 else "votes"))

1 − Threshold=0.50: h_mean: 0.3528 (with 0 votes needed)
2 − Threshold=0.60: h_mean: 0.3528 (with 0 votes needed)
3 − Threshold=0.70: h_mean: 0.3528 (with 0 votes needed)
4 − Threshold=0.80: h_mean: 0.3528 (with 0 votes needed)
5 − Threshold=0.90: h_mean: 0.6033 (with 1 vote needed)
6 − Threshold=1.00: h_mean: 0.8317 (with 1 vote needed)
7 − ∗∗Threshold=1.10: h_mean: 0.8580 (with 2 votes needed)∗∗
8 − Threshold=1.20: h_mean: 0.8520 (with 6 votes needed)
9 − Threshold=1.30: h_mean: 0.8563 (with 15 votes needed)
10 − Threshold=1.40: h_mean: 0.8333 (with 28 votes needed)
11 − Threshold=1.50: h_mean: 0.8474 (with 40 votes needed)
12 − Threshold=1.60: h_mean: 0.8446 (with 45 votes needed)
13 − Threshold=1.70: h_mean: 0.8078 (with 48 votes needed)
14 − Threshold=1.80: h_mean: 0.7481 (with 49 votes needed)
15 − Threshold=1.90: h_mean: 0.6256 (with 50 votes needed)

As expected, the higher the threshold is set, the more votes are needed for
optimal performance. Interestingly, the highest-performing combination of
hyper-parameters sets the threshold quite low (1.05) and requires only a sin-
gle vote.With the previous average embedding, we achieve an 94.3%harmonic
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mean with this template. With the best hyper-parameters (threshold=1.05;
votes_needed=1) we achieve about the same harmonic mean (93%). Thus, we
conclude that the additional processing power during inference is not signifi-
cantly impacting the harmonic mean. To get more intuition, we can plot a box
plot of the amount of votes images get, grouped by if face recognition success-
fully detected the pair correctly. We use the hyper-parameters of our best out-
put:

1 threshold = 1.05
2 same = []
3 for file in os.listdir(new_location):
4 img_path = os.path.join(new_location, file)
5 if os.path.isfile(img_path):
6 same.append(get_amount_votes(img_path, folder, threshold))
7 different = []
8 for file in os.listdir(base_path):
9 person_path = os.path.join(base_path, file)
10 if os.path.isdir(person_path) and file != person and not file in exclude_dirs:
11 for img in os.listdir(person_path):
12 img_path = os.path.join(person_path, img)
13 if rec.get_eye_distance(img_path) < eye_distance:
14 continue
15 if rec.get_eyes_mouth_distance(img_path) < eye_mouth_distance:
16 continue
17 different.append(get_amount_votes(img_path, folder, threshold))

1 import matplotlib.pyplot as plt
2 data = [same, different]
3 axes = plt.boxplot(data)
4 plt.xticks(np.arange(len(data))+1, ["Same␣person", "Different␣person"], rotation

=45, ha="right")
5 plt.ylabel("Amount␣of␣votes")
6 plt.show()
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As expected, for the same person classmost faces receivemany votes. Although,
there seems to be quite a few faces where only a few (or a single) vote matches
the template. Let’s plot this as bar chart:

1 from collections import defaultdict
2 amount_votes = defaultdict(lambda: 0)
3 for s in same:
4 amount_votes[s] += 1
5 data = []
6 for i in range(0,max(amount_votes.keys())+1):
7 data.append(amount_votes[i])
8 import matplotlib.pyplot as plt
9 fig = plt.figure()
10 ax = fig.add_axes([0,0,1,1])
11 ax.bar(range(len(data)),data)
12 ax.set_xlabel("Amount␣of␣votes")
13 ax.set_ylabel("Amount␣of␣images")
14 ax.set_title("Images␣of␣the␣same␣person")
15 plt.show()
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(Interpretation: e.g. there are 22 images of the same person, which receive 0
votes) Let’s look at the images with 0 positive votes:

1 zero_votes = []
2 for file in os.listdir(new_location):
3 img_path = os.path.join(new_location, file)
4 if get_amount_votes(img_path, folder, threshold) == 0:
5 zero_votes.append(img_path)
6 comb_images(zero_votes)

In all these images, the face is not really visible. Thus, with an additional
pipeline step between face detection and face recognition which calculates the
quality of the face, wemight get rid of this example.

