
Submitted by
Ing. Thomas Christof
BSc

Submitted at
Institute of Networks
and Security

Thesis Supervisor
Univ.-Prof. DI Dr.
René Mayrhofer

Assistant Thesis Supervisor
Dr. Michael Roland

November 2021

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Austria
www.jku.at
DVR 0093696

DJI Wi-Fi Protocol
Reverse Engineering

Master Thesis
to obtain the academic degree of

Diplom-Ingenieur
in the Master’s Program

Computer Science

Statutory Declaration

I hereby declare that the thesis submitted is my own unaided work, that I have not
used other than the sources indicated, and that all direct and indirect sources are
acknowledged as references.

This printed thesis is identical with the electronic version submitted.

Linz, November 2021

i

Claudia Huber

Claudia Huber

Claudia Huber

Claudia Huber

Abstract

This master’s thesis engages the reverse-engineering of the Da Jian Innovation low
level Wi-Fi protocol. With deductive reasoning we try to establish logical connections
between drone control instructions and their corresponding sent network packets.
We further cluster UDP packets based on their payload length and execute bit-
precise reasoning for payloads of interest. We unveil the protocol’s core structure
which enables pixel-perfect camera-feed and telemetry data extraction. Finally, we
introduce a proprietary software solution to capture, analyse and post-process drone
operation relevant network packets.

Kurzfassung

Diese Masterarbeit beschäftigt sich mit der Rekonstruktion des Da Jian Innovation
Wi-Fi Protokolls. Mit deduktivem Vorgehen wird versucht logische Verbindungen
zwischen den Instruktionsbefehlen der Drohne und deren resultierenden Netzwerk-
paketen herzustellen. Weiteres werden relevante UDP Pakete anhand ihrer Länge
gruppiert und Bit für Bit analysiert. Wir präsentieren die Struktur des Kernpro-
tokolls welches die Extraktion einer pixelgenauen Kamera-Bildübertragung und
der Telemetriedaten ermöglicht. Schließlich stellen wir eine proprietäre Softwarelö-
sung vor, mit der steuerungsrelevante Netzwerkpakete gesammelt, analysiert und
weiterverarbeitet werden.

ii

Contents

Abstract ii

Kurzfassung ii

1 Introduction 1
1.1 Unmanned Aerial Vehicle . 1
1.2 Civilian Unmanned Systems . 2
1.3 Da Jian Innovation . 2
1.4 Wireless Communication . 3
1.5 Thesis Objective . 5

2 Target Specification 6
2.1 Software Defined Radio . 8
2.2 Ocusync . 9
2.3 Wi-Fi . 10

3 Man-in-the-Middle 12
3.1 Access Point Configuration . 13
3.2 Unstable Network Connection . 15

3.2.1 Wi-Fi Extender . 15
3.2.2 External Network Adapter . 16

3.3 Intercommunication Eavesdropping 18

4 DJI Wi-Fi Protocol 19
4.1 Ethernet Frame . 20
4.2 Payload Encryption . 21

iii

Contents

4.3 Deductive Reasoning . 24
4.3.1 Operator-to-Drone . 24
4.3.2 Drone-to-Operator . 37
4.3.3 Concluding Findings . 41

4.4 DJI Universal Markup Language . 42
4.4.1 Wireshark Dissector . 43
4.4.2 Payload Delimiter . 44
4.4.3 Protocol Architecture . 45

5 DJI Wi-Fi Tools 52
5.1 Framework and Libraries . 53
5.2 Application Architecture . 54

5.2.1 DJI Network Packets . 55
5.2.2 DJI Network . 57
5.2.3 DJI Camera . 59
5.2.4 DJI UI . 60

5.3 Information Gathering . 63

6 Conclusion 65

Bibliography 66

A Software Design UML Diagrams 72

B DJI Source Code Snippets 75

iv

1 Introduction

Drones are of high popularity among private individuals and public institutions.
Its wide variety of application pushes its demand of affordable and easy to use
systems, satisfied by Da Jian Innovation (cf. Section 1.3), one of the major drone
manufacturers. Their drone market dominance derives not only from their technical
advance, but also from the mobile-applications ease of use. Despite the focus
on usability, the applications are suitable for beginners and technically advised
operators, as our personal experience throughout the entire reverse-engineering
process denotes. However, as usability often contradicts security, we are curious
what kind of information and in which granularity is extractable from a mid-air
drone operation by unauthorised third party individuals.

1.1 Unmanned Aerial Vehicle

Unmanned Arial Vehicles (UAV), also known as drones, are remotely piloted air-
crafts. Dalmagkidis et al. [4] classify UAVs based on various sources, distinguishing
between: ownership, autonomy, altitude and mid-air collision risk, ground impact
(i.e. expected kinetic energy at ground impact), and military classifications. One
major drawback of this classification is its specificness in certain fields of operations.
Accordingly, we select a more generalized alternative instead [58]: fixed and rotary
winged. Fixed winged UAVs operate at a high velocity speed and carry heavy
payloads. A continuous forward motion is required to stay airborne. Rotary winged
UAVs (e.g. quadcopters) are suitable for stationary operations while providing the
flexibility to move in any direction.

1

1 INTRODUCTION

1.2 Civilian Unmanned Systems

Early UAV technology was not reliable, expensive and has been adopted very
slowly in Europe. However, within the last decades, the rotary winged quadcopter
grew of public interest among Civilian Unmanned Systems (CUS) as technology
has been improved and became much more reliable [50]. Besides hobby pilots
shooting pictures of structures, nature or sports events, CUS applications include
[50]: scientific research, search and rescue, emergency response, traffic control
tasks, infrastructure support, aerial photography, forest protection and wildfire
monitoring, electrical facility monitoring, etc. Its variety of applications led to the
establishment of small and medium enterprises, predominantly selling low-cost
systems for civilian applications. In order to keep the development and production
cost at a minimum, some major companies avoid proprietary hardware and leverage
existing off-the-shelf items instead (cf. Section 2.2).

1.3 Da Jian Innovation

In 2015, five out of the top ten quadcopter drone manufacturers (cf. Table 1.1) are
Chinese companies, mostly imitating existing products and selling at a lower price
[57]. One of them, Da Jian Innovation (DJI), holds over 70% [57] of the global market
share. Unlike its Chinese competitors, DJI did not start their business with imitation,
but with their own research and technology. According to State Intellectual Property
Office of P.R.C. (SIPO), DJI submitted 679 patent applications by December 2015
[57], leaving little to no chance for other companies to compete. Their technological
advance solved many modern problems, such as obstacle avoidance, object tracking,
prevention of image blurs at high-velocity speeds, remote photo and video access,
and self-aware return to takeoff or operator location. Its superior technology shows
in sales: With the release of the Phantom in 2013, sales reached USD 130 million
and USD 500 million in the following year [57]. Predictions estimated more than
USD 1 billion in 2015 and more than USD 1.5 billion in 2016 [57]. As of 2021, eight
out of ten hobby UAV pilots own a DJI product. Therefore, while choosing our
reverse-engineering target, we want to select a non-domestic drone manufacturer

2

1 INTRODUCTION

Table 1.1: Global drone company market share ranking in 2015 [57]

Ranking Name Establishment Country

1 DJI 2006 China

2 GoPro 2002 USA

3 Robotics 2009 USA

4 Parrot 1994 France

5 Zerotech 2007 China

6 AscTec 2002 Germany

7 Xaircraft 2007 China

8 Microdrones 2005 Germany

9 PowerVision 2012 China

10 Beihang University’s Institute 1964 China

with the highest market share and units sold, in order to maximize any security
vulnerability impact in a real-world scenario. Thus, we decided to focus on one of
the most famous DJI families, the DJI mavic series.

1.4 Wireless Communication

Mid-air drone operations presume a radio link between the drone and the operator.
Compared to a wired network scenario, radio links do not require attackers to
compromise a physical system, nor to gain access to a wired ether network itself.
Wireless communication is fairly easy interceptable within the infrastructural range,
or by using high sensitive directional antennas [15]. Attackers are potentially capable
of passive eavesdropping, message modification, replay attacks, or masquerading
[15]. In order to comply to the same security standard of a wired connection, wireless
communication protocols are required to implement the CIA triad [46]:

• Confidentiality: As passive eavesdropping is unavoidable, message encryption
confines data access to only authorized parties. Based on the cryptosystem

3

1 INTRODUCTION

and its corresponding cipher, not even traffic analysis will lead to any in-depth
knowledge about the data itself.

• Integrity: prevents improper information modification or destruction by unau-
thorized third parties, specifically including authenticity and non-repudiation.
Authenticity implies a successful authentication in first place and denotes being
original and genuine, leading to non-repudiation, the inability to defy commu-
nication. Hence, in case of broken confidentiality, integrity still guarantees the
ability to verify the legitimacy of a received message.

• Availability: ensures a reliable access to a network and its resources. The related
term usability is tightly coupled, as access to business-critical information has a
direct impact on productivity. “Usability is a battle between security and productiv-
ity, as security measures can neither be so restrictive that they affect business processes
and the flow of information, nor too relaxed, thereby causing harm” (Samonas et al.
[46]). Recompiling the statement for the UAV field of application, productivity
represents the operator’s ability to send and receive live status information,
cohering with mid-air flight safety.

Drones require a reliable, high-throughput wireless communication for a live camera
feed and remote command execution. Moreover, as drones operate in civilian
airspace, it is important to ensure a certain level of flight safety, such that operating
a drone will not violate local regulations, nor interfere with other aerial vehicles.
As an example, in Austria in the year of 2016, a collision between a drone and an
emergency helicopter (carrying a car crash victim to the hospital) could be avoided
only in last second [24]. The helicopter pilot dodged the drone at a flight velocity of
250 km/h at 1500 meters altitude. Drones are a risk to human life, either by a direct
collision with other aircrafts or to non-involved people on the ground [54]. Therefore,
regardless of its security, a highly available and reliable wireless connection is a
necessity to avoid potential air disasters. Drone manufacturers face the challenge to
find the optimum balance between fly safety, usability, and network security.

4

1 INTRODUCTION

1.5 Thesis Objective

Even though drones offer a wide variety of potential attack surfaces (e.g. GPS
spoofing [53], Wi-Fi deauthentication or a distributed denial-of-service attack [27])
reverse-engineering and understanding the wireless communication protocol yields
the potential to observe and monitor foreign-owned drones by unauthorized third
party individuals. Furthermore, based on our findings, a future attack surface might
comprise the development of proprietary software, capable of overtaking a mid-
air operating drone, by replacing its ground station communication counterpart.
As a proof of concept we try to obtain the following information from a passive
observation:

• UAV status: Mid-air or grounded

• Battery: Power-level and remaining flight time expectation

• Telemetry: UAV altitude and velocity

• Camera: Live-feed images

We focus on the Wi-Fi mode of operation (cf. Section 2.3) and setup an artificial
man-in-the-middle network scenario (cf. Section 3) to passively eavesdrop the in-
tercommunication between the operator and the drone. Via deductive reasoning
(cf. Section 4.3) we try to establish logical connections between drone control in-
structions and their sent network packets. In order to obtain in-depth knowledge
about the protocol structure itself, we exert bit-precise reasoning (cf. Section 4.3.1.1)
which enables pixel-perfect camera-feed image extraction and video streaming. As
a final step we utilise pre-existing dissectors (cf. Section 4.4.1) to unveil the com-
munication core protocol (cf. Section 4.4.3) and exemplify telemetry data extraction.
With existing network traffic inspection tools not satisfying our needs, we develop a
proprietary software solution (cf. Chapter 5) to enable live monitoring, flight simula-
tion, bitwise network packet comparision, and fully automated post-processing for
dissector compatibility. The thesis excludes the simulation of a ground station and
does not cover mid-air communication hijacking.

5

2 Target Specification

The Institute of Networks and Security at JKU provided us a DJI Mavic Pro 1 (MP1)
with following specifications:

• Release: 2016

• Generation: 3

• Firmware: 01.03.1000

• App: DJI Go 4 version 4.1.42

In order to operate the drone, a mobile application, which is available for iOS and
Android, may be used. Additionally, DJI offers several Software Development Kits
(SDK) to enable custom software solutions and task automation:

• The mobile SDK [7] supports iOS (9.0+) and Android (5.0+) as a target platform.
Besides the basic flight control functionality, it supports telemetry sensor data
extraction, obstacle avoidance, camera and gimbal control, live-video stream-
ing, remote storage access, traversal of a pre-defined path, and various drone
and remote controller state information retrieval. The SDK either supplements
the DJI default mobile application, or represents a full replacement for more
complex scenarios.

• The User Experience (UX) SDK [10] complements the mobile SDK by providing
default user interface (UI) controls. This speeds up the development process
and reduces the lines-of-code and complexity throughout custom applications.

6

2 TARGET SPECIFICATION

• Complementary to the mobile SDK, the Windows SDK [11] facilitates the same
feature-set on a Windows runtime-environment. The Windows Universal
application (Creators Update 1.0; Build 16299) runs on Desktop, mobile and
XBOX.

• Compared to other SDKs, the Payload SDK [9] is not publicly available and
its access must be requested via the DJI developer portal. It offers, besides
the on-board sensor data extraction API, the option to mount, operate, and
integrate custom hardware components. Therefore, DJI not only covers daily
use-cases, but also edge scenarios requiring special hardware equipment.

• The Onboard SDK [8] (OSDK) runs on embedded systems and Linux machines,
as it not only aims to execute complex and high computation based tasks
(e.g. object recognition), but also to run on custom hardware configurations,
directly equipped to the drone itself or to a secondary ground-station. This
SDK allows an autonomous mode of operation and covers every imaginable
use-case scenario.

One limitation of the MP1 is its only support for the mobile and UX SDKs, due to
its lack of compatibility for custom hardware mounting. Thus, for our research,
we have the option to analyse the mobile application as well as the mobile and
UX SDKs as a last resort. Independently of the drone’s ground-station counterpart
(native or custom mobile application), three communication channels exist in order
to operate the drone: serial, software defined radio and Wi-Fi. As serial commu-
nication presupposes a wired connection, which is unfavourable while flying and
indicates the permission to physically access the drone, it contradicts our final goal
– unauthorized data extraction. Therefore, candidates for our reverse-engineering
process and final target goal are the software defined radio and Wi-Fi modes only
(cf. Table 2.1).

7

2 TARGET SPECIFICATION

2.1 Software Defined Radio

Software Defined Radio (SDR) represents an umbrella term, as it leaves space
for interpretation and implementation details. Other varieties of related terms
include Software Based Radio [48] or Flexible Architecture Radio [21]. However, the
main purpose throughout various interpretations and related terms is one specific
requirement: Adjusting the waveform-output via software adaptation, instead of
hardware redesign. The optimal goal is to communicate on any desired frequency,
bandwidth, modulation and different data-transmission rates, simply by loading
the appropriate software module [49]. SDR has a more practical interpretation by
implementing the waveform mostly in software, comprising [19]:

• A multi-band system which is supporting more than one frequency band.

• A multi-standard system that is supporting more than one standard. Multi-
standard systems can work within one standard family or across different
networks.

• A multi-service system which provides different services, e.g. video stream,
command stream, heartbeat stream, etc.

• A multi-channel system that supports two or more independent transmission
and reception channels at the same time.

The motivation behind designing a proprietary SDR protocol, compared to the usage
of an existing communication standard, yields some advantages. As communication
standards evolve rapidly, backwards-compatibility on newer hardware may exceed
previous hardware-specifications or newly introduced state-regulations. Moreover,
long-term projects likely require certain hardware updates throughout the years
while guaranteeing the same mode of operation [49]. SDR enables the required
flexibility to span its functionality across different hardware configurations and
software iterations.

DJI’s SDR implementation offers three different modes of operation: Federal Com-
munication Commission (FCC) for drone operations within the US air space, State

8

2 TARGET SPECIFICATION

Radio Regulation of China (SRRC), and European Conformity (CE) for drone opera-
tions within the EU air space. Based on the chosen mode and frequency (cf. Table 2.1)
the drone’s maximum range varies. Presupposed the frequency 2.4 GHz and flying
in an area free of interference, the maximum operation range settles between 4 and 7
kilometres. As DJI does not offer any 5 GHz range information within their product
specification, only assumptions can be made, since the drone’s operating mode
within Europe is software-locked to comply to local regulations.

Table 2.1: DJI Mavic Pro 1 wireless transmission specifications [6]

Operation Mode Frequency [GHz] Trans. Power [dBm] Range [km]

FCC

2.4 – 2.48 ≤ 26 ≤ 7

5.15 – 5.25 ≤ 23 n.a.

5.72 – 5.85 ≤ 23 n.a.

CE
2.4 – 2.48 ≤ 20 ≤ 4

5.72 – 5.85 ≤ 13 n.a.

SRRC
2.4 – 2.48 ≤ 20 ≤ 4

5.72 – 5.85 ≤ 23 n.a.

WiFi
2.4 – 2.49 ≤ 20 ≤ 0.08

5.47 – 5.72 ≤ 30 ≤ 0.08

2.2 Ocusync

DJI’s proprietary SDR protocol is called Ocusync [12, 13] and has been introduced
with the MP1. It is part of the predecessor’s Lightbridge family and allows up to 7
kilometers high definition video streaming [12]. As Lightbridge was originally a de-
signed field programmable gate array [12], the hardware and software development
was quite expensive, convincing DJI to cancel their custom silicon production. Con-
trarily, Ocusync uses generic “off-the-shelf” Wi-Fi hardware, while realizing their
proprietary SDR protocol entirely in software [12]. As most smartphones already
ship with a radio transmission hardware onboard, DJI was capable of removing

9

2 TARGET SPECIFICATION

their custom silicons from the drone’s remote control, leveraging existing hardware.
Besides reducing development and maintenance costs, DJI is capable of introducing
new feature and software updates anytime, without being limited by pre-shipped
hardware specifications.

