
Author
Michael Barth
k01355201

Submission
Institute of
Networks and Security

Thesis Supervisor
Dr. Michael Roland

February 2021

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Austria
www.jku.at
DVR 0093696

Tracking and position
estimation of WLAN
clients through passively
collected data

Bachelor’s Thesis

to confer the academic degree of

Bachelor of Science

in the Bachelor’s Program

Informatik

Abstract

This work focuses on methods to capture and analyze data transmitted by Wireless
Local Area Network (WLAN) clients in order to track them. This includes evaluation of
methods where control of the Access Point (AP) infrastructure is not needed and clients
do not need to be connected to a WLAN network. This mainly involves data in probe
requests which are transmitted by clients when actively searching for WLAN APs. To
evaluate this in a real world scenario a setup consisting of multiple distributed capture
devices and a central analysis system is introduced. The captured data is analyzed to
verify theoretical concepts. There is still a big part of WLAN client devices that leak
lists of stored SSID values when actively scanning for WLAN networks. MAC address
randomization helps to protect privacy if enabled. User identities for EAP authentication
however are still leaked in default configuration by all major operating systems. Finally
some extension ideas and current trends and developments are presented.

1

Kurzfassung

In dieser Arbeit werden Daten, die WLAN Clients senden gesammelt und analysieren,
um diese zu tracken. Dazu werden nur Methoden betrachtet, die keine Kontrolle über die
AP Infrastruktur erfordern und Clients müssen nicht unbedingt mit einem WLAN ver-
bunden sein. Daher sind hauptsächlich Daten in Probe Request Frames interessant, die
Clients senden, wenn sie aktiv nach WLAN APs suchen. Um das Verhalten von WLAN
Clients zu analysieren, wird einen Aufbau aus mehreren Capture-Geräten und einem
zentralen Auswertungssystem eingeführt. Die gesammelten Daten werden ausgewertet,
um theoretische Konzepte zu untermauern. Ein großer Anteil an WLAN Clients gibt
noch immer die Liste der gespeicherten SSIDs preis, wenn aktiv nach WLANs gesucht
wird. Wenn aktiviert, bietet MAC Adressen Randomisierung signifikante Vorteile hin-
sichtlich dem Schutz der Privatsphäre. Benutzeridentitäten, die bei einer EAP Authen-
tifizierung notwendig sind, werden aktuell von allen weit verbreiteten Betriebssystemen
ungeschützt übertragen. Schließlich werden Ideen zur Erweiterung des Systems und
theoretische Überlegungen erarbeitet, sowie ein Ausblick auf aktuelle und relevante En-
twicklungen zum Thema WLAN Tracking gegeben.

2

Contents

1 Introduction 6

2 IEEE 802.11 7
2.1 IEEE 802.11 Terminology . 7
2.2 IEEE 802.11 MAC Frames . 8

2.2.1 Management Frames . 9
2.2.2 Probe Requests . 9
2.2.3 WPS Data in Probe Frames . 10
2.2.4 IEEE 802.1X in Data QoS Frames 11

2.3 Data Considered in this Work . 11

3 Application 13
3.1 Application Architecture and Tools . 13

3.1.1 Tcpdump . 15
3.1.2 netcat . 15
3.1.3 Systemd Script on Capture Devices 16
3.1.4 Docker Engine . 16
3.1.5 Node.js . 16
3.1.6 Wireshark and tshark . 16
3.1.7 Elasticsearch . 17
3.1.8 Kibana . 17

3.2 Application Pipeline . 17
3.3 Position Estimation with Multilateration 21

4 Findings 24
4.1 Capture Setup and Environment . 24
4.2 MAC Address Randomization . 24
4.3 SSID Values . 28
4.4 WPS UUID-E . 29
4.5 EAPoL . 30
4.6 Position Estimation by RSSI Measurements 31

5 Extensions and Future Work 34
5.1 Advanced Device Fingerprinting . 34
5.2 Tracking . 34

6 Conclusion 36
6.1 Current Developments . 36
6.2 Awareness and Tracking Prevention . 37

3

A Raw Measurement Result Data 38

4

List of Abbreviations

AP Access Point
BPF Berkeley Paket Filter
BSS Basic Service Set
BSSID Basic Service Set Identifier
cgroup Control Group
CRC Cyclic Redundancy Check
EAP Extensible Authentication Protocol
EAPoL Extensible Authentication Protocol over Local Area Network
ESS Extended Service Set
ESSID Extended Service Set Identifier
FCS Frame Check Sequence
IEEE Institute of Electrical and Electronics Engineers
IoT Internet of Things
JIT Just-In-Time
KRACK Key Reinstallation Attack
LAN Local Area Network
MAC Media Access Control
MS-CHAP Microsoft version of the Challenge-Handshake Authentication

Protocol
OSI Open Systems Interconnection
PEAP Protected Extensible Authentication Protocol
QoS Quality of Services
RADIUS Remote Authentication Dial-In User Service
RF Radio Frequency
RSSI Received Signal Strength Indication
SA Source Address
SSID Service Set Identifier
STA Wireless Station
TA Transmitter Address
TCP Transmission Control Protocol
TLS Transport Layer Security
UDP User Datagram Protocol
UTM Unified Threat Management
UUID-E Universally Unique Identifier-Enrollee
WEP Wired Equivalent Privacy
WLAN Wireless Local Area Network
WPA Wi-Fi Protected Access
WPS Wi-Fi Protected Setup

5

1 Introduction

WLAN is one of the most heavily used communication technologies today. The rise of
mobile personal computers, smartphones, smart home and Internet of Things (IoT) de-
vices demands good coverage of WLAN networks. Because of this, WLAN networks can
be found in a lot of public places but also in private homes. WLAN itself only provides
a replacement for cabling and is the only option in a lot of mobile devices where network
connectivity via a copper cable is not possible because of size and mobility reasons. The
air is a shared medium and all participants must share the available time and bandwidth
with other devices in their coverage area. This is comparable to devices wired to an Eth-
ernet hub, where the connected devices share the same collision domain. There is one
other important consideration: Every other network participant can listen on the air and
will get all of the data transmitted and received by other network participants. In trusted
wired environments this is managable because the broadcasted data is only transmitted
via controlled cables and infrastructure hardware. With wireless networks this intro-
duces great security and privacy issues because the Radio Frequency (RF) waves can
not easily be limited to tightly controlled infrastructure. They are often receivable from
physical locations outside the controlled environment like a company building. There-
fore, different encryption modes were developed but some data – especially meta data –
has to be transmitted unencrypted.

In this work we take a look at the data that can be collected and analyzed by passively
capturing IEEE 802.11 frames. We want to find out how this data affects the users’
privacy and we want to find frames that contain identifiable information. Therefore, we
build an application consisting of configured capture devices and analysis software to
analyze the collected data for trackable information.

We only consider the most recent version of the IEEE 802.11 specification which is IEEE
802.11-2016 [1] in this thesis. Further we will not perform an advanced crypto analysis
of the cryptographic algorithms used in the specification and will only focus on data
that is easily accessible by collecting data from the air interface directly.

6

2 IEEE 802.11

To improve interoperability between multiple vendor chipsets and RF hardware the
IEEE created a standard how to communicate with other network participants. IEEE
802.11 specifies the physical layer and media access control layer, which are part of the
layers 1 and 2 in the Open Systems Interconnection (OSI) layer model [1]. As Institute
of Electrical and Electronics Engineers (IEEE) 802.11 is part of the IEEE 802 family of
Local Area Network (LAN) protocols it is designed to interwork with IEEE 802.2 which
specifies parts of the data link layer.

IEEE 802.11i. The first version of IEEE 802.11 includes the Wired Equivalent Pri-
vacy (WEP) security algorithm to prevent easy stealing of data by listening on the air
interface. It is not very strong as it used 64 bit encryption which was later improved up
to 256 bits but it suffers from other issues und was deprecated in 2004 [1]. We do not
consider WEP in this paper as it is practically not used anymore.
Wi-Fi Protected Access (WPA) is the successor of WEP and was introduced as WPA2
in IEEE 802.11i-2004 [2]. The previous WPA version is known as IEEE 802.11i draft
standard.

WPA3. In 2018, WPA3 was released as an improvement over WPA2 as some issues
were found. The most famous ones are KRACK [3].

2.1 IEEE 802.11 Terminology

To understand important parts of the standard some basic terminology has to be intro-
duced.

Wireless Station (STA). In IEEE Std 802.11, the addressable unit is a station (STA)
[1]. It is an addressable destination similar to an address in wired LANs.

Basic Service Set (BSS). This is the basic building block of WLAN networks and
describes a set of wireless stations that are in the same physical area and operate at the
same medium access parameters like radio frequency and modulation scheme.

7

Basic Service Set Identifier (BSSID). This uniquely describes a BSS. It has to be
48 bit and, therefore, almost always the Media Access Control (MAC) address of the
access point is used for that. Other possibilities are randomly generated numbers.

AP. A station with access to a distributed system and the ability to access the dis-
tributed system from the wireless medium forms an AP.

Distributed System (DS). This provides a connection between multiple APs – often
via a wired IEEE 802.3 network.

Extended Service Set (ESS). This is used to combine multiple BSSs via a distributed
system to a bigger unit to cover a larger physical area. The distributed system itself is
not part of the ESS, so it only consists of the APs and devices connected to the APs
taking part in the ESS.

Extended Service Set Identifier (ESSID). Similar to the BSSID this uniquely de-
scibes an ESS. It is usually simply referred as Service Set Identifier (SSID) and is an up
to 32 byte long identifier that can be chosen freely. It is displayed on devices that can
connect to a WLAN network and acts as a name for the wireless network.

2.2 IEEE 802.11 MAC Frames

Beside other things IEEE 802.11 defines the smallest unit of data exchange via the
wireless medium on the medium access control layer between two wireless stations. Each
frame consists of

� a header containing control information, addresses and optional Quality of Services
(QoS) information,

� a frame body described by type and subtype fields, and

� a 32 bit Cyclic Redundancy Check (CRC) Frame Check Sequence (FCS).

