
On the state of V3 onion services
Tobias Hoeller

Johannes Kepler University Linz
Linz, Austria

tobias.hoeller@ins.jku.at

Michael Roland
Johannes Kepler University Linz

Linz, Austria
michael.roland@ins.jku.at

René Mayrhofer
Johannes Kepler University Linz

Linz, Austria
rene.mayrhofer@ins.jku.at

ABSTRACT
Tor onion services are a challenging research topic because they
were designed to reveal as little metadata as possible which makes
it difficult to collect information about them. In order to improve
and extend privacy protecting technologies, it is important to un-
derstand how they are used in real world scenarios. We discuss
the difficulties associated with obtaining statistics about V3 onion
services and present a way to monitor V3 onion services in the cur-
rent Tor network that enables us to derive statistically significant
information about them without compromising the privacy of indi-
vidual Tor users. This allows us to estimate the number of currently
deployed V3 onion services along with interesting conclusions on
how and why onion services are used.

CCS CONCEPTS
• Networks → Network measurement; Network monitoring; •
Security and privacy → Pseudonymity, anonymity and untrace-
ability; Privacy-preserving protocols;

1 INTRODUCTION
Tor onion services enable individuals to operate publicly reachable
servers without disclosing their network location. Historically, they
have been a sideline of the work done by the Tor project. Some
have even claimed that onion services were originally conceived
as a demonstration of interesting applications that could be built
on top of a free and open network like Tor [2]. This sentiment
is also supported by their own statistics which show that in 2021
onion services accounted for only 6 Gbit/s of traffic within the Tor
network [9]. This pales in comparison to the almost 300 Gbit/s of
bandwidth that the Tor network currently consumes in total.

In stark contrast to these numbers, the public opinion often
considers onion services a significant building block of the “Darknet”
which is believed to be several times larger in size than the easily
accessible parts of the Internet. While it is commonly accepted that
this perception is incorrect, it does show that reliable figures on
the state of the Tor network and onion services in particular are of
interest to a lot of parties.

Unfortunately, the desire to collect this information directly
conflicts with the fact that onion services are designed to avoid
data collection as much as possible so there is actually a very limited
amount of information about onion services that is gathered and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FOCI’21, August 27, 2021, Virtual Event,USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8640-1/21/08.
https://doi.org/10.1145/3473604.3474565

published by the Tor project. Currently, the only collected metrics
are the number of V2 onion services which were around 200,000 in
the first months of 2021 and the amount of traffic generated by V2
and V3 onion services [9].

In the past there have been several other research efforts to learn
more about how onion services are being used [6, 7], but they all
focused on V2 onion services. This is mainly caused by the fact that
certain weaknesses in V2 onion services made it easier to collect and
analyze data about them. Since there are no similar issues known
about V3 onion services, we know much less about the current
version of onion services than we knew about the previous version.

A simple and obvious example would be the total number of
active onion services in the Tor network. Right now, we have a solid
estimate on the number of V2 onion services but have no informa-
tion about V3. This is especially relevant, because V2 onion services
will be discontinued in 2021 [3] leaving the research community
with no information on how many onion services are currently
running.

This work tackles the challenge of collecting basic information
about V3 onion service usage like the number of currently running
V3 onion services and the amount of users they have.

We first discuss the improvements introduced by V3 onion ser-
vices that make gathering and interpreting data about onion ser-
vices harder. In section 3 we describe our measurement setup in
detail. Afterwards, we present a detailed analysis of our collected
data which answers several open questions about V3 onion services.