1 def conf_matrix(votes_needed):
2 tp, fn, fp, tn = 0,0,0,0
3 for s in same:
4 if s >= votes_needed:
5 tp += 1
6 else:
7 fn += 1
8 for d in different:
9 if d >= votes_needed:
10 fp += 1
11 else:
12 tn += 1
13 print_confusion(fp, fn, tp, tn)
14 return tp, tn, fp, fn
15 for votes_needed in range(10):
16 res = conf_matrix(votes_needed)
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17 print("(votes_needed={};␣h_mean={:.3f})".format(votes_needed,
harmonic_mean_from_conf(∗res)))

18 print()

1 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
2 | Predicted condition |
3 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
4 | | | Positive | Negative |
5 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
6 | Actual | Positive | 166.00 | 0.00 |
7 | Condition | Negative | 609.00 | 0.00 |
8 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
9 (votes_needed=0; h_mean=0.353)
10
11 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
12 | Predicted condition |
13 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
14 | | | Positive | Negative |
15 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
16 | Actual | Positive | 144.00 | 22.00 |
17 | Condition | Negative | 22.00 | 587.00 |
18 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
19 (votes_needed=1; h_mean=0.867)
20
21 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
22 | Predicted condition |
23 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
24 | | | Positive | Negative |
25 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
26 | Actual | Positive | 127.00 | 39.00 |
27 | Condition | Negative | 11.00 | 598.00 |
28 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
29 (votes_needed=2; h_mean=0.836)
30
31 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
32 | Predicted condition |
33 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
34 | | | Positive | Negative |
35 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
36 | Actual | Positive | 111.00 | 55.00 |
37 | Condition | Negative | 5.00 | 604.00 |
38 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
39 (votes_needed=3; h_mean=0.787)
40
41 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
42 | Predicted condition |
43 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
44 | | | Positive | Negative |
45 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
46 | Actual | Positive | 105.00 | 61.00 |
47 | Condition | Negative | 4.00 | 605.00 |
48 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
49 (votes_needed=4; h_mean=0.764)
50
51 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
52 | Predicted condition |
53 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
54 | | | Positive | Negative |
55 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
56 | Actual | Positive | 93.00 | 73.00 |
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57 | Condition | Negative | 1.00 | 608.00 |
58 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
59 (votes_needed=5; h_mean=0.715)
60
61 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
62 | Predicted condition |
63 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
64 | | | Positive | Negative |
65 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
66 | Actual | Positive | 85.00 | 81.00 |
67 | Condition | Negative | 1.00 | 608.00 |
68 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
69 (votes_needed=6; h_mean=0.675)
70
71 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
72 | Predicted condition |
73 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
74 | | | Positive | Negative |
75 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
76 | Actual | Positive | 75.00 | 91.00 |
77 | Condition | Negative | 1.00 | 608.00 |
78 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
79 (votes_needed=7; h_mean=0.620)
80
81 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
82 | Predicted condition |
83 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
84 | | | Positive | Negative |
85 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
86 | Actual | Positive | 68.00 | 98.00 |
87 | Condition | Negative | 0.00 | 609.00 |
88 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
89 (votes_needed=8; h_mean=0.581)
90
91 +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
92 | Predicted condition |
93 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
94 | | | Positive | Negative |
95 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
96 | Actual | Positive | 62.00 | 104.00 |
97 | Condition | Negative | 0.00 | 609.00 |
98 +−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−−−+
99 (votes_needed=9; h_mean=0.544)

Similar to the previous analysis, we can create the same plot for all different
people:

1 amount_votes = defaultdict(lambda: 0)
2 for d in different:
3 amount_votes[d] += 1
4 data = []
5 for i in range(0,max(amount_votes.keys())+1):
6 data.append(amount_votes[i])
7 fig = plt.figure()
8 ax = fig.add_axes([0,0,1,1])
9 ax.bar(range(len(data)),data)
10 ax.set_xlabel("Amount␣of␣votes")
11 ax.set_ylabel("Amount␣of␣images")
12 ax.set_title("Images␣of␣the␣different␣person")
13 plt.show()
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For 96.4% of the images, no single template image has a distance smaller than
the chosen threshold. There are 1 images where 7 template images have a dis-
tance smaller than the threshold. Thus, if we set votes_needed to 8 we would
not get a single FP (in our dataset). Let’s look at these 1 examples with 7 votes:

1 highest_errors = []
2 max_votes = len(data)−1
3 for file in os.listdir(base_path):
4 person_path = os.path.join(base_path, file)
5 if os.path.isdir(person_path) and file != person and not file in exclude_dirs:
6 for img in os.listdir(person_path):
7 img_path = os.path.join(person_path, img)
8 if rec.get_eye_distance(img_path) < eye_distance:
9 continue
10 if rec.get_eyes_mouth_distance(img_path) < eye_mouth_distance:
11 continue
12 if get_amount_votes(img_path, folder, threshold) == max_votes:
13 highest_errors.append(img_path)
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1 highest_errors

1 ['/home/philipp/Nextcloud/printerroom−dataset/sonntag/2021−06−14T15−20−44.png
']

1 for error in highest_errors:
2 get_amount_votes(error, folder, 1.05)