IEEE 802.11 defines four basic frame types with several subtypes defining the actual use
of the frame.

� Management Frames are used between stations to exchange management informa-
tion needed during connection establishment to an AP or the discovery of available
APs and their parameters.

� Data Frames carry the actual payload data of higher OSI layers.

8

Octets: 2 2 6 6 6 2 0 or 4 variable 4

Frame
Control Duration Address 1 Address 2 Address 3 Sequence

Control
HT

Control
Frame
Body FCS

MAC header

Figure 2.1: Management Frame Format [1].

� Control Frames assist with the delivery of data and management frames. Unlike
data and management frames they do not have a frame body.

� Extension Frames are reserved for frames needed in the future but not defined
yet. There are some frames with this type defined in IEEE 802.11-2016 but not
considered in this thesis.

For our research probe requests, which are management frames, and data frames with
Extensible Authentication Protocol (EAP) inside IEEE 802.1X transport frames contain
valuable information and will be subject of further analysis.

2.2.1 Management Frames

The format of management frames is shown in Figure 2.1. As we do not consider mul-
tihop management frames here the Address 2 field in all other subtypes of management
frames contains the transmitter address (TA) which is also the source address (SA) in
management frames and is the MAC address of the transmitting radio.

2.2.2 Probe Requests

Simple wireless stations must be able to scan for available AP. This can be achieved by
passive or active scanning.

Passive Scanning. An AP continuously sends out beacon frames containing the ESSID,
BSSID and other relevant parameters like supported data rates of APs configured to
do so. The duration between two beacon frames is configurable with a default value of
100 ms. An STA that wants to connect to the AP continuously listens for beacon frames.
Therefore, it switches through the available wireless channels which takes some time.
This is considered too slow especially in context of mobile devices like smartphones.

Active Scanning. To compensate the issue of slow scanning the STA itself can initiate
and speed up the search by sending out probe requests containing supported data rates
to the broadcast address which should be received by all STAs being physically able to
receive the frame on the MAC layer. If an AP receives a probe request frame it should

9

answer with a probe response containing similar data as beacon frames. The probe re-
quest frame is a management frame and can contain a list of fields in the frame body.
The most interesting one is the SSID field, which acts as a filter to select only APs with
a special SSID. If the SSID field is empty all APs reply with a probe response. If the
SSID field is set to a special SSID then only APs which provide that service set answer
the probe request.

2.2.3 WPS Data in Probe Frames

Wi-Fi Protected Setup (WPS) itself it not part of the IEEE 802.11 specification. It was
created by the WiFi Alliance as an extension to IEEE 802.11 [4]. One of its main goals
is to simplify connecting devices without a display or input method to a WLAN network
and it is mainly used for printers and IoT devices to connect them to a home WLAN
network consisting of a single AP. To establish a connection, one config method of WPS
is the PushButton Configuration where the user has to press a physical or virtual button
on the AP as well the STA device within 120 seconds to connect then to the same WLAN
network.

Tracking Devices by Data in the WPS Extention Fields. Some of the extensions data
is transmitted unencrypted in probe request frames. This includes the Model Name and
Model Number fields which describe the device by ASCII strings and a UUID-E value –
a unique GUID generated by the Enrollee (STA) that should be unique per device and
generated by a pseudo randomnumber generator. This is a problem because the UUID-E
field has to be constant for a device implementing WPS and can be used to uniquely
track devices as this information is transmitted unencrypted in probe requests. Previous
work has shown that it can be difficult to generate high entropy random numbers on
embedded devices [5]. Therefore, the WPS standard proposes to use the MAC address
and a random number which is initialized once per device as seed for the pseudorandom
number generator. Some devices analyzed show that the manufacturer did not even
initialize this random number properly and set the value to all-zeros. Knowing such
devices from the Model Name and Model Number fields allows reconstructing the MAC
address used to initialize the random number generator [5].

Tracking Devices by SSID Parameter in the Probe Request. If the SSID field is
present in probe requests it can be a huge privacy issue because the STA device publishes
the list of stored SSIDs, which the device was connected to. It sends out bulks of probe
requests, each containing a SSID stored on the STA device. Therefore, the device can
be tracked if the list of SSIDs is unique enough across other devices which seems to be
the case pretty often.

10

2.2.4 IEEE 802.1X in Data QoS Frames

Because of its scalability IEEE 802.1X is especially interesting in educational and cor-
porate environments. Eduroam is one of the biggest WLAN networks in the world
and uses IEEE 802.1X with Extensible Authentication Protocol over Local Area Net-
work (EAPoL) with a central RADIUS-Server (Remote Authentication Dial-In User
Service) for authentication [6].

The Eduroam WLAN at Johannes Kepler University Linz uses the Protected Exten-
sible Authentication Protocol (PEAP). It defines two tunnels to transmit data be-
tween supplicant and authentication server – an outer unencrypted tunnel which carries
Transport Layer Security (TLS) data that protects an inner tunnel, which in addition
uses the MS-CHAPv2 (Microsoft version of the Challenge-Handshake Authentication
Protocol) protocol trying to add another layer of protection to the login information [7].
MS-CHAPv2 allows users to securely connect to the WLAN network using username and
password. PEAP further defines an outer identity, transmitted in the unencrypted outer
tunnel, which can be used by the Remote Authentication Dial-In User Service (RADIUS)
server to decide which certificate to present to the supplicant for the TLS protected inner
tunnel. MS-CHAPv2 inside the encrypted inner tunnel defines an inner identity which
acts as a username or user identifier used for the actual authentication.

Many implementations suffer from a privacy issue, that if there is no outer identity
specified explicitly, the inner identity (the username) is implicitly used as the outer
identity too. This means that the username is transmitted unencrypted in the outer
tunnel as outer identity which can easily be captured and extracted as defined by RFC
2865. Besides tracking individual devices the username may provide the possibility to
directly track users using the device.

2.3 Data Considered in this Work

There are a lot of possibilities to track devices and persons via WLAN. This thesis only
considers some specific portions of these possibilities. The first principle is to only use
data that can be captured passively by using off-the-shelf WLAN adapters with drivers
supporting monitor mode under Linux. Furthermore, we consider the following data:

� Private data in probe requests – SSIDs, MAC addresses and WPS UUID-E and

� Private data in EAPoL and IEEE 802.1X.

MAC addresses could be easily extracted from nearly all data frames but due to perfor-
mance limitations of the capture devices these frames are ignored in this work.

MAC based Identification and Tracking. In addition to other captured data, non-
randomized MAC addresses are considered unique and constant per network interface

11

of a device. This allows device reidentification and tracking by comparing previously
captured MAC addresses.

12

3 Application

To be able to further investigate private data, some capture of WLAN frames in public
environment has to be done. For efficient collection and analysis a set of tools is used
from capturing over decoding protocol layers, aggregating data from multiple capture
devices to storing extracted data in a database, analyzing and visualizing it.

3.1 Application Architecture and Tools

Figure 3.1 shows the general high level architecture of the implemented solution to
capture and analyze IEEE 802.11 frames.

Application Architecture. For each specific task in the pipeline, tools licensed under
some open source license exist and can be configured to work as needed. Therefore, the
application consists mainly of tool configurations and redirection of outputs and inputs
of some form. Physical devices are used in this part of the setup.

Capture Devices. To be able to capture on multiple physically different locations
and wireless medium frequencies multiple capture devices are needed. Because of easy
availability the hardware of Cyberoam CR 15wi UTM Appliances is used. It consists of
a 500 MHz VIA Eden CPU which is able to execute x86 code, 1 GB of DDR2 SDRAM,
three 100 Mbps Ethernet Adapters and a miniPCI WLAN card with a Mediatek RT2860
chipset and three external antennas. This application is designed to only use the 2.4
GHz WLAN band with the IEEE 802.11bgn standards. The operating system loads
from a 4 GB CompactFlash card. The original Unified Threat Management (UTM)
software is replaced by an up to date Debian Linux for simple customization and due to
availability of precompiled tools.

Transport Network. To be able to transmit the data between the capture devices and
the analysis machine some kind of OSI layer 3 network is used. In our case the pcap
data is sent via a TCP connection. As each capture device can produce up to 100 Mbps
stream of capture data the transport network has to be able to handle that but this is
not a problem for an up to date local network.

13

Layer 3
Network

Analysis Machine & Docker Host

Processing & Aggregation Container Elasticsearch Container

timestamp: date
frequency: keyword
typeSubtype: keyword
ra: text
ta: text
ssid: keyword
bssid: keyword
sequence: long
wpsModelName: keyword
wpsDeviceName: keyword
wpsUuidE: text
eapIdentity: text
sniffingDevices: {...}

wifi-tracker Index

Visualizations

Kibana Container

Capture Device 2 Capture Device n

tshark 1

ServerSocket

Node.js Application

Socket
Capture Device 1

Socket
Capture Device 2

Socket
Capture Device n

tshark 2

tshark n

Buffer

Aggregation &
Multilateration

pcap

json

pcap

pcap

json

json

Control Path

Data Path

Hardware System/Platform

Docker Container

Process

Capture Device 1

RT2860 WLAN Chipset

rt2800pci kernel module
with monitor mode

support
BPF

tcpdump

netcat shellscript

systemd

H
ar

dw
ar

e
Ke

rn
el

 S
pa

ce
U

se
r

Sp
ac

e rc.local

set channel

Figure 3.1: Application architecture

14

Analysis Machine. This is the place where all data are aggregated, stored and ana-
lyzed. As we packed the tool stack into a set of Docker containers it has to run a recent
version of Linux or a Windows 10 version that is supported by Docker.

3.1.1 Tcpdump

rt2800pci Driver. The Mediatek RT2860 chipset is supported by the rt2800pci driver
which implements the needed monitor mode functionality [8]. rt2800pci is part of the
standard Debian package repositories so it is very easy to set it up [9].

Radiotap. Radiotap is a de facto standard for IEEE 802.11 frame injection and
reception [10]. This means it is a protocol that adds meta data to captured frames like
hardware timestamps and RSSI values received by the WLAN hardware and driver.