Ocusync comprises multi-band, multi-service and multi-channel in order to deliver
the best stability and data-throughput. Its multi-service system provides a video-,
control- and telemetry-signal [52]. Encoded with orthogonal frequency-division
multiplexing (OFDM), the video-signal endures packet-loss by interference or at-
tenuation, delivering acceptable results over large distances. Additionally, upon
a certain interference threshold, the protocol automatically switches to a less oc-
cupied channel. Hence, the video-signal only changes channels if required, while
the control- and telemetry-signal uses frequency hopping spread spectrum (FHSS).
Packets are sent on random, regularly changing frequencies, adding tolerance for
packet-loss [12].

2.3 Wi-Fi

Additionally to SDR, the MP1 is capable of operating in Wi-Fi mode, without the
need of an extra remote-control counterpart. Wi-Fi mode facilitates short flight
operations (cf. Table 2.1) whereas tedious setup and pairing can be avoided, by
a peer-to-peer Wi-Fi connection between the smartphone and the drone, ideally
for spontaneous camera-shots and recordings. However, this convenience factor
introduces several disadvantages over the SDR mode, as the wireless encrypted
communication protocol follows a public standard, unsuitable for a high-throughput
in a one-way communication scenario.

Encrypted with WPA2-PSK in CCMP mode (AES in counter mode and CBC MAC
for integrity checks [36]) a four-way connection handshake [23] is required in order
to establish or re-establish (after losing the connection to the drone due to environ-
mental signal obstruction) a secure channel between both peers. Each sent packet
equals 128 bytes and needs to be confirmed by a two-way handshake, not only
confirming the packet receival, but also its integrity status. As the Wi-Fi protocol

10

2 TARGET SPECIFICATION

guarantees reliability, a lost or damaged packet requires a re-transmission, easily
caused by signal attenuation or interference.

Besides the high-latency and zero transmission error tolerance, WPA2 is prone to
several security threats, including: Authentication, association, deauthentication,
and disassociation request flooding or a distributed denial of service attack [27].
As Wi-Fi does not require any special transmitter hardware and several tools are
publicly available for exploitation, the Wi-Fi mode offers an easier and wider attack-
surface compared to the proprietary SDR protocol. However, as we do not target
to reverse-engineer the communication’s cipher algorithm nor to takeover the com-
munication itself, weaknesses are more likely to facilitate our reverse-engineering
process. Furthermore, following arguments support our reasoning of choosing the
Wi-Fi protocol as our reverse-engineering target:

• Encryption: We assume a secure communication between the drone and its
operator. Due to the proprietary Ocusync protocol, deciphering may be a
challenge by its own, as packets arrive on random frequencies, potentially
out-of-order and may include corrupt packets, on top of being encrypted by
an unknown cipher. Wi-Fi, on the other hand, guarantees an in-order, integrity
checked and decrypted stream of data, as we are capable of performing a
man-in-the-middle attack.

• Transmitter: Unlike Wi-Fi, sending and receiving SDR signals requires special-
purpose hardware. While a transmitter is available at the university, access
is quite tedious during the global Covid-19 pandemic. Moreover, flying the
drone and monitoring the transceiver in-door bears yet another challenge.

• Relevance: The MP1’s Ocusync protocol is obsolete, as its successor MP2 has
been shipped with Ocusync 2.0. As of 2021, drones ship with Ocusync 3.0.
In other words, potential findings within Ocusync 1.0 are of questionable
relevance nowadays.

• Compatibility: The SDR and Wi-Fi protocol may comprise a slightly different
implementation. However, we assume some kind of consistency and simi-
larities throughout both implementations as both modes support the same
feature-set.

11

3 Man-in-the-Middle

A Wi-Fi connection between the operator and its drone fulfils the CIA triad (cf.
Section 1.4) by using the Wireless Protected Authentication (WPA2) protocol. The
operator authenticates via a Pre-Shared Key (PSK) [26] and further encrypts the
traffic with the Advanced Encryption Standard (AES) in Counter Mode (CTR). To
ensure integrity and authentication next to confidentiality, AES in Cipher Block
Chaining (CBC) adds a Message Authentication Code (MAC) [44] – both in combi-
nation: Counter with CBC-MAC (CCM) mode Protocol (CCMP) [36]. In conclusion,
passive eavesdropping the wireless intercommunication will not yield any reverse-
engineerable result. As we do not focus on WPA2-PSK security vulnerabilities (e.g.
key recovery [26]) we instead setup an artificial, eavesdrop-friendly network config-
uration, such that the wireless intercommunication is inspectable and interceptable
in a decrypted manner. For that reason we setup a Man-in-the-Middle (MITM)
network scenario (cf. Figure 3.1):

(a) The Drone establishes an Access Point (AP) after its initialization phase, usually
used for a direct connection between both network peers.

(b) As our MITM-Machine does not feature two network interface cards (NIC),
we do require to setup a second virtual network interface1 acting as an AP
(MITM-AP) for our mobile device.

(c) The MITM-Client directly connects to the drone, forwarding the MITM-AP’s
network packets to the drone and vice versa.

(d) Our MITM-Machine represents the eavesdropping device, connecting via Net-
work Address Translation (NAT) the virtual MITM-AP’s with the internal NIC

1[Online; accessed 14-July-2021] https://github.com/oblique/create_ap

12

https://github.com/oblique/create_ap

3 MAN-IN-THE-MIDDLE

(MITM-Client). The favourable bridge network aggregation mode is, due to
hardware limitations (cf. Section 3.1), unavailable. As our MITM-Machine
physically owns the MITM-AP, we can passively eavesdrop all unencrypted
packets between the MITM-AP and the MITM-Client.

(e) The Operator represents either an iOS or Android device, running the DJI Go
application version 4 (cf. Chapter 2) without any hardware nor software modi-
fications. The mobile device connects via Wi-Fi to our drone representative
(MITM-AP).

Figure 3.1: MITM network configuration setup

3.1 Access Point Configuration

The Jumper EZbook X3 Air, our MITM-Machine, ships with the Intel Dual Band
Wireless-AC 3165 [17] wireless chipset. Besides missing a second NIC (favourable
for a MITM scenario) the chipset features only one antenna for sending and re-
ceiving data, while further sharing its available bandwidth with active Bluetooth
connections [17]. With those limitations in mind, we create a virtual MITM-AP over
the Command Line Interface (CLI) (cf. Listing 3.1).

Listing 3.1: Virtual Access Point creation via Command Line Interface� �
1 sudo create_ap wlp1s0 wlp1s0 Operator 12345678 -w 2 -c 2

-m nat --freq -band 2.4 --country AT
 	

13

3 MAN-IN-THE-MIDDLE

In order to eliminate as many disturbance factors as possible, we once connect
our Operator directly to the Drone’s AP, disable the 5 GHz frequency band and pre-
configure an arbitrary but fixed unoccupied Wi-Fi channel within the DJI Go mobile
application. Consequently, the create_ap (cf. Listing 3.1) command parameters
mirror the Drone’s AP configuration:

• -w 2: WPA2-PSK in CCMP cipher mode

• -c 2: Usage of an arbitrary but fixed unoccupied channel

• -m nat: NAT between the virtual AP and physical NIC

• --freq-band 2.4: Disable the 5 GHz frequency band

• --country AT: Comply to local regulations

Connecting the Operator to the MITM-AP launches the drone’s UI and the camera
stream starts immediately (cf. Figure 3.2). Hence, no additional security measures,
for a MITM attack detection and prevention, have been considered.

Figure 3.2: Operating the drone within the MITM network scenario

14

3 MAN-IN-THE-MIDDLE

3.2 Unstable Network Connection

With the initial setup in place, we started a trip into a wide and empty area, ready
to capture live packets between the operator and the drone. Besides the functional
MITM scenario tests (obtaining the live camera feed) no additional effort has been
made to determine any drawbacks or limits. Consequentially, our first “testflight”
did not last long. After takeoff and hovering approximately 1.5 meters above the
ground, the drone lost connection to our operator. As the connection did not recover,
the drone initiated an emergency landing procedure, descending slowly to the
ground. Various Wi-Fi channel tweaks had no different outcome on the experiment.
Since the connection shows no degradation in a non-airborne scenario, we assume
that the issue might be Wi-Fi signal strength or network throughput related; in
regards to our notebook’s wireless network chipset, both assumptions seem quite
reasonable. For root cause determination we consider two initiatives: A Wi-Fi
extender and an external network adapter.

3.2.1 Wi-Fi Extender

As the notebook’s wireless network chipset shows strong signal attenuation in
WLANs within a relatively small radius, an airborne drone might lead to an unstable
or broken network connection, as obviously the drone will not operate within close
proximity. Therefore, we consider a portable USB Wi-Fi extender for the drone’s AP.
As the operator always operates within close range, extending the MITM-AP would
not yield a different result. The requirements for the Wi-Fi USB dongle comprises:
WPA2-PSK support, multiple antennas for transmitting and receiving (minimum
2T2R) and a decent throughput to prevent network congestion. Such dongles are
widely available2 and fairly cheap.

The improvement partially confirmed our assumption, as the connection was not
immediately degraded after takeoff. However, a noticeable unusual live camera
feed delay started to occur, followed by several frame skips. Approximately after 30
seconds, the connection’s stability started to throttle and the signal had been lost

2[Online; accessed 17-July-2021] https://www.amazon.de/gp/product/B07PRVVV29/

15

https://www.amazon.de/gp/product/B07PRVVV29/

3 MAN-IN-THE-MIDDLE

completely. Even though the operator was able to re-connect to the drone once more,
the delays aggregated up to a certain level whereas the drone did not even accept
a landing command instruction anymore. We had no choice but to cut the drone’s
connection to initiate the emergency landing procedure once more. Improving the
Wi-Fi signal did help in certain aspects, but the root cause seems to co-relate with
the MITM-Client’s throughput.

3.2.2 External Network Adapter

We started the experiment with certain hardware limitations in mind. With the
notebook’s internal NIC struggling to offer a virtual AP and a stable connection
to the drone, an External Wi-Fi Network Adapter (EWNA) might facilitate the
overall MITM network scenario data throughput. Equivalent to the Wi-Fi extender’s
requirements, the EWNA has to comprise at least the same hardware specifications.
With a second installed NIC3 we have several possible network configurations
available to choose from, as both are candidates for the MITM-AP establishment.
A benchmark tool4 determines, based on various factors, the most suitable setup,
while connecting the mobile phone to four different MITM-AP configurations (cf.
Listing 3.2). The first create_ap command parameter represents the NIC used
for the MITM-AP, while the second parameter defines the NAT target. To avoid
arbitrary spikes falsifying the test result, each benchmark has been run three times,
while ensuring the same environmental conditions.

Listing 3.2: Access Point configuration scenario bash commands� �
1 create_ap internal internal Operator 12345678 -c 2 -w 2

2 create_ap external internal Operator 12345678 -c 2 -w 2

3 create_ap internal external Operator 12345678 -c 2 -w 2

4 create_ap external external Operator 12345678 -c 2 -w 2
 	
The mobile benchmark tool defines five quality attributes: down- and upload speed,
ping, jitter, and packet loss. Even though a high data transmission rate is favourable,

3[Online; accessed 17-July-2021] https://www.amazon.de/gp/product/B00LLIOT34/
4[Online; accessed 17-July-2021] https://apps.apple.com/us/app/speedtest-by-ookla/id300704847

16

https://www.amazon.de/gp/product/B00LLIOT34/
https://apps.apple.com/us/app/speedtest-by-ookla/id300704847

3 MAN-IN-THE-MIDDLE

the drone operates on a pre-definable bandwidth between 1 Mbps and 4 Mbps.
Transmission rates over 1 Mbps may facilitate the video stream quality, but had no
further impact on the drone’s operability. All MITM-AP configuration scenarios (cf.
Table 3.1) feature more, or equal to, 1 Mbps. Hence, the original network instability
derives from jitter and packet loss, reflected within the first scenario’s test results.
Scenario 3 offers the highest transmission rate, nevertheless including immense jitter
and packet loss. Claypool and Tanner [3] investigated the impact of jitter and packet
loss on perceptual video quality. Their study, incorporating over 40 participants,
concluded a perceptual quality drop by more than 50% with low amounts of jitter
and packet loss being introduced. Contrarily, scenario 2 comprises less jitter and
almost no packet loss, although settling in-between scenarios 1 and 3 in terms of
the transmission rate. The fairly acceptable mixture of all five quality attributes
determines our final MITM network configuration setup. The EWNA (cf. Figure 3.3)
replaces the virtual MITM-AP (cf. Figure 3.1), allowing the MITM-Client to maintain
an exclusive connection to the Drone. Field tests have confirmed our presumptions
with a stable and responsive connection, although the drone requires leastwise a 2
Mbps predefined bandwidth limitation.

Figure 3.3: Improved MITM network configuration setup

17

3 MAN-IN-THE-MIDDLE

Table 3.1: Access Point configuration scenario benchmarks

Scenario ↑ [Mbps] ↓ [Mbps] Ping [ms] Jitter [ms] Packet loss [%]

1

1.0 3.4 84 0.2 28

1.7 3.5 85 0.5 29

1.0 3.4 99 0.7 28

2

3.9 6.9 11 4 0.4

3.3 6.2 12 2 0.0

3.2 8.9 11 2 3.9

3

12.1 9.4 9 66 7.2

16.6 9.7 10 21 7.1

13.0 8.5 11 50 7.7

4 NS

3.3 Intercommunication Eavesdropping

Even though desktop applications exist to capture network packets, we instead use a
CLI based approach to avoid any serious performance impact on our MITM network
device. With tcpdump (cf. Listing 3.3) network packets captured at the EWNA-AP
(cf. Figure 3.3) will be stored in a pcap file, readable and inspectable by various
network analytic programs. Additional filters reduce the captured output to a bare
minimum, only comprising relevant network packets between the operator and
drone. In particular, -n avoids Domain Name Service (DNS) resolutions, udp ignores
any TCP packet and host 192.168.2.1 (cf. Section 5.3) drops any non-drone related
packet, where neither the source nor destination equals the specified IP address.

Listing 3.3: Packet capture via Command Line Interface� �
1 sudo tcpdump --interface=ap0 -n udp host 192.168.2.1

-w /tmp/dumps/capture.pcap
 	

18

4 DJI Wi-Fi Protocol

Via deductive reasoning (cf. Section 4.3) we try reverse engineer the DJI Wi-Fi pro-
tocol by identifying logical connections between sent network packets and their
corresponding operator input commands. For the exact protocol structure determi-
nation, we exert bit-precise reasoning to classify each individual bit. Wireshark is a
free and open-source1 network traffic and packet analysis application, offering live
monitoring, in-depth packet inspection and a visual user interface; altogether the
perfect software solution to build our strategy upon. Moreover, Wireshark supports
to restore a previous session from a .pcap file, generated by the tcpdump command
execution (cf. Section 3.3). In other words, previous session recordings do not require
additional conversion or compatibility adjustments. Besides the visual network
packet inspection, Wireshark offers to apply filter predicates, reducing – based on
the current investigation task – thousands of network packets to a bare minimum.
Throughout the entire investigation several useful filter predicates did facilitate our
reverse-engineering process:

• !dns && !mdns && !icmp: tcpdump includes DNS, Internet Control Message
Protocol (ICMP) and Multicast DNS (MDNS). The negation and conjunction
of all three protocols remove their corresponding network packets, as only
application level network packets are of relevance.

• ip.src == 192.168.2.1: Not only the source (src), but also the destination
(dst) may be filtered by IP address. I.e. 192.168.2.1 represents the drone (cf.
Section 5.3), while some other Dynamic Host Configuration Protocol (DHCP)
assigned IP address represents the operator.

1[Online; accessed 06-August-2021] https://gitlab.com/wireshark/wireshark

19

https://gitlab.com/wireshark/wireshark

4 DJI WI-FI PROTOCOL

• data.len == 1472: With length constraints network packets may be exclu-
sively in- or excluded from the result-set. In the provided example, only
payloads of size 1472 bytes are of interest. Network packets, whereas the
payload size equals, might share even more similarities and constitute to our
very first deductive reasoning attempt: The presumption of a direct correlation
between the payload size and its representing drone control instruction.

• data.data[0] == 0x00: Compares a static hex value against the payload con-
tent at the provided index. Mid-flight packet inspection focuses on co-related
changes between the protocol and the operator’s drone control instructions.
Therefore, comparing bytes throughout several network packets may reveal
valuable instruction indicators.

Predicate negation may comprise the replacement of the equal with the not equal
comparator, although, the entire negation of the predicate is recommended [55]. I.e.
!(data.len == 1472) yields all network packets with a data-length not equal to
1472.

4.1 Ethernet Frame

Unlike our custom software solution (cf. Section 5), Wireshark visualizes the network
packets corresponding to the Open Systems Interconnection (OSI) model. Layer 2,
Layer 3 and Layer 4 usually carry bits of importance (cf. Table 4.1), but due to our
filter predicates, they are not of any relevance. Consequently, we only focus on the
datagram payload, henceforth referred to as payload. To be more precise, from byte
index 0x2A to Y, whereas Y represents the Ethernet frame length.