2 TOR AND ONION SERVICES
Tor is an onion routing technology that anonymizes network traffic
by tunneling it via several nodes. A connection established via the
Tor network is referred to as circuit and usually consists of three
nodes. The currently available members of the Tor network are de-
fined by the consensus, a document that is created by a selected small
group of trusted relay operators called directory authorities. This
consensus is published every hour and lists all currently known re-
lays along with all the information needed to create circuits through
them. Additionally, the consensus assigns flags on relays based on
their behavior and capabilities. The most important flags in the
context of this paper are Fast, Stable, and HSDir. A relay is consid-
ered fast if it has a bandwidth of more than 105 KB/s, stable if it
has a weighted mean time between failure of more than 7 days,
and HSDir if it is stable, fast, and has an uptime of more than 96
hours. Of special importance when talking about onion services
is the fact that the consensus also includes a shared random value
which changes every 24 hours to ensure that certain parts of the
Tor network remain unpredictable.

Onion services operate on top of the Tor network by bouncing
both incoming and outgoing connections via other Tor relays to
hide their network location. In order to accept incoming connection

50

https://doi.org/10.1145/3473604.3474565


FOCI’21, August 27, 2021, Virtual Event,USA Tobias Hoeller, Michael Roland, and René Mayrhofer

requests indirectly, every onion service selects random relays as
introduction points and establishes circuits to them. These circuits
must remain intact as long as the onion service keeps running since
the only way to contact an onion service is via its introduction
points.

Since introduction points must be replaced if they go offline,
Tor needs a way to automatically discover the current introduction
points for a specific onion service. The identifier of the onion ser-
vice along with metadata and the introduction points is packaged
in a service descriptor by the onion service and published. To en-
able publication, a set of Tor relays which have been granted the
HSDir flag in the consensus form the hidden service directory, a
distributed hash table, where service descriptors can be posted and
retrieved. By default, V3 service descriptors are uploaded to four
consecutive relays at two different positions (replicas) within the
distributed hash table. In order to connect to an onion service, a
Tor client needs to know the identifier of the service descriptor
which is more commonly known as the onion address. With that
address the client can request service descriptors from the hidden
service directory and contact the onion service. To ensure that the
chosen introduction points cannot monitor incoming connections
on a hidden service directory, clients have to select a random Tor
relay as rendezvous point and ask the onion service via one of its in-
troduction points to establish a connection through the rendezvous
point. Both the client and the onion service create a circuit to the
rendezvous point which is only responsible for connecting the two
circuits to establish a secure and anonymous connection between
the onion service and a client.

2.1 Flaws in V2
In the previous version of onion services, service descriptors were
identified by the .onion address of the service they belonged to.
This enabled any Tor relay that was a member of the hidden ser-
vice directory to extract currently valid onion addresses from the
uploaded descriptors. Since there is no other way to learn about
available onion addresses, other than being told by the owner of the
onion service, this leak of information is critical because it enables
both attackers and researchers to enumerate all currently existing
V2 onion services.

Tightly coupled with the first problem is the fact that V2 service
descriptors are not encrypted. So every relay on the hidden service
directory that receives the descriptor can use it to directly connect
to the onion service even without knowing the address (which is
irrelevant for V2 onion services since V2 service descriptors are
identified by the onion address).

These two information leaks enabled themass collection of onion
addresses for any parties with the capability of operating Tor relays
with the HSDir flag. Consequently, running a relay only to collect
and probe onion addresses is considered malicious1 behavior by
the Tor project and such relays are actively removed from the
consensus. These weaknesses were also used by researchers to
collect the onion addresses of active V2 onion services [1, 7] and
establish connections to them in order to learn about the services
they provide.

1https://community.torproject.org/relay/community-resources/bad-relays/

Another aspect of the hidden service directory that made V2
onion services vulnerable, was the fact that it assigned the respon-
sibilities for descriptor space based on the relay’s fingerprint. Since
the fingerprint is chosen by the relay, malicious actors could mod-
ify the position of their relays within the hidden service directory
by carefully choosing their fingerprints. This issue was best high-
lighted by the shadowing attack performed by Biryukov et al. [1],
who operated dozens of relays in parallel. Usually this would not
be a problem because at most two relays in a consensus can have
the same IP address so operating more relays does not impact the
consensus at all. But those inactive relays could still collect flags
while they were not part of the consensus and by temporarily dis-
abling individual relays Biryukov et al. could control which two
relays would join the hidden service directory at any given time.
This enabled them to collect 100% of all V2 .onion addresses within
only 24 hours because they had full control over which part of the
HSDir they were monitoring at any given time.