Tcpdump. Tcpdump is a widely known command line packet sniffer [11]. Besides its
name it can capture data on various OSI layers including TCP but also IEEE 802.11
WLAN and radiotap frames. It is able to compile a pcap-filter expression for Berkeley
Paket Filter (BPF) which is Just-In-Time (JIT) compiled to native code on the executing
platform. The BPF filtering is executed in kernel space and therefore is more performant
than (zero-)copying data to the userspace program and discarding non-needed packages
there. Performance improvements are beneficial in this situation because packet drops
appear occasionally when filtering in userspace as a reason of limited CPU power of the
capture devices.
In our setup we discard all frames except probe request frames and frames containing
EAPoL data. EAPoL data has a specific ethernet type which can be matched without
further dissecting and decoding the protocol data.
Tcpdump’s native libpcap savefile format can be seen as the common denominator of
formats used by open source tools.

3.1.2 netcat

Netcat is a simple tool that sends standard input to a TCP connection or UDP socket
and redirects data read from the TCP connection or UDP socket to standard output.
It can act as a server by listening for incoming connections on a specific port or act as
client connecting to a listening TCP or UDP socket [12]. When using standard input
and output streams some data copying by the shell in userspace is required so the use of
netcat is potentially not the most efficient one but it provides great flexibility compared
to kernel space or zero-copy optimizations. Piping standard output to standard input
streams in userspace was considered acceptable in terms of CPU load compared to the
more CPU intensive packet filtering.

15

3.1.3 Systemd Script on Capture Devices

To automate startup after the boot process and restart after an unexpected failure a
service definition for the default init system in modern Linux distributions (systemd) is
used. Systemd starts a shell script that runs tcpdump and pipes the filtered output to
netcat which connects to another netcat in listening mode on the analysis machine and
sends the captured data to that analysis machine.

3.1.4 Docker Engine

Docker is a platform which can manage and run a number of containers. Each container
internally is an encapsulation by Linux kernel features like namespaces and Control
Groups (cgroups). Isolating a process from other processes on the same host can be
achieved using namespace isolation. Containers only see a portion of the overall sys-
tem. cgroups control the process, memory and CPU available to processes running in
a cgroup. They also keep track of used memory [13]. It is very convenient to use these
kernel features through Docker compared to direct use. In our application it is used to
encapsulate the tools and processes running on the analysis machine as they are mostly
hardware independent. In addition, encapsulating the processes and needed resources
in containers allows a platform independent deployment. On the capture devices only a
small set of simple processes run and so encapsulating them would be overkill. Besides
that Docker requires a 64 bit CPU and operating system so running Docker on capture
devices is not possible.

3.1.5 Node.js

Node.js uses the Google Chrome V8 JavaScript engine and combines it with an ecosystem
that is designed to run server side JavaScript. It is very simple to create a server
socket which is used to substitute the functionality of the netcat instance running on
the analysis machine in listening or server mode [14]. Besides that it is easy to start
processes and pipe the output of a socket into the standard input stream of a process.
With a dynamic language like JavaScript the things needed in this application can be
achieved much more elegantly and dynamically than with plain shell scripts. Besides that
there are official elasticsearch libraries to easily access and write data to an elasticsearch
instance or cluster.

3.1.6 Wireshark and tshark

Wireshark is a popular network protocol analyzer which can be used to read input in
the libpcap savefile format. It has a lot of dissectors for analyzing a great number of
protocols on different OSI layers. In our case the most important protocol dissectors are
radiotap, 802.11, EAP and EAPoL.

16

Tshark is a kind of command line version of Wireshark and is released as part of the Wire-
shark tool family. Since Wireshark version 2.2.0, tshark is able to output Elasticsearch-
compatible JSON [15]. This is useful because since the rise of JavaScript in the browser
and the REST architecture data in JSON format has got great tool support.

3.1.7 Elasticsearch

Elasticsearch is a NoSQL database and search engine which is based on the search engine
software library Apache Lucene. Elasticsearch is often used for providing full-text search
or global search functionality in websites. Documents – which are the equivalent to
datasets in SQL – are stored in indices – which are the equivalent to tables in SQL
databases. The native format of documents is JSON which has the advantage of being
easily consumable by web based tools like Kibana. The ability to store and index complex
and nested object structure compared to classic rational SQL databases is an advantage
for our application. Even if an index schema is not explicitly needed it is specified for
our application because it ensures that the indexed fields are of the desired data type
independently of the content of these fields. Besides standard field types like date,
text and keyword the nested for storing nested objects, ip for storing IP addresses
and geo point for storing geographic coordinates in the WGS84 system are used. Once
data is indexed into an Elasticsearch index it can be queried with a JSON based domain
specific query language.

3.1.8 Kibana

Kibana is a web based tool for visualization of data queried from an Elasticsearch
database. It provides a flexible way of defining multiple visualizations combining them
to dashboards and has an autorefresh feature. Is is primarily meant for analysis of fil-
tered and processed logs stored in an Elasticsearch cluster in an easy configurable way
to extract information quickly.

3.2 Application Pipeline

The application pipeline describes the combination of data and control flows between the
basic building blocks mentioned above. Figure 3.1 shows the main pipeline components
and their interactions.

Layer 3 Network. To connect the capturing devices with the analysis machine a
network with OSI layer 3 connectivity is needed – NAT will cause problems if involved
because the capture devices are identified by their IP address. The capturing devices
obtain their IPv4 address via DHCP so a DHCP server is required that assigns static
leases based on the MAC address of the capture devices. In the simplest case a layer

17

1 #!/bin/sh -e

2 #

3 # rc.local

4 #

5 # This script is executed at the end of each multiuser runlevel.

6 # Make sure that the script will "exit 0" on success or any other

7 # value on error.

8 #

9 # In order to enable or disable this script just change the execution

10 # bits.

11
12 iw phy phy0 interface add mon0 type monitor

13 iw dev wlan0 del

14 ifconfig mon0 up

15
16 exit 0

Listing 3.1: Content of /etc/rc.local

2 switch and a DHCP server is enough to connect all necessary physical components of
the application. The bandwidth needed depends on the number of sniffing devices active
and the traffic inside a “WLAN air cell”. The sniffing devices feature only a 100 Mbps
Ethernet port but it is typically only utilized by a single digit percentage as most of the
traffic in WLAN are frames filtered directly by the sniffing devices.

Analysis Machine Bootup. As this is the central point in collecting frames the
analysis machine should be started before all other components. As long as the machine
can run Docker containers and has enough CPU power, memory, and storage any host
system will do the job.

Capture Device Bootup. Finally, we need to start the actual capture hardware.
After bootup of the prepared image a virtual device in monitor mode is created. The
channel is set to a hardcoded value which is channel 1 with 20 MHz bandwidth and
the device in monitoring mode listens for frames according to the 802.11n standard
by default. This is done by the rc.local compatability service started by systemd.
rc.local configuration is shown in listing 3.1.

After creation of the capturing device a second systemd service, configured by the
/etc/systemd/system/wifi-tracker-capture.service file with content in listing 3.2
starts the /etc/wifi-tracker-capture/wifi-tracker-capture.sh shell script with
content in listing 3.3.

The shell script started by systemd starts tcpdump with hard coded filter parameters
which result in compiling and installing Berkely Packet Filter in the kernel. Unnecessary
packets are directly discarded in kernel space without copying them to the user space
which helps to achieve a better performance because the processing power of the small
VIA Eden CPU is quite limited. The shell script pipes the output of tcpdump to netcat.

18

1 [Unit]

2 Description=Wifi Tracker Capture Service

3 After=rc -local.service

4
5 [Service]

6 Type=simple

7 ExecStart =/etc/wifi -tracker -capture/wifi -tracker -capture.sh $OPTIONS

8 ExecReload =/bin/kill $MAINPID

9 KillMode=process

10 Restart=always

11 RestartSec =10s

12 TimeoutStartSec=infinity

13
14 [Install]

15 WantedBy=default.target

Listing 3.2: Systemd service definition of wifi-tracker-capture.service

1 #!/bin/sh

2
3 # "-s" bytes per packet to store (0 means the entier packet)

4 # "-U" do not wait for the buffer to fill , before sending the data out

5 # "-n" prevent converting addresses (host addresses , port numbers) to

names

6 # "-w -" write the pcap output to file while "-" is the stdout

7 # "-i mon0" input device to read from

8 # "wlan type mgt" BPF for filtering 802.11 Management Frames

9 # "ether proto 0x888e" ether type for 802.1X Authentication

10
11 tcpdump -s 0 -U -n -w - -i mon0 "wlan type mgt subtype probe -req or (

wlan type data subtype qos -data and (ether proto 0x888e))" | nc

192.168.99.1 11000

Listing 3.3: Content of wifi-tracker-capture.sh

netcat connects via TCP to the hard coded IP address of the analysis machine. In case
of a connection error both tcpdump and netcat and therefore the shell script terminate.
Systemd restarts the shell script after a few seconds. This not only means it is not strictly
necessary to start the analysis machine first but also provides reconnection functionality
if the connection is lost because of arbitrary reasons.

Incoming Connection at the Analysis Machine. If a netcat instance on a capture
device connects to the analysis machine – more precisely to the listening ServerSocket
of the Node.js application inside the Docker container – the Node.js application starts
a tshark process and pipes the incoming data stream to the tshark process. This means
per connection to the Node.js analysis application a tshark process is started. If the
connection is closed the tshark process is terminated.

19

Incoming Frame Processing in Capture Devices. If the virtual device in monitor
mode captures a 802.11 frame the driver adds metadata in Radiotap protocol format to
the beginning of the frame. Radiotap fields interesting for this application include

� Antenna signal in dBm which is later used for path loss based position estimation,
and

� Antenna which is the index of the antenna on which the frame was received. In
combination with Antenna signal this can help to identify antenna or reflection
issues which are difficult to debug. However the rt2800pci driver used in the
application as described in section 3 does seem to report only antenna index 1 for
each captured frame which is the second antenna as the antenna index starts with
0. Other Antenna indices have never been received during analysis work.