20

4 DJI WI-FI PROTOCOL

Table 4.1: Ethernet Frame OSI model layers

Layer Begin [byte] End [byte] Length [bytes] Contents*

2 0x00 0x0D 14
• Src MAC Address

• Dst MAC Address

3 0x0E 0x21 20

• Src IP-Address

• Dst IP-Address

• Protocol-Type

4 0x22 0x29 8

• Src Port

• Dst Port

• Checksum

* Each layer does facilitate more information than provided within the table. The content
has been reduced to our needs.

4.2 Payload Encryption

Even though the whole communication itself is encrypted, the decrypted stream of
data might still comprise payload encryption. Such an additional security measures
would render any passive-eavesdrop scenario meaningless, as the payload content
itself would not yield any reverse-engineerable result in first place. For that reason,
our first investigation task is to determine whether any kind of application layer
encryption has been applied to the payload.

AES encryption, particularly in CBC, PTR, CCM or CCMP cipher mode, results
in an arbitrary data stream, even if the input blocks comprise the same content.
Contrarily, the Electronic Codebook Mode (ECB) generates a deterministic stream of
data by applying the very same pseudorandom permutation to each plaintext block
[20]. Therefore, repeated plaintext blocks will produce repeated ciphertext blocks, as
the encryption process features a deterministic behaviour. In conclusion, we either
encounter a pseudo-random payload throughout the whole session recording or
some identical payloads. Our investigation data-set comprises more than 20.000
UDP packets, recorded over a 1-minute time period while providing zero drone

21

4 DJI WI-FI PROTOCOL

control instruction. No single payload duplication (drone-to-operator and operator-
to-drone) has been detected. Either no duplicate packet has been sent, or ECB is not
our candidate, presupposed any kind of encryption. For more detailed reasoning
we compare two different payloads (cf. Figure 4.1, #6823 and #6824) with the same
payload size of 56 bytes. Only 5 bytes at index 0x06, 0x07, 0x24, 0x36 and 0x37

(indicated by red colour) vary. Most remarkably, at index 0x24, the value increments
by one, confirmed across the entire session recording. The payloads are too similar
and even comprehend some sort of incrementation, all indicators for an unencrypted
stream of data. To confirm our assumption, we additionally compare five other
payloads (cf. Figure 4.2, #439, #440, #441, #442 and #443) with the same payload
size of 33 bytes. Besides yet another incrementing byte at index 0x10 and 0x1A, 0x04
alongside with 0x0A increments by eight and reflect the same value. The value at
0x1D either equals zero or six throughout the entire session, while 0x1E to 0x20 seem
to follow no obvious pattern. Even though we can not reason any incrementing or
alternating behaviour yet, it is safe to assume that our provided example payloads
do not facilitate any kind of encryption at first glance.

Figure 4.1: Binary comparison between 2 different payloads with a size of 38 bytes

22

4 DJI WI-FI PROTOCOL

Figure 4.2: Binary comparison between 5 different payloads with a size of 33 bytes

23

4 DJI WI-FI PROTOCOL

4.3 Deductive Reasoning

Our first approach to reverse-engineer the entire DJI Wi-Fi-Protocol builds upon
deductive reasoning, whereas we try to interpret datagrams based on correlating
operator inputs. In other words, with direct drone control instructions (e.g. take-
off, landing, accelerate, rotate, etc.) we force the operator to send the command’s
representative network packet. With only one type of control instruction per record-
ing, we are capable of compiling a list of properties, comprising: command-type,
datagram count, payload length and content. Subsequently, packets of interest
will be compared bit by bit, revealing the command structure and its parameter
values — in theory. First insights, during our payload encryption research, reviles
a chatty protocol, predominated by drone-to-operator packets, fully utilizing the
Maximum Transmission Unit (MTU). Consequently, we separate our reasoning into
two unrelated phases: Operator-to-Drone and Drone-to-Operator phase. Analysing
fewer and smaller payloads might lead to faster conclusions and further utilises the
reasoning of even larger ones.

4.3.1 Operator-to-Drone

The selection of the first drone control instruction to be analysed is not quite obvious,
due to the fact that no instruction payload size is known. Focusing on small payloads
presupposes the awareness of all different kinds of payload sizes, including their
corresponding drone control instruction. For that reason, we record five different
drone control instruction scenarios, each with a total duration of 20 seconds. The
instructions have been chosen semi-randomly, as we can only assume that basic
input instructions might not comprise a lot of parameters. Our selection comprises
(cf. Table 4.2):

• Idle: Providing zero control instructions while grounded.

• Gimbal: The camera’s rotational orientation manipulation while airborne.

• Rotation: Clock- and counterclockwise rotational acceleration around its axis.

• Altitude: Increasing and decreasing its altitude level via vertical acceleration.

24

4 DJI WI-FI PROTOCOL

• Velocity: Horizontal acceleration on both axis.

With the idle scenario as a baseline, correlations between Ethernet frame occurrences
and the payload size could reveal the control instruction’s affiliation. Surprisingly,
no significant correlation has been found between the instructions and payload sizes.
Upon close inspection (cf. Table 4.2), the Gimbal column leads – in terms of packet
occurrence – three times. Considering the low occurrence count, we can eliminate a
possible correlation, as the gimbal’s orientation has been manipulated throughout
the entire 20 seconds course. Similar behaviours are perceivable throughout all other
mid-air observations. What additionally stands out are the logical contradictions
while comparing mid-air against the idle sample recordings. The drone in idle mode
did neither rotate nor accelerate on any axis, but inheres packet occurrences close
to all mid-air observations. As an example, the Rotation column is leading in 14
cases; none of them offers a zero cell entry within the Idle column. Logically, the
drone can not rotate while being grounded; thus, should feature at least one zero
cell entry within the Idle column, whereas the corresponding Rotation cell offers the
most packet occurrences. The only exceptional and coherent correlation has been
found within the Velocity column. Although 8 packet occurrences with a payload
size of 76 bytes are questionable, we can not determine any other objection. In
conclusion, we can not identify control instructions based on the payload size, as
not only the peak occurrences are close to other observations, but also due to the
fact of logical contradictions. The protocol might aggregate several instructions into
one Ethernet frame, or the instruction’s binary representation is of variable length.
Another possible explanation comprises a steady stream of data, even if no input
has been provided; reinforced by the insignificant occurrence difference between
our Idle and mid-air (Gimbal, Rotation, Alititude and Velocity) sample recordings.

4.3.1.1 Bit-Precise Reasoning for Packets of length 0x38

Without any pre-classification in place, we change directions and start to investigate
payloads with 56 bytes of size, as we expect the most sent packet to be of equivalent
importance. For simplicity reasons, we introduce clusters which aggregate payloads
of identical size, enabling straightforward bit-precise reasoning without payload

25

4 DJI WI-FI PROTOCOL

Table 4.2: Idle and mid-flight Ethernet frame occurrences

Payload size [bytes] Idle Gimbal Rotation Altitude Velocity

33 214 222 219 223 223

34 108 118 134 128 105

35 6 9 11 10 5

36 4 3 3 4 4

37 29 28 37 29 30

38 3 3 7 4 3

39 1 1 3 1 1

40 7 7 8 7 7

41 4 4 8 4 4

42 23 22 30 24 22

43 6 5 14 8 10

45 2 2 3 3 2

46 4 4 4 4 4

47 0 2 4 3 0

48 1 2 1 2 1

49 0 1 1 0 0

50 12 10 15 26 13

56 1412 1401 1385 1362 1341

58 4 1 10 10 8

60 1 1 2 7 1

61 1 2 2 1 0

62 0 1 0 4 0

76 0 0 0 0 8

77 0 1 1 1 0

26

4 DJI WI-FI PROTOCOL

length discrepancies. I.e. the cluster 0x38 represents all payloads with a size of
56 bytes. To avoid danger of confusion between hexadecimal numbers and their
field of application throughout the thesis, we introduce further notations whereas H
reflects an arbitrary hexadecimal number:

• col(H): Represents clustered payloads with a size of H.

• val(H): Portrays the numeric value of an array element at index H.

• con(H): Describes the numeric constant value H.

• idx(H): Refers to an array index at H.

• len(H): H represents the length of an array.

• col(H1)[val(H2)]: Refers to the cluster H1 and its numeric value at array index
H2. This notation additionally supports range parametrisation:
col(H1)[val(H2) - val(H3)] with H2 and H3 delimiting the range boundary.

Our bit-precise reasoning of col(0x38) does not exclude the analysis of any other
clusters in parallel, as we do require to confirm or falsify certain findings across the
entire recording. Nevertheless, we concentrate on the Rotation recording data-set (cf.
Table 4.2), comprising 1385 entries, leading to a few findings (cf. Table 4.3):

idx(0x00) - idx(0x01): An endless stream of data requires some sort of End of
Message (EOM) identification. Otherwise, neither the drone nor the operator would
be capable of composing valid messages from the stream. Such an EOM identifier
may be implemented with a special purpose delimiter (e.g. null terminator) or
with a prefixed message length definition. As no single payload starts nor ends
with a special purpose delimiter, the size information has to be encoded within the
payload itself. Unsurprisingly, the payload’s first byte reflects the same value as our
cluster definition. I.e. the cluster col(0x38) prefixes every payload with con(0x38).
Besides the payload size indicator at idx(0x00), we originally thought of a protocol
version identifier at idx(0x01), as the value, throughout all recordings, equals to
con(0x80). Even though a protocol version identifier is not a requirement per se,
it would enable the possibility to connect and operate various drone firmware or

27

4 DJI WI-FI PROTOCOL

operator application versions concurrently. However, the payload size of operator-
to-drone packets did never exceed 255 bytes, representable within idx(0x00). On
the other hand, the drone-to-operator packets exceed the 255 byte size limitation by
predominantly sending payloads up to the MTU. Obviously, one byte is not capable
of mapping a payload size of 1472 bytes. At this point, we started to reconsider the
protocol version identifier’s value. Investigating drone-to-operator packets only, the
wrongly assumed protocol version identifier proved to correlate with the payload’s
size (cf. Table 4.4). The final formula to extract the payload size from idx(0x00) and
idx(0x01) is defined by: ((val(0x01) & con(0x0F)) << 8) + val(0x00).

idx(0x02) - idx(0x03): Presupposed an operational MITM network configuration
setup (cf. Figure 3.3), our sample recordings (cf. Table 4.2) comply to a strict pro-
cedure: (i) start a new instance of tcpdump (cf. Listing 3.3), (ii) launch the mobile
application (cf. Chapter 2) and generate network traffic, (iii) and close the mobile
application to enforce a broken and unrecoverable connection state. Contrarily to an
unstable or recoverable connection status, a broken connection discards any previ-
ously set configuration and state information, imposing a cold start after application
relaunch, perceivable at idx(0x02) and idx(0x03). In other words, idx(0x02) and
idx(0x03) seem to adhere an arbitrary but fixed session identifier within the same
recording. Behind the scene, we assume a random value generation as we were not
capable of deducting a deterministic behaviour.

idx(0x0A) - idx(0x0B): Unfortunately, neither their purpose nor seemingly ran-
dom change behaviour lead to any conclusion. Nevertheless, many other bytes (cf.
Table 4.3) seem to mirror their state: idx(0x08), idx(0x09), idx(0x0E), idx(0x0F
), idx(0x10), idx(0x11), idx(0x14), idx(0x15), idx(0x16), and idx(0x17). The
operator obtains its initial value from the very first drone-to-operator packet (cf. Sec-
tion 4.3.1.2) followed by occasional changes, triggered by arbitrary drone-to-operator
messages.

idx(0x24) - idx(0x25): As our observations suggest, a payload may contain sev-
eral exclusive or non-exclusive packet-counters, distinguishable by their incremental
behaviour. A non-exclusive packet counter comprehends the entire clusters, whereas
an exclusive packet counter is bound onto one specific cluster only. The execution
order of certain commands might be of relevance, considering a certain level of

28

4 DJI WI-FI PROTOCOL

Table 4.3: col(0x38) bit-precise reasoning

Offset [byte] Size [bits] Function Description

0x00 - 0x01 16 Payload Length val(0x01) & 15 << 8 + val(0x00)

0x02 - 0x03 16 Session Identifier col(0x30)[val(0x02) - val(0x03)]

0x04 - 0x05 16 Padding Zero bits

0x06 - 0x07 16 Unknown

0x08 8 Mirror val(0x0A)

0x09 8 Mirror val(0x0B)

0x0A - 0x0B 16 Unknown col(0x30)[val(0x08) - val(0x09)]

0x0C - 0x0D 16 Padding Zero bits

0x0E 8 Unknown Initial value val(0x0A)

0x0F 8 Unknown Initial value val(0x0B)

0x10 8 Unknown Initial value val(0x0A)

0x11 8 Unknown Initial value val(0x0B)

0x12 - 0x13 16 Padding Zero bits

0x14 8 Unknown Initial value val(0x0A)

0x15 8 Unknown Initial value val(0x0B)

0x16 8 Unknown Initial value val(0x0A)

0x17 8 Unknown Initial value val(0x0B)

0x18 - 0x23 96 Unknown Constants

0x24 - 0x25 16 Packet counter Little-Endian

0x26 - 0x2D 64 Unknown Constants

0x3E - 0x3F 16 Rotation con(0x0D) con(0x05) – Left
con(0xF3) con(0x0A) – Right
con(0x01) con(0x08) – Idle

0x30 - 0x34 40 Padding Zero bits

0x35 8 Unknown

0x36 - 0x37 16 CRC-16 Kermit val(0x24) - val(0x35)

29

4 DJI WI-FI PROTOCOL

Table 4.4: idx(0x01) payload size decoding

From [bytes] To [bytes] Value [byte]

0 255 0x80

256 511 0x81

512 767 0x82

768 1023 0x83

1024 1279 0x84

1280 1535 0x85

security in mid-flight scenarios. Composed by two bytes, encoded in little-endian
byte order, a non-exclusive packet counter is located at idx(0x24) and idx(0x25),
enabling sequential command execution.

idx(0x3E) - idx(0x3F): Our hypothesis (the most sent packet being of equivalent
importance) confirms with idx(0x3E) and idx(0x3F) being correlated to rotational
operator requests:

• idx(0x3E) = con(0x0D) ; idx(0x3F) = con(0x05) — Counterclockwise

• idx(0x3E) = con(0xF3) ; idx(0x3F) = con(0x0A) — Clockwise

• idx(0x3E) = con(0x01) ; idx(0x3F) = con(0x08) — Idle

Our Rotation session recording does not comprise velocity or altitude related en-
tries, such that we can not conclude whether idx(0x3E) and idx(0x3F) includes
additional parameters. Although the rotational parameter values are consistent
throughout the entire session, we suspect a different value occurrence for future
recordings, as idx(0x3E) and idx(0x3F) could be the result of a calibration process.
However, counterclockwise and clockwise exhibit following invertible relation:

• idx(0x3E)= (con(0x0D) & con(0xFE)) = ∼(con(0xF3) & con(0xFE))

• idx(0x3F)= (con(0x05) & con(0x0F)) = ∼(con(0x0A) & con(0x0F))

30

4 DJI WI-FI PROTOCOL

idx(0x36) - idx(0x37): UDP requires neither reliability nor in-order packet deliv-
ery, consequently preferring data-throughput over packet-loss without any conges-
tion control in place [42], suitable for wireless drone operations. In addition, UDP
offers an optional Cyclic Redundancy Check (CRC) within its header (cf. Table 4.1)
covering the pseudo-IP header, UDP header and payload [42]. With a non-zero
populated checksum field within the datagram, we did not expect the presence of an
additional CRC checksum. However, unique values per message at idx(0x36) and
idx(0x37), regardless of predominant payload congruency (cf. Figure 4.3), forced us
to evaluate a CRC checksum appendix candidate. With two bytes serving as a CRC
value, we focus on CRC-16 algorithms and utilised an online CRC calculation tool
[28] to obtain further details. No match across all 23 available algorithms suggests
either a custom CRC algorithm or the usage of non-standard parametrisation of
the polynomial function, initial or final xor value. Too many variables within the
equation leaves us no choice but to execute a brute-force2 against several payloads
(cf. Listing 4.1). Brute-force attempts on individual messages were successful, but
non-identical throughout several messages. Hence, the CRC checksum does not
comprise the entire payload. Systematically in- and excluding sub-sets of the pay-
load within the online tool [28] exposed the payload’s CRC checksum algorithm
and coverage: CRC-16 Kermit in little-endian Byte order, spanning idx(0x24) -

idx(0x35). Retrospectively, the checksum’s payload coverage spans the most im-
portant bytes, including the packet-counter and the rotational input parameters.
Moreover, the CRC checksum appendix is our first indicator of a common base
between the Wi-Fi and the Ocusync protocol, as the SDR is likely to lack the UDP
header alongside its checksum.