1 data = []
2 for file in os.listdir(folder):
3 file_path = os.path.join(folder, file)
4 data.append(file_path)
5 rec.vis.get_confusion_vis(data)
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5. KMeans

1 from sklearn.cluster import KMeans
2 import numpy as np

1 kmeans = KMeans(n_clusters=1, random_state=42).fit(get_embs_from_path(folder))

1 template = kmeans.cluster_centers_

1 h_mean_onecluster, same_onecluster, different_onecluster, threshold_onecluster =
harmonic_mean(template)

2 print_harmonic_mean(h_mean_onecluster, threshold_onecluster)

1 Harmonic mean: 0.919 (with a threshold of 0.947)

1 kmeans = KMeans(n_clusters=5, random_state=42).fit(get_embs_from_path(folder))

1 emb_combined = np.mean( np.array(kmeans.cluster_centers_), axis=0 )
2 h_mean_fiveclustersavg, same_fiveclustersavg, different_fiveclustersavg,

threshold_fiveclustersavg = harmonic_mean(emb_combined)
3 print_harmonic_mean(h_mean_fiveclustersavg, threshold_fiveclustersavg)
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1 Harmonic mean: 0.932 (with a threshold of 0.93)

1 for amount_clusters in range(1,20+1):
2 print("{}␣cluster{}:".format(amount_clusters,"" if amount_clusters == 1 else "

s"))
3 kmeans = KMeans(n_clusters=amount_clusters, random_state=42).fit(

get_embs_from_path(folder))
4 emb_combined = np.mean( np.array(kmeans.cluster_centers_), axis=0 )
5 h_mean_fiveclustersavg, same_fiveclustersavg, different_fiveclustersavg,

threshold_fiveclustersavg = harmonic_mean(emb_combined)
6 print_harmonic_mean(h_mean_fiveclustersavg, threshold_fiveclustersavg)
7 print("")

1 1 cluster:
2 Harmonic mean: 0.919 (with a threshold of 0.947)
3
4 2 clusters:
5 Harmonic mean: 0.919 (with a threshold of 0.944)
6
7 3 clusters:
8 Harmonic mean: 0.932 (with a threshold of 0.958)
9
10 4 clusters:
11 Harmonic mean: 0.925 (with a threshold of 0.943)
12
13 5 clusters:
14 Harmonic mean: 0.932 (with a threshold of 0.93)
15
16 6 clusters:
17 Harmonic mean: 0.928 (with a threshold of 0.945)
18
19 7 clusters:
20 Harmonic mean: 0.929 (with a threshold of 0.932)
21
22 8 clusters:
23 Harmonic mean: 0.929 (with a threshold of 0.91)
24
25 9 clusters:
26 Harmonic mean: 0.920 (with a threshold of 0.918)
27
28 10 clusters:
29 Harmonic mean: 0.927 (with a threshold of 0.906)
30
31 11 clusters:
32 Harmonic mean: 0.932 (with a threshold of 0.907)
33
34 12 clusters:
35 Harmonic mean: 0.929 (with a threshold of 0.909)
36
37 13 clusters:
38 Harmonic mean: 0.932 (with a threshold of 0.918)
39
40 14 clusters:
41 Harmonic mean: 0.927 (with a threshold of 0.921)
42
43 15 clusters:
44 Harmonic mean: 0.936 (with a threshold of 0.923)
45
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46 16 clusters:
47 Harmonic mean: 0.931 (with a threshold of 0.937)
48
49 17 clusters:
50 Harmonic mean: 0.931 (with a threshold of 0.941)
51
52 18 clusters:
53 Harmonic mean: 0.935 (with a threshold of 0.938)
54
55 19 clusters:
56 Harmonic mean: 0.934 (with a threshold of 0.946)
57
58 20 clusters:
59 Harmonic mean: 0.929 (with a threshold of 0.942)

1 kmeans = KMeans(n_clusters=4, random_state=42).fit(get_embs_from_path(folder))

1 import sys
2 from PIL import Image
3 def comb_images_face(path):
4 images = []
5 if isinstance(path, list):
6 for p in path:
7 images.append(Image.open(p))
8 else:
9 for file in os.listdir(path):
10 images.append(Image.open(os.path.join(path, file)))
11 faces = []
12 for image in images:
13 faces.append(rec.extractor.get_faces(np.array(image))[0])
14
15 images = faces
16
17 widths, heights = zip(∗(i.size for i in images))
18 total_width = sum(widths)
19 max_height = max(heights)
20 new_im = Image.new('RGB', (total_width, max_height))
21 x_offset = 0
22 for im in images:
23 new_im.paste(im, (x_offset,0))
24 x_offset += im.size[0]
25 return new_im

5.1 Summary

91.9% for average embedding, 85.8% for voting; 93.6% for k_means (with 15
clusters)
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