Tcpdump encodes these frames in the industry standard pcap format and sends them to
standard output where the shell pipes them into netcat which transmits the pcap data
via TCP to the analysis machine.

Incoming Frame at the Analysis Machine. The frames in pcap format arrive at the
analysis machine where the Node.js application pipes them to the tshark process which
dissects them and extracts the following fields:

� frame.time epoch the time the frame was captured at the capturing device.

� wlan radio.frequency the base frequency of the WLAN channel – e.g. 2412 MHz
for channel 1.

� wlan radio.signal dbm the received signal strength – also known as RSSI.

� wlan.fc.type subtype the 802.11 type including the subtype.

� wlan.ra the 802.11 receiver address – this contains the MAC address of the re-
ceiving WLAN hardware.

� wlan.ta the 802.11 transmitter address – this contains the MAC address of the
transmitting WLAN hardware.

� wlan.ssid the 802.11 SSID string – this is especially interesting because if it is
included in probe requests it can leak private information about stored WLAN
networks on the device sending the probe request.

� wlan.bssid the 802.11 BSSID – this is the MAC address of the access point.

� wlan.seq the 802.11 Sequence Number – in 802.11 it is used to detect retransmit-
ted frames, in our application we use it to improve the entropy when comparing
frames received from multiple capture devices.

� wps.model name, wps.model number, wps.device name, wps.uuid e are interest-

20

ing fields belonging to the WPS – Wireless Protected Setup – part of 802.11. This
information is included in the probe requests of some devices that support WPS. As
noted in section 2.2.3 it may include interesting and trackable information about
the device.

� eap.identity is not directly related to 802.11 but is used in 802.1X which is
used as part of the authentication procedure in WPA2-Enterprise. It contains the
outer identity sent to the RADIUS server and in several implementations copies the
username to the unencrypted tunnel between the supplicant and the authentication
server – typically RADIUS.

The frames received on multiple capturing devices are aggregated into a single object
containing information about the capture devices on which the frame was captured. The
output of tshark is a stream of JSON objects – also known as streaming JSON which the
Node.js application parses. The objects are stored in a buffer for at least one second to
wait for some time to fully receive the frame that may be captured on multiple devices
and may vary in arrival times due to jitter in the kernel, network or other points on the
way to the analysis machine.
If the frame is received on at least four capture devices multilateration as described in
section 3.3 is calculated and attached to the frame object.
After completely processing the frame it is stored in an elasticsearch index for further
analysis and visualization.

Analysis in Kibana. For convenient and flexible analysis Kibana is used to query and
visualize the data captured. As there are only four capture devices with overlapping
coverage ranges involved in the evaluation setup, IEEE 802.11 frames are captured only
in a small geometric area.

3.3 Position Estimation with Multilateration

Multilateration is a technique used in navigation and surveillance to find the position of
a source transmitting RF waves. It is often based on the time of arrival in media with
known propagation velocity. With our application time of arrival is not easily feasable
to measure because the speed of propagation of RF waves is near to the speed of light
and this would require more specialized hardware to measure. An interesting approach
for IEEE 802.11n in this direction can be found in [16].

Besides time of arrival, estimating the position based on the angle of arrival should
work in theory with the concept of multilateration. If the WLAN supports multiple
antennas and streams it is technically possible to calculate the angle of arrival of an RF
wave based on the time difference of arrival. IEEE 802.11n typically does not do that
because there is no need in the rest of the protocol. In IEEE 802.11ac there is support
for beamforming where all available antennas are combined into a phased-array antenna
to force propagation of an RF wave in one direction. Besides the implementation issues

21

in IEEE 802.11bgn there is no defined radiotap field for the angle of arrival. Position
estimation based on angle of arrival with specialized hardware can be found in [17]. The
method shown here is based on [18].

Path Loss Model. Multilateration also works for Received Signal Strength Indication
(RSSI) values in combination with the path loss model. The pass loss model assumes
homogenious signal attenuation and is defined as

Pr,i = P0 − 10n log10

(
di
l0

)
+ Xσ, (3.1)

where Pr,i is the received signal energy measured in dBm received at the capture device,
P0 is the signal energy at the transmitter, n is the path loss exponent describing the
attenuation of the homogenious environment, di is the distance between capture device
i and the WLAN device sending IEEE 802.11 frames, l0 is the reference length – in this
application 1 m makes sense and Xσ is the power added by the noise floor. In radiotap
there is a field for the noise floor in dBm received on the antenna but as we assume the
noise has uniform distribution the expectation is exactly 0, so we omit Xσ from now on.

In the first step we want to estimate the distance di as

di = 10(P0−Pr,i)/10n. (3.2)

Multilateration. On the other hand we geometrically calculate the distance from the
ith capture device to the WLAN device sending the frames as

di =

√
(x0 − xi)

2 + (y0 − yi)
2. (3.3)

After eliminating di from both equations above and doing some linear refactoring of the
equation system resulting from multiple capture devices the equation system results in
the form of y = Xb:

−x2
1 − y21 + x2

k + y2k + 10
(P0−Pr,1)

5n − 10
(P0−Pr,k)

5n

−x2
2 − y22 + x2

k + y2k + 10
(P0−Pr,2)

5n − 10
(P0−Pr,k)

5n

. . .

−x2
k−1 − y2k−1 + x2

k + y2k + 10
(P0−Pr,k−1)

5n − 10
(P0−Pr,k)

5n



=


−2x1 + 2xk −2y1 + 2yk
−2x2 + 2xk −2y2 + 2yk

.
−2xk−1 + 2xk −2yk−1 + 2yk

[x0

y0

]
.

(3.4)

b =

[
x0

y0

]
could in theory be estimated by solving this system with

b =

[
x0

y0

]
=
(
XTX

)−1
XTy. (3.5)

22

The result includes the unknown transmit power at the sender P0 and the path loss
exponent n. The system gets much easier by approximating the path loss model with

di = 10
(P0−Pr,i)

10n ≈ a0 + a1
P0 − Pr,i

10n
. (3.6)

After doing some linear refactoring of the equation system resulting from multiple cap-
ture devices again the equation system results in the form of y = Xb.


−x2

1 − y21 + x2
k + y2k

−x2
2 − y22 + x2

k + y2k
. . .

−x2
k−1 − y2k−1 + x2

k + y2k



=


−2x1 + 2xk −2y1 + 2yk

a1(Pr,1−Pr,k)
5

−2x2 + 2xk −2y2 + 2yk
a1(Pr,2−Pr,k)

5

.

−2xk−1 + 2xk −2yk−1 + 2yk
a1(Pr,k−1−Pr,k)

5


x0

y0
1
n


(3.7)

This can again be solved with equation 3.5.

Limitations and Edge Cases. This needs at least four capture devices receiving
the same frame. No other parameters are needed. There are limitations in geometric
alignment of the capture devices – these includes all cases where the XTX matrix in
equation 3.5 with X from equation 3.7 is singular. This is the case if more than two
capture devices are on the same geometric line – in this case one capture could be
removed without loss of information but this is not implemented in the application and
in such a case an error is thrown and the position estimation via multilateration is
skipped.

23

4 Findings

4.1 Capture Setup and Environment

With the application described in section 3 two datasets were captured. The test setup
consists of four capture devices located in the inner courtyard of the student dorm of
Akademikerhilfe in Linz in Pulvermühlstraße 41. The geometric alignment of the capture
devices and test point locations can be seen in figure 4.5.

� One dataset obtained from 2019-07-04 01:24 to 14:30 local time contains all probe
requests and EAPoL outer identities for WPA2-Enterprise authentication. Cap-
turing during night and day helps to approximate the average amount and data of
probe requests. This dataset consists of 101,877 captured and aggregated frames
– 101,717 of them are probe requests 160 are data QoS frames and 133 of them
contain an EAP identity from the outer tunnel of EAPoL authentication.

� The second dataset was obtained by capturing and discarding all probe requests
except from one test device. This dataset is trimmed to evaluate the position
estimation via multilateration in a simple field test. The test device without MAC
address randomization was set to 12 test locations spread across an inner courtyard
of a U-shaped building. WLAN was enabled after positioning the device until 10
probe requests were received on all four capture devices without human interaction.
The test device was a Samsung Galaxy Nexus (GT-I9250) with Android 4.4 – this
device sends approximately one probe request per second if the screen is on and
the WLAN settings menu is open displaying currently available WLAN networks.

4.2 MAC Address Randomization

IEEE 802.11 Transmitter Address. Every 802.11 management frame consists of mul-
tiple address fields. One that is always populated is the TA field in the MAC header
of the management frame [1]. The TA is a 6 byte field which according to the 802.11
standard has to be the MAC address of the transmitter radio.

MAC Address. As in 802.3 Ethernet, every 802.11 capable device needs a unique
Extended Unique Identifiers 48 bit (EUI-48) address which is also known as the MAC
address. As shown in figure 4.1 a MAC address is made up of two parts each consisting

24

Figure 4.1: 48-bit MAC Address Structure

of three bytes in size. The first half is made up by addresses from a MAC Address Block
Large (MA-L) which were previously known as the Organizationally Unique Identifier
(OUI) [19]. The second half can be assigned freely by the organization that has bought
the three octet prefix. A MA-L block can be purchased and registered by the IEEE for
use as the first three octets of the MAC address. By default OUIs do not have the local
bit set which means that they are globally unique. Besides OIDs there is the possibility
to register Company Identifiers (CIDs) at the IEEE which do not have to be unique in
a global manner and therefore can be used by multiple devices. If the local bit is set
the address is also known as Locally Administered Address (LAA). LLAs are typically
used as MAC addresses for software or virtual interfaces like a VLAN interface or at
APs with multiple SSIDs per radio.

MAC Address Randomization. As the MAC address is usually globally unique
and mobile devices send probe requests on a regularly basis this can be used to track
mobile devices and their users. Operators that run large city or nation wide WLAN
infrastructure networks can track mobile devices very accurately. In theory big ISPs
that provide modem devices that also act as router, switch and WLAN access point to
their customers can in theory capture probe requests and track mobile devices across
all customers. As an example UPC – an ISP operating in Switzerland and under the
Magenta brand in Austria runs a service called ”Wi-Free” that adds a second SSID
to APs at customer sites which are available for all other UPC customers [20]. Such
projects let assume that it is technically possible for ISPs to also collect and process
probe request captures.