Listing 4.1: CRC-16 parameter value brute-forcing� �
1 echo "3880 ec2a ...1 c00400102 ...00061619" >> data.txt

2 echo "3880 ec2a ...1 d00400102 ...0006 f1e1" >> data.txt

3 echo "3880 ec2a ...1 f00400102 ...00062 e18" >> data.txt

4

5 ./ bruteforce-crc --verbose 1 --file data.txt --start 0

--end 49 --width 10 --offs-crc 49
 	
2[Online; accessed 19-August-2021] https://github.com/nitram2342/bruteforce-crc

31

https://github.com/nitram2342/bruteforce-crc

4 DJI WI-FI PROTOCOL

Figure 4.3: CRC-16 KERMIT payload error detection code

4.3.1.2 Bit-Precise Reasoning for packets of length 0x30

Appropriate determination of the previously encountered unknown values might
lead to additional conclusions; a necessity to understand the protocol to its full
extend. Descendingly peeking at the communication’s packet flow, starting at
the first occurrence of col(0x38), unfolds the value’s origination: The connection
handshake. The operator sends its first packet col(0x30), comprising 48 bytes,
to the drone, introducing various persistent and/or session pervading values (cf.
Table 4.5):

idx(0x02) - idx(0x03): An operator side, random generated session identifier (cf.
Section 4.3.1.1), unexceptional encoded into every sent and received message at
position idx(0x02) - idx(0x03).

idx(0x07): The previously reverse-engineered CRC-16 checksum raised our first
suspicion of a common implementation base between the Ocusync and Wi-Fi proto-
col. Due to the presence of a CRC-16 checksum within the payload, regardless of
the layer 3 checksum byte, we further argue the Ocusync protocol being of higher
importance. In theory, a Ocusync based encoded message, wrapped inside a UDP
packet, instantly enables the same feature-set without any additional implementa-
tion effort. Thus, the presence of the UDP header’s checksum may be neglected with
the application layer being responsible for error detection. The session identifier’s
importance, in combination with no error detection out of the box, requires an

32

4 DJI WI-FI PROTOCOL

additional safety handle, present at idx(0x07): a CRC-8 or another Block Check
Code (BCC) error detection byte. Similar to our previous determination attempt, we
utilised the online CRC calculation tool [28] without success. Besides the brute-force
option, we decided to construct an equation to solve the problem in a mathematical
fashion: val(0x02) ⊕ val(0x03) ⊕ X = val(0x07), whereas X represents the final
XOR value and val(0x07) has been obtained from our session recording samples
(cf. Figure 4.4 for idle, and Figure 4.5 for the gimbal session recording). Constant
congruent results acknowledge our finding of the final XOR byte value con(0xB0):

• con(0x7C) ⊕ con(0x69) ⊕ con(0xB0) = con(0xA5) — Idle session

• con(0xD0) ⊕ con(0x50) ⊕ con(0xB0) = con(0x30) — Gimbal session

• con(0xEC) ⊕ con(0x2A) ⊕ con(0xB0) = con(0x64) — Rotation session

• con(0xBB) ⊕ con(0x67) ⊕ con(0xB0) = con(0x6C) — Altitude session

• con(0x67) ⊕ con(0x27) ⊕ con(0xB0) = con(0xF0) — Velocity session

Figure 4.4: col(0x30) error detection byte reference — idle session recording

Figure 4.5: col(0x30) error detection byte reference — gimbal session recording

33

4 DJI WI-FI PROTOCOL

idx(0x08) - idx(0x09): Represents the start value for various packet counters or
other, yet unknown, fields. The bit-precise reasoning of col(0x38) and col(0x21)

identified five direct dependencies:

• col(0x38)[val(0x0A)] = val(0x08)

• col(0x38)[val(0x0B)] = val(0x09)

• col(0x21)[val(0x04)] = val(0x08)

• col(0x21)[val(0x05)] = val(0x09)

• col(0x21)[val(0x08)] = val(0x09)

idx(0x0A) - idx(0x2F): The mobile application offers a wide variety of variable
settings for the thumb-stick assignment, image quality, acceleration modifier, and
much more. Constant 304 bits indicate the transmission of essential takeoff parame-
ters, as some mid-flight configuration adjustments (e.g. transmission bandwidth)
require a drone reboot. Non-equal application settings were not part of our study,
such that we can not deduce any further correlations.

Table 4.5: col(0x30) bit-precise reasoning

Offset [byte] Size [bits] Function Description

0x00 - 0x01 16 Payload Length val(0x01) & 15 << 8 + val(0x00)

0x02 - 0x03 16 Session Identifier

0x04 - 0x06 24 Padding Zero bits

0x07 8 BCC val(0x02) ⊕ val(0x03) ⊕ con(0xB0)

0x08 - 0x09 16 Unknown

0x0A - 0x2F 304 Unknown Constants

34

4 DJI WI-FI PROTOCOL

4.3.1.3 Bit-Precise Reasoning for packets of length 0x21

Several col(0x21) initialization packets follow after the connection handshake,
classifiable by val(0x1D) - val(0x1E) and their alternation between <con(0x00),

con(0x01)> and <con(0x00), con(0xFF)>. Most other bytes either mirror (idx(0
x09) - idx(0x0B)) or feature constant values (idx(0x06), idx(0x11) - idx(0x18)

and idx(0x1C)). Furthermore, col(0x21) facilitates three independent counters (cf.
Table 4.6):

idx(0x04): The start value equals col(0x30)[val(0x08)] + con(0x08) and its in-
crementation behaviour alternates between con(0x02) and con(0x08). It represents
a non-exclusive packet-counter.

idx(0x10): A non-exclusive packet-counter starting at con(0x01) and incrementing
by con(0x01).

idx(0x1A) - idx(0x1B): Starts at either <con(0xA0), con(0x00)> or <con(0xB0),
con(0x00)>. It increments by con(0x08) in little-endian Byte order and is exclusively
used within col(0x21).

The col(0x38) CRC-16 Kermit checksum application does not apply for col(0x21).
It either implies the implementation of a proprietary algorithm or a sole exception
for col(0x21). Similar to our previous final XOR determination attempt, we could
elicit a deterministic formula to calculate the checksum value: kermit(val(0x18) -
val(0x1E)) ⊕ con(0x75) = val(0x1F) - val(0x20). Moreover, idx(0x07) is likely
to embrace a CRC-8 checksum, as no composition candidate nor a mathematical
solvable equation has been found. We suspect idx(0x04) to be part of the equation
as idx(0x07) varies upon counter incrementation. Other than that, we were not
capable of extracting more precise information, which we could not already conclude
from previous reasonings. Thus, we further continue our deductive reasoning with
drone-to-operator packets, although we doubt to obtain new findings in respect to
numerous unexplained fields within col(0x38), col(0x30) and col(0x21).

35

4 DJI WI-FI PROTOCOL

Table 4.6: col(0x21) bit-precise reasoning

Offset [byte] Size [bits] Function Description

0x00 - 0x01 16 Payload Length val(0x01) & 15 << 8 + val(0x00)

0x02 - 0x03 16 Session Identifier col(0x30)[val(0x02) - val(0x03)]

0x04 8 Packet counter col(0x30)[val(0x08)] + val(0x08)

0x05 8 Unknown col(0x30)[val(0x09)]

0x06 8 Unknown Constant

0x07 8 CRC-8 val(0x04) ⊕ con(?) = val(0x07)

0x08 8 Unknown col(0x30)[val(0x08)]

0x09 8 Mirror val(0x05)

0x0A 8 Mirror val(0x04)

0x0B 8 Mirror val(0x05)

0x0C - 0x0F 32 Padding Zero bits

0x10 8 Packet counter

0x11 - 0x18 64 Unknown Constants

0x19 8 Unknown

0x1A - 0x1B 16 Packet counter Little-Endian

0x1C 8 Unknown Constant

0x1D - 0x1E 16 Unknown Initialization Sequence

0x1F - 0x20 16 CRC-16 Kermit final XOR value con(0x75)

36

4 DJI WI-FI PROTOCOL

4.3.2 Drone-to-Operator

Contrarily to the operator, the drone tends to send Ethernet frames up to 1514 bytes
(MTU without frame check sequence) with an effective UDP payload size of 1472
bytes. One remarkable benefit with rather large Ethernet frames incorporates a
greater efficiency in data transmission, since the payload carries more user data
while the protocol overhead remains the same [1]. In combination with a live-camera
stream, it comes to no surprise that we predominantly observe rather large frames.
However, its efficiency impedes our bit-precise reasoning due to non-congruent
payloads, unfeasible for operator instruction response monitoring and value change-
tracking. Further, the focus on extensive frames sizes hardens the suspicion of
instruction response aggregation, backed by the fact of only two Ethernet frames
being smaller than 100 bytes, in contrast to the remaining 4986 frames of the Altitude
(cf. Section 4.3.1) session recording. In other words, we cannot pursue the same
reverse-engineering strategy. Instead, we have to count on external resources and
tools in order to extract as much information as possible, thereby shifting our
previous structural related focus to raw data extraction itself.

4.3.2.1 Bit-Precise Reasoning for packets of length 0x08

Even though bit-precise reasoning is not applicable for drone-to-operator packets,
one payload, with a size of 8 bytes, stands out in particular: The connection hand-
shake response (cf. Table 4.7). Similar to col(0x30), the BCC final XOR has been
determined by solving the equation: val(0x02) ⊕ val(0x03) ⊕ X = val(0x07). (cf.
Figure 4.6 as an example for the idle session recording checksum calculation)

• con(0x7C) ⊕ con(0x69) ⊕ con(0x88) = con(0x9D) — Idle session

• con(0xD0) ⊕ con(0x50) ⊕ con(0x88) = con(0x08) — Gimbal session

• con(0xEC) ⊕ con(0x2A) ⊕ con(0x88) = con(0x4E) — Rotation session

• con(0xBB) ⊕ con(0x67) ⊕ con(0x88) = con(0x54) — Altitude session

• con(0x67) ⊕ con(0x27) ⊕ con(0x88) = con(0xC8) — Velocity session

37

4 DJI WI-FI PROTOCOL

Table 4.7: col(0x08) bit-precise reasoning

Offset [byte] Size [bits] Function Description

0x00 - 0x01 16 Payload Length val(0x01) & 15 << 8 + val(0x00)

0x02 - 0x03 16 Session Identifier col(0x30)[val(0x02) - val(0x03)]

0x04 - 0x06 24 Padding Zero bits

0x07 8 BCC val(0x02) ⊕ val(0x03) ⊕ con(0x88)

Figure 4.6: col(0x08) error detection byte reference for the idle session recording

4.3.2.2 Camera stream

Operator-to-drone Ethernet frames never draw near the MTU size limitation. Con-
sequently, operator payloads do not require any kind of post-receival payload
aggregation, in order to compose a valid message from the stream. On the other
hand, drone-to-operator Ethernet frames predominantly utilise the payload to its
full capacity, introducing the necessity of a message delimiter in regards to the
previous deducted upper bound payload size limitation (cf. Table 4.4). A subset
of our Velocity recording concludes and reinforces our reasoning (cf. Table 4.8) as
frames smaller than the MTU represent EOM. As an example, the first five Ethernet
frames (No. 2819 - 2823) assemble message #1, quantifiable by the fifth Ethernet
frame size not being equal to 1514 bytes. Message #2 (No. 2826 - 2831) comprises
six Ethernet frames with an aggregated payload size of 8249 bytes. Message #3 (No.
2834), with no MTU sized ancestor frame present, denotes a standalone message.
According to our logic, the existence of a delimiter is per se optional, but obliga-
tory within a Ethernet frame smaller than 1514 bytes. The presumption partially
confirms with a delimiter series of <val(0x00), val(0x00), val(0x00), val(0x01),
val(0x09), val(0x10)> being mostly present at the end of such frames. Either the
delimiter series incorporates only aggregation related frames, or it is part of the
camera-feed image encoding [38].

38

4 DJI WI-FI PROTOCOL

With an endless stream of data in a mid-flight scenario, the message composition
highly depends on the delimiter series. However, in our post-analysis, not only
the Ethernet frame size is known, but also their corresponding message affiliation.
Thus, we remove all delimiter series occurrences from our Velocity recording and
export the drone’s UDP data stream as a binary file, fully aware of intermixing
camera-feed updates alongside drone control instruction responses. To obtain hints
about the video encoding, we utilise FFprobe3, an open-source application to gather
meta-information from multimedia streams. It is part of the FFmpeg multimedia
framework and supports not only cutting edge, but also most ancient and obscure
formats [14]. Probing our binary file produced, next to missing frames and decoding
errors, an extensive estimation:

• Codec: H.264

• FPS: 29.42

• Resolution: 1280x720

• Color encoding: yuv420p

• Interlacing: progressive

Next to probing, the multimedia framework additionally supports file format con-
version. During its conversion process, FFmpeg is capable of repairing the video
stream up to a certain degree, compensating, in our case, the mixture of video
stream and instruction response data. Hence, we utilise FFmpeg to obtain a repaired,
human-viewable video. Far from being perfect, the result contains enough infor-
mation to get a clear picture of the surroundings, although the video accompanies
stutter, frame skips and missing batch updates (cf. Figure 4.7). Accordingly, once
we are capable of camera-stream and instruction response differentiation, FFmpeg
would be competent enough to reconstruct an image-perfect video stream.

3[Online; accessed 25-August-2021] https://ffmpeg.org/ffprobe.html

39

4 DJI WI-FI PROTOCOL

Table 4.8: Drone message compositions out of aggregated Ethernet frames

Message No. Frame No. Frame size [bytes] Payload size [bytes]

2819 1514 1472

2820 1514 1472

1 2821 1514 1472

2822 1514 1472

2823 1000 958

2826 1514 1472

2827 1514 1472

2
2828 1514 1472

2829 1514 1472

2830 1514 1472

2831 931 889

3 2834 470 428

Figure 4.7: FFmpeg UDP stream to .mp4 conversion

40

4 DJI WI-FI PROTOCOL

4.3.3 Concluding Findings

The bit-precise reasoning of various payloads turned out to be more difficult than
expected. Even though we were capable to wrap our heads around several bytes
and their purpose, most values still remain unknown. The constant stream of data
additionally introduces complexity, as a direct correlation between a cluster and
its drone control instruction can not be determined statistically. Moreover, due
to the fact of shared values throughout various clusters, it’s not safe to assume a
direct correlation between the payload size and its purpose either. CRC checksum(s)
cover a subset of each payload, an indicator for a multi-layered protocol structure,
reinforced by the drone’s instruction response aggregation which we can not refute
on the operator side. The overall ambiguous protocol characteristics pose more
questions as we are capable to answer. Nevertheless, our deductive reasoning results
in a few findings:

• Neither full nor partial payload encryption has been implemented.

• Payloads start with their size encoded at idx(0x00) - idx(0x01).

• Payloads carry a session identifier at idx(0x02) - idx(0x03).

• CRC-16 checksums ensure the integrity of data-subsets.

• CRC-8 checksums complements uncovered CRC-16 data-subsets.

• Packet counters guarantee sequential command execution.

• The operator establishes a connection and dictates session parameters.

• The drone aggregates control instruction responses.

• The camera-feed is H.264 encoded.

In order to restrict potential protocol characteristics to a bare minimum, we do
require to rely on supplementary external inputs. Besides the decomposition of
the mobile application, we first focus on pre-existing online resources, favourable
directly related to the MP1’s Wi-Fi communication protocol, or, leastwise, another
drone from the DJI Mavic series product lineup.

41

4 DJI WI-FI PROTOCOL

4.4 DJI Universal Markup Language

The extensive online research leaves a lot to be desired; besides some vague, surface
leveled online articles [5, 12, 16, 47] discussing vendor-published facts and release
notes, just a few forum posts [22, 40, 41, 43] explicitly engage the Wi-Fi or SDR proto-
col in a technical manner, more or less without any usable outcome or direct relation
to a DJI product. However, most discussion threads share one common similarity:
a reference to a public GitHub repository4 “Original Gangsters”. A community
of drone enthusiasts and IT experts, sharing their knowledge about various DJI
technologies, obtained via reverse-engineering, and their implementation details.
Their findings and tools, although work in progress, cover [35]: firmware extraction
and decryption, module partition patches, diverse Executable Linkable Format (ELF)
converters, hard-coded value editors, flight-log parser, serial bus sniffer, container
stream parser, etc. As the repository lacks usage instructions and in-depth docu-
mentation, our description and conclusions, throughout the entire chapter, purely
build upon our personal gained experience while contributing (cf. Section 5.3) to the
project. However, the serial bus sniffer and the container stream parser grabbed our
attention in particular. The serial bus sniffer is capable of passively eavesdropping
messages between the operator and the drone and outputs the received binary
stream in DJI Universal Markup Language (DUML) format, a community derived
acronym invention for the close-source DJI protocol implementation. On the other
hand, the container stream parser accepts a binary file as an input parameter and
tries to extract a valid DUML formatted packet. DUML is the core communication
format used throughout all DJI products, including their latest releases; hence-
forth referred to as DUML protocol, as the format comprehends rules, syntax and
semantics. In other words, regardless of the drone’s mode of operation and its
communication channel, the corresponding protocol contains DUML conformant
data structures within its payload. As an example, a direct physical serial connection
to the drone generates no overhead and serves raw DUML packets only, while the
Wi-Fi and SDR mode of operation introduce some additional, non-identical headers.
Therefore, we use OGs’ preparatory work to familiarize ourselves with their findings
and eventually compile the Wi-Fi’s protocol architecture along the way.