Finally, the way V2 service descriptors are distributed across the
hidden service directory turned out to be problematic. In order to
make sure that the responsible HSDir relays for a service descriptor
change regularly, the position of a V2 descriptor within the hidden
service directory is derived from the identifier of the onion service
and the current date. While this works well to move the descriptor
around, this approach has the massive problem of being predictable.
An attacker can easily calculate the future positions of a specific
onion service’s service descriptor. This was doubly problematic
with the previously mentioned shadowing attack because it enabled
a malicious actor to constantly become the responsible hidden
service directory relay for a specific onion service. Even without
the shadowing attack, this is possible for an attacker with access to
enough public IP addresses.

2.2 Changes in V3
Considering all the issues with the hidden service directory that
came up in V2 onion services, it comes as no surprise that significant
changesweremade tomake V3 onion servicesmore resilient against
malicious HSDir relays.

To prevent members of the hidden service directory from col-
lecting onion addresses, a key derivation scheme was introduced.
Instead of using the onion address, which is just an encoded public
key, as identifier for the service descriptor, a new blinded public
key (bpk) is derived from the current shared random value in the
consensus and the V3 onion address. Clients with knowledge of the
onion address can easily generate the blinded public key themselves
and request it from the hidden service directory while the relays
within the HSDir are unable to derive the original key from the
uploaded blinded public key. Additionally, this change makes it im-
possible for an attacker to precompute future descriptor locations
for a specific onion service since those depend on the identifier of
the descriptor, which is no longer predictable thanks to the shared
random value.

Using two different keys also provides a possibility to prevent
HSDir relays from reading the contents of service descriptors. There
is a private key counterpart to every public key that is encoded in an
onion address. This private key is only known to the onion service
and can be used to encrypt service descriptors before uploading

51

https://community.torproject.org/relay/community-resources/bad-relays/


On the state of V3 onion services FOCI’21, August 27, 2021, Virtual Event,USA

them. This is no issue for legitimate clients since they need to know
the address anyway to request the descriptor. However, malicious
HSDir relays can no longer probe onion services, since they have
no way to decrypt the introduction points within the descriptor.

To ensure that relay operators have no influence over their posi-
tions within the hidden service directory at any given time, descrip-
tor space responsibilities within the HSDir are now also impacted
by the shared random value. Since a relay needs to run for at least 96
hours before joining the hidden service directory it is impossible to
generate a new relay that joins the hidden service directory before
the network moves on to a new shared random value.

3 EXPERIMENT SETUP
From the changes highlighted in the previous section it becomes
quite clear that most attempts to obtain information about V2 onion
services have focused on the hidden service directory and the V3
onion service specification has gone to great lengths to reduce
the amount of information that can be obtained from monitoring
the hidden service directory. Nevertheless, as long as every onion
service has to publish their descriptor inside the HSDir and every
client must fetch them from there as well, the HSDir will leak some
information to the participating relays.

3.1 Technical Details
For our experiment, we deployed a set of 50 Tor relays (family:
008196DC449482C73CFA9712445223917F760921) which meet the
requirements to obtain the HSDir flag and log every upload and
download of a V3 service descriptor. Instead of writing those logs
to disk, they are directly handled by a log listener attached via
the Stem2 library which extracts relevant information from the
descriptors, sorts them alphabetically and stores it in a SQL database.
Just like the relays, this database was operated by us within our
own network on our own hardware. For every upload we store
the blinded public key, the relay that received the upload, and a
timestamp that only contains the year, month, day and hour of
the upload. For downloads we store the same data, except that the
timestamp are reduced to daily granularity.