To prevent such tracking, mobile device and operating system vendors have implemented
counter measures to prevent trivial MAC address based tracking which are mainly based
on changing the MAC address for certain frames. This is similar to the Privacy Exten-
sions defined in RFC 4941 for IPv6.

When MAC addresses are changed.

� If a WLAN station is connected to an access point and transmits or receives data
frames to or from this access point carrying payload for higher OSI layers we are
not aware of any changes of the MAC address as this could in case of a collision
possibly lead to data loss. Therefore, the MAC address is not changed during the
period of being connected to an WLAN.

25

� If a WLAN station is not connected to an access point MAC address randomization
is typically used for probe requests. Devices change their MAC address for probe
requests in an interval of several minutes or per active scan procedure. This could
be verified by capturing data of devices in an environment where reception of probe
requests with a very specific SSID from other devices is very unlikely. Figure 4.2
shows captured probe requests for a specific SSID with different TAs over time
from the same HUAWEI P9 lite running Android 7.0.

� Some devices change their MAC address for probe requests also when they are
connected to a WLAN access point – see the following section on, ”Implementation
on specific devices and OS versions” for more details.

Figure 4.2: Directed Probe SSID Distribution of the first Dataset

How MAC addresses are changed.

� One way is to use LAAs for MAC addresses for probe requests. MAC addresses
used for 802.11 should be globally unique but in field use it does not make a huge
difference if there are two or more devices using the same MAC address for probe
requests.

� During MA-L block registration the default option is to list the MA-L block to
customer relation publicly. As of publishing of this paper a MA-L block can
be registered by a one time fee of US$2,905. If customers do not want to be
listed publicly by the IEEE they can prevent this by a yearly confidentiality fee
of US$3,360. It seems that the vast majority of IEEE MA-L block customers do
not pay extra for confidentiality. This lets vendors that implement MAC address
randomization assume unpublicly listed assignments are unassigned and are not
used in the field by other devices so these devices use MAC addresses not assigned
publicly by the IEEE as temporary random MAC addresses for probe requests.

26

According to [21] the majority of MAC address randomizing devices use unassigned
MAC address prefixes for their random MAC addresses. Even through this is against
the IEEE idea of global uniqueness to our knowledge there is no reaction to this from
the IEEE.

Implementation on specific devices and OS versions. The behavior of MAC address
randomization depends largely on the software stack used on devices and can change
with software updates. There is a trend to implement MAC address randomization and
other privacy protecting features in general in more recent operating system versions.

� “Apple platforms use a randomized Media Access Control (MAC) address when
performing Wi-Fi scans when not associated with a Wi-Fi network. These scans
can be performed to find and connect to a known Wi-Fi network or to assist Lo-
cation Services for apps that use geofences, such as location-based reminders or
fixing a location in Apple Maps. Note that Wi-Fi scans that happen while trying
to connect to a preferred Wi-Fi network aren’t randomized. [. . .] Wi-Fi MAC
address randomization support is available on iPhone 5 or later.” [22]

� “If the device always uses the same Wi-Fi MAC address across all networks, net-
work providers and other network observers can more easily relate that address to
the device’s network activity and location over time. This allows a kind of user
tracking or profiling, and it applies to all devices on all Wi-Fi networks.
To reduce this privacy risk, iOS 14, iPadOS 14 and watchOS 7 use a different
MAC address for each Wi-Fi network. This unique, static MAC address is your
device’s private Wi-Fi address for that network only.” [23]

� “Starting in Android 8.0, Android devices use randomized MAC addresses when
probing for new networks while not currently associated with a network. In Android
9, you can enable a developer option (it’s disabled by default) to cause the device
to use a randomized MAC address when connecting to a Wi-Fi network.

In Android 10, MAC randomization is enabled by default for client mode, SoftAp,
and Wi-Fi Direct. [. . .]

Additionally, MAC addresses are randomized as part of Wi-Fi Aware and Wi-Fi
RTT operations.” [24]

The implementation in Android is only a starting point as Google, as the creator
and maintainer of Android, does not produce a notable share of the available
Android devices and the device vendors have to add support for MAC address
randomization by implementing the Android Wi-Fi Hardware Interface Design
Language [25].

� According to [26] and [27] Windows 10 has support for MAC address randomization
if the hardware and driver supports it. Personal experience shows that this option
is available on an HP EliteBook 840 G5 with an Intel Dual Band Wireless-AC 8265
WLAN adapter and Windows 10 Pro 1903 but not on a Packard Bell EasyNote

27

LS with an Atheros AR5B97 WLAN adapter and Windows 10 Home 1809.

4.3 SSID Values

As described in section 2.2.2 there is a difference between directed and null probe re-
quests. In the first captured dataset 24.28% of the captured probe requests were null
probe requests while the rest had an SSID value included. To put that into perspective,
devices that send directed probe requests including the SSID typically send bursts of
probe requests – one for each SSID they have stored connection credentials on the device
and maybe have been used recently. Due to the fact that we do not know which share
of the probe requests use randomized MAC addresses further analysis is complicated.

Figure 4.3 shows the top hit SSIDs. It is evident that the SSIDs in the probe requests
are not distributed evenly because some SSIDs are used by much more devices than
others.

� BJNPSETUP with 48,621 captured probe requests: This is by far the most seen SSID
in probe requests and is sent by a single TA approximately 50 to 60 times a second.
It seems to originate from a WLAN enabled CANON printer that is constantly
probing for the default SSID to which it tries to connect to. This SSID is omitted
from now on as it does not add any further information to the analysis.

� Missing SSID in 24,577 captured probe requests: This is a considerable share
taking into account that devices that send directed probes send bursts of probe
requests.

� AHL with 12,228 captured probe requests: AHL is the official SSID of the student
dorm the capture was run. Almost all students in the dorm are connected with
at least one device to this SSID. The network consists of 80 APs so seeing probe
requests from devices in this area is not unusual.

� TP-LINK 714A with 9,780 captured probe requests: This is an AP not under control
of the network administrators at the student dorm and may be a rogue AP operated
by one of the students or it could be an AP located in the near neighborhood of
the dorm or a device desperately probing for that SSID. To further investigate this
a service called Wireless Geographic Logging Engine (WiGLE) where community
members can share and publish their wardriving results was queried. The maps at
WiGLE.net showed an AP near the student dorm. Even if several WLAN devices
probe for this SSID the number seems high compared to other captured SSID data
in probe requests but may be reasonable.

� eduroam with 513 captured probe requests: As eduroam is one of the biggest
WLAN networks in the world this is an interesting observation. In the student
dorm there are two APs sending eduroam beacons. As the capture location is
mainly used by students that use the eduroam WLAN on their devices when being
on campus. Compared to probe requests for AHL this is interestingly low as almost

28

Figure 4.3: Directed Probe SSID Distribution of the first Dataset

all students living at the dormitory can connect to the eduroam WLAN. As most
devices use the AHL WLAN, which provides good coverage, these devices probe the
AHL much more often than the eduroam SSID which they are not connected that
often. The exact reason is subject for further investigation.

� JKU which is broadcasted by the same APs as eduroam seems, with only 10 directed
probe requests, to be used much less. This assumtion is reinforced by looking at
the JKU-wide WLAN device registration statistics at https://ekg.jku.at.

During the capture process 140 SSIDs were captured in directed probe requests.

4.4 WPS UUID-E

As shown in [28] a wrongly initialized random number generator can enable tracking
of users with the UUID-E entry in the WPS extension of probe requests. On current
mobile devices WPS is disabled by default and can be enabled if needed. As shown
in figure 4.4 some devices with WPS UUID-E data in probe requests could be found
during obtaining the first dataset. The table shows that there were no MAC address
randomization or changes of the UUID-E over time as far as this can be assumed by
the number of captured probe requests containing WPS data. Some devices seem to
send probe requests with WPS data frequently while others may be captured only while
walking near the capture devices.

29

https://ekg.jku.at

Figure 4.4: WPS Data in Probe Requests in the first Dataset

4.5 EAPoL

In the EAPoL data encapsulated in IEEE 802.11 QoS data frames during the authenti-
cation process we only take a look at the EAP identity field. This is typically used for
the WPA2 and WPA3 Enterprise authentication methods. Especially EAP-PEAP with
the password based phase 2 authentication method MS-CHAPv2 was observed while
other methods are not taken into account. There are several implementation specific
details that can be observed from the dataset:

� Android devices up to version 7.1 but most likely even up to version 10 copy the
user identity (username for MS-CHAPv2) to the anonymous identity field if this
is not populated. This anonymous identity is also known as the outer identity in
RADIUS protocol and is transmitted unencrypted. This is a good source of track-
ing information because the device is already in the transition to association state
with the AP and does not use randomized MAC addresses. Besides that, a map-
ping between the MS-CHAPv2 username and the devices non-randomized MAC
address can be established. If further data frames transmitted in associated state
are captured they can be mapped to a username with high probability. In this
case FreeRADIUS – a popular open source RADIUS server implementation used
by eduroam – logs a warning message ”WARNING: Outer and inner identities

are the same. User privacy is compromised.” [29] but this message is typ-
ically only visible to the administrators of FreeRADIUS. Eduroam operators are
aware of the problem and state a warning in their eduroamCAT Android app [30]
Anon ID missing (optional). If users are aware of the privacy problem they
can explicitly specify an outer identity.

� In iOS up to version 14 there is no dedicated GUI field for the outer identity and
users can only enter data into a username and a password field when connecting
to an SSID.

� In Microsoft Windows 10 there is the possibility to specify an identity privacy

30

(outer identity) in enterprise profiles [31] which helps to protect privacy. As
observable from the dataset Windows 10 versions 1903 uses the actual MS-CHAPv2
username as PEAP outer identity if the WLAN profile is created by using the
GUI by clicking the WLAN icon in the tray area next to the clock on the right
bottom corner of the screen. Since Windows 10 Version 2004 there is a GUI field
for entering the value for identity privacy (outer identity) when manually
adding a WLAN profile.