4[Online; accessed 27-August-2021] https://github.com/o-gs/dji-firmware-tools

42

4 DJI WI-FI PROTOCOL

4.4.1 Wireshark Dissector

Wireshark supports dissectors via a self-registering plugin system. Custom dis-
sectors parse a pre-defined portion of a frame and pass their remaining payload
onto the next lowest-level data dissector [56]. Each state decodes and displays its
corresponding values, enabling a convenient visual representation of the data. For-
tunately, OG offer various DUML dissectors for an easy in-depth packet inspection
[30] (cf. Figure 4.8). Using those dissectors on our recordings will not be of any
help, as our .pcap files contain, next to the DUML payload, the entire protocol stack,
comprising the data link, network and transport layer. Thus, for appropriate dissec-
tor application, we require to eliminate everything except for the DUML payload,
presuming knowledge about its boundaries. By removing Ethernet frame bytes
from idx(0x00) to idx(0x29) (cf. Table 4.1) we get rid of the data link, network and
transport layer, but the Wi-Fi-Header within the payload still remains. Hence, we
are obliged to find its length in the first place.

Figure 4.8: Wireshark DUML packet dissector utilisation example [29]

43

4 DJI WI-FI PROTOCOL

4.4.2 Payload Delimiter

The OG container stream parser python script comm_dat2pcap.py [31] accepts a
binary file as an input parameter and attempts to identify valid DUML packets
therein. Upon successful probing, the script exports the discovered packet into
a dissector compatible .pcap file. If the parser is able to extract a DUML from
an arbitrary payload within our Altitude recording, we can then investigate the
functionality of the python script. Consequentially, we store the payload into a
binary file and start the conversion process (cf. Listing 4.2), with -n to avoid trailing
whitespaces and -e to enable the interpretation of backslash escapes. Next to a
found DUML packet, the script yields a damaged section, no surprise in regards to
the provided Wi-Fi-Header.

Listing 4.2: Probing for a valid DUML packet� �
1 echo -n -e ’\x21\x80\xbb...\x01\xe8\x9a’ > 3.bin

2 ./comm_dat2pcap.py -d 3.bin -p 3.pcap -vvv

3 3.bin: Packets encountered: 1 valid, 1 damaged
 	
The script’s source [31] revealed a drone model dependent variable payload delim-
iter. In case of our target specification: con(0x55). However, several discrepancies
emerge when applying the same delimiter logic onto all payloads within the record-
ing. The delimiter is non-exclusive, as not only the header, but also the DUML may
contain con(0x55) values. Especially drone-to-operator camera-feed updates are
overpopulated by con(0x55) occurrences. Moreover, the header is of variable size,
leading to inapplicable static index separation. The script tries to circumvent that
issue by validating a CRC-16 checksum (cf. Table 4.3 and 4.6), which is part of each
DUML packet (cf. Section 4.4.3) but accidentally identifies false positives within
drone-to-operator camera-feed updates. The variable Wi-Fi-Header size leads us to
believe in yet another header encoded indicator.

The preparatory execution of the delimiter logic on all packets, accompanied by
manual interventions on false positives, provides differently sized headers and their
payload. Classified and descendingly sorted by their size, only a small data subset
requires an in-depth investigation in order to find the significant Wi-Fi-Header size

44

4 DJI WI-FI PROTOCOL

Table 4.9: Wi-Fi-Header encoded payload offset and content-type at idx(0x06)

Indicator [byte] Sender Purpose Payload Offset [byte]

0x001 Drone Unknown No DUML

0x013 Drone Command (val(0x1C) << 1) + con(0x20)

0x021 Drone Camera-stream con(0x14)

0x033 Drone Command con(0x14)

0x044 Operator Command (val(0x0C) << 1) + con(0x1E)

0x052 Operator Command con(0x14)

0x064 Operator Command (val(0x0C) << 1) + con(0x1E)

The payload contains: zero DUML entries1, one DUML entry2, N DUML entries3, zero or
one DUML entries4

indicator. Unfortunately, several bytes qualify as a candidate with a little help of
bit shifting and/or constant value addition or subtraction. However, one candidate
stands out in particular. The byte at idx(0x06) provides an indirect calculable Wi-Fi-
Header size. Moreover, it provides further information about the payload’s origin
and content-type (cf. Table 4.9). Byte values between con(0x00) and con(0x03)

relate to drone packets and values between con(0x04) and con(0x06) to operator
ones. The deterministic content determinable protocol characteristic (e.g. con(0x02)
accommodates only camera-stream updates) enables precise camera-feed update
extraction and therefore, an image-perfect video encoding (cf. Figure 4.9).

4.4.3 Protocol Architecture

The protocol architecture explicitly excludes the OSI model layers (cf. Table 4.1),
due to their non-relevant property reflections. Furthermore, we subdivided the
self-contained DUML format into 3 logical layers, improving the comprehensibility
in our architectural interpretation; a composition of our deductive reasoning results
and the OG Wireshark dissector implementation. It consists of 4 layers (cf. Fig-
ure 4.10), whereas solely the Wi-Fi-Header remains mostly unknown, being the last
obstacle for a complete self-contained communication counterpart replacement.

45

4 DJI WI-FI PROTOCOL

Figure 4.9: Image-perfect FFmpeg UDP stream to .mp4 conversion

4.4.3.1 Wi-Fi-Header

We suspect yet another protocol behind the Wi-Fi-Header, as its content has no
direct influence on sent and received DUML packets. While some meta-information
is essential for the data transmission and interpretation (e.g. payload length and
content type), other bytes serve no obvious purpose. Other DJI products or 3rd
party software solutions may take advantage of other values (e.g. session identifier),
although we did not find any related API documentation entry [7, 8, 9, 10]. The
Wi-Fi-Head is of variable size and carries mostly zero bits and value duplication
besides its partially reverse-engineered structure (cf. Table 4.10).

Table 4.10: Protocol Architecture: Wi-Fi-Header

Offset [byte] Size [bits] Function Description

0x00 - 0x01 16 Payload Length val(0x01) & 15 << 8 + val(0x00)

0x02 - 0x03 16 Session Identifier Arbitrary but fixed

0x06 8 Content type cf. Table 4.9

46

4 DJI WI-FI PROTOCOL

4.4.3.2 DUML-Header

Based on the received Wi-Fi-Header’s content-type property, the DUML-Header and
its payload may be nonexistent, reinforcing our suspicion of a self-contained protocol.
In particular, the content-type con(0x04) and con(0x06) indicates such a behaviour.
Thus, if the layer 4 payload size equals the DUML-Header offset calculation, no
additional payload has been provided. Moreover, in contrast to the drone, the
operator never aggregates DUML packets; instead, sends each individual DUML
packet as a standalone datagram. Nevertheless, in regards to message compilation,
we still require to consider concatenated DUML packets (payloads of content-type
con(0x01) or con(0x03)), whereas the DUML-Trailer strings together with the
adjacent DUML-Header. This logical layer embraces relevant meta-information for
further payload delegation and processing, by the coverage of the following fields
(cf. Table 4.11):

idx(0x00): The DUML-Header starts with a drone model dependent, variable
delimiter. The MP1, Phantom 3, Phantom 4, etc. encode con(0x55), while Phantom
1, Phantom 2, Naza M, etc. encode con(0xAB). Although the delimiter is a necessity
in the serial mode of operation, it is a futile piece of information in Wi-Fi mode. We
justify its existence with the DUML protocol’s diverse field of application.

idx(0x01) - idx(0x02): The DUML protocol’s optimized design leaves no bit
unassigned. Therefore, not only the protocol version, but also various other fields
compose their values via bit shifting. In other words, the first 6 bits of idx(0x02)
represents the protocol version (val(0x02) & con(0xFC) >> 2) which equals, in our
case, con(0x01). The remaining 2 bits, plus the entire byte at idx(0x01), compose
the payload length in little-endian byte order (val(0x01) - val(0x02) & con(0x3FF)).
The payload length includes the Header, Body and Trailer of the DUML packet,
described by the formula: con(0x0B) + Y + con(0x02), whilst Y represents the
arbitrary but fixed DUML-Body length.

idx(0x03): A standard CRC-8 checksum algorithm [31] covers the delimiter, pro-
tocol version and the payload length. The algorithm uses a custom initial value
val(0x77) and a non-standard hexadecimal lookup table [33].

47

4 DJI WI-FI PROTOCOL

idx(0x04) - idx(0x05): The drone and operator inheres several logical software
and hardware component abstractions, each individually addressable. The modular
design allows not only flexible hardware extensions and independent software
updates, but also direct DUML-Body payload delegation to its responsible process-
ing module. For appropriate delegation, the sender/receiver index/type reflects
its origin and destination. The concrete values are visible within the Dissectors
implementation [34]. Even though the Wi-Fi mode of operation exposes its Ethernet
frame origin at layer 2 and 3, the serial mode of operation highly depends on those
values for source and destination differentiation.

idx(0x06) - idx(0x07): On the operator side, the little-endian packet counter starts
at con(0x00) and increments by con(0x01) per DUML packet. On the other hand,
drone-to-operator packets facilitate a random packet counter value (for each DUML
message), avoiding interference or duplicates.

idx(0x08): Operator-to-drone packets predominantly require no command exe-
cution acknowledgement, represented by con(0x00). Alternatively, modules may
confirm the command before con(0x02) or after con(0x03) its execution. The last 4
bits of idx(0x08) indicate the DUML-Body’s encryption mode [34]: None, AES 128,
Self Def, XOR, DES 56, DES 112, AES 192 or AES256. Due to the Wi-Fi AES CCMP en-
cryption, no other value than con(0x00) (none) occurs within our recordings. How-
ever, the presence of an encryption flag raises the suspicion of an application-level
DUML-Body encryption, potentially applied upon unencrypted communication
channel usage or with other modes of operation.

idx(0x09) - idx(0x0A): A command [34] idx(0x0A) is an action to be performed
(e.g. get parameter), whilst the command-set [34] idx(0x09) specifies the target
component (e.g. camera). Hence, a command may be valid and executable in
various components, such that a second constraint is needed; an indicator for a
shared code-base across several self-contained component implementations.

4.4.3.3 DUML-Body

The body is of variable length and its content embraces the command’s parameters
or response data. Even though the structural information of the wast majority

48

4 DJI WI-FI PROTOCOL

Layer 2 - 4 Payload

len(0x2A) Wi-Fi-Header Payload

len(0x14)+ N* DUML-Header DUML-Body DUML-Trailer

len(0x0B) N** len(0x02)

* Length depends on the content-type
** Length depends on the command-set and command

Figure 4.10: Protocol Architecture

Table 4.11: Protocol Architecture: DUML-Header

Offset [byte] Size [bits] Function Description

0x00 8 Delimiter con(0x55)

0x01 - 0x02 6 Protocol Version val(0x02) & con(0xFC) >> 2

0x01 - 0x02 10 Payload length val(0x01) - val(0x02) & con(0x3FF)

0x03 8 CRC-8 val(0x00) - val(0x02)

0x04 3 Sender Index

0x04 5 Sender Type

0x05 3 Receiver Index

0x05 5 Receiver Type

0x06 - 0x07 16 Packet counter Little-Endian

0x08 1 Request type Req. con(0x00) Res. con(0x01)

0x08 3 Acknowledgement con(0x00), con(0x02), con(0x03)

0x08 4 Encryption con(0x00)

0x09 8 Command-set

0x0A 8 Command

has been covered by the dissectors [30], some particular commands still require
further investigation. With uncountable available commands, we focus on thesis
relevant objectives, such as: Mid-air status indication, UAV altitude and velocity
extraction (cf. Table 4.12 and Figure 4.11), Power-level and remaining flight time
expectation (cf. Table 4.13). The appropriate payload structures and their values

49

4 DJI WI-FI PROTOCOL

are inspectable with the OGs’ Wireshark dissectors and their corresponding filter
predicates (dji_dumlv1.cmd and dji_dumlv1.cmdset) applied (cf. Figure 4.11).

The remaining flight time expectation is not an absolute retrievable number. Instead,
the command con(0x03) within the command-set con(0x0D) retrieves the batteries
power-level. According to the MP1 specification, a single battery contains a power-
level of 3830 mAh [6]. Thus, the remaining flight-time is computable.

Table 4.12: DUML-Body: Cmd con(0x43) Cmd-Set con(0x03)

Offset [byte] Size [bits] Function Description

0x00 - 0x07 64 Longitude

0x08 - 0x0F 64 Latitude

0x10 - 0x11 16 Relative Height

0x12 - 0x13 16 Velocity X

0x14 - 0x15 16 Velocity Y

0x16 - 0x17 16 Velocity Z

0x18 - 0x1A 16 Pitch

0x1B - 0x1C 16 Roll

0x1D - 0x1E 16 Yaw

0x24 4 On Ground val(0x24) & con(0x02)

0x24 4 In Air val(0x24) & con(0x04)

Table 4.13: DUML-Body: Cmd con(0x03) Cmd-Set con(0x0D)

Offset [byte] Size [bits] Function Description

0x01 8 Cell count con(0x03)

0x02 - 0x03 16 Voltage Cell 1

0x04 - 0x05 16 Voltage Cell 2

0x06 - 0x07 16 Voltage Cell 3

50

4 DJI WI-FI PROTOCOL

Figure 4.11: UAV altitude and velocity inspection with Wireshark and OG dissectors

4.4.3.4 DUML-Trailer

The trailer comprehends a CRC-16 checksum, calculated with a standard algorithm
[31] and populated with a custom initial value con(0x3692) and a non-standard
hexadecimal lookup table [32]. It covers a portion of the DUML-Header (idx(0x04)
- idx(0x0A)) and the entire DUML-Body. The trailer poses the last layer within our
architectural illustration (cf. Figure 4.10) and concludes our investigative research.

51

5 DJI Wi-Fi Tools

Wireshark lacks various implementation details for an unsophisticated reverse-
engineering process, demanding additional tool-sets to overcome its limitations.
As an example, payload truncation, a requirement for the DUML dissector com-
patibility, requires the general-purpose utility editcap1 just for the simple task of
data-link to transport layer data removal. With the variable-sized Wi-Fi-Header
still being part of the payload, editcap would require a dynamic rule-set to pursue
data truncation, yet another uncovered functionality. A dissector extension might
be a potential alternative, but even optimistic time estimates (syntax familiarisation,
read up OG’s code and the actual implementation) clearly surpass its value in ex-
change. Truncation aside, the hexadecimal payload representation is non-ideal, in
terms of bit-precise reasoning, as conspicuous bit-differences are not visible at first
glance. Moreover, the importance of a side-by-side payload comparison, within or
throughout various .pcap files, is a necessity, but non-existent. Multiple concurrent
filter predicates, a necessity to deal with numerous data sets, are too tortuous with
their concatenation behaviour. Chains of clauses cause confusion and immense
adaption effort upon investigation target realignment. Altogether, Wireshark is too
cumbersome and inappropriate for our use-case scenario. After utilising Wireshark
for a while, we decided to develop a proprietary software solution to assist our
investigation process and to enable task automatisation up to a certain degree for
tedious intermediate workflow steps. The application should not pose a direct
alternative to Wireshark; instead, it incorporates a collection of highly specialised
feature sets, only applicable for the DJI low-level Wi-Fi protocol reverse-engineering
process. We define its requirements as follows:

1[Online; accessed 27-September-2021] https://www.wireshark.org/docs/wsug_html_chunked/

52

https://www.wireshark.org/docs/wsug_html_chunked/

5 DJI WI-FI TOOLS

• Automatic drone and operator detection: The application detects the drone and
operator automatically within the same network and starts to listen to their
network traffic only. Non-relevant traffic, such as ICMP, DNS, and MDNS
packets should be ignored.

• Session recording: For post-flight analysis in Wireshark the application exports
a session into two different .pcap files: The raw Ethernet frame captures
(equivalent to Wireshark’s passive eavesdrop capability) and prefabricated
DUML dissector compatible packets.

• Flight simulation: Time discrepancies between the actual mid-flight session
recording and the post-analysis process devastate any drone control instruction
and its sent network packet coherence. In other words, one might not be able to
interlink Ethernet frames and their corresponding operator inputs. Therefore,
the application can load previous session recordings and simulate the flight
mission in soft real-time. Furthermore, it supports step-by-step or bulk import
operations.

• Inspection and comparison: Within the application a data-grid contains all
recorded Ethernet frames and offers in-depth binary payload inspection. Ar-
bitrary frames are selectable and comparable whereas each bit difference is
visible at first glance with appropriate colour highlighting.

• Filter predicates: The data-grid offers various pre-defined or custom filter pred-
icates, including custom binary sequences, DUML fields (e.g. command,
command-set, sender, receiver, etc.), payload length and time-based con-
straints.

• Video-stream rendering: The application directly embeds FFmpeg to export the
current session recording into a human-viewable file format.

5.1 Framework and Libraries

To support the vast majority of operating systems and due to the fact of using
Windows and Linux concurrently, we focus on platform-independent technologies

53

5 DJI WI-FI TOOLS

only. Furthermore, based on personal preferences, we select the Windows Presen-
tation Foundation (WPF) derivative Avalonia UI2, as all essential UI controls are
built-in and the widely-used Extensible Application Markup Language (XAML) is
supported to its full extend [18]. Moreover, the Model–View–ViewModel (MVVM)
pattern allows a clear separation of UI code and business logic, facilitating reusability,
modularity, and maintainability [45]. With .NET 5 we may compile the code base for
x86 and ARM processors, enabling support for more exotic system configurations.
To avoid reinvention and unnecessary reimplementation of certain functionalities,
we further include the following open-source project references:

• FFMpegCore: A .NET Standard wrapper for the non-managed FFmpeg/FF-
probe open-source library, supporting synchronous and asynchronous media
analysis and video file format conversion [39].