3.2 Privacy considerations
When we designed our experiment, we had to deal with the risk of
endangering the privacy of Tor users through our data collection.
Thankfully, the Tor project has their own advisory board3 which
helps researchers to conduct their experiments in a safe way. They
reviewed our experiment setup and suggested several privacy im-
provements. We continued to implement these changes until the
advisory board no longer had any objections. In this section, we
discuss the most important questions we encountered and how we
decided to address them.

3.2.1 Data Management. Access to the machines involved in
the experiment was exclusively granted to the members of our
research team responsible for the experiment. The database with
the collected information will be retained as long as our research

2https://stem.torproject.org/
3https://research.torproject.org/safetyboard/

is ongoing. Once the research is concluded, the raw data will be
erased permanently.

3.2.2 Traffic correlation. On a basic level, our stored data re-
veals which requests were made to our relays at which time. This
might allow an attacker to combine this information with other
data sources to launch time-based traffic correlation attacks. To mit-
igate this issue, we decided to drop all metadata about the requests
and to truncate timestamps at the hour value for all uploads. For
downloads we saw a greater risk of attack, because they have to be
triggered by clients manually, while uploads happen automatically
and semi-regularly. Therefore, we decided to cut upload timestamps
at the day value instead of the hour. This should render our data use-
less for time-based correlation attacks, without impacting statistical
significance.

Another potential source of correlation raised by the Tor research
safety board is the order in which blinded public keys are entered
into the database. If that order was the same in which the data was
received, this would give attackers an alternative way to accurately
determine the time certain requests were made. This is mitigated
by sorting blinded public keys alphabetically, before inserting them
into the database.

3.3 Hardly used onion services
Some onion services are used for very specific tasks that require
only a single user making occasional connections. If one of our
relays is a responsible HSDir for such a service and the client selects
our relay to request the service descriptor from, our data reveals
when an onion service was used. Paired with knowledge about
the purpose of an onion service belonging to a single user, this
alone might reveal more information about the user than we in-
tended. Unfortunately, we have no way of knowing this in advance,
so we cannot exclude such cases during our raw data collection.
Consequently, we limit access to our raw data to the researchers
responsible for the experiment and make sure that in publications
only aggregated information on barely used onion services is pub-
lished.

3.4 Unwanted attention
While our collected information does not contain any onion ad-
dresses, attackers with knowledge of onion addresses could easily
link our collected blinded keys to addresses they know about. This
allows them to use our data to estimate the popularity of an onion
service. Since one of the goals of onion services, is keeping the
number of users private [4], making this information publicly avail-
able could violate the privacy of some onion service operators.
Ultimately, this violation could lead some attackers to specifically
target onion services because of their popularity within our data.

While this could have been avoided entirely by not storing
blinded public keys, we decided to include them in our raw data
to enable research on the usage of well known onion addresses
and their development over time. This development is especially
interesting in the current transition from V2 to V3 onion services.
To prevent abuse of our data we will never publish blinded public
keys directly (since we have no way of knowing if anyone else will
link them to an onion address) and only publish information on

52

https://stem.torproject.org/
https://research.torproject.org/safetyboard/


FOCI’21, August 27, 2021, Virtual Event,USA Tobias Hoeller, Michael Roland, and René Mayrhofer

how many users an onion service has, if that does not constitute a
risk to that service.

3.5 Data publication
From the previous sections is becomes clear that publication of the
unfiltered raw data is not desirable, because some entities might be
able to instrument our data to harm individuals. Nevertheless, we
would still like to make as much of our data as possible available
to other researchers, so we are currently working on creating a
processed data set from our raw data that enables statistical analysis
without endangering the privacy of individual Tor users. This would
allow us to keep data from the experiment after the raw data has
been deleted.

4 RESULTS
While our relays are still running and collecting more data, the
already collected data is sufficient to answer several questions sur-
rounding V3 onion services.