4.6 Position Estimation by RSSI Measurements

Section 3.3 describes a method of estimating the position by using RSSI values of probe
requests captured by at least four capture devices and using a simple path loss model.
According to this model, steady changes in the position of the sender result in steady
estimated position changes. The following measurement results show that the method
in section 3.3 only partly correspodents with the measurement results.

Setup. Table 4.1 and Figure 4.5 show the measurement results. The raw data for each
captured and aggregated probe request frame can be found in section A. The setup
is placed in the area under the open sky in the center of a U-shaped building. We
use four capture devices – labeled with the AP prefix – with fixed positions near the
corners of the measurement area with a capture software setup as described in section
3. During measurement line of sight was ensured between the probe sending device and
all four capturing APs. The big colored circles in the measurement area labeled with an
“M” prefix and a number are the known positions of the mobile device sending probe
requests. The small colored and slightly transparent cycles are the position estimations
where the number references measurement position index of the probe sending device.
At each position a set of 10 probe requests that were received by all four APs was used
to estimate the position.

Findings and Speculations. Due to lack of available measurement equipment for more
detailed RF measurement the following findings are just speculations without proper
verification by measurements or more advanced simulations.

� The minimum average distance between the actual and the estimated position is
of more than 7 meters quite high.

� With some exceptions and in comparison to the high average distance the standard
deviation of most the sender positions are interestingly low.

Both findings in statistical numbers can be found in the map visualization too: Clusters
of small spread estimated positions are some distance away from the actual position.
This leads to the assumption that there is some systematic error in the model used to
estimate the positions:

31

AP1

AP2
AP3

AP4

M01

M02

M03

M04

M05

M06

M07

M08

M09

M10

M11

M12

01

01

01
01

01

01

01

01

01

01

02

02

02
02

02

02

02

02 02
02

03

03

03
03

03

03

03

03
0303

04

04
04

04

04

04

04
04

04

04 05

05

05
0505

05

0505

05

05060606

06

06
06 0606

06

06
07

07

07

07

07
07

07

07 07
07

08

08

08

08
0808

08
08

08

08

09

09

09

09 09 09

09

09

09

09

1010

10

10

10

10

10

10

10
10

11

11111111

11

11
11

11

11

12

12

12

1212

12

12

12

1212

x

Y

Figure 4.5: Position Estimation by RSSI Measurements – Result Visualization

� As mentioned by the authors proposing the position estimation method used in
this work, there is a systematic error due to the linearization. But it only explains
a single digit percentage distance error for the four measurement positions at the
center.

� As the maximum distance between the APs and the probe sending device with
approximately 35 meters is nowhere near the limit of WLAN range and the RSSI
value delivered by the capture devices driver is only reported in integer steps, these
integer steps may lead to some notable systematic error.

� As the test area is far from an ideal anechoic chamber, reflections and multipath
effects may lead to notable systematic error.

� Some small metallic obstacles like sheet metal wrapped ventilation shafts (M05-

32

Measurement Point # Avg. Distance Std. Deviation
M01 8.28 m 1.59 m
M02 7.06 m 0.76 m
M03 10.42 m 5.64 m
M04 8.56 m 4.41 m
M05 18.00 m 0.46 m
M06 14.04 m 0.68 m
M07 12.93 m 4.45 m
M08 16.65 m 1.33 m
M09 12.24 m 2.20 m
M10 11.45 m 0.88 m
M11 20.38 m 5.99 m
M12 19.92 m 1.94 m

All 13.33 m 5.32 m

Table 4.1: Position Estimation by RSSI Measurements Result – Statistics

M10) and a stair railing (connecting M01-M04) which parts have a big enough
distance to be penetratable by RF waves in the 2.4 GHz band may have some
effect on the measurement results. In addition the test area environment is not
under complete control and some reflection characteristics may have changed by
opened or closed windows or window blinds during the measurement period.

� The position estimation method comes with the assumption of isotropic radiation
and reception of RF waves. In real world scenarios with off the shelf consumer
devices this assumption is only an approximation. The direction of the only moving
device, the probe sending device, was not changed during the measurement run,
nevertheless the angle to the different capture devices changes with the position
of the probe sending device.

33

5 Extensions and Future Work

5.1 Advanced Device Fingerprinting

This work mainly focuses on the use of transmitter MAC addresses in probe request
frames, easy to capture and extract WPS data in probe requests and IEEE 802.1X data
in EAPoL packets to perform tracking of WLAN client devices. These are baseline device
fingerprinting methods for more elaborate and advanced tracking techniques which are
subject to future work.

OSI Layer 1 Based Methods. Methods described in this work mainly focus on pro-
tocols which work on or related to OSI Layer 2. There are well-known fingerprinting
methods that work on OSI Layer 1. Physical wireless transmitter and receiver compo-
nents consists of RF, mixed signal and analog parts which are prone to manufacturing
tolerances. Important parts of such physical layer components are the baseband oscilla-
tors for transmitter und receiver components. Section 17.3.9.5 Transmit center frequency
tolerance in IEEE 802.11 specifies an allowed tolerance of ±20 ppm for 20 MHz chan-
nels. Doppler frequency shifts caused by moving client devices worn by walking persons
are usually more than one decade smaller. [32] shows the possibility of differentiating
between more than 130 identical 802.11 NICs with an accuracy in excess of 99%. A
more general listing of possible OSI Layer 1 fingerprinting methods can be found in [33].
Compared to the method used in this work, Layer 1 methods typically require expensive
specialized hardware and measurement devices like vector signal analyzers or software
defined radios.

Other Fingerprinting Methods. Driver and operating system version dependent vari-
ations may be detected by taking a look at malformed frames processing behavior [34]
and statistic analysis of probe request bursts [35] and other timing behavior [36].

5.2 Tracking

Similar to the fingerprinting methods, tracking methods can be extended.

34

Statistic Methods. [37] shows approaches and an implementation on how to merge short
tracks with a certain possibility to longer pieces using hidden Markov models.

Tracking using other Data. [38] tries to classify device types by statistically analyzing
traffic usage patterns with simple heuristics. Compared to the data used in our work
these approaches require a significantly bigger amount of data which includes actual
partly encrypted payload data.

Active Tracking Approaches. By extending fingerprinting and tracking from passive
data collection to actively interacting with the client device which uses randomized MAC
addresses, a big amount of devices may be trackable once the devices non-randomized
MAC address is known [39]. Actively sending request to send (RTS) frames from a
randomly generated source MAC address to the non-randomized MAC address of devices
will let some devices send clear to send (CTS) frames in response to the RTS frame,
even if the device is currently using randomized MAC addresses for sending other types
of frames [40].

Commercial Tracking Systems. Notable AP and network equipment manufacturers
have implemented location estimation and tracking capabilities into their product lines
allowing targeted retail stores to track and analyze customer behavior to aggregate data
for business intelligence decisions.
Aruba Networks as a subsidiary of Hewlett Packard Enterprise integrates analytics capa-
bilities into their AP series and provides a dedicated central software application called
Analytics and Location Engine collecting the data of an WLAN deployment [41]. It is
designed to collect the location data of client devices and transmitting them to third
party analytic applications for further analysis and deviation of business intelligence
decisions.
Cisco Meraki offers a similar product called Location Analytics which integrates data an-
alytic and aggregation capabilities of data from other products lines of the company [42].

35

6 Conclusion

In this work we have introduced general privacy related data in WLAN probe request
frames sent by actively probing client devices. This data includes lists of stored and
previously connected SSIDs, device details including exact model names in the WPS
extension of probe request frames and outer identities used to connect to a WPA2/3-
Enterprise protected WLAN. To raise awareness and show easy capture possibilities of
this data using off the shelf hardware, a prototype extracting and aggregating these
information was implemented. In addition to pure data extraction and aggregation a
position estimation algorithm using a multilateration approach was added to the capture
system.

6.1 Current Developments

MAC address randomization is the main measure against easy trackability that is im-
plemented by all major operating system vendors now. In Android 10 as well as in iOS
14 MAC address randomization is enabled by default for probe requests and for newly
connected WLANs. iOS 14 devices automatically use a unique MAC address per SSID
for all saved SSIDs by default while Android 10 only generates a unique MAC address
per SSID for newly seen and connected SSIDs with the option of manually enabling
unique MAC addresses for previously saved SSID connection information.
With Windows Version 2004 Microsoft added GUI options to manually specify an outer
identity when connecting to a WLAN protected with WPA2/3-Enterprise.
Manufacturers are clearly aware of the privacy implications of trackable client devices
and have implemented countermeasures. Besides MAC address randomizations other
sensitive fields in probe requests were removed in current implementations.
Other implementation parts still leave room for improvement. Implementations of
WPA2/3-Enterprise for PEAP-MSCHAPv2 still compromise privacy by leaking the user-
name in the outer tunnel of the RADIUS protocol by default on the major client imple-
mentations of Android 11, iOS 14 and Windows 10 20H2. iOS 14 does not offer a GUI
configuration option to configure the outer identity during associating with an AP. This
can only be achieved via Apples Mobile Device Management solution typically used in
enterprises. For bring your own device scenarios this is still an issue.

36

6.2 Awareness and Tracking Prevention

A big part of privacy issues of the original implementations is already fixed by the
manufacturers. To prevent leakage of personal data it is important to be aware of possible
data leakage and to manually check configuration options if not set to reasonable values
by default. For the big majority of users, privacy protection mechanisms will only be
applied if enabled by default by the operating system or device vendor.

Configuration Recommendations. Aware users can respect the following points to
improve privacy and make tracking more difficult:

� If previously saved user credentials for a WLAN are not needed any more, deleting
the profile prevents possible leakage of the SSID.

� Check if MAC address randomization is supported and enabled.

� When connecting to a WLAN protected by WPA2/3-Enterprise with
PEAP-MSCHAPv2 check if the outer identity is needed at all or can be set to
a non-critical string like anonymous. For the Eduroam deployment at the JKU
setting it to @jku.at is sufficient for non-exchange students.