• LibVLCSharp: An audio playback and video rendering library for .NET ap-
plications. Based on the VideoLAN’s LibVLC library, LibVLCSharp offers a
comprehensive API for various tasks, such as stream-based video encoding
and rendering. [51].

• PcapNet: A .NET Standard wrapper for the non-managed WinPcap library [37],
utilised to import .pcap files for further processing.

• SharpPcap: A fully managed, cross platform .NET library for network traffic
inspection and intersection [25].

5.2 Application Architecture

We split our application into four class libraries (cf. Figure 5.1) to assign and restrict
their functional scope, allowing library independent development progress and sim-
plified mockup provisioning during the early development phase. We define their
field of responsibility as follows (cf. Figure 5.1): (i) Dji.Network.Packets reflects the
DUML protocol structure in separated classes, (ii) Dji.Network embeds the passive
eavesdropping implementation alongside a network traffic simulation derivative,

2[Online; accessed 27-September-2021] https://avaloniaui.net/

54

https://avaloniaui.net/

5 DJI WI-FI TOOLS

(iii) Dji.Camera provides a custom video-player control with the ability to playback
arbitrary byte sequences, (iv) Dji.UI defines UI windows and components for the
entire application.

The following implementation details portray a small portion of the overall software
architecture. For presentability and understandability reasons the UML diagrams
and code illustrations have been adapted up to a certain degree and deviate from
the actual implementation. The software solution is open-source and available on
GitHub3 for an accurate in-depth investigation.

5.2.1 DJI Network Packets

Due to the Wi-Fi protocol architecture (cf. Section 4.4.3.1) one could argue a single
class implementation for all sent and received payloads. However, our generalised
approach (cf. Figure A.2) allows the instantiation of particular content-type (cf. Ta-
ble 4.9) implementations and forms the foundation of a type-based event-driven
message delegation within the application. To be more precise, we choose the con-
crete object type based on the Wi-Fi-Header’s content-type property (cf. Table 4.9):

• con(0x00): DjiEmptyPacket

• con(0x02): DjiFramePacket

• <con(0x01),con(0x03),con(0x05)>: DjiCmdPacket

• <con(0x04), con(0x06)>: DjiEmptyPacket or DjiCmdPacket

Although we did not abstract any further, one could extend the library with
more concrete command and command-set related object types. For instance,
DjiBatteryPowerLevel (cf. Table 4.13) would inherit DjiCmdPacket and overwrite
its base class building methods (cf. Listing B.1). Additionally, the library features
CRC lookup tables and their algorithm implementations [32, 33] alongside various
enumeration constants [34] (cf. Figure A.2).

3https://github.com/Toemsel/dji-wifi-tools/

55

https://github.com/Toemsel/dji-wifi-tools/

5 DJI WI-FI TOOLS

Avalonia Video Player

Libvlcsharp

Dji Constants

Dji Packets

PcapNet

SharpPcap

Simulation

XAML Definitions

Passive Eavesdropping

FFMpegCore

<< import >><< import >>

<< subscribe >><< subscribe >>

Figure 5.1: DJI Wi-Fi Tools Package Diagram

56

5 DJI WI-FI TOOLS

5.2.2 DJI Network

The DjiPacketSniffer (cf. Figure A.3) utilises the open-source SharpPcap library in
order to passively eavesdrop Ethernet frames. Within our artificial MITM network
scenario (cf. Chapter 3) the relevant network interface to listen on is pre-defined,
but remains unknown on foreign systems. Thus, in order to guarantee the same
functional behaviour on diverging network configurations, we require to configure
SharpPcap to listen on all available interfaces till the very first drone-to-operator
or operator-to-drone message has been encountered, identifiable by the following
predicate compliance:

• The Ethernet frame has a minimum length of 43 bytes.

• The packet’s protocol-type at idx(0x17) equals con(0x11) (cf. Table 4.1).

• The source or destination IP address equals 192.168.2.1 (cf. Section 5.3).

• Neither the source nor the destination IP address equals a local loopback or
broadcast address.

With all conditions met, the DjiPacketSniffer perceives the IP addresses and
henceforth only delivers appropriate Ethernet frames to its NetworkPacketReceived
subscribers, as further processing is beyond the scope of its responsibility. Two sub-
scribers, DjiOperatorResolver and DjiDroneResolver (both implementations of
DjiPacketResolver), continue to instantiate the payload’s representative DjiPacket
(cf. Section 5.2.1) and forward the concrete instance to their, via AddDjiPacket-

Listener subscribed, consumers. Hence, a consumer may subscribe to a particular
DjiPacket implementation (cf. Listing 5.1).

Listing 5.1: Type based DjiPacket subscription� �
1 var _sniffer = new DjiPacketSniffer ();
2 var _droneResolver = new DjiDronePacketResolver ();
3
4 _sniffer.NetworkPacketReceived += (data) => _droneResolver.Feed(data);
5 _droneResolver.AddDjiPacketListener <DjiFramePacket >(FrameUpdate);
6
7 void FrameUpdate(DjiFramePacket framePacket) { } // process frame update
 	

57

5 DJI WI-FI TOOLS

The Simulation of previous mid-flight scenarios requires some sort of persistent
flight-log documentation. The most straightforward and relatively easy to imple-
ment solution comprises a direct Ethernet frame dump, such that each sent and
received frame will end up on a persistent storage in form of a .pcap file. The only
necessity for a simulation replay is the playback of the .pcap file; or alternatively,
feeding the DjiPacketSniffer directly by its public packet retrieval processing
method OnPacketArrival. In other words, OnPacketArrival either receives an
Ethernet frame via eavesdropping or from a previous session recording supplied
by the DjiDroneSimulator. The architectural advantage of our approach involves
no additional implementation effort or existing code base adjustments within the
DjiPacketSniffer, while the application’s overall functional behaviour remains
the same. Consequently, we implement the pcap writer DjiPacketPcapWriter

and subscribe to NetworkPacketReceived (cf. Listing 5.2). Alongside raw Ether-
net frames, the DjiPacketPcapWriter accepts concrete DjiPacket instances and
stores the DUML-Header, DUML-Body, and DUML-Trailer into a second inde-
pendent .pcap file, automatically enabling dissector compatibility by receiving all
DjiPackets from both DjiPacketResolvers (cf. Listing 5.2).

Listing 5.2: DjiPacketPcapWriter Ethernet frame and DjiPacket subscription flow� �
1 var _sniffer = new DjiPacketSniffer ();
2 var _pcapWriter = new DjiPacketPcapWriter ();
3 var _droneResolver = new DjiDronePacketResolver ();
4 var _operatorResolver = new DjiOperatorPacketResolver ();
5
6 _sniffer.NetworkPacketReceived += (data) => _droneResolver.Feed(data);
7 _sniffer.NetworkPacketReceived += (data) => _operatorResolver.Feed(data);
8
9 // 1. subscribe to raw Ethernet frames

10 _sniffer.NetworkPacketReceived += (data) => _pcapWriter.Write(data);
11 // 2. subscribe to concrete DjiPackets
12 _droneResolver.AddDjiPacketListener <DjiPacket >(_pcapWriter.Write);
13 _operatorResolver.AddDjiPacketListener <DjiPacket >(_pcapWriter.Write);
 	
DjiDroneSimulator, responsible for the actual simulation, loads a previous .pcap
session recording with PcapNet, and passes, based on the current mode of simu-
lation (step-by-step, bulk, or soft realtime), the Ethernet frame(s) directly to the
DjiPacketSniffer.

58

5 DJI WI-FI TOOLS

5.2.3 DJI Camera

To convert the DjiFramePacket, received via DjiDronePacketResolver, into a hu-
man viewable video format, the DjiCamera (cf. Figure A.4) passes their aggregated
payloads to the referenced FFMpegCore library (cf. Listing 5.3), whereas the under-
lying FFmpeg binary starts the conversion process and stores the encoded video
stream to the predefined target file location. For video playback within the ap-
plication (cf. Figure 5.2), the VideoPlayer embeds an external VideoView control
from Libvlcsharp; a straightforward solution for a file based video playback of the
previously encoded video stream.

Listing 5.3: DjiCamera video export� �
1 public void FrameUpdate(DjiFramePacket framePacket) =>
2 File.AppendBytes("buffer", framePacket.FrameData);
3
4 private async Task <bool > ExportVideo(string targetFile) => await
5 await FFMpegCore.FFMpegArguments.FromFileInput("buffer")
6 .OutputToFile(targetFile).ProcessAsynchronously(false);
 	

Figure 5.2: VideoPlayer control showcase

59

5 DJI WI-FI TOOLS

5.2.4 DJI UI

The last library within our architectural design (cf. Figure 5.1) strings the indepen-
dent packages together (cf. Listing 5.1 and Listing 5.2). Moreover, it contains all
XAML definitions for the entire application, comprising (cf. Figure 5.3):

(a) Menu-bar items to (i) load a previous session recording, (ii) start or stop a new
session recording, (iii) save the current session as a video-stream

(b) Individual panels for DjiCmdPacket, DjiEmptyPacket, and payloads

(c) A data-grid per panel with the most essential information visible at first glance

(d) Filter predicates for the data-grid’s content

(e) A Simulation window, supporting soft real-time, step-by-step or bulk import

Figure 5.3: DJI.UI main window showcase

60

5 DJI WI-FI TOOLS

Each panel’s viewmodel base-class DjiNetworkPacketPool (cf. Figure 5.3) holds a
collection of DjiPacket, whereas new elements are addable via the internal Store
method. Concrete implementations of the abstract base-class (e.g DjiTrafficDock,
DjiEmptyDock, etc.) provide their elements by a static DjiPacketResolver type
subscription (cf. Listing 5.4). The data-grid, a child control of the panel, obtains
its content from the parent’s viewmodel and defines its visual representation as
referenced (cf. Listing 5.5). With the concrete DjiPacket type known within each
grid, the object’s properties (e.g. Sender, Receiver, Comms, etc.) are direct accessible
and bind-able to the corresponding column definition.

Listing 5.4: DjiTrafficDockViewModel packet-type subscription� �
1 public class DjiTrafficDockViewModel : TrafficDockViewModel
2 {
3 public DjiTrafficDockViewModel ()
4 {
5 DjiContentViewModel.Instance.OperatorPacketResolver.

AddDjiPacketListener <DjiCmdPacket(Store);
6
7 DjiContentViewModel.Instance.DronePacketResolver.

AddDjiPacketListener <DjiCmdPacket >(Store);
8 }
9 }
 	

Listing 5.5: XAML definition clip of DjiTrafficDock� �
1 <WrapPanel Orientation="Horizontal">

2 ...

3 <filters:IpAddressFilter DjiNetworkPacketPool="{Binding $parent[

UserControl]. DataContext}" />

4 </WrapPanel >

5
6 ...

7
8 <DataGrid Source="{Binding DjiPackets}">

9 <DataGrid.Columns >

10 <DataGridTextColumn Header="src" Binding="{Binding Sender}" />

11 <DataGridTextColumn Header="dest" Binding="{Binding Receiver}" />

12 <DataGridTextColumn Header="comm" Binding="{Binding Comms}" />

13 ...

14 </DataGrid.Columns >

15 </DataGrid >
 	

61

5 DJI WI-FI TOOLS

Additionally, the DjiNetworkPacketPool holds a filter expression property called
baseFilter, applied to newly added elements or to the entire DjiPackets collec-
tion upon EvaluateFilterOnPackets method invocation or predicate redefinition.
Similar to the data-grid having access to the parent viewmodel, each filter control
within the panel may concatenate its own predicate definition to the baseFilter,
received via relative binding (cf. Listing 5.5), enabling control reusability among
different panels and a dynamic UI configuration, whereas filter controls may be
added or removed on demand. As an example, the IpAddressFilter (cf. Listing 5.6)
provides two toggle buttons bound to their corresponding Drone and Operator

viewmodel property (cf. Listing B.2). Both properties feature a state-change lis-
tener causing the DjiNetworkPacketPool to re-evaluate the baseFilter expression
upon RaiseAndSetIfChanged. In order to concatenate the FilterExpression to
the baseFilter, its parent class implementation FilterControlViewModel (cf. List-
ing B.3) adds its own abstract property definition to the DjiNetworkPacketPool.

Listing 5.6: XAML definition clip of IpAddressFilter� �
1 <UserControl.DataContext >

2 <model:IpAddressFilterViewModel />

3 </UserControl.DataContext >

4
5 <StackPanel Orientation="Horizontal">

6
7 <ToggleButton IsChecked="{Binding Drone}" Image="Drone.png" />

8 <ToggleButton IsChecked="{Binding Operator}" Image="Operator.png" />

9
10 </StackPanel >
 	
Each data-grid entry facilitates a context-menu, whereas its underlying datagram’s
payload is inspectable in a separate window in detail (cf. Figure 4.5, Figure 4.4, and
Figure 4.6), or directly comparable to other datagram payloads in their window
instance (cf. Figure 4.2 and Figure 4.3). Tooltips for all hexadecimal numbers offer a
convenient denary representation.

62

5 DJI WI-FI TOOLS

5.3 Information Gathering

We manually transcompiled the dissector’s available commands and command-sets
into a C# representative attribute annotation (cf. Listing 5.7 and Listing B.4 for the
attribute implementation). The application pre-loads all hard-coded attributes to
create a dictionary mapping between the hexadecimal command representation
and the attribute’s object reference, enabling a fast lookup during the DjiPacket

instantiation. Each attribute holds a description which will be displayed within the
data-grid – to facilitate human readability and understandability – and may serve as
an optional filter predicate condition. The first live monitoring observation with our
software tool received various unknown commands and command-sets, proving the
dissectors incomplete. With no further information available, we have no choice but
to decompile the mobile Android application (cf. Chapter 2) in order to identify the
unknown commands and command-sets corresponding descriptional denotation.

Dex to Java Decompiler (JADX), an open-source Android Application Package
(APK) decompiler available on GitHub4, offers a convenient GUI for automated
bytecode decompiliation, deobfuscation, and Java file exportation. Instead of man-
ual code investigation throughout 12.747 decompiled Java files, we further utilise
Agent Ransack5, a free file content search utility for Windows, to obtain, via reg-
ular expression, only files of interest. Many hexadecimal and denary expression
building attempts did not deliver any feasible search result, thereby leading us to
rephrase the expression to a more generalised and file name oriented predicate. A
command related file name notation affirms our assumption with the regular ex-
pression .*Cmd.* yielding various command and command-set associated Java files,
including: CmdSet, CmdIdCamera, CmdIdGimbal, CmdIdWifi, etc, similar to the
dissector’s command-set naming convention, and therefore, similar to our attribute
transcompilation (cf. Listing 5.7). Thus, in order to obtain the missing attribute
definitions, we inspect CmdSet.java which describes the available command-set
enum values (cf. Listing B.5). As an example, the missing command-set con(0x11)
represents the enum ADS_B and further dictates its specific command values within
CmdIdADS_B.java (cf. Listing B.6). It might relate to Automatic Dependent Surveil-

4[Online; accessed 02-October-2021] https://github.com/skylot/jadx
5[Online; accessed 02-October-2021] https://www.mythicsoft.com/agentransack/

63

https://github.com/skylot/jadx
https://www.mythicsoft.com/agentransack/

5 DJI WI-FI TOOLS

lance–Broadcast (ADSB), a technology to determine the UAV’s position via satellite
navigation [2]. Besides the amendment of missing attribute definitions within our
application, we correspondingly contributed6 to the OGs’ dissectors to add support
for uncovered command and command-set derivatives.

Listing 5.7: Command and command-set attribute notation� �
1 [Cmd(513, 0x02 , "Camera", 0x01 , "Do Capture Photo")]
2 Camera_DoCapturePhoto = 0x0201 ,
3 [Cmd (1025 , 0x04 , "Gimbal", 0x01 , "Gimbal Control")]
4 Gimbal_GimbalControl = 0x0401 ,
5 [Cmd (1799 , 0x07 , "Wifi", 0x07 , "WiFi Ap SSID Get")]
6 Wifi_WiFiApSSIDGet = 0x0707
 	

Crucial for automatic drone and operator detection is the identification of a potential
hard-coded and pre-defined drone IP address. Hence, we construct another regular
expression ("([0-9]{1,3}.){3}[0-9]{1,3}") to search for any IP address occur-
rence within the source-code. Among other services with a static IP assignment, the
SwUdpService.java confirms, with a static IP declaration of 192.168.2.1, our prior
MITM observations.

6https://github.com/o-gs/dji-firmware-tools/pull/206

64

https://github.com/o-gs/dji-firmware-tools/pull/206

6 Conclusion

With deductive and bit-precise reasoning we were capable to determine various
fields and their values alongside a rough picture of the protocol’s functional be-
haviour. The OGs’ DUML dissectors allowed a precise protocol structure char-
acterisation and led us to the final Wi-Fi protocol structure. Dissector unknown
commands have been obtained by decompilation and investigation of the mobile
Android application. We developed a proprietary open-source software solution to
passively eavesdrop the intercommunication between a drone and its operator, facil-
itating live-monitoring, post-flight simulation, in-depth analysis, DUML compatible
Wireshark dissector export, and camera-feed image extraction.

Although we did not investigate any other mode of operation, it is safe to assume
an application-level payload encryption in SDR mode, rendering – in terms of
information extraction or manipulation – any active or passive eavesdrop operation
infeasible.