4.1 Uploads
The first metric we derive from our data is an estimate of the number
of running V3 onion services. Before discussing it in more detail,
it should be noted that since version 0.4.6.1-alpha4 Tor does also
collect metrics about the number of V3 onion service, but so far
no statistics have been published. In the future, we expect the Tor
Metrics [9] team to provide a more reliable estimate on the number
of V3 onion services, which can be used to cross-check our own
results. To make this comparison as easy as possible, we adapted the
specification on how Tor Metrics generates statistics on V2 onion
services [5] and only made the necessary changes to be compatible
with V3.

First, we need to know the fractions of descriptors seen by our
members of the hidden service directory based on the hash value
(hsdir_hash𝑥 ) that determines their position within the HSDir. Like
regular Tor clients we can derive the HSDir from a Tor consensus [8]
and calculate the fractions of our own relays as

hsdir_share𝑥 = (hsdir_hash𝑥 − hsdir_hash𝑥−4)/2256/4.
Dividing hsdir_share by 4 is necessary to counter the effect that
every service descriptor is uploaded to four consecutive relays. To
estimate the total size of the hidden service directory, we need to
combine our relative share with the number of uploaded blinded
public keys (bpk_count𝑥 ):

extrapolated_size𝑥 = (bpk_count𝑥 · (1/hsdir_share𝑥 ))/4.
The division of the extrapolated_size by 4 is necessary to obtain the
number of distinct V3 onion addresses since every service maintains
two replicas in two time periods. To aggregate this set of extrap-
olated sizes to a single value, we opted to use the same weighted
interquartile mean [5] that the Tor metrics team uses to estimate
the V2 onion address count.

Figure 1 shows the results of our calculations which indicate
that the number of V3 onion services was between 600,000 and
700,000 in March and April of 2021 making them about three times
more popular than V2 onion services. The drop to zero between

4https://blog.torproject.org/node/2011

Figure 1: Extrapolated number of V3 onion services

March 18th and March 23rd was caused by a temporary outage of
the directory authority Faravahar, which caused all of our relays to
lose their HSDir flag until the authority came up again. An impor-
tant criterion to judge the significance of our measurements is the
relative share of the hidden service directory we are extrapolating
from. Tor metrics define a threshold of 1% for V2 onion services and
excludes data for days with less information. Figure 2 shows the
relative share of the hidden service directory we monitored during
our experiment. The constant decline in share between April and
June was caused by an error that lead some of our relays to stop
reporting statistics. Once the problem was detected and corrected,
our share stabilized at around 0.8% again. Initially, we expected this
to cause very unreliable estimates on the size of the hidden service
directory for the affected months (especially May), but our data does
not support this assumption. When all 50 relays started reporting
statistics again, the increased share in the hidden service directory
did not have a significant impact on the estimated number of onion
addresses. This leads us to conclude that it is possible to obtain
acceptably stable estimates on the number of onion services while
owning significantly less than 1% of the hidden service directory.

The next interesting piece of information to know about V3
onion services is their average lifetime but, in contrast to previous
studies on V2, we have no way of finding out if two blinded public
keys belong to the same onion address. However, we do know that
similar research on V2 onion services [7] found that most onion
services did not live long enough to show up in their data multiple
times. While we have no way of confirming these results for V3,
we do know that every blinded public key is valid for 48 hours and
is re-uploaded at least every 60-120 minutes [8]. Based on this we
expect to see every blinded public key uploaded on average 32 times
if the Tor network remains stable. Relays joining or leaving the
HSDir can cause us to see fewer uploads and unstable introduction
points increase the number of observed uploads. Figure 3 shows
that during our experiment the amount of descriptors seen between
3 and 35 times was fairly constant, which indicates that these were
caused by the dynamics of the hidden service directory. The spike at
38 and 39 uploads per bpk seems to indicate that this is the average

53

https://blog.torproject.org/node/2011


On the state of V3 onion services FOCI’21, August 27, 2021, Virtual Event,USA

Figure 2: Relative share of HSDir we observed

Figure 3: How often are bpks uploaded

Figure 4: For how many different consensuses are bpks up-
loaded

number of uploads for a stable onion service. The high amount of
bpks with a single upload supports the theory that there are a lot
of onion services that live for a very short time. We speculate that
these instances are either created by people experimenting with
onion services or that there are onion services which are only used
once and thus have no need to republish their descriptor.