� As WPS is rarely needed on mobile devices, completely deactivating it prevents
possible leakage of device details and the possibly long time constant and trackable
UUID-E field sent with each probe request.

� Try to prevent easy tracking possibility with the help of other RF technologies. E.g.
non-randomized Bluetooth MAC addresses can be captured and tracked similar to
the ones of WLANs.

� Disabling RF technologies in the operating system options when not needed may
help to reduce data leakage but does not guarantee to disable the WLAN radio
completely. E.g. some versions of Android actively probe for APs to support their
location service accuracy inside buildings where GPS is not a good option even if
WLAN is disabled in the operating system settings. In an unmodified Android 10
this background scanning can be disabled in the location settings.

37

A Raw Measurement Result Data

Table A.1: Measurement AP Positions

AP # X Coordinate Y Coordinate
AP1 0.00 m 0.00 m
AP2 -0.15 m 25.00 m
AP3 17.95 m 25.56 m
AP4 27.26 m -1.11 m

Table A.2: Measurement Probe Sending Device Positions

Position # X Coordinate Y Coordinate
M01 8.79 m 3.11 m
M02 8.13 m 13.67 m
M03 12.19 m 15.22 m
M04 16.32 m 3.11 m
M05 1.85 m 19.11 m
M06 1.99 m 10.22 m
M07 2.22 m 1.33 m
M08 17.43 m 20.33 m
M09 19.80 m 13.89 m
M10 22.01 m 7.22 m
M11 4.28 m -5.89 m
M12 19.35 m -4.56 m

Table A.3: Estimated Device Positions
Measurement Point # X Coordinate Y Coordinate

01 11.88 m 12.57 m
01 9.41 m 8.79 m
01 10.64 m 10.69 m
01 11.38 m 10.37 m
01 10.93 m 11.41 m
01 9.38 m 9.51 m
01 12.94 m 12.05 m
01 10.20 m 10.15 m
01 15.08 m 11.55 m
01 14.08 m 10.53 m
02 14.97 m 9.56 m

Continued on next page

38

Table A.3 – Continued from previous page
Measurement Point # X Coordinate Y Coordinate

02 14.60 m 10.96 m
02 15.50 m 11.85 m
02 15.24 m 11.37 m
02 15.02 m 10.54 m
02 14.87 m 11.78 m
02 8.61 m 8.44 m
02 14.10 m 11.10 m
02 14.83 m 11.00 m
02 14.71 m 11.29 m
03 16.59 m 12.60 m
03 10.94 m 9.20 m
03 9.44 m 7.63 m
03 10.67 m 8.06 m
03 -1.49 m -3.84 m
03 5.33 m 3.31 m
03 9.69 m -0.36 m
03 9.44 m 7.63 m
03 11.38 m 7.00 m
03 11.38 m 7.00 m
04 10.94 m 9.20 m
04 10.96 m 7.14 m
04 9.44 m 7.63 m
04 12.15 m 6.76 m
04 10.67 m 8.06 m
04 9.49 m 6.14 m
04 9.41 m 8.79 m
04 10.95 m 8.15 m
04 -0.11 m -9.38 m
04 15.63 m 8.10 m
05 16.48 m 8.17 m
05 16.98 m 9.05 m
05 16.48 m 8.17 m
05 16.53 m 8.81 m
05 16.53 m 8.81 m
05 16.15 m 9.43 m
05 16.03 m 8.55 m
05 16.53 m 8.81 m
05 17.11 m 7.90 m
05 16.11 m 8.88 m
06 15.67 m 8.67 m
06 15.67 m 8.67 m
06 15.67 m 8.67 m
06 17.11 m 7.90 m
06 15.67 m 8.67 m

Continued on next page

39

Table A.3 – Continued from previous page
Measurement Point # X Coordinate Y Coordinate

06 14.88 m 9.09 m
06 16.98 m 9.05 m
06 16.11 m 8.88 m
06 15.98 m 7.86 m
06 15.67 m 8.67 m
07 16.48 m 8.17 m
07 16.11 m 8.88 m
07 18.72 m 7.96 m
07 16.15 m 9.43 m
07 16.93 m 8.44 m
07 16.11 m 8.88 m
07 9.43 m 8.11 m
07 6.57 m 5.63 m
07 8.40 m 5.77 m
07 8.36 m 6.49 m
08 8.31 m 5.60 m
08 7.02 m 6.78 m
08 6.57 m 5.63 m
08 8.36 m 6.49 m
08 9.46 m 7.03 m
08 7.22 m 6.85 m
08 9.43 m 8.17 m
08 9.44 m 7.63 m
08 8.36 m 6.49 m
08 6.22 m 5.39 m
09 12.92 m 11.28 m
09 8.55 m 7.32 m
09 8.36 m 6.49 m
09 6.57 m 5.63 m
09 8.48 m 5.91 m
09 9.49 m 6.01 m
09 10.11 m 8.33 m
09 10.31 m 6.79 m
09 10.63 m 7.64 m
09 10.21 m 6.88 m
10 11.22 m 7.84 m
10 11.14 m 7.84 m
10 9.51 m 5.59 m
10 10.21 m 6.88 m
10 9.52 m 5.23 m
10 10.80 m 7.64 m
10 10.45 m 5.43 m
10 12.36 m 8.20 m
10 10.74 m 7.21 m

Continued on next page

40

Table A.3 – Continued from previous page
Measurement Point # X Coordinate Y Coordinate

10 10.21 m 6.88 m
11 9.48 m 6.43 m
11 10.74 m 7.64 m
11 10.74 m 7.64 m
11 11.30 m 7.85 m
11 11.38 m 7.65 m
11 18.32 m 15.54 m
11 19.14 m 16.55 m
11 18.48 m 17.11 m
11 19.14 m 16.55 m
11 15.83 m 14.33 m
12 15.77 m 13.45 m
12 16.49 m 15.03 m
12 18.64 m 18.75 m
12 17.79 m 15.48 m
12 17.79 m 15.48 m
12 16.01 m 13.90 m
12 18.64 m 18.75 m
12 12.65 m 11.77 m
12 15.50 m 13.98 m
12 15.50 m 13.98 m

41

Bibliography

[1] IEEE, “802.11-2016 - IEEE Standard for Information technol-
ogy—Telecommunications and information exchange between systems Local
and metropolitan area networks—Specific requirements - Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” IEEE,
Standard, Dec. 2016.

[2] ——, “802.11i-2004 - IEEE Standard for information technology-
Telecommunications and information exchange between systems-Local and
metropolitan area networks-Specific requirements-Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) specifications: Amendment 6:
Medium Access Control (MAC) Security Enhancements,” IEEE, Standard, Jul.
2004.

[3] M. Vanhoef and F. Piessens, “Key Reinstallation Attacks: Forcing Nonce Reuse
in WPA2,” in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’17). New York, NY, USA: ACM, 2017, pp.
1313–1328.

[4] Wi-Fi Alliance, “Wi-Fi Protected Setup Specification Version 2.0.8,” https://www.
wi-fi.org/downloads-registered-guest/Wi-Fi Protected Setup Specification v2.0.8.
pdf/35517, 2020, accessed: 2020-12-24.

[5] J. Martin, T. Mayberry, C. Donahue, L. Foppe, L. Brown, C. Riggins, E. C. Rye,
and D. Brown, “A Study of MAC Address Randomization in Mobile Devices and
When it Fails,” Proceedings on Privacy Enhancing Technologies, vol. 2017, no. 4,
pp. 365–383, Oct. 2017.

[6] S. Brenza, A. Pawlowski, and C. Pöpper, “A Practical Investigation of Identity
Theft Vulnerabilities in Eduroam,” in Proceedings of the 8th ACM Conference on
Security & Privacy in Wireless and Mobile Networks (WiSec ’15). New York, NY,
USA: ACM, 2015, pp. 14:1–14:11.

[7] JKU Information Management, “Campus Wireless LAN,” https://help.jku.at/im/
netzwerkzugang/campus-wireless-lan, accessed: 2021-01-07.

[8] L. Coelho, E. Grumbach, and K. Valo, “en:users:drivers:rt2800pci [Linux Wire-
less],” https://wireless.wiki.kernel.org/en/users/Drivers/rt2800pci, Jul. 2017, ac-
cessed: 2021-01-07.

[9] G. Simmons, J. P. Giraud, B. Torracca, and B. Hutchings, “rt2800pci - Debian

42

https://www.wi-fi.org/downloads-registered-guest/Wi-Fi_Protected_Setup_Specification_v2.0.8.pdf/35517
https://www.wi-fi.org/downloads-registered-guest/Wi-Fi_Protected_Setup_Specification_v2.0.8.pdf/35517
https://www.wi-fi.org/downloads-registered-guest/Wi-Fi_Protected_Setup_Specification_v2.0.8.pdf/35517
https://help.jku.at/im/netzwerkzugang/campus-wireless-lan
https://help.jku.at/im/netzwerkzugang/campus-wireless-lan
https://wireless.wiki.kernel.org/en/users/Drivers/rt2800pci

Wiki,” https://wiki.debian.org/rt2800pci, Dec. 2015, accessed: 2019-07-16.

[10] J. M. Berg and G. Potter, “Radiotap - Introduction,” https://www.radiotap.org/,
Aug. 2020, accessed: 2021-01-07.

[11] V. Jacobson, C. Leres, and S. McCanne, “Manpage of TCPDUMP,” https://www.
tcpdump.org/manpages/tcpdump.1.html, Dec. 2020, accessed: 2021-01-07.

[12] G. Giacobbi, “The GNU Netcat – Official homepage,” http://netcat.sourceforge.
net/, Nov. 2006, accessed: 2021-01-07.

[13] S. M. Biradar, R. Shekhar, and A. P. Reddy, “Build Minimal Docker Container
Using Golang,” in 2018 Second International Conference on Intelligent Computing
and Control Systems (ICICCS). IEEE, Jun. 2018, pp. 1–4.