The development of a ground station communication counterpart is within the
realms of possibility and would enable a DJI software product independent remote
control. Furthermore, drones operating in Wi-Fi mode, in combination with Wi-Fi
deauthentication and a passphrase brute-force or dictionary attack, are vulnerable to
unauthorised third-party hijacking. Thus, we recommend to avoid the Wi-Fi mode
of operation and suggest the usage of its superior SDR mode.

65

Bibliography

[1] Ethernet Alliance. Ethernet Jumbo Frames. Nov. 2009. URL: http://www.eth
ernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-

Frames-v0-1.pdf.

[2] Budroweit J., Jaksch M. P., Delovski T. “Design of a multi-channel ADS-B
receiver for small satellite-based aircraft surveillance”. In: 2019 IEEE Radio
and Wireless Symposium (RWS). ISSN: 2164-2974. IEEE, Jan. 2019, pp. 1–4. DOI:
10.1109/RWS.2019.8714514.

[3] Claypool M., Tanner J. “The effects of jitter on the peceptual quality of video”.
In: MULTIMEDIA ’99: Proceedings of the seventh ACM International Conference
on Multimedia (Part 2). New York, NY, USA: Association for Computing Ma-
chinery, Oct. 1999, pp. 115–118. DOI: 10.1145/319878.319909.

[4] Dalamagkidis K. “Definitions and Terminology”. In: Handbook of Unmanned
Aerial Vehicles. Ed. by Kimon P. Valavanis and George J. Vachtsevanos. Dor-
drecht: Springer Netherlands, 2015, pp. 43–55. DOI: 10.1007/978-90-481-
9707-1_92.

[5] DeepSig. Introduction to Commercial Drone Signals. [Online; accessed 23-September-
2021]. URL: https://www.deepsig.ai/news/introduction-to-commercial-
drone-signals.

[6] DJI. DJI Mavic Pro 1 hardware specifications. [Online; accessed 09-June-2021].
URL: https://www.dji.com/at/mavic.

[7] DJI. DJI Mobile SDK. [Online; accessed 14-June-2021]. URL: https://devel
oper.dji.com/mobile-sdk/documentation/introduction/mobile_sdk_

introduction.html.

[8] DJI. DJI Onboard SDK. [Online; accessed 14-June-2021]. URL: https://develo
per.dji.com/onboard-sdk/.

66

http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
https://doi.org/10.1109/RWS.2019.8714514
https://doi.org/10.1145/319878.319909
https://doi.org/10.1007/978-90-481-9707-1_92
https://doi.org/10.1007/978-90-481-9707-1_92
https://www.deepsig.ai/news/introduction-to-commercial-drone-signals
https://www.deepsig.ai/news/introduction-to-commercial-drone-signals
https://www.dji.com/at/mavic
https://developer.dji.com/mobile-sdk/documentation/introduction/mobile_sdk_introduction.html
https://developer.dji.com/mobile-sdk/documentation/introduction/mobile_sdk_introduction.html
https://developer.dji.com/mobile-sdk/documentation/introduction/mobile_sdk_introduction.html
https://developer.dji.com/onboard-sdk/
https://developer.dji.com/onboard-sdk/

[9] DJI. DJI Payload SDK. [Online; accessed 14-June-2021]. URL: https://develop
er.dji.com/payload-sdk/.

[10] DJI. DJI User-Experience SDK. [Online; accessed 14-June-2021]. URL: https:
//developer.dji.com/mobile-sdk/documentation/introduction/ux_sdk_

introduction.html.

[11] DJI. DJI Windows SDK. [Online; accessed 14-June-2021]. URL: https://develo
per.dji.com/document/900519f4-f89d-4458-a8a3-0f38f289f7ad.

[12] Djibestdrones. DJI OcuSync 2.0: What You Need to Know About This FPV Trans-
mission System. [Online; accessed 14-June-2021]. URL: http://djibestdrones.
com/dji-ocusync-2-0/.

[13] Edström V., Zeynalli E. “Penetration testing a civilian drone”. http://kth.diva-
portal.org/smash/get/diva2:1463784/FULLTEXT01.pdf. Bachelor’s Thesis.
KTH Royal Institute of Technology, July 2020.

[14] FFmpeg. FFmpeg Multimedia Framework. [Online; accessed 25-August-2021].
URL: https://ffmpeg.org/about.html.

[15] Frankel E. S., Eydt B., Owens L., Scarfone K. K. “Establishing wireless robust
security networks: A guide to IEEE 802.11 i”. In: NIST Special Publication
800–97 (2007).

[16] Heliguy. DJI Transmission Systems - Wi-Fi, Ocusync & Lightbridge. [Online;
accessed 23-September-2021]. URL: https://www.heliguy.com/blogs/posts/
dji-transmission-systems-wi-fi-ocusync-lightbridge.

[17] Intel. Intel Dual Band Wireless-AC 3165. [Online; accessed 16-July-2021]. URL:
https://ark.intel.com/content/www/us/en/ark/products/89450/intel-

dual-band-wireless-ac-3165.html.

[18] James M., Walmsley D. WPF Developers Tips. [Online; accessed 27-September-
2021]. URL: https://docs.avaloniaui.net/misc/wpf.

[19] Jondral F. K. “Software-defined radio—basics and evolution to cognitive
radio”. In: EURASIP Journal on Wireless Communications and Networking 2005.3
(Dec. 2005), pp. 1–9. DOI: 10.1155/WCN.2005.275.

[20] Katz J., Lindell Y. Introduction to modern cryptography. CRC press, 2020. ISBN:
978-1-46657027-6.

67

https://developer.dji.com/payload-sdk/
https://developer.dji.com/payload-sdk/
https://developer.dji.com/mobile-sdk/documentation/introduction/ux_sdk_introduction.html
https://developer.dji.com/mobile-sdk/documentation/introduction/ux_sdk_introduction.html
https://developer.dji.com/mobile-sdk/documentation/introduction/ux_sdk_introduction.html
https://developer.dji.com/document/900519f4-f89d-4458-a8a3-0f38f289f7ad
https://developer.dji.com/document/900519f4-f89d-4458-a8a3-0f38f289f7ad
http://djibestdrones.com/dji-ocusync-2-0/
http://djibestdrones.com/dji-ocusync-2-0/
https://ffmpeg.org/about.html
https://www.heliguy.com/blogs/posts/dji-transmission-systems-wi-fi-ocusync-lightbridge
https://www.heliguy.com/blogs/posts/dji-transmission-systems-wi-fi-ocusync-lightbridge
https://ark.intel.com/content/www/us/en/ark/products/89450/intel-dual-band-wireless-ac-3165.html
https://ark.intel.com/content/www/us/en/ark/products/89450/intel-dual-band-wireless-ac-3165.html
https://docs.avaloniaui.net/misc/wpf
https://doi.org/10.1155/WCN.2005.275

[21] Kenington P. B. RF and baseband techniques for software defined radio. Artech
House, 2005. ISBN: 978-1-58053793-3.

[22] Kostao, Quaddamage. Lightbridge and OcuSync protocol description. [Online;
accessed 23-September-2021]. URL: https://phantompilots.com/threads/
lightbridge-and-ocusync-protocol-description.147896/.

[23] Krishnam R. K. V., Vallikumari V., Raju K. “Modeling and analysis of IEEE
802.11i WPA-PSK authentication protocol”. In: 2011 3rd International Conference
on Electronics Computer Technology. Vol. 5. IEEE, Apr. 2011, pp. 72–76. DOI:
10.1109/ICECTECH.2011.5941959.

[24] The Local. “Drone nearly collides with Austrian rescue helicopter”. In: Local
Austria (Aug. 2016). URL: https://www.thelocal.at/20160816/drone-
nearly-collides-with-rescue-helicopter-in-austria.

[25] Morgan C. SharpPcap. [Online; accessed 27-September-2021]. URL: https:
//github.com/chmorgan/sharppcap.

[26] Noh J., Kim J., Kwon G., Cho S. “Secure key exchange scheme for WPA/WPA2-
PSK using public key cryptography”. In: 2016 IEEE International Conference on
Consumer Electronics-Asia (ICCE-Asia). IEEE, Oct. 2016, pp. 1–4. DOI: 10.1109/
ICCE-Asia.2016.7804782.

[27] Ondiwa N. O., Biermann E., Noel G. “An integrated security model for
WLAN”. In: AFRICON 2009. IEEE, Sept. 2009, pp. 1–6. DOI: 10.1109/AFRCON.
2009.5308183.

[28] Online CRC-8 CRC-16 CRC-32 Calculator. [Online; accessed 19-August-2021].
URL: https://crccalc.com/.

[29] Original Gangsters. Dji-firmware-tools - Communication Dissector Example. Aug.
2021. URL: https://github.com/o-gs/dji-firmware-tools/blob/37d63d
9d9be548f368f5c4a0d9f438bbd7b22161/comm_dissector/img/wireshark-

using-dji-dissector.png.

[30] Original Gangsters. Dji-firmware-tools - Communication Dissectors. Aug. 2021.
URL: https://github.com/o- gs/dji- firmware- tools/blob/bd901aff
74871d1ef7362c232afb8c56ea854c45/comm_dissector/README.md.

68

https://phantompilots.com/threads/lightbridge-and-ocusync-protocol-description.147896/
https://phantompilots.com/threads/lightbridge-and-ocusync-protocol-description.147896/
https://doi.org/10.1109/ICECTECH.2011.5941959
https://www.thelocal.at/20160816/drone-nearly-collides-with-rescue-helicopter-in-austria
https://www.thelocal.at/20160816/drone-nearly-collides-with-rescue-helicopter-in-austria
https://github.com/chmorgan/sharppcap
https://github.com/chmorgan/sharppcap
https://doi.org/10.1109/ICCE-Asia.2016.7804782
https://doi.org/10.1109/ICCE-Asia.2016.7804782
https://doi.org/10.1109/AFRCON.2009.5308183
https://doi.org/10.1109/AFRCON.2009.5308183
https://crccalc.com/
https://github.com/o-gs/dji-firmware-tools/blob/37d63d9d9be548f368f5c4a0d9f438bbd7b22161/comm_dissector/img/wireshark-using-dji-dissector.png
https://github.com/o-gs/dji-firmware-tools/blob/37d63d9d9be548f368f5c4a0d9f438bbd7b22161/comm_dissector/img/wireshark-using-dji-dissector.png
https://github.com/o-gs/dji-firmware-tools/blob/37d63d9d9be548f368f5c4a0d9f438bbd7b22161/comm_dissector/img/wireshark-using-dji-dissector.png
https://github.com/o-gs/dji-firmware-tools/blob/bd901aff74871d1ef7362c232afb8c56ea854c45/comm_dissector/README.md
https://github.com/o-gs/dji-firmware-tools/blob/bd901aff74871d1ef7362c232afb8c56ea854c45/comm_dissector/README.md

[31] Original Gangsters. Dji-firmware-tools - Container Stream Parser script. Aug.
2021. URL: https://github.com/o-gs/dji-firmware-tools/blob/6570ecc
8ffd6b8c396365e870a23ab6fd0c2ec2b/comm_dat2pcap.py.

[32] Original Gangsters. Dji-firmware-tools - CRC-16 Hextable. Aug. 2021. URL: http
s://github.com/o-gs/dji-firmware-tools/blob/533c4abb09544cf56ecd

bb3176079d31685ed7a1/comm_dat2pcap.py#L70.

[33] Original Gangsters. Dji-firmware-tools - CRC-8 Hextable. Aug. 2021. URL: https:
//github.com/o-gs/dji-firmware-tools/blob/533c4abb09544cf56ecdbb

3176079d31685ed7a1/comm_dat2pcap.py#L116.

[34] Original Gangsters. Dji-firmware-tools - DUMLv1 Protocol. Aug. 2021. URL:
https://github.com/o-gs/dji-firmware-tools/blob/05e24cb12803943f

63ac5ae1574e517e59a2dd0a/comm_dissector/wireshark/dji-dumlv1-prot

o.lua.

[35] Original Gangsters. Dji-firmware-tools - Readme. Aug. 2021. URL: https://
github.com/o-gs/dji-firmware-tools/blob/40aeaca6bf7302f409de18c

795927fcc12a17372/README.md.

[36] Pacheco de Carvalho J. A. R., Veiga H., Marques N., Ribeiro Pacheco C. F. F.,
A. Reis D. “Performance measurements of IEEE 802.11 b, g laboratory WEP
and WPA point-to-point links using TCP, UDP and FTP”. In: 2011 International
Conference on Applied Electronics. ISSN: 1803-7232. IEEE, Sept. 2011, pp. 1–6.

[37] PcapDotNet. Pcap.Net. [Online; accessed 27-September-2021]. URL: https:
//github.com/PcapDotNet/Pcap.Net.

[38] Wenger S., Hannuksela M. M., Stockhammer T., Westerlund M., Singer D. RTP
Payload Format for H.264 Video. RFC 3984. IETF, Feb. 2005.

[39] Rosenbjerg M. FFMpegCore. [Online; accessed 27-September-2021]. URL: http
s://github.com/rosenbjerg/FFMpegCore.

[40] Samlaf. Low-Level Protocol. [Online; accessed 23-September-2021]. URL: https:
//tellopilots.com/wiki/protocol/#MessageIDs.

[41] Sandsmark. Communication protocol. [Online; accessed 23-September-2021].
URL: https://tellopilots.com/threads/communication-protocol.3093/.

69

https://github.com/o-gs/dji-firmware-tools/blob/6570ecc8ffd6b8c396365e870a23ab6fd0c2ec2b/comm_dat2pcap.py
https://github.com/o-gs/dji-firmware-tools/blob/6570ecc8ffd6b8c396365e870a23ab6fd0c2ec2b/comm_dat2pcap.py
https://github.com/o-gs/dji-firmware-tools/blob/533c4abb09544cf56ecdbb3176079d31685ed7a1/comm_dat2pcap.py#L70
https://github.com/o-gs/dji-firmware-tools/blob/533c4abb09544cf56ecdbb3176079d31685ed7a1/comm_dat2pcap.py#L70
https://github.com/o-gs/dji-firmware-tools/blob/533c4abb09544cf56ecdbb3176079d31685ed7a1/comm_dat2pcap.py#L70
https://github.com/o-gs/dji-firmware-tools/blob/533c4abb09544cf56ecdbb3176079d31685ed7a1/comm_dat2pcap.py#L116
https://github.com/o-gs/dji-firmware-tools/blob/533c4abb09544cf56ecdbb3176079d31685ed7a1/comm_dat2pcap.py#L116
https://github.com/o-gs/dji-firmware-tools/blob/533c4abb09544cf56ecdbb3176079d31685ed7a1/comm_dat2pcap.py#L116
https://github.com/o-gs/dji-firmware-tools/blob/05e24cb12803943f63ac5ae1574e517e59a2dd0a/comm_dissector/wireshark/dji-dumlv1-proto.lua
https://github.com/o-gs/dji-firmware-tools/blob/05e24cb12803943f63ac5ae1574e517e59a2dd0a/comm_dissector/wireshark/dji-dumlv1-proto.lua
https://github.com/o-gs/dji-firmware-tools/blob/05e24cb12803943f63ac5ae1574e517e59a2dd0a/comm_dissector/wireshark/dji-dumlv1-proto.lua
https://github.com/o-gs/dji-firmware-tools/blob/40aeaca6bf7302f409de18c795927fcc12a17372/README.md
https://github.com/o-gs/dji-firmware-tools/blob/40aeaca6bf7302f409de18c795927fcc12a17372/README.md
https://github.com/o-gs/dji-firmware-tools/blob/40aeaca6bf7302f409de18c795927fcc12a17372/README.md
https://github.com/PcapDotNet/Pcap.Net
https://github.com/PcapDotNet/Pcap.Net
https://github.com/rosenbjerg/FFMpegCore
https://github.com/rosenbjerg/FFMpegCore
https://tellopilots.com/wiki/protocol/#MessageIDs
https://tellopilots.com/wiki/protocol/#MessageIDs
https://tellopilots.com/threads/communication-protocol.3093/

[42] Santosh K., Sonam R. “Survey on transport layer protocols: TCP & UDP”.
In: International Journal of Computer Applications 46.7 (2012), pp. 20–25. DOI:
10.5120/6920-9285.

[43] SevreNniarB. S1 App - Advanced Debugging Mechanism. [Online; accessed 23-
September-2021]. URL: https://forum.dji.com/forum.php?mod=viewthrea
d&tid=202546.

[44] Sivakumar C., Velmurugan A. “High Speed VLSI Design CCMP AES Cipher
for WLAN (IEEE 802.11i)”. In: 2007 International Conference on Signal Processing,
Communications and Networking. IEEE, Feb. 2007, pp. 398–403. DOI: 10.1109/
ICSCN.2007.350770.

[45] Sorensen E., Mikailesc M. “Model-view-ViewModel (MVVM) design pattern
using Windows Presentation Foundation (WPF) technology”. In: MegaByte
Journal 9.4 (2010), pp. 1–19.

[46] Spyridon S., David C. “The CIA Strikes Back: Redefining Confidentiality,
Integrity and Availability in Security”. In: Journal of Information System Security
10.3 (2014), pp. 21–45.

[47] Timbrook R. Lightbridge and OcuSync protocol description. [Online; accessed
23-September-2021]. URL: https://expertworldtravel.com/what-is-dji-
ocusync/.

[48] Tuttlebee W. Software defined radio: enabling technologies. John Wiley & Sons,
Apr. 2003. ISBN: 978-0-47085263-7.