It should be mentioned that we did detect a small number of
blinded public keys that were uploaded more than 50 times to
our relays with the record holding key being re-published 16951
times within 48 hours. But since more than 99.5% of all bpks were
uploaded between 1 and 50 times, we feel confident that we can
ignore larger numbers as symptoms of misconfiguration of the
responsible Tor client.

This caused us to wonder if there are V3 onion services that
publish the same bpk over more than 48 hours. Figure 4 shows
in how many different hours (consensus freshness periods) our
observed bpks. In this case we did not have to exclude outliers for
plotting since no blinded public key was published more than 53
times.

Comparing Figure 3 and Figure 4 we can see that we get much
closer to our expected 32 uploads on average if we ignore re-uploads
in the same consensus freshness period that were most likely caused
by changing introduction points or issues with the Tor client of
the onion service. The delta between Figure 3 and Figure 4 can
therefore be interpreted as a rough estimate for how often onion
services have to re-publish their onion service for other reasons.

4.2 Downloads
In order to assess the relevance of onion services, it is essential
to estimate the amount of users they are handling. There are no
official statistics on how many users onion services have collected
by the Tor network and previous research [6, 7] has focused on
what onion services are used for, so there is little data on the usage
of onion services.

We can provide some insight into how frequently onion services
are being accessed by investigating the number of times every
blinded public key was requested from our nodes. It should be
noted that descriptor downloads do not correspond to visits since
the Tor client caches descriptors, but also not to visitors since there
are several reasons that could cause Tor to request a descriptor
multiple times. Even more specific, the download of a descriptor
only tells us that a Tor client intended to connect to an onion service,
not if it actually connected. So we interpret the count of descriptor
downloads as an upper bound on the number of visitors and a lower
bound on the number of visitation attempts.

Tor clients use only 6 out of the 8 responsible HSDir relays for
downloading (the other two are there in case a relay goes offline).
Usually, one of those 6 relays is chosen at random, so our recorded
number of descriptor downloads must be multiplied by a factor
of six to extrapolate the actual number of descriptor requests for
a specific blinded public key. The only exception to this rule are
requests for onion services that no longer exist. In this case a Tor
client will try all six responsible hidden service directories before
giving up, so there is no need to extrapolate the number of download
attempts.

54



FOCI’21, August 27, 2021, Virtual Event,USA Tobias Hoeller, Michael Roland, and René Mayrhofer

Table 1: Received upload and download requests (in absolute
and relative numbers)

Description Requests BPKs

Total Uploads 51,415,871 100% 2,041,638 100%
Used Uploads 9,731,936 19% 294,245 14%
Unused Uploads 41,683,935 81% 1,747,393 86%

Total Downloads 95,411,136 100% 1,310,062 100%
Successful Downloads 29,326,445 31% 293,903 22%
Failed Downloads 66,084,691 69% 1,016,159 78%

Figure 5: Top 0.01% of most downloaded bpks

Since we already learned from the uploads that onion services
are very dynamic we expected a high number of onion services
with a very low number of downloads. Table 1 confirms this theory
since 86% of all blinded public keys that were uploaded during
our experiment were never downloaded by a client. When inter-
preting this result, it is important to remember that we usually
only control one out of eight responsible hidden service directory
nodes, so an unused upload does not mean that the service was
never downloaded, it just means it was never downloaded from
our node. V3 descriptors are always uploaded to 8 different nodes,
but only downloaded from 6 (the other two serve as backup if a
HSDir node goes offline), so about 25% of our uploads are meant
to be unused. The remaining unused uploads are most like caused
by onion services that are either unused or used so rarely that our
node was never chosen by chance and remained unused.