[14] S. Tilkov and S. Vinoski, “Node.js: Using JavaScript to Build High-Performance
Network Programs,” IEEE Internet Computing, vol. 14, no. 6, pp. 80–83, Nov. 2010.

[15] Wireshark, “Wireshark 2.2.0 Release Notes,” https://www.wireshark.org/docs/
relnotes/wireshark-2.2.0.html, Sep. 2016, accessed: 2019-07-16.

[16] D. Vasisht, S. Kumar, and D. Katabi, “Decimeter-level Localization with a Single
WiFi Access Point,” in Proceedings of the 13th Usenix Conference on Networked
Systems Design and Implementation (NSDI 16). Berkeley, CA, USA: USENIX
Association, 2016, pp. 165–178.

[17] M. Malajner, P. Planinsic, and D. Gleich, “Angle of Arrival Estimation Using RSSI
and Omnidirectional Rotatable Antennas,” IEEE Sensors Journal - IEEE SENS J,
vol. 12, pp. 1950–1957, Nov. 2012.

[18] J. Koo and H. Cha, “Localizing WiFi Access Points Using Signal Strength,” IEEE
Communications Letters, vol. 15, no. 2, pp. 187–189, Feb. 2011.

[19] IEEE Standards Association, “MA-L,” https://standards.ieee.org/
products-services/regauth/oui/index.html, 2020, accessed: 2020-12-24.

[20] UPC Schweiz, “WI-FREE,” https://www.upc.ch/en/support/internet/wi-free/,
2020, accessed: 2020-12-24.

[21] C. Matte and M. Cunche, “Spread of MAC address randomization studied using
locally administered MAC addresses use historic,” Inria Grenoble Rhône-Alpes,
Research Report RR-9142, Jan. 2018, hal-01682363.

[22] Apple Inc., “MAC address randomization,” https://support.apple.com/guide/
security/mac-address-randomization-secb9cb3140c/web, 2020, accessed: 2020-12-
24.

[23] ——, “Use private Wi-Fi addresses in iOS 14, iPadOS 14 and watchOS 7,” https:
//support.apple.com/en-gb/HT211227, 2020, accessed: 2020-12-24.

43

https://wiki.debian.org/rt2800pci
https://www.radiotap.org/
https://www.tcpdump.org/manpages/tcpdump.1.html
https://www.tcpdump.org/manpages/tcpdump.1.html
http://netcat.sourceforge.net/
http://netcat.sourceforge.net/
https://www.wireshark.org/docs/relnotes/wireshark-2.2.0.html
https://www.wireshark.org/docs/relnotes/wireshark-2.2.0.html
https://standards.ieee.org/products-services/regauth/oui/index.html
https://standards.ieee.org/products-services/regauth/oui/index.html
https://www.upc.ch/en/support/internet/wi-free/
https://support.apple.com/guide/security/mac-address-randomization-secb9cb3140c/web
https://support.apple.com/guide/security/mac-address-randomization-secb9cb3140c/web
https://support.apple.com/en-gb/HT211227
https://support.apple.com/en-gb/HT211227

[24] Google LLC, “Privacy: MAC Randomization,” https://source.android.com/
devices/tech/connect/wifi-mac-randomization, 2020, accessed: 2020-12-24.

[25] ——, “Wi-Fi Aware,” https://source.android.com/devices/tech/connect/
wifi-aware, 2020, accessed: 2020-12-24.

[26] Microsoft Corporation, “How to use random hardware ad-
dresses,” https://support.microsoft.com/en-us/help/4027925/
windows-how-and-why-to-use-random-hardware-addresses, 2020, accessed:
2020-12-24.

[27] W. Wang, “WinHEC Shenzhen 2015,” in Wireless Networking in Windows 10, 2015,
accessed: 2020-12-24.

[28] M. Vanhoef, C. Matte, M. Cunche, L. S. Cardoso, and F. Piessens, “Why MAC
Address Randomization is Not Enough: An Analysis of Wi-Fi Network Discovery
Mechanisms,” in Proceedings of the 11th ACM on Asia Conference on Computer
and Communications Security (ASIA CCS ’16). New York, NY, USA: ACM, May
2016, pp. 413––424.

[29] J. Carneal, M. van Smoorenburg, and The FreeRADIUS server project, “freeradius-
server/src/lib/server/auth.c,” https://github.com/FreeRADIUS/freeradius-server/
blob/584fbbc2d42eab31a9889e7d953a8f3a8b510091/src/lib/server/auth.c#L150,
2020, accessed: 2020-12-24.

[30] GÉANT Association, “eduroam CAT,” https://play.google.com/store/apps/
details?id=uk.ac.swansea.eduroamcat, 2020, accessed: 2020-12-24.

[31] M. Ohlinger, T. Castaldo, and D. Eby, “Add Wi-Fi settings for Windows
10 and later devices in Intune,” https://docs.microsoft.com/en-us/mem/intune/
configuration/wi-fi-settings-windows, 2020, accessed: 2020-12-24.

[32] V. Brik, S. Banerjee, M. Gruteser, and S. Oh, “Wireless device identification with
radiometric signatures,” in Proceedings of the 14th ACM international conference on
Mobile computing and networking - MobiCom '08. ACM Press, 2008, pp. 116–127.

[33] B. Danev, D. Zanetti, and S. Capkun, “On physical-layer identification of wireless
devices,” ACM Computing Surveys, vol. 45, no. 1, pp. 1–29, Nov. 2012.

[34] S. Bratus, C. Cornelius, D. Kotz, and D. Peebles, “Active Behavioral Fingerprint-
ing of Wireless Devices,” in Proceedings of the First ACM Conference on Wireless
Network Security (WiSec ’08). New York, NY, USA: ACM, 2008, pp. 56—-61.

[35] O. Waltari and J. Kangasharju, “The Wireless Shark: Identifying WiFi Devices
Based on Probe Fingerprints,” in Proceedings of the First Workshop on Mobile
Data (MobiData ’16). New York, NY, USA: ACM, 2016, pp. 1––6.

[36] J. Franklin, D. McCoy, P. Tabriz, V. Neagoe, J. Van Randwyk, and D. Sicker, “Pas-
sive Data Link Layer 802.11 Wireless Device Driver Fingerprinting,” in Proceedings

44

https://source.android.com/devices/tech/connect/wifi-mac-randomization
https://source.android.com/devices/tech/connect/wifi-mac-randomization
https://source.android.com/devices/tech/connect/wifi-aware
https://source.android.com/devices/tech/connect/wifi-aware
https://support.microsoft.com/en-us/help/4027925/windows-how-and-why-to-use-random-hardware-addresses
https://support.microsoft.com/en-us/help/4027925/windows-how-and-why-to-use-random-hardware-addresses
https://github.com/FreeRADIUS/freeradius-server/blob/584fbbc2d42eab31a9889e7d953a8f3a8b510091/src/lib/server/auth.c#L150
https://github.com/FreeRADIUS/freeradius-server/blob/584fbbc2d42eab31a9889e7d953a8f3a8b510091/src/lib/server/auth.c#L150
https://play.google.com/store/apps/details?id=uk.ac.swansea.eduroamcat
https://play.google.com/store/apps/details?id=uk.ac.swansea.eduroamcat
https://docs.microsoft.com/en-us/mem/intune/configuration/wi-fi-settings-windows
https://docs.microsoft.com/en-us/mem/intune/configuration/wi-fi-settings-windows

of the 15th Conference on USENIX Security Symposium - Volume 15 (USENIX-
SS’06). USA: USENIX Association, 2006.

[37] H. Hong, G. D. De Silva, and M. C. Chan, “CrowdProbe: Non-Invasive Crowd
Monitoring with Wi-Fi Probe,” Proc. ACM Interact. Mob. Wearable Ubiquitous
Technol., vol. 2, no. 3, Sep. 2018.

[38] S. Siby, R. R. Maiti, and N. O. Tippenhauer, “IoTScanner: Detecting Privacy
Threats in IoT Neighborhoods,” in Proceedings of the 3rd ACM International Work-
shop on IoT Privacy, Trust, and Security (IoTPTS ’17). New York, NY, USA:
ACM, 2017, pp. 23—-30.

[39] S. S. Sawwashere and S. U. Nimbhorkar, “Survey of RTS-CTS Attacks in Wireless
Network,” in 2014 Fourth International Conference on Communication Systems
and Network Technologies. IEEE, Apr. 2014, pp. 752–755.

[40] P. Robyns, B. Bonné, P. Quax, and W. Lamotte, “Noncooperative 802.11 MAC
Layer Fingerprinting and Tracking of Mobile Devices,” Security and Communication
Networks, vol. 2017, pp. 1–21, Jan. 2017.

[41] Aruba Networks, “Analytics and Location Engine,” https://www.arubanetworks.
com/products/location-services/analytics/ale/, 2020, accessed: 2020-12-24.

[42] Cisco Systems, Inc., “Location Analytics,” https://meraki.cisco.com/solutions/
location analytics/, 2020, accessed: 2020-12-24.

45

https://www.arubanetworks.com/products/location-services/analytics/ale/
https://www.arubanetworks.com/products/location-services/analytics/ale/
https://meraki.cisco.com/solutions/location_analytics/
https://meraki.cisco.com/solutions/location_analytics/

	Introduction
	IEEE 802.11
	IEEE 802.11 Terminology
	IEEE 802.11 MAC Frames
	Management Frames
	Probe Requests
	WPS Data in Probe Frames
	IEEE 802.1X in Data QoS Frames

	Data Considered in this Work

	Application
	Application Architecture and Tools
	Tcpdump
	netcat
	Systemd Script on Capture Devices
	Docker Engine
	Node.js
	Wireshark and tshark
	Elasticsearch
	Kibana

	Application Pipeline
	Position Estimation with Multilateration

	Findings
	Capture Setup and Environment
	MAC Address Randomization
	SSID Values
	WPS UUID-E
	EAPoL
	Position Estimation by RSSI Measurements

	Extensions and Future Work
	Advanced Device Fingerprinting
	Tracking

	Conclusion
	Current Developments
	Awareness and Tracking Prevention

	Raw Measurement Result Data