[49] Ulversoy, Tore. “Software Defined Radio: Challenges and Opportunities”.
In: IEEE Communications Surveys & Tutorials 12.4 (2010), pp. 531–550. DOI:
10.1109/SURV.2010.032910.00019.

[50] Vachtsevanos, George J., Valavanis, Kimon P. “Military and Civilian Un-
manned Aircraft”. In: Handbook of Unmanned Aerial Vehicles. Ed. by Valavanis,
Kimon P., Vachtsevanos, George J. Dordrecht: Springer Netherlands, 2015,
pp. 93–103. DOI: 10.1007/978-90-481-9707-1_96.

[51] Videolan. Libvlcsharp. [Online; accessed 27-September-2021]. URL: https://
github.com/videolan/libvlcsharp.

70

https://doi.org/10.5120/6920-9285
https://forum.dji.com/forum.php?mod=viewthread&tid=202546
https://forum.dji.com/forum.php?mod=viewthread&tid=202546
https://doi.org/10.1109/ICSCN.2007.350770
https://doi.org/10.1109/ICSCN.2007.350770
https://expertworldtravel.com/what-is-dji-ocusync/
https://expertworldtravel.com/what-is-dji-ocusync/
https://doi.org/10.1109/SURV.2010.032910.00019
https://doi.org/10.1007/978-90-481-9707-1_96
https://github.com/videolan/libvlcsharp
https://github.com/videolan/libvlcsharp

[52] Waldmann N. DJI OcuSync 2.0 / 3.0: Der ultimative OcuSync & Lightbridge Guide.
[Online; accessed 14-June-2021]. URL: https://www.drone-zone.de/dji-
ocusync-2-0-der-ultimative-ocusync-lightbridge-guide/.

[53] Warner J. S., Johnston R. G. “GPS spoofing countermeasures”. In: Homeland
Security Journal 25.2 (2003), pp. 19–27.

[54] Wild G., Murray J., Baxter G. “Exploring civil drone accidents and incidents
to help prevent potential air disasters”. In: Aerospace 3.3 (2016), p. 22. DOI:
DOI:10.3390/aerospace3030022.

[55] Wireshark. Building Display Filter Expressions. [Online; accessed 06-August-
2021]. URL: https://www.wireshark.org/docs/wsug_html_chunked/ChWork
BuildDisplayFilterSection.html#ChWorkBuildDisplayFilterMistake.

[56] Wireshark. Wireshark Dissectors. [Online; accessed 27-August-2021]. URL: ht
tps://www.wireshark.org/docs/wsdg_html_chunked/ChapterDissection.

html.

[57] Xu F., Muneyoshi H. “A Case Study of DJI, the Top Drone Maker in the World”.
In: Kindai Manag. Rev 5 (2017), pp. 97–104.

[58] Zeng Y., Zhang R., Lim T. J. “Wireless communications with unmanned aerial
vehicles: Opportunities and challenges”. In: IEEE Communications Magazine
54.5 (2016), pp. 36–42. DOI: 10.1109/MCOM.2016.7470933.

71

https://www.drone-zone.de/dji-ocusync-2-0-der-ultimative-ocusync-lightbridge-guide/
https://www.drone-zone.de/dji-ocusync-2-0-der-ultimative-ocusync-lightbridge-guide/
https://doi.org/DOI:10.3390/aerospace3030022
https://www.wireshark.org/docs/wsug_html_chunked/ChWorkBuildDisplayFilterSection.html#ChWorkBuildDisplayFilterMistake
https://www.wireshark.org/docs/wsug_html_chunked/ChWorkBuildDisplayFilterSection.html#ChWorkBuildDisplayFilterMistake
https://www.wireshark.org/docs/wsdg_html_chunked/ChapterDissection.html
https://www.wireshark.org/docs/wsdg_html_chunked/ChapterDissection.html
https://www.wireshark.org/docs/wsdg_html_chunked/ChapterDissection.html
https://doi.org/10.1109/MCOM.2016.7470933

A Software Design UML Diagrams

DjiTrafficDockViewModelDjiTrafficDockViewModel

TrafficDockViewModelTrafficDockViewModel

- ContextMenuEntries : IEnumerable<ContextMenuEntry>

DjiNetworkPacketPoolDjiNetworkPacketPool

- MAX_NETWORK_PACKETS : int

- MAX_FILTER_PACKETS : int

- filterThread : Thread

- isFiltering : bool

- baseFilter : Expression<Func<DjiPacket, bool>>

- IsFiltering : bool

- MaxPoolSize : int

- CurrentPoolSize : int

- MaxFilterSize : int

- DjiPackets : ObservableCollection<DjiPacket>

- Store(params DjiPacket djiPackets) : void

- AddFilter(Expression<Func<DjiPacket, bool>> filter) : void

- EvaluateFilterOnPackets() : void

ContextMenuEntryContextMenuEntry

- title : String

- onClick : Action<DjiPacket>

- Title : String

- OnClick : Action<DjiPacket>

DjiEmptyDockViewModelDjiEmptyDockViewModel UdpTrafficViewModelUdpTrafficViewModel

DjiEmptyDockDjiEmptyDock DjiTrafficDockDjiTrafficDock UdpTrafficDockUdpTrafficDock

FilterControlViewModelFilterControlViewModel

- FilterExpression : Expression<Func<DjiPacket, bool>>

IpAddressFilterIpAddressFilter

- FilterExpression : Expression<Func<DjiPacket, bool>>

- DjiNetworkPacketPool : DjiNetworkPacketPool

- Drone : bool

- Operator : bool

PropertyChangedPropertyChanged

Figure A.1: Dji UI Class Diagram

72

DjiPacketDjiPacket

- payload : byte[]

- GetSize() : ushort

- wifiHeaderSize : ushort

- sessionIdentifier : byte[]

- wifiHeaderType : WhType

- GetSession : byte[]

- SetValue<T>() : void

- Build() : byte[]

- Build(byte[] data) : bool

- Set(byte[] data, int? delimiter) : bool

- Get(bool includeWifi) : byte[]

- GetPacketSize(byte[] data) : ushort

- GetWifiSize(byte[] data) : byte

DjiEmptyPacketDjiEmptyPacket

- Build() : byte[]

- Build(byte[] data) : bool

<<Enumeration>>

WhType

<<Enumeration>>

WhType

- OperatorEmpty : 0x00

- DroneCmd1 : 0x01

- DroneImageFrame : 0x02

- DroneCmd2 : 0x03

- OperatorCmd1 : 0x04

- OperatorCmd2 : 0x05

- OperatorCmd3 : 0x06

DjiDUMLPacketDjiDUMLPacket

- delimiter : byte

- GetDelimiter() : byte

- dumlSize : ushort

- version : byte

- crc : byte

- GetDumlSize() : ushort

- GetVersion() : byte

- GetCrc() : byte

DjiCmdPacketDjiCmdPacket

- sender : Transceiver

- GetSender() : Transceiver

- GetReceiver() : Transceiver

- GetSenderIdx() : byte

- GetReceiverIdx() : byte

- GetCounter() : ushort

- GetRequestType() : Comms

- GetAck() : Ack

- GetEncryption() : Encryption

- GetCommand() : Cmd

- GetPayload() : byte[]

- GetCrc() : byte[]

- Build() : byte[]

- Build(byte[] data) : bool

- receiver : Transceiver

- senderIdx : byte

- receiverIdx : byte

- counter : ushort

- requestType : Comms

- ack : Ack

- encryption : Encryption

- command : Cmd

- payload : byte[]

- Crc : byte[]

<<Enumeration>>

Transceiver

<<Enumeration>>

Transceiver

- Camera : 0x01

- App : 0x02

- Gimbal : 0x04

- Battery : 0x0B

...

<<Enumeration>>

Comms

<<Enumeration>>

Comms

- Request : 0x00

- Response : 0x01

<<Enumeration>>

Ack

<<Enumeration>>

Ack

- NoAck : 0x00

- BeforeExecution : 0x01

- AfterExecution : 0x02

<<Enumeration>>

Encryption

<<Enumeration>>

Encryption

- None : 0x00

- AES128 : 0x01

- SelfDef : 0x02

- XOR : 0x03

...

DjiHandshakePacketDjiHandshakePacket

- crc : byte[]

- GetCrc() : byte[]

- Build() : byte[]

- Build(byte[] data) : bool

DjiFramePacketDjiFramePacket

- frameData : byte[]

- GetFrameData() : byte[]

- Build() : byte[]

- Build(byte[] data) : bool

Figure A.2: Dji Network Packet Class Diagram

73

PcapNetSharpPcap

DjiPacketSnifferDjiPacketSniffer

- networkPacketReceivedSource

- networkInformationReceivedSource

- OnPacketArrival(object sender, CaptureEventArgs capture) : void

DjiPacketResolverDjiPacketResolver

- AddDjiPacketListener<V>(Delegate del) : where V : DjiPacket

DjiOperatorResolverDjiOperatorResolver

- ProcessNetworkPacket(byte[] data) : void

DjiDroneSimulatorDjiDroneSimulator

- LoadSimulation(string file) : Task<bool>

- SingleStepSimulation() : void

- MultiStepSimulation() : void

- PauseSimulation() : void

- ContinueSimulation() : void

- NetworkPacketReceived : event

- NetworkStatusChanged : event

- DRONE_IP_ADDRESS : string

- ProcessNetworkPacket(byte[] data) : void

DjiDroneResolverDjiDroneResolver

- ProcessNetworkPacket(byte[] data) : void

DjiPacketPcapWriterDjiPacketPcapWriter

- Enable(string file) : void

- Write(DjiPacket djiPacket) : void

- Write(byte[] data) : void

Figure A.3: Dji Network Class Diagram

DjiCameraDjiCamera

- DEFAULT_VIDEO_FORMAT : string

- frameBuffer : string

- cameraSession : string

- FrameUpdate(byte[] data) : void

- GetVideo() : byte[]

- ExportVideo(string targetFile) : bool

VideoPlayerVideoPlayer

- PlayVideo(string sourceFile) : void

Figure A.4: Dji Camera Class Diagram

74

B DJI Source Code Snippets

Listing B.1: Cmd con(0x03) Cmd-Set con(0x0D) concrete implementation example� �
1 public class DjiBatteryPowerLevel : DjiCmdPacket
2 {
3 private byte[] _cellCount , _cell1 , _cell2 , _cell3;
4
5 public float BatteryLevel =>
6 (BitConverter.ToInt16(_cell1) +
7 BitConverter.ToInt16(_cell2) +
8 BitConverter.ToInt16(_cell3)) / (3830f * 3);
9

10 protected override byte[] Build()
11 {
12 byte[] data = new byte [7];
13 data [0] = _cellCount;
14 data [1] = _cell1 [0];
15 data [2] = _cell1 [1];
16 data [3] = _cell2 [0];
17 data [4] = _cell2 [1];
18 data [5] = _cell3 [0];
19 data [6] = _cell3 [1];
20
21 return base.Build().Append(data);
22 }
23
24 protected override bool Build(byte[] data)
25 {
26 if (!base.Build(data))
27 return false;
28 if (data.Length != 7)
29 return false;
30
31 _cellCount = data [0];
32 _cell1 = data [1..3];
33 _cell2 = data [3..5];
34 _cell3 = data [5..7];
35
36 return true;
37 }
38 }
 	

75

Listing B.2: IpAddressFilterViewModel implementation� �
1 public class IpAddressFilterViewModel : FilterControlViewModel
2 {
3 private bool _operator;
4 private bool _drone;
5
6 public IpAddressFilterViewModel ()
7 {
8 this.WhenAnyValue(instance => instance.Drone).Subscribe(drone =>

DjiNetworkPacketPool ?. EvaluateFilterOnPackets ());
9 this.WhenAnyValue(instance => instance.Operator).Subscribe(op =>

DjiNetworkPacketPool ?. EvaluateFilterOnPackets ());
10 }
11
12 protected override Expression <Func <DjiPacket , bool >> FilterExpression

=> (djiPacket) =>
13 (!Drone && !Operator) ||
14 (djiPacket.Participant == Participant.Drone && Drone) ||
15 (djiPacket.Participant == Participant.Operator && Operator);
16
17 public bool Drone
18 {
19 get => _drone;
20 set => this.RaiseAndSetIfChanged(ref _drone , value);
21 }
22
23 public bool Operator
24 {
25 get => _operator;
26 set => this.RaiseAndSetIfChanged(ref _operator , value);
27 }
28 }
 	

76

Listing B.3: FilterControlViewModel implementation� �
1 public abstract class FilterControlViewModel : ReactiveObject
2 {
3 private DjiNetworkPacketPool _networkPool;
4
5 public FilterControlViewModel ()
6 {
7 this.WhenAnyValue(instance => instance.DjiNetworkPacketPool).

Subscribe(networkPool => networkPool ?. AddFilter(
FilterExpression));

8 }
9

10 public DjiNetworkPacketPool DjiNetworkPacketPool
11 {
12 get => _networkPool;
13 set => this.RaiseAndSetIfChanged(ref _networkPool , value);
14 }
15
16 protected abstract Expression <Func <DjiPacket , bool >> FilterExpression

{ get; }
17 }
 	

Listing B.4: CmdAttribute implementation� �
1 public class CmdAttribute : Attribute
2 {
3 public CmdAttribute(ushort data , byte cmdSet , string cmdSetDescription

, byte cmd , string cmdDescription) =>
4 (Data , CmdSet , CmdSetDescription , Cmd , CmdDescription) = (data ,

cmdSet , cmdSetDescription , cmd , cmdDescription);
5
6 public ushort Data { get; init; }
7
8 public byte Cmd { get; init; }
9

10 public byte CmdSet { get; init; }
11
12 public string CmdDescription { get; init; }
13
14 public string CmdSetDescription { get; init; }
15 }
 	

77

Listing B.5: CmdSet.java: Command-set enum values� �
1 public enum CmdSet
2 {
3 COMMON(0, new CmdIdCommon ()),
4 SPECIAL(1, new CmdIdSpecial ()),
5 CAMERA(2, new CmdIdCamera ()),
6 FLYC(3, new CmdIdFlyc ()),
7 GIMBAL(4, new CmdIdGimbal ()),
8 CENTER(5, new CmdIdCenter ()),
9 RC(6, new CmdIdRc ()),

10 WIFI(7, new CmdIdWifi ()),
11 DM368(8, new CmdIdDm368 ()),
12 OSD(9, new CmdIdOsd ()),
13 EYE(10, new CmdIdEYE ()),
14 SIMULATOR (11, new CmdIdSimulator ()),
15 BATTERY (12),
16 SMARTBATTERY (13, new CmdIdSmartBattery ()),
17 ADS_B (17, new CmdIdADS_B ()),
18 Glass (21, new CmdIdGlass ()),
19 Flight (31, new CmdIdFlight ()),
20 RTK(15, new CmdIdRTK ()),
21 Module4G (24, new CmdIdModule4G ()),
22 OnboardSDK (25, new CmdIdOnBoardSDK ()),
23 NarrowBand (32, new CmdIdNarrowBand ()),
24 FLYC2 (34, new CmdIdFlyc2 ()),
25 PayloadSDK (60, new CmdIdPayloadSDK ()),
26 RECOGNIZE (238, new CmdIdRecognize ()),
27 OTHER (100);
28 }
 	

Listing B.6: CmdIdADS_B.java: Command enum values� �
1 public enum CmdIdType implements CmdIdInterface
2 {
3 GetPushData (2, false , DataADSBGetPushData.class),
4 GetPushWarning (8, false , DataADSBGetPushWarning.class),
5 GetPushOriginal (9, false , DataADSBGetPushOriginal.class),
6 SendWhiteList (16),
7 RequestLicense (17),
8 SetLicenseEnabled (18),
9 GetLicenseId (19),

10 GetPushUnlockInfo (20, false , DataADSBGetPushUnlockInfo.class),
11 SetUserId (21),
12 GetKeyVersion (22),
13 GetPushAvoidanceAction (23, false , DataADSBAvoidanceAction.class),
14 Other(FrameMetricsAggregator.EVERY_DURATION);
15 }
 	

78

	Abstract
	Kurzfassung
	1 Introduction
	1.1 Unmanned Aerial Vehicle
	1.2 Civilian Unmanned Systems
	1.3 Da Jian Innovation
	1.4 Wireless Communication
	1.5 Thesis Objective

	2 Target Specification
	2.1 Software Defined Radio
	2.2 Ocusync
	2.3 Wi-Fi

	3 Man-in-the-Middle
	3.1 Access Point Configuration
	3.2 Unstable Network Connection
	3.2.1 Wi-Fi Extender
	3.2.2 External Network Adapter

	3.3 Intercommunication Eavesdropping

	4 DJI Wi-Fi Protocol
	4.1 Ethernet Frame
	4.2 Payload Encryption
	4.3 Deductive Reasoning
	4.3.1 Operator-to-Drone
	4.3.2 Drone-to-Operator
	4.3.3 Concluding Findings

	4.4 DJI Universal Markup Language
	4.4.1 Wireshark Dissector
	4.4.2 Payload Delimiter
	4.4.3 Protocol Architecture

	5 DJI Wi-Fi Tools
	5.1 Framework and Libraries
	5.2 Application Architecture
	5.2.1 DJI Network Packets
	5.2.2 DJI Network
	5.2.3 DJI Camera
	5.2.4 DJI UI

	5.3 Information Gathering

	6 Conclusion
	Bibliography
	A Software Design UML Diagrams
	B DJI Source Code Snippets