Next, we took a look at the most downloaded blinded public keys
to quantify how successful the most popular onion services are. We
found that more than 77.5% of all download requests received by
our relays were asking for the most popular 1% of blinded public
keys with the record key being requested more than 1.6 million
times within 48 hours. This implies that at least 9.6 million attempts
to visit the service were made during one day. Figure 5 shows the
top 0.01% of most downloaded blinded public keys which make
up 47% of all downloads for blinded public keys. This illustrates
nicely that a very small amount of onion services is responsible

for most onion service usage. While we have no way of knowing
what kind of onion service would be so popular, it seems fair to
speculate some of them might be command and control servers that
are used by botnets. Previous researchers have already found that
V2 onion services were used to control botnets [7] and it would
be logical that V3 onion services continue to be used in this way.
A possible way to support this theory, is to quantify the number
of requests for blinded public keys that were never published. In
contrast to humans, programs tend to repeatedly try to connect to a
no longer working onion service while humans will give up after a
short time. In our data set, there are several blinded public keys that
were never published to our relays, but still requested more than
one million times over 48 hours from just one of eight responsible
hidden service directories. We see two possible explanations for
this observation: Either these keys belong to a defunct botnet server
or they were victim of a DoS attack that knocked out the onion
service in the previous time period but did not stop trying to attack.

Table 1 also shows that more than two thirds of all received
download requests could not be answered because the requested
descriptor had not been uploaded. Since we do not track the hours
of download requests, we can only confirm failed download re-
quests if the descriptor was never published, so our results only
put a lower bound on the total number of failed download requests.
While it is possible that descriptors for running onion services are
requested from our relay without ever being uploaded to it, this
requires very unfortunate timing of relays joining and leaving the
hidden service directory. The large share of failed requests indicates
that a significant share of requested onion addresses belongs to
disabled/nonexistant onion services. This observation also applies
to the blinded public keys depicted in Figure 5 indicating that a
majority of onion service requests is asking for a small number of
onion services that mostly do not exist.

The fact that so many onion service requests fail paired with
the justified assumption that many high-volume onion services are
only used for machine-to-machine communication means that we
are unable to derive at any conclusions about how many human
users connect to onion services.

5 CONCLUSION
Our results show that despite the additional steps taken by version 3
of the onion service protocol, it is still possible to collect statistically
significant information about Tor onion services and their users by
monitoring the hidden service directory. We present an experiment
design that enables us to collect this information with reasonable
effort and without compromising the privacy of individual Tor
users. We have provided a first estimate on the current number
of deployed V3 onion services and reveal that many of them only
exist for short periods of time. By evaluating the download requests
received by the hidden service directory, we demonstrated that
most service descriptors are hardly ever downloaded, most likely
because they are used by single users or small groups. On the other
hand we confirmed that a very small amount of onion services is
responsible for most onion service activity. We believe that future
research should try to identify the cause of those high-volume
onion services in order to deepen our understanding of how onion
services are being used.

55



On the state of V3 onion services FOCI’21, August 27, 2021, Virtual Event,USA

ACKNOWLEDGEMENTS
We thank the anonymous reviewers at FOCI’21 for their high-
quality, valuable feedback. In particular, we thank our shepherd,
Roger Dingledine, for his guidance on improving the paper.

This work has been carried out within the scope of Digidow, the
Christian Doppler Laboratory for Private Digital Authentication in
the Physical World, funded by the Christian Doppler Forschungsge-
sellschaft, 3 Banken IT GmbH, Kepler Universitätsklinikum GmbH,
NXP Semiconductors Austria GmbH, and Österreichische Staats-
druckerei GmbH.

REFERENCES
[1] Alex Biryukov, Ivan Pustogarov, and Ralf-Philipp Weinmann. 2013. Trawling

for tor hidden services: Detection, measurement, deanonymization. In 2013 IEEE
Symposium on Security and Privacy. IEEE, Berkeley, CA, USA, 80–94. https://doi.
org/10.1109/SP.2013.15

[2] Roger Dingledine. 2017. Next Generation Tor Onion Services. Presentation at DEF
CON 25. (2017). https://media.defcon.org/DEFCON25/DEFCON25presentations/
DEFCON25-Roger-Dingledine-Next-Generation-Tor-Onion-Services-UPDATED.
pdf

[3] David Goulet. 2020. Onion Service version 2 deprecation timeline. The Tor Project
Blog. (2020). https://blog.torproject.org/v2-deprecation-timeline

[4] David Goulet, Aaron Johnson, George Kadianakis, and Karsten Loesing.
2015. Hidden-service statistics reported by relays. Tor Tech Report
2015-04-001. The Tor Project. https://research.torproject.org/techreports/
hidden-service-stats-2015-04-28.pdf

[5] George Kadianakis and Karsten Loesing. 2015. Extrapolating network totals from
hidden-service statistics. Tor Tech Report 2015-01-001. The Tor Project. https://
research.torproject.org/techreports/extrapolating-hidserv-stats-2015-01-31.pdf

[6] Sarah Jamie Lewis. 2016. OnionScan: Investigating the Dark Web. (2016). https:
//onionscan.org/

[7] Gareth Owen andNick Savage. 2016. Empirical analysis of Tor Hidden Services. IET
Information Security 10, 3 (2016), 113–118. https://doi.org/10.1049/iet-ifs.2015.0121

[8] The Tor Project. 2017. Tor Rendezvous Specification - Version 3. (2017). https:
//github.com/torproject/torspec/blob/master/rend-spec-v3.txt

[9] The Tor Project. 2021. Tor Metrics. (2021). https://metrics.torproject.org

56

https://doi.org/10.1109/SP.2013.15
https://doi.org/10.1109/SP.2013.15
https://media.defcon.org/DEFCON25/DEFCON25presentations/DEFCON25-Roger-Dingledine-Next-Generation-Tor-Onion-Services-UPDATED.pdf
https://media.defcon.org/DEFCON25/DEFCON25presentations/DEFCON25-Roger-Dingledine-Next-Generation-Tor-Onion-Services-UPDATED.pdf
https://media.defcon.org/DEFCON25/DEFCON25presentations/DEFCON25-Roger-Dingledine-Next-Generation-Tor-Onion-Services-UPDATED.pdf
https://blog.torproject.org/v2-deprecation-timeline
https://research.torproject.org/techreports/hidden-service-stats-2015-04-28.pdf
https://research.torproject.org/techreports/hidden-service-stats-2015-04-28.pdf
https://research.torproject.org/techreports/extrapolating-hidserv-stats-2015-01-31.pdf
https://research.torproject.org/techreports/extrapolating-hidserv-stats-2015-01-31.pdf
https://onionscan.org/
https://onionscan.org/
https://doi.org/10.1049/iet-ifs.2015.0121
https://github.com/torproject/torspec/blob/master/rend-spec-v3.txt
https://github.com/torproject/torspec/blob/master/rend-spec-v3.txt
https://metrics.torproject.org

	Abstract
	1 Introduction
	2 Tor and Onion Services
	2.1 Flaws in V2
	2.2 Changes in V3

	3 Experiment Setup
	3.1 Technical Details
	3.2 Privacy considerations
	3.3 Hardly used onion services
	3.4 Unwanted attention
	3.5 Data publication

	4 Results
	4.1 Uploads
	4.2 Downloads

	5 Conclusion
	References

